aops.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449
  1. /* -*- mode: c; c-basic-offset: 8; -*-
  2. * vim: noexpandtab sw=8 ts=8 sts=0:
  3. *
  4. * Copyright (C) 2002, 2004 Oracle. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public
  17. * License along with this program; if not, write to the
  18. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19. * Boston, MA 021110-1307, USA.
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include <linux/highmem.h>
  24. #include <linux/pagemap.h>
  25. #include <asm/byteorder.h>
  26. #include <linux/swap.h>
  27. #include <linux/pipe_fs_i.h>
  28. #include <linux/mpage.h>
  29. #include <linux/quotaops.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/uio.h>
  32. #include <cluster/masklog.h>
  33. #include "ocfs2.h"
  34. #include "alloc.h"
  35. #include "aops.h"
  36. #include "dlmglue.h"
  37. #include "extent_map.h"
  38. #include "file.h"
  39. #include "inode.h"
  40. #include "journal.h"
  41. #include "suballoc.h"
  42. #include "super.h"
  43. #include "symlink.h"
  44. #include "refcounttree.h"
  45. #include "ocfs2_trace.h"
  46. #include "buffer_head_io.h"
  47. #include "dir.h"
  48. #include "namei.h"
  49. #include "sysfile.h"
  50. static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  51. struct buffer_head *bh_result, int create)
  52. {
  53. int err = -EIO;
  54. int status;
  55. struct ocfs2_dinode *fe = NULL;
  56. struct buffer_head *bh = NULL;
  57. struct buffer_head *buffer_cache_bh = NULL;
  58. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  59. void *kaddr;
  60. trace_ocfs2_symlink_get_block(
  61. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  62. (unsigned long long)iblock, bh_result, create);
  63. BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  64. if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  65. mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  66. (unsigned long long)iblock);
  67. goto bail;
  68. }
  69. status = ocfs2_read_inode_block(inode, &bh);
  70. if (status < 0) {
  71. mlog_errno(status);
  72. goto bail;
  73. }
  74. fe = (struct ocfs2_dinode *) bh->b_data;
  75. if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  76. le32_to_cpu(fe->i_clusters))) {
  77. err = -ENOMEM;
  78. mlog(ML_ERROR, "block offset is outside the allocated size: "
  79. "%llu\n", (unsigned long long)iblock);
  80. goto bail;
  81. }
  82. /* We don't use the page cache to create symlink data, so if
  83. * need be, copy it over from the buffer cache. */
  84. if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  85. u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  86. iblock;
  87. buffer_cache_bh = sb_getblk(osb->sb, blkno);
  88. if (!buffer_cache_bh) {
  89. err = -ENOMEM;
  90. mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  91. goto bail;
  92. }
  93. /* we haven't locked out transactions, so a commit
  94. * could've happened. Since we've got a reference on
  95. * the bh, even if it commits while we're doing the
  96. * copy, the data is still good. */
  97. if (buffer_jbd(buffer_cache_bh)
  98. && ocfs2_inode_is_new(inode)) {
  99. kaddr = kmap_atomic(bh_result->b_page);
  100. if (!kaddr) {
  101. mlog(ML_ERROR, "couldn't kmap!\n");
  102. goto bail;
  103. }
  104. memcpy(kaddr + (bh_result->b_size * iblock),
  105. buffer_cache_bh->b_data,
  106. bh_result->b_size);
  107. kunmap_atomic(kaddr);
  108. set_buffer_uptodate(bh_result);
  109. }
  110. brelse(buffer_cache_bh);
  111. }
  112. map_bh(bh_result, inode->i_sb,
  113. le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
  114. err = 0;
  115. bail:
  116. brelse(bh);
  117. return err;
  118. }
  119. int ocfs2_get_block(struct inode *inode, sector_t iblock,
  120. struct buffer_head *bh_result, int create)
  121. {
  122. int err = 0;
  123. unsigned int ext_flags;
  124. u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
  125. u64 p_blkno, count, past_eof;
  126. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  127. trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
  128. (unsigned long long)iblock, bh_result, create);
  129. if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
  130. mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
  131. inode, inode->i_ino);
  132. if (S_ISLNK(inode->i_mode)) {
  133. /* this always does I/O for some reason. */
  134. err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
  135. goto bail;
  136. }
  137. err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
  138. &ext_flags);
  139. if (err) {
  140. mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
  141. "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
  142. (unsigned long long)p_blkno);
  143. goto bail;
  144. }
  145. if (max_blocks < count)
  146. count = max_blocks;
  147. /*
  148. * ocfs2 never allocates in this function - the only time we
  149. * need to use BH_New is when we're extending i_size on a file
  150. * system which doesn't support holes, in which case BH_New
  151. * allows __block_write_begin() to zero.
  152. *
  153. * If we see this on a sparse file system, then a truncate has
  154. * raced us and removed the cluster. In this case, we clear
  155. * the buffers dirty and uptodate bits and let the buffer code
  156. * ignore it as a hole.
  157. */
  158. if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
  159. clear_buffer_dirty(bh_result);
  160. clear_buffer_uptodate(bh_result);
  161. goto bail;
  162. }
  163. /* Treat the unwritten extent as a hole for zeroing purposes. */
  164. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  165. map_bh(bh_result, inode->i_sb, p_blkno);
  166. bh_result->b_size = count << inode->i_blkbits;
  167. if (!ocfs2_sparse_alloc(osb)) {
  168. if (p_blkno == 0) {
  169. err = -EIO;
  170. mlog(ML_ERROR,
  171. "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
  172. (unsigned long long)iblock,
  173. (unsigned long long)p_blkno,
  174. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  175. mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
  176. dump_stack();
  177. goto bail;
  178. }
  179. }
  180. past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  181. trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
  182. (unsigned long long)past_eof);
  183. if (create && (iblock >= past_eof))
  184. set_buffer_new(bh_result);
  185. bail:
  186. if (err < 0)
  187. err = -EIO;
  188. return err;
  189. }
  190. int ocfs2_read_inline_data(struct inode *inode, struct page *page,
  191. struct buffer_head *di_bh)
  192. {
  193. void *kaddr;
  194. loff_t size;
  195. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  196. if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
  197. ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
  198. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  199. return -EROFS;
  200. }
  201. size = i_size_read(inode);
  202. if (size > PAGE_SIZE ||
  203. size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
  204. ocfs2_error(inode->i_sb,
  205. "Inode %llu has with inline data has bad size: %Lu\n",
  206. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  207. (unsigned long long)size);
  208. return -EROFS;
  209. }
  210. kaddr = kmap_atomic(page);
  211. if (size)
  212. memcpy(kaddr, di->id2.i_data.id_data, size);
  213. /* Clear the remaining part of the page */
  214. memset(kaddr + size, 0, PAGE_SIZE - size);
  215. flush_dcache_page(page);
  216. kunmap_atomic(kaddr);
  217. SetPageUptodate(page);
  218. return 0;
  219. }
  220. static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
  221. {
  222. int ret;
  223. struct buffer_head *di_bh = NULL;
  224. BUG_ON(!PageLocked(page));
  225. BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
  226. ret = ocfs2_read_inode_block(inode, &di_bh);
  227. if (ret) {
  228. mlog_errno(ret);
  229. goto out;
  230. }
  231. ret = ocfs2_read_inline_data(inode, page, di_bh);
  232. out:
  233. unlock_page(page);
  234. brelse(di_bh);
  235. return ret;
  236. }
  237. static int ocfs2_readpage(struct file *file, struct page *page)
  238. {
  239. struct inode *inode = page->mapping->host;
  240. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  241. loff_t start = (loff_t)page->index << PAGE_SHIFT;
  242. int ret, unlock = 1;
  243. trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
  244. (page ? page->index : 0));
  245. ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
  246. if (ret != 0) {
  247. if (ret == AOP_TRUNCATED_PAGE)
  248. unlock = 0;
  249. mlog_errno(ret);
  250. goto out;
  251. }
  252. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  253. /*
  254. * Unlock the page and cycle ip_alloc_sem so that we don't
  255. * busyloop waiting for ip_alloc_sem to unlock
  256. */
  257. ret = AOP_TRUNCATED_PAGE;
  258. unlock_page(page);
  259. unlock = 0;
  260. down_read(&oi->ip_alloc_sem);
  261. up_read(&oi->ip_alloc_sem);
  262. goto out_inode_unlock;
  263. }
  264. /*
  265. * i_size might have just been updated as we grabed the meta lock. We
  266. * might now be discovering a truncate that hit on another node.
  267. * block_read_full_page->get_block freaks out if it is asked to read
  268. * beyond the end of a file, so we check here. Callers
  269. * (generic_file_read, vm_ops->fault) are clever enough to check i_size
  270. * and notice that the page they just read isn't needed.
  271. *
  272. * XXX sys_readahead() seems to get that wrong?
  273. */
  274. if (start >= i_size_read(inode)) {
  275. zero_user(page, 0, PAGE_SIZE);
  276. SetPageUptodate(page);
  277. ret = 0;
  278. goto out_alloc;
  279. }
  280. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  281. ret = ocfs2_readpage_inline(inode, page);
  282. else
  283. ret = block_read_full_page(page, ocfs2_get_block);
  284. unlock = 0;
  285. out_alloc:
  286. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  287. out_inode_unlock:
  288. ocfs2_inode_unlock(inode, 0);
  289. out:
  290. if (unlock)
  291. unlock_page(page);
  292. return ret;
  293. }
  294. /*
  295. * This is used only for read-ahead. Failures or difficult to handle
  296. * situations are safe to ignore.
  297. *
  298. * Right now, we don't bother with BH_Boundary - in-inode extent lists
  299. * are quite large (243 extents on 4k blocks), so most inodes don't
  300. * grow out to a tree. If need be, detecting boundary extents could
  301. * trivially be added in a future version of ocfs2_get_block().
  302. */
  303. static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
  304. struct list_head *pages, unsigned nr_pages)
  305. {
  306. int ret, err = -EIO;
  307. struct inode *inode = mapping->host;
  308. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  309. loff_t start;
  310. struct page *last;
  311. /*
  312. * Use the nonblocking flag for the dlm code to avoid page
  313. * lock inversion, but don't bother with retrying.
  314. */
  315. ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
  316. if (ret)
  317. return err;
  318. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  319. ocfs2_inode_unlock(inode, 0);
  320. return err;
  321. }
  322. /*
  323. * Don't bother with inline-data. There isn't anything
  324. * to read-ahead in that case anyway...
  325. */
  326. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  327. goto out_unlock;
  328. /*
  329. * Check whether a remote node truncated this file - we just
  330. * drop out in that case as it's not worth handling here.
  331. */
  332. last = list_entry(pages->prev, struct page, lru);
  333. start = (loff_t)last->index << PAGE_SHIFT;
  334. if (start >= i_size_read(inode))
  335. goto out_unlock;
  336. err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
  337. out_unlock:
  338. up_read(&oi->ip_alloc_sem);
  339. ocfs2_inode_unlock(inode, 0);
  340. return err;
  341. }
  342. /* Note: Because we don't support holes, our allocation has
  343. * already happened (allocation writes zeros to the file data)
  344. * so we don't have to worry about ordered writes in
  345. * ocfs2_writepage.
  346. *
  347. * ->writepage is called during the process of invalidating the page cache
  348. * during blocked lock processing. It can't block on any cluster locks
  349. * to during block mapping. It's relying on the fact that the block
  350. * mapping can't have disappeared under the dirty pages that it is
  351. * being asked to write back.
  352. */
  353. static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
  354. {
  355. trace_ocfs2_writepage(
  356. (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
  357. page->index);
  358. return block_write_full_page(page, ocfs2_get_block, wbc);
  359. }
  360. /* Taken from ext3. We don't necessarily need the full blown
  361. * functionality yet, but IMHO it's better to cut and paste the whole
  362. * thing so we can avoid introducing our own bugs (and easily pick up
  363. * their fixes when they happen) --Mark */
  364. int walk_page_buffers( handle_t *handle,
  365. struct buffer_head *head,
  366. unsigned from,
  367. unsigned to,
  368. int *partial,
  369. int (*fn)( handle_t *handle,
  370. struct buffer_head *bh))
  371. {
  372. struct buffer_head *bh;
  373. unsigned block_start, block_end;
  374. unsigned blocksize = head->b_size;
  375. int err, ret = 0;
  376. struct buffer_head *next;
  377. for ( bh = head, block_start = 0;
  378. ret == 0 && (bh != head || !block_start);
  379. block_start = block_end, bh = next)
  380. {
  381. next = bh->b_this_page;
  382. block_end = block_start + blocksize;
  383. if (block_end <= from || block_start >= to) {
  384. if (partial && !buffer_uptodate(bh))
  385. *partial = 1;
  386. continue;
  387. }
  388. err = (*fn)(handle, bh);
  389. if (!ret)
  390. ret = err;
  391. }
  392. return ret;
  393. }
  394. static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
  395. {
  396. sector_t status;
  397. u64 p_blkno = 0;
  398. int err = 0;
  399. struct inode *inode = mapping->host;
  400. trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
  401. (unsigned long long)block);
  402. /*
  403. * The swap code (ab-)uses ->bmap to get a block mapping and then
  404. * bypasseѕ the file system for actual I/O. We really can't allow
  405. * that on refcounted inodes, so we have to skip out here. And yes,
  406. * 0 is the magic code for a bmap error..
  407. */
  408. if (ocfs2_is_refcount_inode(inode))
  409. return 0;
  410. /* We don't need to lock journal system files, since they aren't
  411. * accessed concurrently from multiple nodes.
  412. */
  413. if (!INODE_JOURNAL(inode)) {
  414. err = ocfs2_inode_lock(inode, NULL, 0);
  415. if (err) {
  416. if (err != -ENOENT)
  417. mlog_errno(err);
  418. goto bail;
  419. }
  420. down_read(&OCFS2_I(inode)->ip_alloc_sem);
  421. }
  422. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  423. err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
  424. NULL);
  425. if (!INODE_JOURNAL(inode)) {
  426. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  427. ocfs2_inode_unlock(inode, 0);
  428. }
  429. if (err) {
  430. mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
  431. (unsigned long long)block);
  432. mlog_errno(err);
  433. goto bail;
  434. }
  435. bail:
  436. status = err ? 0 : p_blkno;
  437. return status;
  438. }
  439. static int ocfs2_releasepage(struct page *page, gfp_t wait)
  440. {
  441. if (!page_has_buffers(page))
  442. return 0;
  443. return try_to_free_buffers(page);
  444. }
  445. static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
  446. u32 cpos,
  447. unsigned int *start,
  448. unsigned int *end)
  449. {
  450. unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
  451. if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
  452. unsigned int cpp;
  453. cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
  454. cluster_start = cpos % cpp;
  455. cluster_start = cluster_start << osb->s_clustersize_bits;
  456. cluster_end = cluster_start + osb->s_clustersize;
  457. }
  458. BUG_ON(cluster_start > PAGE_SIZE);
  459. BUG_ON(cluster_end > PAGE_SIZE);
  460. if (start)
  461. *start = cluster_start;
  462. if (end)
  463. *end = cluster_end;
  464. }
  465. /*
  466. * 'from' and 'to' are the region in the page to avoid zeroing.
  467. *
  468. * If pagesize > clustersize, this function will avoid zeroing outside
  469. * of the cluster boundary.
  470. *
  471. * from == to == 0 is code for "zero the entire cluster region"
  472. */
  473. static void ocfs2_clear_page_regions(struct page *page,
  474. struct ocfs2_super *osb, u32 cpos,
  475. unsigned from, unsigned to)
  476. {
  477. void *kaddr;
  478. unsigned int cluster_start, cluster_end;
  479. ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
  480. kaddr = kmap_atomic(page);
  481. if (from || to) {
  482. if (from > cluster_start)
  483. memset(kaddr + cluster_start, 0, from - cluster_start);
  484. if (to < cluster_end)
  485. memset(kaddr + to, 0, cluster_end - to);
  486. } else {
  487. memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
  488. }
  489. kunmap_atomic(kaddr);
  490. }
  491. /*
  492. * Nonsparse file systems fully allocate before we get to the write
  493. * code. This prevents ocfs2_write() from tagging the write as an
  494. * allocating one, which means ocfs2_map_page_blocks() might try to
  495. * read-in the blocks at the tail of our file. Avoid reading them by
  496. * testing i_size against each block offset.
  497. */
  498. static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
  499. unsigned int block_start)
  500. {
  501. u64 offset = page_offset(page) + block_start;
  502. if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
  503. return 1;
  504. if (i_size_read(inode) > offset)
  505. return 1;
  506. return 0;
  507. }
  508. /*
  509. * Some of this taken from __block_write_begin(). We already have our
  510. * mapping by now though, and the entire write will be allocating or
  511. * it won't, so not much need to use BH_New.
  512. *
  513. * This will also skip zeroing, which is handled externally.
  514. */
  515. int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
  516. struct inode *inode, unsigned int from,
  517. unsigned int to, int new)
  518. {
  519. int ret = 0;
  520. struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
  521. unsigned int block_end, block_start;
  522. unsigned int bsize = 1 << inode->i_blkbits;
  523. if (!page_has_buffers(page))
  524. create_empty_buffers(page, bsize, 0);
  525. head = page_buffers(page);
  526. for (bh = head, block_start = 0; bh != head || !block_start;
  527. bh = bh->b_this_page, block_start += bsize) {
  528. block_end = block_start + bsize;
  529. clear_buffer_new(bh);
  530. /*
  531. * Ignore blocks outside of our i/o range -
  532. * they may belong to unallocated clusters.
  533. */
  534. if (block_start >= to || block_end <= from) {
  535. if (PageUptodate(page))
  536. set_buffer_uptodate(bh);
  537. continue;
  538. }
  539. /*
  540. * For an allocating write with cluster size >= page
  541. * size, we always write the entire page.
  542. */
  543. if (new)
  544. set_buffer_new(bh);
  545. if (!buffer_mapped(bh)) {
  546. map_bh(bh, inode->i_sb, *p_blkno);
  547. clean_bdev_bh_alias(bh);
  548. }
  549. if (PageUptodate(page)) {
  550. if (!buffer_uptodate(bh))
  551. set_buffer_uptodate(bh);
  552. } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  553. !buffer_new(bh) &&
  554. ocfs2_should_read_blk(inode, page, block_start) &&
  555. (block_start < from || block_end > to)) {
  556. ll_rw_block(REQ_OP_READ, 0, 1, &bh);
  557. *wait_bh++=bh;
  558. }
  559. *p_blkno = *p_blkno + 1;
  560. }
  561. /*
  562. * If we issued read requests - let them complete.
  563. */
  564. while(wait_bh > wait) {
  565. wait_on_buffer(*--wait_bh);
  566. if (!buffer_uptodate(*wait_bh))
  567. ret = -EIO;
  568. }
  569. if (ret == 0 || !new)
  570. return ret;
  571. /*
  572. * If we get -EIO above, zero out any newly allocated blocks
  573. * to avoid exposing stale data.
  574. */
  575. bh = head;
  576. block_start = 0;
  577. do {
  578. block_end = block_start + bsize;
  579. if (block_end <= from)
  580. goto next_bh;
  581. if (block_start >= to)
  582. break;
  583. zero_user(page, block_start, bh->b_size);
  584. set_buffer_uptodate(bh);
  585. mark_buffer_dirty(bh);
  586. next_bh:
  587. block_start = block_end;
  588. bh = bh->b_this_page;
  589. } while (bh != head);
  590. return ret;
  591. }
  592. #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
  593. #define OCFS2_MAX_CTXT_PAGES 1
  594. #else
  595. #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
  596. #endif
  597. #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
  598. struct ocfs2_unwritten_extent {
  599. struct list_head ue_node;
  600. struct list_head ue_ip_node;
  601. u32 ue_cpos;
  602. u32 ue_phys;
  603. };
  604. /*
  605. * Describe the state of a single cluster to be written to.
  606. */
  607. struct ocfs2_write_cluster_desc {
  608. u32 c_cpos;
  609. u32 c_phys;
  610. /*
  611. * Give this a unique field because c_phys eventually gets
  612. * filled.
  613. */
  614. unsigned c_new;
  615. unsigned c_clear_unwritten;
  616. unsigned c_needs_zero;
  617. };
  618. struct ocfs2_write_ctxt {
  619. /* Logical cluster position / len of write */
  620. u32 w_cpos;
  621. u32 w_clen;
  622. /* First cluster allocated in a nonsparse extend */
  623. u32 w_first_new_cpos;
  624. /* Type of caller. Must be one of buffer, mmap, direct. */
  625. ocfs2_write_type_t w_type;
  626. struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
  627. /*
  628. * This is true if page_size > cluster_size.
  629. *
  630. * It triggers a set of special cases during write which might
  631. * have to deal with allocating writes to partial pages.
  632. */
  633. unsigned int w_large_pages;
  634. /*
  635. * Pages involved in this write.
  636. *
  637. * w_target_page is the page being written to by the user.
  638. *
  639. * w_pages is an array of pages which always contains
  640. * w_target_page, and in the case of an allocating write with
  641. * page_size < cluster size, it will contain zero'd and mapped
  642. * pages adjacent to w_target_page which need to be written
  643. * out in so that future reads from that region will get
  644. * zero's.
  645. */
  646. unsigned int w_num_pages;
  647. struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
  648. struct page *w_target_page;
  649. /*
  650. * w_target_locked is used for page_mkwrite path indicating no unlocking
  651. * against w_target_page in ocfs2_write_end_nolock.
  652. */
  653. unsigned int w_target_locked:1;
  654. /*
  655. * ocfs2_write_end() uses this to know what the real range to
  656. * write in the target should be.
  657. */
  658. unsigned int w_target_from;
  659. unsigned int w_target_to;
  660. /*
  661. * We could use journal_current_handle() but this is cleaner,
  662. * IMHO -Mark
  663. */
  664. handle_t *w_handle;
  665. struct buffer_head *w_di_bh;
  666. struct ocfs2_cached_dealloc_ctxt w_dealloc;
  667. struct list_head w_unwritten_list;
  668. };
  669. void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
  670. {
  671. int i;
  672. for(i = 0; i < num_pages; i++) {
  673. if (pages[i]) {
  674. unlock_page(pages[i]);
  675. mark_page_accessed(pages[i]);
  676. put_page(pages[i]);
  677. }
  678. }
  679. }
  680. static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
  681. {
  682. int i;
  683. /*
  684. * w_target_locked is only set to true in the page_mkwrite() case.
  685. * The intent is to allow us to lock the target page from write_begin()
  686. * to write_end(). The caller must hold a ref on w_target_page.
  687. */
  688. if (wc->w_target_locked) {
  689. BUG_ON(!wc->w_target_page);
  690. for (i = 0; i < wc->w_num_pages; i++) {
  691. if (wc->w_target_page == wc->w_pages[i]) {
  692. wc->w_pages[i] = NULL;
  693. break;
  694. }
  695. }
  696. mark_page_accessed(wc->w_target_page);
  697. put_page(wc->w_target_page);
  698. }
  699. ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
  700. }
  701. static void ocfs2_free_unwritten_list(struct inode *inode,
  702. struct list_head *head)
  703. {
  704. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  705. struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
  706. list_for_each_entry_safe(ue, tmp, head, ue_node) {
  707. list_del(&ue->ue_node);
  708. spin_lock(&oi->ip_lock);
  709. list_del(&ue->ue_ip_node);
  710. spin_unlock(&oi->ip_lock);
  711. kfree(ue);
  712. }
  713. }
  714. static void ocfs2_free_write_ctxt(struct inode *inode,
  715. struct ocfs2_write_ctxt *wc)
  716. {
  717. ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
  718. ocfs2_unlock_pages(wc);
  719. brelse(wc->w_di_bh);
  720. kfree(wc);
  721. }
  722. static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
  723. struct ocfs2_super *osb, loff_t pos,
  724. unsigned len, ocfs2_write_type_t type,
  725. struct buffer_head *di_bh)
  726. {
  727. u32 cend;
  728. struct ocfs2_write_ctxt *wc;
  729. wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
  730. if (!wc)
  731. return -ENOMEM;
  732. wc->w_cpos = pos >> osb->s_clustersize_bits;
  733. wc->w_first_new_cpos = UINT_MAX;
  734. cend = (pos + len - 1) >> osb->s_clustersize_bits;
  735. wc->w_clen = cend - wc->w_cpos + 1;
  736. get_bh(di_bh);
  737. wc->w_di_bh = di_bh;
  738. wc->w_type = type;
  739. if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
  740. wc->w_large_pages = 1;
  741. else
  742. wc->w_large_pages = 0;
  743. ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
  744. INIT_LIST_HEAD(&wc->w_unwritten_list);
  745. *wcp = wc;
  746. return 0;
  747. }
  748. /*
  749. * If a page has any new buffers, zero them out here, and mark them uptodate
  750. * and dirty so they'll be written out (in order to prevent uninitialised
  751. * block data from leaking). And clear the new bit.
  752. */
  753. static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  754. {
  755. unsigned int block_start, block_end;
  756. struct buffer_head *head, *bh;
  757. BUG_ON(!PageLocked(page));
  758. if (!page_has_buffers(page))
  759. return;
  760. bh = head = page_buffers(page);
  761. block_start = 0;
  762. do {
  763. block_end = block_start + bh->b_size;
  764. if (buffer_new(bh)) {
  765. if (block_end > from && block_start < to) {
  766. if (!PageUptodate(page)) {
  767. unsigned start, end;
  768. start = max(from, block_start);
  769. end = min(to, block_end);
  770. zero_user_segment(page, start, end);
  771. set_buffer_uptodate(bh);
  772. }
  773. clear_buffer_new(bh);
  774. mark_buffer_dirty(bh);
  775. }
  776. }
  777. block_start = block_end;
  778. bh = bh->b_this_page;
  779. } while (bh != head);
  780. }
  781. /*
  782. * Only called when we have a failure during allocating write to write
  783. * zero's to the newly allocated region.
  784. */
  785. static void ocfs2_write_failure(struct inode *inode,
  786. struct ocfs2_write_ctxt *wc,
  787. loff_t user_pos, unsigned user_len)
  788. {
  789. int i;
  790. unsigned from = user_pos & (PAGE_SIZE - 1),
  791. to = user_pos + user_len;
  792. struct page *tmppage;
  793. if (wc->w_target_page)
  794. ocfs2_zero_new_buffers(wc->w_target_page, from, to);
  795. for(i = 0; i < wc->w_num_pages; i++) {
  796. tmppage = wc->w_pages[i];
  797. if (tmppage && page_has_buffers(tmppage)) {
  798. if (ocfs2_should_order_data(inode))
  799. ocfs2_jbd2_file_inode(wc->w_handle, inode);
  800. block_commit_write(tmppage, from, to);
  801. }
  802. }
  803. }
  804. static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
  805. struct ocfs2_write_ctxt *wc,
  806. struct page *page, u32 cpos,
  807. loff_t user_pos, unsigned user_len,
  808. int new)
  809. {
  810. int ret;
  811. unsigned int map_from = 0, map_to = 0;
  812. unsigned int cluster_start, cluster_end;
  813. unsigned int user_data_from = 0, user_data_to = 0;
  814. ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
  815. &cluster_start, &cluster_end);
  816. /* treat the write as new if the a hole/lseek spanned across
  817. * the page boundary.
  818. */
  819. new = new | ((i_size_read(inode) <= page_offset(page)) &&
  820. (page_offset(page) <= user_pos));
  821. if (page == wc->w_target_page) {
  822. map_from = user_pos & (PAGE_SIZE - 1);
  823. map_to = map_from + user_len;
  824. if (new)
  825. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  826. cluster_start, cluster_end,
  827. new);
  828. else
  829. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  830. map_from, map_to, new);
  831. if (ret) {
  832. mlog_errno(ret);
  833. goto out;
  834. }
  835. user_data_from = map_from;
  836. user_data_to = map_to;
  837. if (new) {
  838. map_from = cluster_start;
  839. map_to = cluster_end;
  840. }
  841. } else {
  842. /*
  843. * If we haven't allocated the new page yet, we
  844. * shouldn't be writing it out without copying user
  845. * data. This is likely a math error from the caller.
  846. */
  847. BUG_ON(!new);
  848. map_from = cluster_start;
  849. map_to = cluster_end;
  850. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  851. cluster_start, cluster_end, new);
  852. if (ret) {
  853. mlog_errno(ret);
  854. goto out;
  855. }
  856. }
  857. /*
  858. * Parts of newly allocated pages need to be zero'd.
  859. *
  860. * Above, we have also rewritten 'to' and 'from' - as far as
  861. * the rest of the function is concerned, the entire cluster
  862. * range inside of a page needs to be written.
  863. *
  864. * We can skip this if the page is up to date - it's already
  865. * been zero'd from being read in as a hole.
  866. */
  867. if (new && !PageUptodate(page))
  868. ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
  869. cpos, user_data_from, user_data_to);
  870. flush_dcache_page(page);
  871. out:
  872. return ret;
  873. }
  874. /*
  875. * This function will only grab one clusters worth of pages.
  876. */
  877. static int ocfs2_grab_pages_for_write(struct address_space *mapping,
  878. struct ocfs2_write_ctxt *wc,
  879. u32 cpos, loff_t user_pos,
  880. unsigned user_len, int new,
  881. struct page *mmap_page)
  882. {
  883. int ret = 0, i;
  884. unsigned long start, target_index, end_index, index;
  885. struct inode *inode = mapping->host;
  886. loff_t last_byte;
  887. target_index = user_pos >> PAGE_SHIFT;
  888. /*
  889. * Figure out how many pages we'll be manipulating here. For
  890. * non allocating write, we just change the one
  891. * page. Otherwise, we'll need a whole clusters worth. If we're
  892. * writing past i_size, we only need enough pages to cover the
  893. * last page of the write.
  894. */
  895. if (new) {
  896. wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
  897. start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
  898. /*
  899. * We need the index *past* the last page we could possibly
  900. * touch. This is the page past the end of the write or
  901. * i_size, whichever is greater.
  902. */
  903. last_byte = max(user_pos + user_len, i_size_read(inode));
  904. BUG_ON(last_byte < 1);
  905. end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
  906. if ((start + wc->w_num_pages) > end_index)
  907. wc->w_num_pages = end_index - start;
  908. } else {
  909. wc->w_num_pages = 1;
  910. start = target_index;
  911. }
  912. end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
  913. for(i = 0; i < wc->w_num_pages; i++) {
  914. index = start + i;
  915. if (index >= target_index && index <= end_index &&
  916. wc->w_type == OCFS2_WRITE_MMAP) {
  917. /*
  918. * ocfs2_pagemkwrite() is a little different
  919. * and wants us to directly use the page
  920. * passed in.
  921. */
  922. lock_page(mmap_page);
  923. /* Exit and let the caller retry */
  924. if (mmap_page->mapping != mapping) {
  925. WARN_ON(mmap_page->mapping);
  926. unlock_page(mmap_page);
  927. ret = -EAGAIN;
  928. goto out;
  929. }
  930. get_page(mmap_page);
  931. wc->w_pages[i] = mmap_page;
  932. wc->w_target_locked = true;
  933. } else if (index >= target_index && index <= end_index &&
  934. wc->w_type == OCFS2_WRITE_DIRECT) {
  935. /* Direct write has no mapping page. */
  936. wc->w_pages[i] = NULL;
  937. continue;
  938. } else {
  939. wc->w_pages[i] = find_or_create_page(mapping, index,
  940. GFP_NOFS);
  941. if (!wc->w_pages[i]) {
  942. ret = -ENOMEM;
  943. mlog_errno(ret);
  944. goto out;
  945. }
  946. }
  947. wait_for_stable_page(wc->w_pages[i]);
  948. if (index == target_index)
  949. wc->w_target_page = wc->w_pages[i];
  950. }
  951. out:
  952. if (ret)
  953. wc->w_target_locked = false;
  954. return ret;
  955. }
  956. /*
  957. * Prepare a single cluster for write one cluster into the file.
  958. */
  959. static int ocfs2_write_cluster(struct address_space *mapping,
  960. u32 *phys, unsigned int new,
  961. unsigned int clear_unwritten,
  962. unsigned int should_zero,
  963. struct ocfs2_alloc_context *data_ac,
  964. struct ocfs2_alloc_context *meta_ac,
  965. struct ocfs2_write_ctxt *wc, u32 cpos,
  966. loff_t user_pos, unsigned user_len)
  967. {
  968. int ret, i;
  969. u64 p_blkno;
  970. struct inode *inode = mapping->host;
  971. struct ocfs2_extent_tree et;
  972. int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
  973. if (new) {
  974. u32 tmp_pos;
  975. /*
  976. * This is safe to call with the page locks - it won't take
  977. * any additional semaphores or cluster locks.
  978. */
  979. tmp_pos = cpos;
  980. ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
  981. &tmp_pos, 1, !clear_unwritten,
  982. wc->w_di_bh, wc->w_handle,
  983. data_ac, meta_ac, NULL);
  984. /*
  985. * This shouldn't happen because we must have already
  986. * calculated the correct meta data allocation required. The
  987. * internal tree allocation code should know how to increase
  988. * transaction credits itself.
  989. *
  990. * If need be, we could handle -EAGAIN for a
  991. * RESTART_TRANS here.
  992. */
  993. mlog_bug_on_msg(ret == -EAGAIN,
  994. "Inode %llu: EAGAIN return during allocation.\n",
  995. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  996. if (ret < 0) {
  997. mlog_errno(ret);
  998. goto out;
  999. }
  1000. } else if (clear_unwritten) {
  1001. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
  1002. wc->w_di_bh);
  1003. ret = ocfs2_mark_extent_written(inode, &et,
  1004. wc->w_handle, cpos, 1, *phys,
  1005. meta_ac, &wc->w_dealloc);
  1006. if (ret < 0) {
  1007. mlog_errno(ret);
  1008. goto out;
  1009. }
  1010. }
  1011. /*
  1012. * The only reason this should fail is due to an inability to
  1013. * find the extent added.
  1014. */
  1015. ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
  1016. if (ret < 0) {
  1017. mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
  1018. "at logical cluster %u",
  1019. (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
  1020. goto out;
  1021. }
  1022. BUG_ON(*phys == 0);
  1023. p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
  1024. if (!should_zero)
  1025. p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
  1026. for(i = 0; i < wc->w_num_pages; i++) {
  1027. int tmpret;
  1028. /* This is the direct io target page. */
  1029. if (wc->w_pages[i] == NULL) {
  1030. p_blkno++;
  1031. continue;
  1032. }
  1033. tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
  1034. wc->w_pages[i], cpos,
  1035. user_pos, user_len,
  1036. should_zero);
  1037. if (tmpret) {
  1038. mlog_errno(tmpret);
  1039. if (ret == 0)
  1040. ret = tmpret;
  1041. }
  1042. }
  1043. /*
  1044. * We only have cleanup to do in case of allocating write.
  1045. */
  1046. if (ret && new)
  1047. ocfs2_write_failure(inode, wc, user_pos, user_len);
  1048. out:
  1049. return ret;
  1050. }
  1051. static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
  1052. struct ocfs2_alloc_context *data_ac,
  1053. struct ocfs2_alloc_context *meta_ac,
  1054. struct ocfs2_write_ctxt *wc,
  1055. loff_t pos, unsigned len)
  1056. {
  1057. int ret, i;
  1058. loff_t cluster_off;
  1059. unsigned int local_len = len;
  1060. struct ocfs2_write_cluster_desc *desc;
  1061. struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
  1062. for (i = 0; i < wc->w_clen; i++) {
  1063. desc = &wc->w_desc[i];
  1064. /*
  1065. * We have to make sure that the total write passed in
  1066. * doesn't extend past a single cluster.
  1067. */
  1068. local_len = len;
  1069. cluster_off = pos & (osb->s_clustersize - 1);
  1070. if ((cluster_off + local_len) > osb->s_clustersize)
  1071. local_len = osb->s_clustersize - cluster_off;
  1072. ret = ocfs2_write_cluster(mapping, &desc->c_phys,
  1073. desc->c_new,
  1074. desc->c_clear_unwritten,
  1075. desc->c_needs_zero,
  1076. data_ac, meta_ac,
  1077. wc, desc->c_cpos, pos, local_len);
  1078. if (ret) {
  1079. mlog_errno(ret);
  1080. goto out;
  1081. }
  1082. len -= local_len;
  1083. pos += local_len;
  1084. }
  1085. ret = 0;
  1086. out:
  1087. return ret;
  1088. }
  1089. /*
  1090. * ocfs2_write_end() wants to know which parts of the target page it
  1091. * should complete the write on. It's easiest to compute them ahead of
  1092. * time when a more complete view of the write is available.
  1093. */
  1094. static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
  1095. struct ocfs2_write_ctxt *wc,
  1096. loff_t pos, unsigned len, int alloc)
  1097. {
  1098. struct ocfs2_write_cluster_desc *desc;
  1099. wc->w_target_from = pos & (PAGE_SIZE - 1);
  1100. wc->w_target_to = wc->w_target_from + len;
  1101. if (alloc == 0)
  1102. return;
  1103. /*
  1104. * Allocating write - we may have different boundaries based
  1105. * on page size and cluster size.
  1106. *
  1107. * NOTE: We can no longer compute one value from the other as
  1108. * the actual write length and user provided length may be
  1109. * different.
  1110. */
  1111. if (wc->w_large_pages) {
  1112. /*
  1113. * We only care about the 1st and last cluster within
  1114. * our range and whether they should be zero'd or not. Either
  1115. * value may be extended out to the start/end of a
  1116. * newly allocated cluster.
  1117. */
  1118. desc = &wc->w_desc[0];
  1119. if (desc->c_needs_zero)
  1120. ocfs2_figure_cluster_boundaries(osb,
  1121. desc->c_cpos,
  1122. &wc->w_target_from,
  1123. NULL);
  1124. desc = &wc->w_desc[wc->w_clen - 1];
  1125. if (desc->c_needs_zero)
  1126. ocfs2_figure_cluster_boundaries(osb,
  1127. desc->c_cpos,
  1128. NULL,
  1129. &wc->w_target_to);
  1130. } else {
  1131. wc->w_target_from = 0;
  1132. wc->w_target_to = PAGE_SIZE;
  1133. }
  1134. }
  1135. /*
  1136. * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
  1137. * do the zero work. And should not to clear UNWRITTEN since it will be cleared
  1138. * by the direct io procedure.
  1139. * If this is a new extent that allocated by direct io, we should mark it in
  1140. * the ip_unwritten_list.
  1141. */
  1142. static int ocfs2_unwritten_check(struct inode *inode,
  1143. struct ocfs2_write_ctxt *wc,
  1144. struct ocfs2_write_cluster_desc *desc)
  1145. {
  1146. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1147. struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
  1148. int ret = 0;
  1149. if (!desc->c_needs_zero)
  1150. return 0;
  1151. retry:
  1152. spin_lock(&oi->ip_lock);
  1153. /* Needs not to zero no metter buffer or direct. The one who is zero
  1154. * the cluster is doing zero. And he will clear unwritten after all
  1155. * cluster io finished. */
  1156. list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
  1157. if (desc->c_cpos == ue->ue_cpos) {
  1158. BUG_ON(desc->c_new);
  1159. desc->c_needs_zero = 0;
  1160. desc->c_clear_unwritten = 0;
  1161. goto unlock;
  1162. }
  1163. }
  1164. if (wc->w_type != OCFS2_WRITE_DIRECT)
  1165. goto unlock;
  1166. if (new == NULL) {
  1167. spin_unlock(&oi->ip_lock);
  1168. new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
  1169. GFP_NOFS);
  1170. if (new == NULL) {
  1171. ret = -ENOMEM;
  1172. goto out;
  1173. }
  1174. goto retry;
  1175. }
  1176. /* This direct write will doing zero. */
  1177. new->ue_cpos = desc->c_cpos;
  1178. new->ue_phys = desc->c_phys;
  1179. desc->c_clear_unwritten = 0;
  1180. list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
  1181. list_add_tail(&new->ue_node, &wc->w_unwritten_list);
  1182. new = NULL;
  1183. unlock:
  1184. spin_unlock(&oi->ip_lock);
  1185. out:
  1186. if (new)
  1187. kfree(new);
  1188. return ret;
  1189. }
  1190. /*
  1191. * Populate each single-cluster write descriptor in the write context
  1192. * with information about the i/o to be done.
  1193. *
  1194. * Returns the number of clusters that will have to be allocated, as
  1195. * well as a worst case estimate of the number of extent records that
  1196. * would have to be created during a write to an unwritten region.
  1197. */
  1198. static int ocfs2_populate_write_desc(struct inode *inode,
  1199. struct ocfs2_write_ctxt *wc,
  1200. unsigned int *clusters_to_alloc,
  1201. unsigned int *extents_to_split)
  1202. {
  1203. int ret;
  1204. struct ocfs2_write_cluster_desc *desc;
  1205. unsigned int num_clusters = 0;
  1206. unsigned int ext_flags = 0;
  1207. u32 phys = 0;
  1208. int i;
  1209. *clusters_to_alloc = 0;
  1210. *extents_to_split = 0;
  1211. for (i = 0; i < wc->w_clen; i++) {
  1212. desc = &wc->w_desc[i];
  1213. desc->c_cpos = wc->w_cpos + i;
  1214. if (num_clusters == 0) {
  1215. /*
  1216. * Need to look up the next extent record.
  1217. */
  1218. ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
  1219. &num_clusters, &ext_flags);
  1220. if (ret) {
  1221. mlog_errno(ret);
  1222. goto out;
  1223. }
  1224. /* We should already CoW the refcountd extent. */
  1225. BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
  1226. /*
  1227. * Assume worst case - that we're writing in
  1228. * the middle of the extent.
  1229. *
  1230. * We can assume that the write proceeds from
  1231. * left to right, in which case the extent
  1232. * insert code is smart enough to coalesce the
  1233. * next splits into the previous records created.
  1234. */
  1235. if (ext_flags & OCFS2_EXT_UNWRITTEN)
  1236. *extents_to_split = *extents_to_split + 2;
  1237. } else if (phys) {
  1238. /*
  1239. * Only increment phys if it doesn't describe
  1240. * a hole.
  1241. */
  1242. phys++;
  1243. }
  1244. /*
  1245. * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
  1246. * file that got extended. w_first_new_cpos tells us
  1247. * where the newly allocated clusters are so we can
  1248. * zero them.
  1249. */
  1250. if (desc->c_cpos >= wc->w_first_new_cpos) {
  1251. BUG_ON(phys == 0);
  1252. desc->c_needs_zero = 1;
  1253. }
  1254. desc->c_phys = phys;
  1255. if (phys == 0) {
  1256. desc->c_new = 1;
  1257. desc->c_needs_zero = 1;
  1258. desc->c_clear_unwritten = 1;
  1259. *clusters_to_alloc = *clusters_to_alloc + 1;
  1260. }
  1261. if (ext_flags & OCFS2_EXT_UNWRITTEN) {
  1262. desc->c_clear_unwritten = 1;
  1263. desc->c_needs_zero = 1;
  1264. }
  1265. ret = ocfs2_unwritten_check(inode, wc, desc);
  1266. if (ret) {
  1267. mlog_errno(ret);
  1268. goto out;
  1269. }
  1270. num_clusters--;
  1271. }
  1272. ret = 0;
  1273. out:
  1274. return ret;
  1275. }
  1276. static int ocfs2_write_begin_inline(struct address_space *mapping,
  1277. struct inode *inode,
  1278. struct ocfs2_write_ctxt *wc)
  1279. {
  1280. int ret;
  1281. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1282. struct page *page;
  1283. handle_t *handle;
  1284. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1285. handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
  1286. if (IS_ERR(handle)) {
  1287. ret = PTR_ERR(handle);
  1288. mlog_errno(ret);
  1289. goto out;
  1290. }
  1291. page = find_or_create_page(mapping, 0, GFP_NOFS);
  1292. if (!page) {
  1293. ocfs2_commit_trans(osb, handle);
  1294. ret = -ENOMEM;
  1295. mlog_errno(ret);
  1296. goto out;
  1297. }
  1298. /*
  1299. * If we don't set w_num_pages then this page won't get unlocked
  1300. * and freed on cleanup of the write context.
  1301. */
  1302. wc->w_pages[0] = wc->w_target_page = page;
  1303. wc->w_num_pages = 1;
  1304. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
  1305. OCFS2_JOURNAL_ACCESS_WRITE);
  1306. if (ret) {
  1307. ocfs2_commit_trans(osb, handle);
  1308. mlog_errno(ret);
  1309. goto out;
  1310. }
  1311. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  1312. ocfs2_set_inode_data_inline(inode, di);
  1313. if (!PageUptodate(page)) {
  1314. ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
  1315. if (ret) {
  1316. ocfs2_commit_trans(osb, handle);
  1317. goto out;
  1318. }
  1319. }
  1320. wc->w_handle = handle;
  1321. out:
  1322. return ret;
  1323. }
  1324. int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
  1325. {
  1326. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  1327. if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
  1328. return 1;
  1329. return 0;
  1330. }
  1331. static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
  1332. struct inode *inode, loff_t pos,
  1333. unsigned len, struct page *mmap_page,
  1334. struct ocfs2_write_ctxt *wc)
  1335. {
  1336. int ret, written = 0;
  1337. loff_t end = pos + len;
  1338. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1339. struct ocfs2_dinode *di = NULL;
  1340. trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
  1341. len, (unsigned long long)pos,
  1342. oi->ip_dyn_features);
  1343. /*
  1344. * Handle inodes which already have inline data 1st.
  1345. */
  1346. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1347. if (mmap_page == NULL &&
  1348. ocfs2_size_fits_inline_data(wc->w_di_bh, end))
  1349. goto do_inline_write;
  1350. /*
  1351. * The write won't fit - we have to give this inode an
  1352. * inline extent list now.
  1353. */
  1354. ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
  1355. if (ret)
  1356. mlog_errno(ret);
  1357. goto out;
  1358. }
  1359. /*
  1360. * Check whether the inode can accept inline data.
  1361. */
  1362. if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
  1363. return 0;
  1364. /*
  1365. * Check whether the write can fit.
  1366. */
  1367. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1368. if (mmap_page ||
  1369. end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
  1370. return 0;
  1371. do_inline_write:
  1372. ret = ocfs2_write_begin_inline(mapping, inode, wc);
  1373. if (ret) {
  1374. mlog_errno(ret);
  1375. goto out;
  1376. }
  1377. /*
  1378. * This signals to the caller that the data can be written
  1379. * inline.
  1380. */
  1381. written = 1;
  1382. out:
  1383. return written ? written : ret;
  1384. }
  1385. /*
  1386. * This function only does anything for file systems which can't
  1387. * handle sparse files.
  1388. *
  1389. * What we want to do here is fill in any hole between the current end
  1390. * of allocation and the end of our write. That way the rest of the
  1391. * write path can treat it as an non-allocating write, which has no
  1392. * special case code for sparse/nonsparse files.
  1393. */
  1394. static int ocfs2_expand_nonsparse_inode(struct inode *inode,
  1395. struct buffer_head *di_bh,
  1396. loff_t pos, unsigned len,
  1397. struct ocfs2_write_ctxt *wc)
  1398. {
  1399. int ret;
  1400. loff_t newsize = pos + len;
  1401. BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
  1402. if (newsize <= i_size_read(inode))
  1403. return 0;
  1404. ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
  1405. if (ret)
  1406. mlog_errno(ret);
  1407. /* There is no wc if this is call from direct. */
  1408. if (wc)
  1409. wc->w_first_new_cpos =
  1410. ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
  1411. return ret;
  1412. }
  1413. static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
  1414. loff_t pos)
  1415. {
  1416. int ret = 0;
  1417. BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
  1418. if (pos > i_size_read(inode))
  1419. ret = ocfs2_zero_extend(inode, di_bh, pos);
  1420. return ret;
  1421. }
  1422. int ocfs2_write_begin_nolock(struct address_space *mapping,
  1423. loff_t pos, unsigned len, ocfs2_write_type_t type,
  1424. struct page **pagep, void **fsdata,
  1425. struct buffer_head *di_bh, struct page *mmap_page)
  1426. {
  1427. int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
  1428. unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
  1429. struct ocfs2_write_ctxt *wc;
  1430. struct inode *inode = mapping->host;
  1431. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1432. struct ocfs2_dinode *di;
  1433. struct ocfs2_alloc_context *data_ac = NULL;
  1434. struct ocfs2_alloc_context *meta_ac = NULL;
  1435. handle_t *handle;
  1436. struct ocfs2_extent_tree et;
  1437. int try_free = 1, ret1;
  1438. try_again:
  1439. ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
  1440. if (ret) {
  1441. mlog_errno(ret);
  1442. return ret;
  1443. }
  1444. if (ocfs2_supports_inline_data(osb)) {
  1445. ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
  1446. mmap_page, wc);
  1447. if (ret == 1) {
  1448. ret = 0;
  1449. goto success;
  1450. }
  1451. if (ret < 0) {
  1452. mlog_errno(ret);
  1453. goto out;
  1454. }
  1455. }
  1456. /* Direct io change i_size late, should not zero tail here. */
  1457. if (type != OCFS2_WRITE_DIRECT) {
  1458. if (ocfs2_sparse_alloc(osb))
  1459. ret = ocfs2_zero_tail(inode, di_bh, pos);
  1460. else
  1461. ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
  1462. len, wc);
  1463. if (ret) {
  1464. mlog_errno(ret);
  1465. goto out;
  1466. }
  1467. }
  1468. ret = ocfs2_check_range_for_refcount(inode, pos, len);
  1469. if (ret < 0) {
  1470. mlog_errno(ret);
  1471. goto out;
  1472. } else if (ret == 1) {
  1473. clusters_need = wc->w_clen;
  1474. ret = ocfs2_refcount_cow(inode, di_bh,
  1475. wc->w_cpos, wc->w_clen, UINT_MAX);
  1476. if (ret) {
  1477. mlog_errno(ret);
  1478. goto out;
  1479. }
  1480. }
  1481. ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
  1482. &extents_to_split);
  1483. if (ret) {
  1484. mlog_errno(ret);
  1485. goto out;
  1486. }
  1487. clusters_need += clusters_to_alloc;
  1488. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1489. trace_ocfs2_write_begin_nolock(
  1490. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1491. (long long)i_size_read(inode),
  1492. le32_to_cpu(di->i_clusters),
  1493. pos, len, type, mmap_page,
  1494. clusters_to_alloc, extents_to_split);
  1495. /*
  1496. * We set w_target_from, w_target_to here so that
  1497. * ocfs2_write_end() knows which range in the target page to
  1498. * write out. An allocation requires that we write the entire
  1499. * cluster range.
  1500. */
  1501. if (clusters_to_alloc || extents_to_split) {
  1502. /*
  1503. * XXX: We are stretching the limits of
  1504. * ocfs2_lock_allocators(). It greatly over-estimates
  1505. * the work to be done.
  1506. */
  1507. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
  1508. wc->w_di_bh);
  1509. ret = ocfs2_lock_allocators(inode, &et,
  1510. clusters_to_alloc, extents_to_split,
  1511. &data_ac, &meta_ac);
  1512. if (ret) {
  1513. mlog_errno(ret);
  1514. goto out;
  1515. }
  1516. if (data_ac)
  1517. data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
  1518. credits = ocfs2_calc_extend_credits(inode->i_sb,
  1519. &di->id2.i_list);
  1520. } else if (type == OCFS2_WRITE_DIRECT)
  1521. /* direct write needs not to start trans if no extents alloc. */
  1522. goto success;
  1523. /*
  1524. * We have to zero sparse allocated clusters, unwritten extent clusters,
  1525. * and non-sparse clusters we just extended. For non-sparse writes,
  1526. * we know zeros will only be needed in the first and/or last cluster.
  1527. */
  1528. if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
  1529. wc->w_desc[wc->w_clen - 1].c_needs_zero))
  1530. cluster_of_pages = 1;
  1531. else
  1532. cluster_of_pages = 0;
  1533. ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
  1534. handle = ocfs2_start_trans(osb, credits);
  1535. if (IS_ERR(handle)) {
  1536. ret = PTR_ERR(handle);
  1537. mlog_errno(ret);
  1538. goto out;
  1539. }
  1540. wc->w_handle = handle;
  1541. if (clusters_to_alloc) {
  1542. ret = dquot_alloc_space_nodirty(inode,
  1543. ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
  1544. if (ret)
  1545. goto out_commit;
  1546. }
  1547. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
  1548. OCFS2_JOURNAL_ACCESS_WRITE);
  1549. if (ret) {
  1550. mlog_errno(ret);
  1551. goto out_quota;
  1552. }
  1553. /*
  1554. * Fill our page array first. That way we've grabbed enough so
  1555. * that we can zero and flush if we error after adding the
  1556. * extent.
  1557. */
  1558. ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
  1559. cluster_of_pages, mmap_page);
  1560. if (ret && ret != -EAGAIN) {
  1561. mlog_errno(ret);
  1562. goto out_quota;
  1563. }
  1564. /*
  1565. * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
  1566. * the target page. In this case, we exit with no error and no target
  1567. * page. This will trigger the caller, page_mkwrite(), to re-try
  1568. * the operation.
  1569. */
  1570. if (ret == -EAGAIN) {
  1571. BUG_ON(wc->w_target_page);
  1572. ret = 0;
  1573. goto out_quota;
  1574. }
  1575. ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
  1576. len);
  1577. if (ret) {
  1578. mlog_errno(ret);
  1579. goto out_quota;
  1580. }
  1581. if (data_ac)
  1582. ocfs2_free_alloc_context(data_ac);
  1583. if (meta_ac)
  1584. ocfs2_free_alloc_context(meta_ac);
  1585. success:
  1586. if (pagep)
  1587. *pagep = wc->w_target_page;
  1588. *fsdata = wc;
  1589. return 0;
  1590. out_quota:
  1591. if (clusters_to_alloc)
  1592. dquot_free_space(inode,
  1593. ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
  1594. out_commit:
  1595. ocfs2_commit_trans(osb, handle);
  1596. out:
  1597. /*
  1598. * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
  1599. * even in case of error here like ENOSPC and ENOMEM. So, we need
  1600. * to unlock the target page manually to prevent deadlocks when
  1601. * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
  1602. * to VM code.
  1603. */
  1604. if (wc->w_target_locked)
  1605. unlock_page(mmap_page);
  1606. ocfs2_free_write_ctxt(inode, wc);
  1607. if (data_ac) {
  1608. ocfs2_free_alloc_context(data_ac);
  1609. data_ac = NULL;
  1610. }
  1611. if (meta_ac) {
  1612. ocfs2_free_alloc_context(meta_ac);
  1613. meta_ac = NULL;
  1614. }
  1615. if (ret == -ENOSPC && try_free) {
  1616. /*
  1617. * Try to free some truncate log so that we can have enough
  1618. * clusters to allocate.
  1619. */
  1620. try_free = 0;
  1621. ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
  1622. if (ret1 == 1)
  1623. goto try_again;
  1624. if (ret1 < 0)
  1625. mlog_errno(ret1);
  1626. }
  1627. return ret;
  1628. }
  1629. static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
  1630. loff_t pos, unsigned len, unsigned flags,
  1631. struct page **pagep, void **fsdata)
  1632. {
  1633. int ret;
  1634. struct buffer_head *di_bh = NULL;
  1635. struct inode *inode = mapping->host;
  1636. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1637. if (ret) {
  1638. mlog_errno(ret);
  1639. return ret;
  1640. }
  1641. /*
  1642. * Take alloc sem here to prevent concurrent lookups. That way
  1643. * the mapping, zeroing and tree manipulation within
  1644. * ocfs2_write() will be safe against ->readpage(). This
  1645. * should also serve to lock out allocation from a shared
  1646. * writeable region.
  1647. */
  1648. down_write(&OCFS2_I(inode)->ip_alloc_sem);
  1649. ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
  1650. pagep, fsdata, di_bh, NULL);
  1651. if (ret) {
  1652. mlog_errno(ret);
  1653. goto out_fail;
  1654. }
  1655. brelse(di_bh);
  1656. return 0;
  1657. out_fail:
  1658. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1659. brelse(di_bh);
  1660. ocfs2_inode_unlock(inode, 1);
  1661. return ret;
  1662. }
  1663. static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
  1664. unsigned len, unsigned *copied,
  1665. struct ocfs2_dinode *di,
  1666. struct ocfs2_write_ctxt *wc)
  1667. {
  1668. void *kaddr;
  1669. if (unlikely(*copied < len)) {
  1670. if (!PageUptodate(wc->w_target_page)) {
  1671. *copied = 0;
  1672. return;
  1673. }
  1674. }
  1675. kaddr = kmap_atomic(wc->w_target_page);
  1676. memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
  1677. kunmap_atomic(kaddr);
  1678. trace_ocfs2_write_end_inline(
  1679. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1680. (unsigned long long)pos, *copied,
  1681. le16_to_cpu(di->id2.i_data.id_count),
  1682. le16_to_cpu(di->i_dyn_features));
  1683. }
  1684. int ocfs2_write_end_nolock(struct address_space *mapping,
  1685. loff_t pos, unsigned len, unsigned copied, void *fsdata)
  1686. {
  1687. int i, ret;
  1688. unsigned from, to, start = pos & (PAGE_SIZE - 1);
  1689. struct inode *inode = mapping->host;
  1690. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1691. struct ocfs2_write_ctxt *wc = fsdata;
  1692. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1693. handle_t *handle = wc->w_handle;
  1694. struct page *tmppage;
  1695. BUG_ON(!list_empty(&wc->w_unwritten_list));
  1696. if (handle) {
  1697. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
  1698. wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
  1699. if (ret) {
  1700. copied = ret;
  1701. mlog_errno(ret);
  1702. goto out;
  1703. }
  1704. }
  1705. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1706. ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
  1707. goto out_write_size;
  1708. }
  1709. if (unlikely(copied < len) && wc->w_target_page) {
  1710. if (!PageUptodate(wc->w_target_page))
  1711. copied = 0;
  1712. ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
  1713. start+len);
  1714. }
  1715. if (wc->w_target_page)
  1716. flush_dcache_page(wc->w_target_page);
  1717. for(i = 0; i < wc->w_num_pages; i++) {
  1718. tmppage = wc->w_pages[i];
  1719. /* This is the direct io target page. */
  1720. if (tmppage == NULL)
  1721. continue;
  1722. if (tmppage == wc->w_target_page) {
  1723. from = wc->w_target_from;
  1724. to = wc->w_target_to;
  1725. BUG_ON(from > PAGE_SIZE ||
  1726. to > PAGE_SIZE ||
  1727. to < from);
  1728. } else {
  1729. /*
  1730. * Pages adjacent to the target (if any) imply
  1731. * a hole-filling write in which case we want
  1732. * to flush their entire range.
  1733. */
  1734. from = 0;
  1735. to = PAGE_SIZE;
  1736. }
  1737. if (page_has_buffers(tmppage)) {
  1738. if (handle && ocfs2_should_order_data(inode))
  1739. ocfs2_jbd2_file_inode(handle, inode);
  1740. block_commit_write(tmppage, from, to);
  1741. }
  1742. }
  1743. out_write_size:
  1744. /* Direct io do not update i_size here. */
  1745. if (wc->w_type != OCFS2_WRITE_DIRECT) {
  1746. pos += copied;
  1747. if (pos > i_size_read(inode)) {
  1748. i_size_write(inode, pos);
  1749. mark_inode_dirty(inode);
  1750. }
  1751. inode->i_blocks = ocfs2_inode_sector_count(inode);
  1752. di->i_size = cpu_to_le64((u64)i_size_read(inode));
  1753. inode->i_mtime = inode->i_ctime = current_time(inode);
  1754. di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
  1755. di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  1756. ocfs2_update_inode_fsync_trans(handle, inode, 1);
  1757. }
  1758. if (handle)
  1759. ocfs2_journal_dirty(handle, wc->w_di_bh);
  1760. out:
  1761. /* unlock pages before dealloc since it needs acquiring j_trans_barrier
  1762. * lock, or it will cause a deadlock since journal commit threads holds
  1763. * this lock and will ask for the page lock when flushing the data.
  1764. * put it here to preserve the unlock order.
  1765. */
  1766. ocfs2_unlock_pages(wc);
  1767. if (handle)
  1768. ocfs2_commit_trans(osb, handle);
  1769. ocfs2_run_deallocs(osb, &wc->w_dealloc);
  1770. brelse(wc->w_di_bh);
  1771. kfree(wc);
  1772. return copied;
  1773. }
  1774. static int ocfs2_write_end(struct file *file, struct address_space *mapping,
  1775. loff_t pos, unsigned len, unsigned copied,
  1776. struct page *page, void *fsdata)
  1777. {
  1778. int ret;
  1779. struct inode *inode = mapping->host;
  1780. ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
  1781. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1782. ocfs2_inode_unlock(inode, 1);
  1783. return ret;
  1784. }
  1785. struct ocfs2_dio_write_ctxt {
  1786. struct list_head dw_zero_list;
  1787. unsigned dw_zero_count;
  1788. int dw_orphaned;
  1789. pid_t dw_writer_pid;
  1790. };
  1791. static struct ocfs2_dio_write_ctxt *
  1792. ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
  1793. {
  1794. struct ocfs2_dio_write_ctxt *dwc = NULL;
  1795. if (bh->b_private)
  1796. return bh->b_private;
  1797. dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
  1798. if (dwc == NULL)
  1799. return NULL;
  1800. INIT_LIST_HEAD(&dwc->dw_zero_list);
  1801. dwc->dw_zero_count = 0;
  1802. dwc->dw_orphaned = 0;
  1803. dwc->dw_writer_pid = task_pid_nr(current);
  1804. bh->b_private = dwc;
  1805. *alloc = 1;
  1806. return dwc;
  1807. }
  1808. static void ocfs2_dio_free_write_ctx(struct inode *inode,
  1809. struct ocfs2_dio_write_ctxt *dwc)
  1810. {
  1811. ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
  1812. kfree(dwc);
  1813. }
  1814. /*
  1815. * TODO: Make this into a generic get_blocks function.
  1816. *
  1817. * From do_direct_io in direct-io.c:
  1818. * "So what we do is to permit the ->get_blocks function to populate
  1819. * bh.b_size with the size of IO which is permitted at this offset and
  1820. * this i_blkbits."
  1821. *
  1822. * This function is called directly from get_more_blocks in direct-io.c.
  1823. *
  1824. * called like this: dio->get_blocks(dio->inode, fs_startblk,
  1825. * fs_count, map_bh, dio->rw == WRITE);
  1826. */
  1827. static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
  1828. struct buffer_head *bh_result, int create)
  1829. {
  1830. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1831. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1832. struct ocfs2_write_ctxt *wc;
  1833. struct ocfs2_write_cluster_desc *desc = NULL;
  1834. struct ocfs2_dio_write_ctxt *dwc = NULL;
  1835. struct buffer_head *di_bh = NULL;
  1836. u64 p_blkno;
  1837. loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
  1838. unsigned len, total_len = bh_result->b_size;
  1839. int ret = 0, first_get_block = 0;
  1840. len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
  1841. len = min(total_len, len);
  1842. mlog(0, "get block of %lu at %llu:%u req %u\n",
  1843. inode->i_ino, pos, len, total_len);
  1844. /*
  1845. * Because we need to change file size in ocfs2_dio_end_io_write(), or
  1846. * we may need to add it to orphan dir. So can not fall to fast path
  1847. * while file size will be changed.
  1848. */
  1849. if (pos + total_len <= i_size_read(inode)) {
  1850. down_read(&oi->ip_alloc_sem);
  1851. /* This is the fast path for re-write. */
  1852. ret = ocfs2_get_block(inode, iblock, bh_result, create);
  1853. up_read(&oi->ip_alloc_sem);
  1854. if (buffer_mapped(bh_result) &&
  1855. !buffer_new(bh_result) &&
  1856. ret == 0)
  1857. goto out;
  1858. /* Clear state set by ocfs2_get_block. */
  1859. bh_result->b_state = 0;
  1860. }
  1861. dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
  1862. if (unlikely(dwc == NULL)) {
  1863. ret = -ENOMEM;
  1864. mlog_errno(ret);
  1865. goto out;
  1866. }
  1867. if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
  1868. ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
  1869. !dwc->dw_orphaned) {
  1870. /*
  1871. * when we are going to alloc extents beyond file size, add the
  1872. * inode to orphan dir, so we can recall those spaces when
  1873. * system crashed during write.
  1874. */
  1875. ret = ocfs2_add_inode_to_orphan(osb, inode);
  1876. if (ret < 0) {
  1877. mlog_errno(ret);
  1878. goto out;
  1879. }
  1880. dwc->dw_orphaned = 1;
  1881. }
  1882. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1883. if (ret) {
  1884. mlog_errno(ret);
  1885. goto out;
  1886. }
  1887. down_write(&oi->ip_alloc_sem);
  1888. if (first_get_block) {
  1889. if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
  1890. ret = ocfs2_zero_tail(inode, di_bh, pos);
  1891. else
  1892. ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
  1893. total_len, NULL);
  1894. if (ret < 0) {
  1895. mlog_errno(ret);
  1896. goto unlock;
  1897. }
  1898. }
  1899. ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
  1900. OCFS2_WRITE_DIRECT, NULL,
  1901. (void **)&wc, di_bh, NULL);
  1902. if (ret) {
  1903. mlog_errno(ret);
  1904. goto unlock;
  1905. }
  1906. desc = &wc->w_desc[0];
  1907. p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
  1908. BUG_ON(p_blkno == 0);
  1909. p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
  1910. map_bh(bh_result, inode->i_sb, p_blkno);
  1911. bh_result->b_size = len;
  1912. if (desc->c_needs_zero)
  1913. set_buffer_new(bh_result);
  1914. /* May sleep in end_io. It should not happen in a irq context. So defer
  1915. * it to dio work queue. */
  1916. set_buffer_defer_completion(bh_result);
  1917. if (!list_empty(&wc->w_unwritten_list)) {
  1918. struct ocfs2_unwritten_extent *ue = NULL;
  1919. ue = list_first_entry(&wc->w_unwritten_list,
  1920. struct ocfs2_unwritten_extent,
  1921. ue_node);
  1922. BUG_ON(ue->ue_cpos != desc->c_cpos);
  1923. /* The physical address may be 0, fill it. */
  1924. ue->ue_phys = desc->c_phys;
  1925. list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
  1926. dwc->dw_zero_count++;
  1927. }
  1928. ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
  1929. BUG_ON(ret != len);
  1930. ret = 0;
  1931. unlock:
  1932. up_write(&oi->ip_alloc_sem);
  1933. ocfs2_inode_unlock(inode, 1);
  1934. brelse(di_bh);
  1935. out:
  1936. if (ret < 0)
  1937. ret = -EIO;
  1938. return ret;
  1939. }
  1940. static int ocfs2_dio_end_io_write(struct inode *inode,
  1941. struct ocfs2_dio_write_ctxt *dwc,
  1942. loff_t offset,
  1943. ssize_t bytes)
  1944. {
  1945. struct ocfs2_cached_dealloc_ctxt dealloc;
  1946. struct ocfs2_extent_tree et;
  1947. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1948. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1949. struct ocfs2_unwritten_extent *ue = NULL;
  1950. struct buffer_head *di_bh = NULL;
  1951. struct ocfs2_dinode *di;
  1952. struct ocfs2_alloc_context *data_ac = NULL;
  1953. struct ocfs2_alloc_context *meta_ac = NULL;
  1954. handle_t *handle = NULL;
  1955. loff_t end = offset + bytes;
  1956. int ret = 0, credits = 0, locked = 0;
  1957. ocfs2_init_dealloc_ctxt(&dealloc);
  1958. /* We do clear unwritten, delete orphan, change i_size here. If neither
  1959. * of these happen, we can skip all this. */
  1960. if (list_empty(&dwc->dw_zero_list) &&
  1961. end <= i_size_read(inode) &&
  1962. !dwc->dw_orphaned)
  1963. goto out;
  1964. /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
  1965. * are in that context. */
  1966. if (dwc->dw_writer_pid != task_pid_nr(current)) {
  1967. inode_lock(inode);
  1968. locked = 1;
  1969. }
  1970. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1971. if (ret < 0) {
  1972. mlog_errno(ret);
  1973. goto out;
  1974. }
  1975. down_write(&oi->ip_alloc_sem);
  1976. /* Delete orphan before acquire i_mutex. */
  1977. if (dwc->dw_orphaned) {
  1978. BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
  1979. end = end > i_size_read(inode) ? end : 0;
  1980. ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
  1981. !!end, end);
  1982. if (ret < 0)
  1983. mlog_errno(ret);
  1984. }
  1985. di = (struct ocfs2_dinode *)di_bh->b_data;
  1986. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
  1987. ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
  1988. &data_ac, &meta_ac);
  1989. if (ret) {
  1990. mlog_errno(ret);
  1991. goto unlock;
  1992. }
  1993. credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
  1994. handle = ocfs2_start_trans(osb, credits);
  1995. if (IS_ERR(handle)) {
  1996. ret = PTR_ERR(handle);
  1997. mlog_errno(ret);
  1998. goto unlock;
  1999. }
  2000. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
  2001. OCFS2_JOURNAL_ACCESS_WRITE);
  2002. if (ret) {
  2003. mlog_errno(ret);
  2004. goto commit;
  2005. }
  2006. list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
  2007. ret = ocfs2_mark_extent_written(inode, &et, handle,
  2008. ue->ue_cpos, 1,
  2009. ue->ue_phys,
  2010. meta_ac, &dealloc);
  2011. if (ret < 0) {
  2012. mlog_errno(ret);
  2013. break;
  2014. }
  2015. }
  2016. if (end > i_size_read(inode)) {
  2017. ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
  2018. if (ret < 0)
  2019. mlog_errno(ret);
  2020. }
  2021. commit:
  2022. ocfs2_commit_trans(osb, handle);
  2023. unlock:
  2024. up_write(&oi->ip_alloc_sem);
  2025. ocfs2_inode_unlock(inode, 1);
  2026. brelse(di_bh);
  2027. out:
  2028. if (data_ac)
  2029. ocfs2_free_alloc_context(data_ac);
  2030. if (meta_ac)
  2031. ocfs2_free_alloc_context(meta_ac);
  2032. ocfs2_run_deallocs(osb, &dealloc);
  2033. if (locked)
  2034. inode_unlock(inode);
  2035. ocfs2_dio_free_write_ctx(inode, dwc);
  2036. return ret;
  2037. }
  2038. /*
  2039. * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
  2040. * particularly interested in the aio/dio case. We use the rw_lock DLM lock
  2041. * to protect io on one node from truncation on another.
  2042. */
  2043. static int ocfs2_dio_end_io(struct kiocb *iocb,
  2044. loff_t offset,
  2045. ssize_t bytes,
  2046. void *private)
  2047. {
  2048. struct inode *inode = file_inode(iocb->ki_filp);
  2049. int level;
  2050. int ret = 0;
  2051. /* this io's submitter should not have unlocked this before we could */
  2052. BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
  2053. if (bytes > 0 && private)
  2054. ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
  2055. ocfs2_iocb_clear_rw_locked(iocb);
  2056. level = ocfs2_iocb_rw_locked_level(iocb);
  2057. ocfs2_rw_unlock(inode, level);
  2058. return ret;
  2059. }
  2060. static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  2061. {
  2062. struct file *file = iocb->ki_filp;
  2063. struct inode *inode = file->f_mapping->host;
  2064. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  2065. get_block_t *get_block;
  2066. /*
  2067. * Fallback to buffered I/O if we see an inode without
  2068. * extents.
  2069. */
  2070. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  2071. return 0;
  2072. /* Fallback to buffered I/O if we do not support append dio. */
  2073. if (iocb->ki_pos + iter->count > i_size_read(inode) &&
  2074. !ocfs2_supports_append_dio(osb))
  2075. return 0;
  2076. if (iov_iter_rw(iter) == READ)
  2077. get_block = ocfs2_get_block;
  2078. else
  2079. get_block = ocfs2_dio_get_block;
  2080. return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
  2081. iter, get_block,
  2082. ocfs2_dio_end_io, NULL, 0);
  2083. }
  2084. const struct address_space_operations ocfs2_aops = {
  2085. .readpage = ocfs2_readpage,
  2086. .readpages = ocfs2_readpages,
  2087. .writepage = ocfs2_writepage,
  2088. .write_begin = ocfs2_write_begin,
  2089. .write_end = ocfs2_write_end,
  2090. .bmap = ocfs2_bmap,
  2091. .direct_IO = ocfs2_direct_IO,
  2092. .invalidatepage = block_invalidatepage,
  2093. .releasepage = ocfs2_releasepage,
  2094. .migratepage = buffer_migrate_page,
  2095. .is_partially_uptodate = block_is_partially_uptodate,
  2096. .error_remove_page = generic_error_remove_page,
  2097. };