iomap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. * Copyright (c) 2016 Christoph Hellwig.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/compiler.h>
  16. #include <linux/fs.h>
  17. #include <linux/iomap.h>
  18. #include <linux/uaccess.h>
  19. #include <linux/gfp.h>
  20. #include <linux/mm.h>
  21. #include <linux/swap.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/buffer_head.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/dax.h>
  29. #include "internal.h"
  30. /*
  31. * Execute a iomap write on a segment of the mapping that spans a
  32. * contiguous range of pages that have identical block mapping state.
  33. *
  34. * This avoids the need to map pages individually, do individual allocations
  35. * for each page and most importantly avoid the need for filesystem specific
  36. * locking per page. Instead, all the operations are amortised over the entire
  37. * range of pages. It is assumed that the filesystems will lock whatever
  38. * resources they require in the iomap_begin call, and release them in the
  39. * iomap_end call.
  40. */
  41. loff_t
  42. iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
  43. struct iomap_ops *ops, void *data, iomap_actor_t actor)
  44. {
  45. struct iomap iomap = { 0 };
  46. loff_t written = 0, ret;
  47. /*
  48. * Need to map a range from start position for length bytes. This can
  49. * span multiple pages - it is only guaranteed to return a range of a
  50. * single type of pages (e.g. all into a hole, all mapped or all
  51. * unwritten). Failure at this point has nothing to undo.
  52. *
  53. * If allocation is required for this range, reserve the space now so
  54. * that the allocation is guaranteed to succeed later on. Once we copy
  55. * the data into the page cache pages, then we cannot fail otherwise we
  56. * expose transient stale data. If the reserve fails, we can safely
  57. * back out at this point as there is nothing to undo.
  58. */
  59. ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
  60. if (ret)
  61. return ret;
  62. if (WARN_ON(iomap.offset > pos))
  63. return -EIO;
  64. /*
  65. * Cut down the length to the one actually provided by the filesystem,
  66. * as it might not be able to give us the whole size that we requested.
  67. */
  68. if (iomap.offset + iomap.length < pos + length)
  69. length = iomap.offset + iomap.length - pos;
  70. /*
  71. * Now that we have guaranteed that the space allocation will succeed.
  72. * we can do the copy-in page by page without having to worry about
  73. * failures exposing transient data.
  74. */
  75. written = actor(inode, pos, length, data, &iomap);
  76. /*
  77. * Now the data has been copied, commit the range we've copied. This
  78. * should not fail unless the filesystem has had a fatal error.
  79. */
  80. if (ops->iomap_end) {
  81. ret = ops->iomap_end(inode, pos, length,
  82. written > 0 ? written : 0,
  83. flags, &iomap);
  84. }
  85. return written ? written : ret;
  86. }
  87. static void
  88. iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
  89. {
  90. loff_t i_size = i_size_read(inode);
  91. /*
  92. * Only truncate newly allocated pages beyoned EOF, even if the
  93. * write started inside the existing inode size.
  94. */
  95. if (pos + len > i_size)
  96. truncate_pagecache_range(inode, max(pos, i_size), pos + len);
  97. }
  98. static int
  99. iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
  100. struct page **pagep, struct iomap *iomap)
  101. {
  102. pgoff_t index = pos >> PAGE_SHIFT;
  103. struct page *page;
  104. int status = 0;
  105. BUG_ON(pos + len > iomap->offset + iomap->length);
  106. page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
  107. if (!page)
  108. return -ENOMEM;
  109. status = __block_write_begin_int(page, pos, len, NULL, iomap);
  110. if (unlikely(status)) {
  111. unlock_page(page);
  112. put_page(page);
  113. page = NULL;
  114. iomap_write_failed(inode, pos, len);
  115. }
  116. *pagep = page;
  117. return status;
  118. }
  119. static int
  120. iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
  121. unsigned copied, struct page *page)
  122. {
  123. int ret;
  124. ret = generic_write_end(NULL, inode->i_mapping, pos, len,
  125. copied, page, NULL);
  126. if (ret < len)
  127. iomap_write_failed(inode, pos, len);
  128. return ret;
  129. }
  130. static loff_t
  131. iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  132. struct iomap *iomap)
  133. {
  134. struct iov_iter *i = data;
  135. long status = 0;
  136. ssize_t written = 0;
  137. unsigned int flags = AOP_FLAG_NOFS;
  138. /*
  139. * Copies from kernel address space cannot fail (NFSD is a big user).
  140. */
  141. if (!iter_is_iovec(i))
  142. flags |= AOP_FLAG_UNINTERRUPTIBLE;
  143. do {
  144. struct page *page;
  145. unsigned long offset; /* Offset into pagecache page */
  146. unsigned long bytes; /* Bytes to write to page */
  147. size_t copied; /* Bytes copied from user */
  148. offset = (pos & (PAGE_SIZE - 1));
  149. bytes = min_t(unsigned long, PAGE_SIZE - offset,
  150. iov_iter_count(i));
  151. again:
  152. if (bytes > length)
  153. bytes = length;
  154. /*
  155. * Bring in the user page that we will copy from _first_.
  156. * Otherwise there's a nasty deadlock on copying from the
  157. * same page as we're writing to, without it being marked
  158. * up-to-date.
  159. *
  160. * Not only is this an optimisation, but it is also required
  161. * to check that the address is actually valid, when atomic
  162. * usercopies are used, below.
  163. */
  164. if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  165. status = -EFAULT;
  166. break;
  167. }
  168. status = iomap_write_begin(inode, pos, bytes, flags, &page,
  169. iomap);
  170. if (unlikely(status))
  171. break;
  172. if (mapping_writably_mapped(inode->i_mapping))
  173. flush_dcache_page(page);
  174. copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  175. flush_dcache_page(page);
  176. status = iomap_write_end(inode, pos, bytes, copied, page);
  177. if (unlikely(status < 0))
  178. break;
  179. copied = status;
  180. cond_resched();
  181. iov_iter_advance(i, copied);
  182. if (unlikely(copied == 0)) {
  183. /*
  184. * If we were unable to copy any data at all, we must
  185. * fall back to a single segment length write.
  186. *
  187. * If we didn't fallback here, we could livelock
  188. * because not all segments in the iov can be copied at
  189. * once without a pagefault.
  190. */
  191. bytes = min_t(unsigned long, PAGE_SIZE - offset,
  192. iov_iter_single_seg_count(i));
  193. goto again;
  194. }
  195. pos += copied;
  196. written += copied;
  197. length -= copied;
  198. balance_dirty_pages_ratelimited(inode->i_mapping);
  199. } while (iov_iter_count(i) && length);
  200. return written ? written : status;
  201. }
  202. ssize_t
  203. iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
  204. struct iomap_ops *ops)
  205. {
  206. struct inode *inode = iocb->ki_filp->f_mapping->host;
  207. loff_t pos = iocb->ki_pos, ret = 0, written = 0;
  208. while (iov_iter_count(iter)) {
  209. ret = iomap_apply(inode, pos, iov_iter_count(iter),
  210. IOMAP_WRITE, ops, iter, iomap_write_actor);
  211. if (ret <= 0)
  212. break;
  213. pos += ret;
  214. written += ret;
  215. }
  216. return written ? written : ret;
  217. }
  218. EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
  219. static struct page *
  220. __iomap_read_page(struct inode *inode, loff_t offset)
  221. {
  222. struct address_space *mapping = inode->i_mapping;
  223. struct page *page;
  224. page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
  225. if (IS_ERR(page))
  226. return page;
  227. if (!PageUptodate(page)) {
  228. put_page(page);
  229. return ERR_PTR(-EIO);
  230. }
  231. return page;
  232. }
  233. static loff_t
  234. iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  235. struct iomap *iomap)
  236. {
  237. long status = 0;
  238. ssize_t written = 0;
  239. do {
  240. struct page *page, *rpage;
  241. unsigned long offset; /* Offset into pagecache page */
  242. unsigned long bytes; /* Bytes to write to page */
  243. offset = (pos & (PAGE_SIZE - 1));
  244. bytes = min_t(unsigned long, PAGE_SIZE - offset, length);
  245. rpage = __iomap_read_page(inode, pos);
  246. if (IS_ERR(rpage))
  247. return PTR_ERR(rpage);
  248. status = iomap_write_begin(inode, pos, bytes,
  249. AOP_FLAG_NOFS | AOP_FLAG_UNINTERRUPTIBLE,
  250. &page, iomap);
  251. put_page(rpage);
  252. if (unlikely(status))
  253. return status;
  254. WARN_ON_ONCE(!PageUptodate(page));
  255. status = iomap_write_end(inode, pos, bytes, bytes, page);
  256. if (unlikely(status <= 0)) {
  257. if (WARN_ON_ONCE(status == 0))
  258. return -EIO;
  259. return status;
  260. }
  261. cond_resched();
  262. pos += status;
  263. written += status;
  264. length -= status;
  265. balance_dirty_pages_ratelimited(inode->i_mapping);
  266. } while (length);
  267. return written;
  268. }
  269. int
  270. iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
  271. struct iomap_ops *ops)
  272. {
  273. loff_t ret;
  274. while (len) {
  275. ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
  276. iomap_dirty_actor);
  277. if (ret <= 0)
  278. return ret;
  279. pos += ret;
  280. len -= ret;
  281. }
  282. return 0;
  283. }
  284. EXPORT_SYMBOL_GPL(iomap_file_dirty);
  285. static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
  286. unsigned bytes, struct iomap *iomap)
  287. {
  288. struct page *page;
  289. int status;
  290. status = iomap_write_begin(inode, pos, bytes,
  291. AOP_FLAG_UNINTERRUPTIBLE | AOP_FLAG_NOFS, &page, iomap);
  292. if (status)
  293. return status;
  294. zero_user(page, offset, bytes);
  295. mark_page_accessed(page);
  296. return iomap_write_end(inode, pos, bytes, bytes, page);
  297. }
  298. static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
  299. struct iomap *iomap)
  300. {
  301. sector_t sector = iomap->blkno +
  302. (((pos & ~(PAGE_SIZE - 1)) - iomap->offset) >> 9);
  303. return __dax_zero_page_range(iomap->bdev, sector, offset, bytes);
  304. }
  305. static loff_t
  306. iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
  307. void *data, struct iomap *iomap)
  308. {
  309. bool *did_zero = data;
  310. loff_t written = 0;
  311. int status;
  312. /* already zeroed? we're done. */
  313. if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
  314. return count;
  315. do {
  316. unsigned offset, bytes;
  317. offset = pos & (PAGE_SIZE - 1); /* Within page */
  318. bytes = min_t(unsigned, PAGE_SIZE - offset, count);
  319. if (IS_DAX(inode))
  320. status = iomap_dax_zero(pos, offset, bytes, iomap);
  321. else
  322. status = iomap_zero(inode, pos, offset, bytes, iomap);
  323. if (status < 0)
  324. return status;
  325. pos += bytes;
  326. count -= bytes;
  327. written += bytes;
  328. if (did_zero)
  329. *did_zero = true;
  330. } while (count > 0);
  331. return written;
  332. }
  333. int
  334. iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
  335. struct iomap_ops *ops)
  336. {
  337. loff_t ret;
  338. while (len > 0) {
  339. ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
  340. ops, did_zero, iomap_zero_range_actor);
  341. if (ret <= 0)
  342. return ret;
  343. pos += ret;
  344. len -= ret;
  345. }
  346. return 0;
  347. }
  348. EXPORT_SYMBOL_GPL(iomap_zero_range);
  349. int
  350. iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
  351. struct iomap_ops *ops)
  352. {
  353. unsigned blocksize = (1 << inode->i_blkbits);
  354. unsigned off = pos & (blocksize - 1);
  355. /* Block boundary? Nothing to do */
  356. if (!off)
  357. return 0;
  358. return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
  359. }
  360. EXPORT_SYMBOL_GPL(iomap_truncate_page);
  361. static loff_t
  362. iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
  363. void *data, struct iomap *iomap)
  364. {
  365. struct page *page = data;
  366. int ret;
  367. ret = __block_write_begin_int(page, pos, length, NULL, iomap);
  368. if (ret)
  369. return ret;
  370. block_commit_write(page, 0, length);
  371. return length;
  372. }
  373. int iomap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
  374. struct iomap_ops *ops)
  375. {
  376. struct page *page = vmf->page;
  377. struct inode *inode = file_inode(vma->vm_file);
  378. unsigned long length;
  379. loff_t offset, size;
  380. ssize_t ret;
  381. lock_page(page);
  382. size = i_size_read(inode);
  383. if ((page->mapping != inode->i_mapping) ||
  384. (page_offset(page) > size)) {
  385. /* We overload EFAULT to mean page got truncated */
  386. ret = -EFAULT;
  387. goto out_unlock;
  388. }
  389. /* page is wholly or partially inside EOF */
  390. if (((page->index + 1) << PAGE_SHIFT) > size)
  391. length = size & ~PAGE_MASK;
  392. else
  393. length = PAGE_SIZE;
  394. offset = page_offset(page);
  395. while (length > 0) {
  396. ret = iomap_apply(inode, offset, length,
  397. IOMAP_WRITE | IOMAP_FAULT, ops, page,
  398. iomap_page_mkwrite_actor);
  399. if (unlikely(ret <= 0))
  400. goto out_unlock;
  401. offset += ret;
  402. length -= ret;
  403. }
  404. set_page_dirty(page);
  405. wait_for_stable_page(page);
  406. return 0;
  407. out_unlock:
  408. unlock_page(page);
  409. return ret;
  410. }
  411. EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
  412. struct fiemap_ctx {
  413. struct fiemap_extent_info *fi;
  414. struct iomap prev;
  415. };
  416. static int iomap_to_fiemap(struct fiemap_extent_info *fi,
  417. struct iomap *iomap, u32 flags)
  418. {
  419. switch (iomap->type) {
  420. case IOMAP_HOLE:
  421. /* skip holes */
  422. return 0;
  423. case IOMAP_DELALLOC:
  424. flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
  425. break;
  426. case IOMAP_UNWRITTEN:
  427. flags |= FIEMAP_EXTENT_UNWRITTEN;
  428. break;
  429. case IOMAP_MAPPED:
  430. break;
  431. }
  432. if (iomap->flags & IOMAP_F_MERGED)
  433. flags |= FIEMAP_EXTENT_MERGED;
  434. if (iomap->flags & IOMAP_F_SHARED)
  435. flags |= FIEMAP_EXTENT_SHARED;
  436. return fiemap_fill_next_extent(fi, iomap->offset,
  437. iomap->blkno != IOMAP_NULL_BLOCK ? iomap->blkno << 9: 0,
  438. iomap->length, flags);
  439. }
  440. static loff_t
  441. iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  442. struct iomap *iomap)
  443. {
  444. struct fiemap_ctx *ctx = data;
  445. loff_t ret = length;
  446. if (iomap->type == IOMAP_HOLE)
  447. return length;
  448. ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
  449. ctx->prev = *iomap;
  450. switch (ret) {
  451. case 0: /* success */
  452. return length;
  453. case 1: /* extent array full */
  454. return 0;
  455. default:
  456. return ret;
  457. }
  458. }
  459. int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
  460. loff_t start, loff_t len, struct iomap_ops *ops)
  461. {
  462. struct fiemap_ctx ctx;
  463. loff_t ret;
  464. memset(&ctx, 0, sizeof(ctx));
  465. ctx.fi = fi;
  466. ctx.prev.type = IOMAP_HOLE;
  467. ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
  468. if (ret)
  469. return ret;
  470. if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
  471. ret = filemap_write_and_wait(inode->i_mapping);
  472. if (ret)
  473. return ret;
  474. }
  475. while (len > 0) {
  476. ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
  477. iomap_fiemap_actor);
  478. /* inode with no (attribute) mapping will give ENOENT */
  479. if (ret == -ENOENT)
  480. break;
  481. if (ret < 0)
  482. return ret;
  483. if (ret == 0)
  484. break;
  485. start += ret;
  486. len -= ret;
  487. }
  488. if (ctx.prev.type != IOMAP_HOLE) {
  489. ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
  490. if (ret < 0)
  491. return ret;
  492. }
  493. return 0;
  494. }
  495. EXPORT_SYMBOL_GPL(iomap_fiemap);
  496. /*
  497. * Private flags for iomap_dio, must not overlap with the public ones in
  498. * iomap.h:
  499. */
  500. #define IOMAP_DIO_WRITE (1 << 30)
  501. #define IOMAP_DIO_DIRTY (1 << 31)
  502. struct iomap_dio {
  503. struct kiocb *iocb;
  504. iomap_dio_end_io_t *end_io;
  505. loff_t i_size;
  506. loff_t size;
  507. atomic_t ref;
  508. unsigned flags;
  509. int error;
  510. union {
  511. /* used during submission and for synchronous completion: */
  512. struct {
  513. struct iov_iter *iter;
  514. struct task_struct *waiter;
  515. struct request_queue *last_queue;
  516. blk_qc_t cookie;
  517. } submit;
  518. /* used for aio completion: */
  519. struct {
  520. struct work_struct work;
  521. } aio;
  522. };
  523. };
  524. static ssize_t iomap_dio_complete(struct iomap_dio *dio)
  525. {
  526. struct kiocb *iocb = dio->iocb;
  527. ssize_t ret;
  528. if (dio->end_io) {
  529. ret = dio->end_io(iocb,
  530. dio->error ? dio->error : dio->size,
  531. dio->flags);
  532. } else {
  533. ret = dio->error;
  534. }
  535. if (likely(!ret)) {
  536. ret = dio->size;
  537. /* check for short read */
  538. if (iocb->ki_pos + ret > dio->i_size &&
  539. !(dio->flags & IOMAP_DIO_WRITE))
  540. ret = dio->i_size - iocb->ki_pos;
  541. iocb->ki_pos += ret;
  542. }
  543. inode_dio_end(file_inode(iocb->ki_filp));
  544. kfree(dio);
  545. return ret;
  546. }
  547. static void iomap_dio_complete_work(struct work_struct *work)
  548. {
  549. struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
  550. struct kiocb *iocb = dio->iocb;
  551. bool is_write = (dio->flags & IOMAP_DIO_WRITE);
  552. ssize_t ret;
  553. ret = iomap_dio_complete(dio);
  554. if (is_write && ret > 0)
  555. ret = generic_write_sync(iocb, ret);
  556. iocb->ki_complete(iocb, ret, 0);
  557. }
  558. /*
  559. * Set an error in the dio if none is set yet. We have to use cmpxchg
  560. * as the submission context and the completion context(s) can race to
  561. * update the error.
  562. */
  563. static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
  564. {
  565. cmpxchg(&dio->error, 0, ret);
  566. }
  567. static void iomap_dio_bio_end_io(struct bio *bio)
  568. {
  569. struct iomap_dio *dio = bio->bi_private;
  570. bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
  571. if (bio->bi_error)
  572. iomap_dio_set_error(dio, bio->bi_error);
  573. if (atomic_dec_and_test(&dio->ref)) {
  574. if (is_sync_kiocb(dio->iocb)) {
  575. struct task_struct *waiter = dio->submit.waiter;
  576. WRITE_ONCE(dio->submit.waiter, NULL);
  577. wake_up_process(waiter);
  578. } else if (dio->flags & IOMAP_DIO_WRITE) {
  579. struct inode *inode = file_inode(dio->iocb->ki_filp);
  580. INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
  581. queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
  582. } else {
  583. iomap_dio_complete_work(&dio->aio.work);
  584. }
  585. }
  586. if (should_dirty) {
  587. bio_check_pages_dirty(bio);
  588. } else {
  589. struct bio_vec *bvec;
  590. int i;
  591. bio_for_each_segment_all(bvec, bio, i)
  592. put_page(bvec->bv_page);
  593. bio_put(bio);
  594. }
  595. }
  596. static blk_qc_t
  597. iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
  598. unsigned len)
  599. {
  600. struct page *page = ZERO_PAGE(0);
  601. struct bio *bio;
  602. bio = bio_alloc(GFP_KERNEL, 1);
  603. bio->bi_bdev = iomap->bdev;
  604. bio->bi_iter.bi_sector =
  605. iomap->blkno + ((pos - iomap->offset) >> 9);
  606. bio->bi_private = dio;
  607. bio->bi_end_io = iomap_dio_bio_end_io;
  608. get_page(page);
  609. if (bio_add_page(bio, page, len, 0) != len)
  610. BUG();
  611. bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
  612. atomic_inc(&dio->ref);
  613. return submit_bio(bio);
  614. }
  615. static loff_t
  616. iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
  617. void *data, struct iomap *iomap)
  618. {
  619. struct iomap_dio *dio = data;
  620. unsigned blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
  621. unsigned fs_block_size = (1 << inode->i_blkbits), pad;
  622. unsigned align = iov_iter_alignment(dio->submit.iter);
  623. struct iov_iter iter;
  624. struct bio *bio;
  625. bool need_zeroout = false;
  626. int nr_pages, ret;
  627. if ((pos | length | align) & ((1 << blkbits) - 1))
  628. return -EINVAL;
  629. switch (iomap->type) {
  630. case IOMAP_HOLE:
  631. if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
  632. return -EIO;
  633. /*FALLTHRU*/
  634. case IOMAP_UNWRITTEN:
  635. if (!(dio->flags & IOMAP_DIO_WRITE)) {
  636. iov_iter_zero(length, dio->submit.iter);
  637. dio->size += length;
  638. return length;
  639. }
  640. dio->flags |= IOMAP_DIO_UNWRITTEN;
  641. need_zeroout = true;
  642. break;
  643. case IOMAP_MAPPED:
  644. if (iomap->flags & IOMAP_F_SHARED)
  645. dio->flags |= IOMAP_DIO_COW;
  646. if (iomap->flags & IOMAP_F_NEW)
  647. need_zeroout = true;
  648. break;
  649. default:
  650. WARN_ON_ONCE(1);
  651. return -EIO;
  652. }
  653. /*
  654. * Operate on a partial iter trimmed to the extent we were called for.
  655. * We'll update the iter in the dio once we're done with this extent.
  656. */
  657. iter = *dio->submit.iter;
  658. iov_iter_truncate(&iter, length);
  659. nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
  660. if (nr_pages <= 0)
  661. return nr_pages;
  662. if (need_zeroout) {
  663. /* zero out from the start of the block to the write offset */
  664. pad = pos & (fs_block_size - 1);
  665. if (pad)
  666. iomap_dio_zero(dio, iomap, pos - pad, pad);
  667. }
  668. do {
  669. if (dio->error)
  670. return 0;
  671. bio = bio_alloc(GFP_KERNEL, nr_pages);
  672. bio->bi_bdev = iomap->bdev;
  673. bio->bi_iter.bi_sector =
  674. iomap->blkno + ((pos - iomap->offset) >> 9);
  675. bio->bi_private = dio;
  676. bio->bi_end_io = iomap_dio_bio_end_io;
  677. ret = bio_iov_iter_get_pages(bio, &iter);
  678. if (unlikely(ret)) {
  679. bio_put(bio);
  680. return ret;
  681. }
  682. if (dio->flags & IOMAP_DIO_WRITE) {
  683. bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
  684. task_io_account_write(bio->bi_iter.bi_size);
  685. } else {
  686. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  687. if (dio->flags & IOMAP_DIO_DIRTY)
  688. bio_set_pages_dirty(bio);
  689. }
  690. dio->size += bio->bi_iter.bi_size;
  691. pos += bio->bi_iter.bi_size;
  692. nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
  693. atomic_inc(&dio->ref);
  694. dio->submit.last_queue = bdev_get_queue(iomap->bdev);
  695. dio->submit.cookie = submit_bio(bio);
  696. } while (nr_pages);
  697. if (need_zeroout) {
  698. /* zero out from the end of the write to the end of the block */
  699. pad = pos & (fs_block_size - 1);
  700. if (pad)
  701. iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
  702. }
  703. iov_iter_advance(dio->submit.iter, length);
  704. return length;
  705. }
  706. ssize_t
  707. iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, struct iomap_ops *ops,
  708. iomap_dio_end_io_t end_io)
  709. {
  710. struct address_space *mapping = iocb->ki_filp->f_mapping;
  711. struct inode *inode = file_inode(iocb->ki_filp);
  712. size_t count = iov_iter_count(iter);
  713. loff_t pos = iocb->ki_pos, end = iocb->ki_pos + count - 1, ret = 0;
  714. unsigned int flags = IOMAP_DIRECT;
  715. struct blk_plug plug;
  716. struct iomap_dio *dio;
  717. lockdep_assert_held(&inode->i_rwsem);
  718. if (!count)
  719. return 0;
  720. dio = kmalloc(sizeof(*dio), GFP_KERNEL);
  721. if (!dio)
  722. return -ENOMEM;
  723. dio->iocb = iocb;
  724. atomic_set(&dio->ref, 1);
  725. dio->size = 0;
  726. dio->i_size = i_size_read(inode);
  727. dio->end_io = end_io;
  728. dio->error = 0;
  729. dio->flags = 0;
  730. dio->submit.iter = iter;
  731. if (is_sync_kiocb(iocb)) {
  732. dio->submit.waiter = current;
  733. dio->submit.cookie = BLK_QC_T_NONE;
  734. dio->submit.last_queue = NULL;
  735. }
  736. if (iov_iter_rw(iter) == READ) {
  737. if (pos >= dio->i_size)
  738. goto out_free_dio;
  739. if (iter->type == ITER_IOVEC)
  740. dio->flags |= IOMAP_DIO_DIRTY;
  741. } else {
  742. dio->flags |= IOMAP_DIO_WRITE;
  743. flags |= IOMAP_WRITE;
  744. }
  745. if (mapping->nrpages) {
  746. ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
  747. if (ret)
  748. goto out_free_dio;
  749. ret = invalidate_inode_pages2_range(mapping,
  750. iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
  751. WARN_ON_ONCE(ret);
  752. ret = 0;
  753. }
  754. inode_dio_begin(inode);
  755. blk_start_plug(&plug);
  756. do {
  757. ret = iomap_apply(inode, pos, count, flags, ops, dio,
  758. iomap_dio_actor);
  759. if (ret <= 0) {
  760. /* magic error code to fall back to buffered I/O */
  761. if (ret == -ENOTBLK)
  762. ret = 0;
  763. break;
  764. }
  765. pos += ret;
  766. } while ((count = iov_iter_count(iter)) > 0);
  767. blk_finish_plug(&plug);
  768. if (ret < 0)
  769. iomap_dio_set_error(dio, ret);
  770. if (ret >= 0 && iov_iter_rw(iter) == WRITE && !is_sync_kiocb(iocb) &&
  771. !inode->i_sb->s_dio_done_wq) {
  772. ret = sb_init_dio_done_wq(inode->i_sb);
  773. if (ret < 0)
  774. iomap_dio_set_error(dio, ret);
  775. }
  776. if (!atomic_dec_and_test(&dio->ref)) {
  777. if (!is_sync_kiocb(iocb))
  778. return -EIOCBQUEUED;
  779. for (;;) {
  780. set_current_state(TASK_UNINTERRUPTIBLE);
  781. if (!READ_ONCE(dio->submit.waiter))
  782. break;
  783. if (!(iocb->ki_flags & IOCB_HIPRI) ||
  784. !dio->submit.last_queue ||
  785. !blk_mq_poll(dio->submit.last_queue,
  786. dio->submit.cookie))
  787. io_schedule();
  788. }
  789. __set_current_state(TASK_RUNNING);
  790. }
  791. /*
  792. * Try again to invalidate clean pages which might have been cached by
  793. * non-direct readahead, or faulted in by get_user_pages() if the source
  794. * of the write was an mmap'ed region of the file we're writing. Either
  795. * one is a pretty crazy thing to do, so we don't support it 100%. If
  796. * this invalidation fails, tough, the write still worked...
  797. */
  798. if (iov_iter_rw(iter) == WRITE && mapping->nrpages) {
  799. ret = invalidate_inode_pages2_range(mapping,
  800. iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
  801. WARN_ON_ONCE(ret);
  802. }
  803. return iomap_dio_complete(dio);
  804. out_free_dio:
  805. kfree(dio);
  806. return ret;
  807. }
  808. EXPORT_SYMBOL_GPL(iomap_dio_rw);