segment.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *bio_entry_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. void register_inmem_page(struct inode *inode, struct page *page)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. struct inmem_pages *new;
  149. f2fs_trace_pid(page);
  150. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  151. SetPagePrivate(page);
  152. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  153. /* add atomic page indices to the list */
  154. new->page = page;
  155. INIT_LIST_HEAD(&new->list);
  156. /* increase reference count with clean state */
  157. mutex_lock(&fi->inmem_lock);
  158. get_page(page);
  159. list_add_tail(&new->list, &fi->inmem_pages);
  160. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  161. mutex_unlock(&fi->inmem_lock);
  162. trace_f2fs_register_inmem_page(page, INMEM);
  163. }
  164. static int __revoke_inmem_pages(struct inode *inode,
  165. struct list_head *head, bool drop, bool recover)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  168. struct inmem_pages *cur, *tmp;
  169. int err = 0;
  170. list_for_each_entry_safe(cur, tmp, head, list) {
  171. struct page *page = cur->page;
  172. if (drop)
  173. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  174. lock_page(page);
  175. if (recover) {
  176. struct dnode_of_data dn;
  177. struct node_info ni;
  178. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  179. set_new_dnode(&dn, inode, NULL, NULL, 0);
  180. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  181. err = -EAGAIN;
  182. goto next;
  183. }
  184. get_node_info(sbi, dn.nid, &ni);
  185. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  186. cur->old_addr, ni.version, true, true);
  187. f2fs_put_dnode(&dn);
  188. }
  189. next:
  190. /* we don't need to invalidate this in the sccessful status */
  191. if (drop || recover)
  192. ClearPageUptodate(page);
  193. set_page_private(page, 0);
  194. ClearPagePrivate(page);
  195. f2fs_put_page(page, 1);
  196. list_del(&cur->list);
  197. kmem_cache_free(inmem_entry_slab, cur);
  198. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  199. }
  200. return err;
  201. }
  202. void drop_inmem_pages(struct inode *inode)
  203. {
  204. struct f2fs_inode_info *fi = F2FS_I(inode);
  205. clear_inode_flag(inode, FI_ATOMIC_FILE);
  206. mutex_lock(&fi->inmem_lock);
  207. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  208. mutex_unlock(&fi->inmem_lock);
  209. }
  210. static int __commit_inmem_pages(struct inode *inode,
  211. struct list_head *revoke_list)
  212. {
  213. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  214. struct f2fs_inode_info *fi = F2FS_I(inode);
  215. struct inmem_pages *cur, *tmp;
  216. struct f2fs_io_info fio = {
  217. .sbi = sbi,
  218. .type = DATA,
  219. .op = REQ_OP_WRITE,
  220. .op_flags = REQ_SYNC | REQ_PRIO,
  221. .encrypted_page = NULL,
  222. };
  223. bool submit_bio = false;
  224. int err = 0;
  225. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  226. struct page *page = cur->page;
  227. lock_page(page);
  228. if (page->mapping == inode->i_mapping) {
  229. trace_f2fs_commit_inmem_page(page, INMEM);
  230. set_page_dirty(page);
  231. f2fs_wait_on_page_writeback(page, DATA, true);
  232. if (clear_page_dirty_for_io(page)) {
  233. inode_dec_dirty_pages(inode);
  234. remove_dirty_inode(inode);
  235. }
  236. fio.page = page;
  237. err = do_write_data_page(&fio);
  238. if (err) {
  239. unlock_page(page);
  240. break;
  241. }
  242. /* record old blkaddr for revoking */
  243. cur->old_addr = fio.old_blkaddr;
  244. submit_bio = true;
  245. }
  246. unlock_page(page);
  247. list_move_tail(&cur->list, revoke_list);
  248. }
  249. if (submit_bio)
  250. f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
  251. if (!err)
  252. __revoke_inmem_pages(inode, revoke_list, false, false);
  253. return err;
  254. }
  255. int commit_inmem_pages(struct inode *inode)
  256. {
  257. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  258. struct f2fs_inode_info *fi = F2FS_I(inode);
  259. struct list_head revoke_list;
  260. int err;
  261. INIT_LIST_HEAD(&revoke_list);
  262. f2fs_balance_fs(sbi, true);
  263. f2fs_lock_op(sbi);
  264. mutex_lock(&fi->inmem_lock);
  265. err = __commit_inmem_pages(inode, &revoke_list);
  266. if (err) {
  267. int ret;
  268. /*
  269. * try to revoke all committed pages, but still we could fail
  270. * due to no memory or other reason, if that happened, EAGAIN
  271. * will be returned, which means in such case, transaction is
  272. * already not integrity, caller should use journal to do the
  273. * recovery or rewrite & commit last transaction. For other
  274. * error number, revoking was done by filesystem itself.
  275. */
  276. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  277. if (ret)
  278. err = ret;
  279. /* drop all uncommitted pages */
  280. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  281. }
  282. mutex_unlock(&fi->inmem_lock);
  283. f2fs_unlock_op(sbi);
  284. return err;
  285. }
  286. /*
  287. * This function balances dirty node and dentry pages.
  288. * In addition, it controls garbage collection.
  289. */
  290. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  291. {
  292. #ifdef CONFIG_F2FS_FAULT_INJECTION
  293. if (time_to_inject(sbi, FAULT_CHECKPOINT))
  294. f2fs_stop_checkpoint(sbi, false);
  295. #endif
  296. if (!need)
  297. return;
  298. /* balance_fs_bg is able to be pending */
  299. if (excess_cached_nats(sbi))
  300. f2fs_balance_fs_bg(sbi);
  301. /*
  302. * We should do GC or end up with checkpoint, if there are so many dirty
  303. * dir/node pages without enough free segments.
  304. */
  305. if (has_not_enough_free_secs(sbi, 0, 0)) {
  306. mutex_lock(&sbi->gc_mutex);
  307. f2fs_gc(sbi, false, false);
  308. }
  309. }
  310. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  311. {
  312. /* try to shrink extent cache when there is no enough memory */
  313. if (!available_free_memory(sbi, EXTENT_CACHE))
  314. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  315. /* check the # of cached NAT entries */
  316. if (!available_free_memory(sbi, NAT_ENTRIES))
  317. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  318. if (!available_free_memory(sbi, FREE_NIDS))
  319. try_to_free_nids(sbi, MAX_FREE_NIDS);
  320. else
  321. build_free_nids(sbi, false);
  322. if (!is_idle(sbi))
  323. return;
  324. /* checkpoint is the only way to shrink partial cached entries */
  325. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  326. !available_free_memory(sbi, INO_ENTRIES) ||
  327. excess_prefree_segs(sbi) ||
  328. excess_dirty_nats(sbi) ||
  329. f2fs_time_over(sbi, CP_TIME)) {
  330. if (test_opt(sbi, DATA_FLUSH)) {
  331. struct blk_plug plug;
  332. blk_start_plug(&plug);
  333. sync_dirty_inodes(sbi, FILE_INODE);
  334. blk_finish_plug(&plug);
  335. }
  336. f2fs_sync_fs(sbi->sb, true);
  337. stat_inc_bg_cp_count(sbi->stat_info);
  338. }
  339. }
  340. static int __submit_flush_wait(struct block_device *bdev)
  341. {
  342. struct bio *bio = f2fs_bio_alloc(0);
  343. int ret;
  344. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  345. bio->bi_bdev = bdev;
  346. ret = submit_bio_wait(bio);
  347. bio_put(bio);
  348. return ret;
  349. }
  350. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  351. {
  352. int ret = __submit_flush_wait(sbi->sb->s_bdev);
  353. int i;
  354. if (sbi->s_ndevs && !ret) {
  355. for (i = 1; i < sbi->s_ndevs; i++) {
  356. ret = __submit_flush_wait(FDEV(i).bdev);
  357. if (ret)
  358. break;
  359. }
  360. }
  361. return ret;
  362. }
  363. static int issue_flush_thread(void *data)
  364. {
  365. struct f2fs_sb_info *sbi = data;
  366. struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
  367. wait_queue_head_t *q = &fcc->flush_wait_queue;
  368. repeat:
  369. if (kthread_should_stop())
  370. return 0;
  371. if (!llist_empty(&fcc->issue_list)) {
  372. struct flush_cmd *cmd, *next;
  373. int ret;
  374. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  375. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  376. ret = submit_flush_wait(sbi);
  377. llist_for_each_entry_safe(cmd, next,
  378. fcc->dispatch_list, llnode) {
  379. cmd->ret = ret;
  380. complete(&cmd->wait);
  381. }
  382. fcc->dispatch_list = NULL;
  383. }
  384. wait_event_interruptible(*q,
  385. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  386. goto repeat;
  387. }
  388. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  389. {
  390. struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
  391. struct flush_cmd cmd;
  392. trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
  393. test_opt(sbi, FLUSH_MERGE));
  394. if (test_opt(sbi, NOBARRIER))
  395. return 0;
  396. if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
  397. int ret;
  398. atomic_inc(&fcc->submit_flush);
  399. ret = submit_flush_wait(sbi);
  400. atomic_dec(&fcc->submit_flush);
  401. return ret;
  402. }
  403. init_completion(&cmd.wait);
  404. atomic_inc(&fcc->submit_flush);
  405. llist_add(&cmd.llnode, &fcc->issue_list);
  406. if (!fcc->dispatch_list)
  407. wake_up(&fcc->flush_wait_queue);
  408. if (fcc->f2fs_issue_flush) {
  409. wait_for_completion(&cmd.wait);
  410. atomic_dec(&fcc->submit_flush);
  411. } else {
  412. llist_del_all(&fcc->issue_list);
  413. atomic_set(&fcc->submit_flush, 0);
  414. }
  415. return cmd.ret;
  416. }
  417. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  418. {
  419. dev_t dev = sbi->sb->s_bdev->bd_dev;
  420. struct flush_cmd_control *fcc;
  421. int err = 0;
  422. if (SM_I(sbi)->cmd_control_info) {
  423. fcc = SM_I(sbi)->cmd_control_info;
  424. goto init_thread;
  425. }
  426. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  427. if (!fcc)
  428. return -ENOMEM;
  429. atomic_set(&fcc->submit_flush, 0);
  430. init_waitqueue_head(&fcc->flush_wait_queue);
  431. init_llist_head(&fcc->issue_list);
  432. SM_I(sbi)->cmd_control_info = fcc;
  433. init_thread:
  434. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  435. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  436. if (IS_ERR(fcc->f2fs_issue_flush)) {
  437. err = PTR_ERR(fcc->f2fs_issue_flush);
  438. kfree(fcc);
  439. SM_I(sbi)->cmd_control_info = NULL;
  440. return err;
  441. }
  442. return err;
  443. }
  444. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  445. {
  446. struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
  447. if (fcc && fcc->f2fs_issue_flush) {
  448. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  449. fcc->f2fs_issue_flush = NULL;
  450. kthread_stop(flush_thread);
  451. }
  452. if (free) {
  453. kfree(fcc);
  454. SM_I(sbi)->cmd_control_info = NULL;
  455. }
  456. }
  457. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  458. enum dirty_type dirty_type)
  459. {
  460. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  461. /* need not be added */
  462. if (IS_CURSEG(sbi, segno))
  463. return;
  464. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  465. dirty_i->nr_dirty[dirty_type]++;
  466. if (dirty_type == DIRTY) {
  467. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  468. enum dirty_type t = sentry->type;
  469. if (unlikely(t >= DIRTY)) {
  470. f2fs_bug_on(sbi, 1);
  471. return;
  472. }
  473. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  474. dirty_i->nr_dirty[t]++;
  475. }
  476. }
  477. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  478. enum dirty_type dirty_type)
  479. {
  480. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  481. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  482. dirty_i->nr_dirty[dirty_type]--;
  483. if (dirty_type == DIRTY) {
  484. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  485. enum dirty_type t = sentry->type;
  486. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  487. dirty_i->nr_dirty[t]--;
  488. if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
  489. clear_bit(GET_SECNO(sbi, segno),
  490. dirty_i->victim_secmap);
  491. }
  492. }
  493. /*
  494. * Should not occur error such as -ENOMEM.
  495. * Adding dirty entry into seglist is not critical operation.
  496. * If a given segment is one of current working segments, it won't be added.
  497. */
  498. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  499. {
  500. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  501. unsigned short valid_blocks;
  502. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  503. return;
  504. mutex_lock(&dirty_i->seglist_lock);
  505. valid_blocks = get_valid_blocks(sbi, segno, 0);
  506. if (valid_blocks == 0) {
  507. __locate_dirty_segment(sbi, segno, PRE);
  508. __remove_dirty_segment(sbi, segno, DIRTY);
  509. } else if (valid_blocks < sbi->blocks_per_seg) {
  510. __locate_dirty_segment(sbi, segno, DIRTY);
  511. } else {
  512. /* Recovery routine with SSR needs this */
  513. __remove_dirty_segment(sbi, segno, DIRTY);
  514. }
  515. mutex_unlock(&dirty_i->seglist_lock);
  516. }
  517. static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
  518. struct bio *bio)
  519. {
  520. struct list_head *wait_list = &(SM_I(sbi)->wait_list);
  521. struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
  522. INIT_LIST_HEAD(&be->list);
  523. be->bio = bio;
  524. init_completion(&be->event);
  525. list_add_tail(&be->list, wait_list);
  526. return be;
  527. }
  528. void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
  529. {
  530. struct list_head *wait_list = &(SM_I(sbi)->wait_list);
  531. struct bio_entry *be, *tmp;
  532. list_for_each_entry_safe(be, tmp, wait_list, list) {
  533. struct bio *bio = be->bio;
  534. int err;
  535. wait_for_completion_io(&be->event);
  536. err = be->error;
  537. if (err == -EOPNOTSUPP)
  538. err = 0;
  539. if (err)
  540. f2fs_msg(sbi->sb, KERN_INFO,
  541. "Issue discard failed, ret: %d", err);
  542. bio_put(bio);
  543. list_del(&be->list);
  544. kmem_cache_free(bio_entry_slab, be);
  545. }
  546. }
  547. static void f2fs_submit_bio_wait_endio(struct bio *bio)
  548. {
  549. struct bio_entry *be = (struct bio_entry *)bio->bi_private;
  550. be->error = bio->bi_error;
  551. complete(&be->event);
  552. }
  553. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  554. static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
  555. struct block_device *bdev, block_t blkstart, block_t blklen)
  556. {
  557. struct bio *bio = NULL;
  558. int err;
  559. trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
  560. if (sbi->s_ndevs) {
  561. int devi = f2fs_target_device_index(sbi, blkstart);
  562. blkstart -= FDEV(devi).start_blk;
  563. }
  564. err = __blkdev_issue_discard(bdev,
  565. SECTOR_FROM_BLOCK(blkstart),
  566. SECTOR_FROM_BLOCK(blklen),
  567. GFP_NOFS, 0, &bio);
  568. if (!err && bio) {
  569. struct bio_entry *be = __add_bio_entry(sbi, bio);
  570. bio->bi_private = be;
  571. bio->bi_end_io = f2fs_submit_bio_wait_endio;
  572. bio->bi_opf |= REQ_SYNC;
  573. submit_bio(bio);
  574. }
  575. return err;
  576. }
  577. #ifdef CONFIG_BLK_DEV_ZONED
  578. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  579. struct block_device *bdev, block_t blkstart, block_t blklen)
  580. {
  581. sector_t nr_sects = SECTOR_FROM_BLOCK(blklen);
  582. sector_t sector;
  583. int devi = 0;
  584. if (sbi->s_ndevs) {
  585. devi = f2fs_target_device_index(sbi, blkstart);
  586. blkstart -= FDEV(devi).start_blk;
  587. }
  588. sector = SECTOR_FROM_BLOCK(blkstart);
  589. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  590. nr_sects != bdev_zone_sectors(bdev)) {
  591. f2fs_msg(sbi->sb, KERN_INFO,
  592. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  593. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  594. blkstart, blklen);
  595. return -EIO;
  596. }
  597. /*
  598. * We need to know the type of the zone: for conventional zones,
  599. * use regular discard if the drive supports it. For sequential
  600. * zones, reset the zone write pointer.
  601. */
  602. switch (get_blkz_type(sbi, bdev, blkstart)) {
  603. case BLK_ZONE_TYPE_CONVENTIONAL:
  604. if (!blk_queue_discard(bdev_get_queue(bdev)))
  605. return 0;
  606. return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
  607. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  608. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  609. trace_f2fs_issue_reset_zone(sbi->sb, blkstart);
  610. return blkdev_reset_zones(bdev, sector,
  611. nr_sects, GFP_NOFS);
  612. default:
  613. /* Unknown zone type: broken device ? */
  614. return -EIO;
  615. }
  616. }
  617. #endif
  618. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  619. struct block_device *bdev, block_t blkstart, block_t blklen)
  620. {
  621. #ifdef CONFIG_BLK_DEV_ZONED
  622. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  623. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  624. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  625. #endif
  626. return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
  627. }
  628. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  629. block_t blkstart, block_t blklen)
  630. {
  631. sector_t start = blkstart, len = 0;
  632. struct block_device *bdev;
  633. struct seg_entry *se;
  634. unsigned int offset;
  635. block_t i;
  636. int err = 0;
  637. bdev = f2fs_target_device(sbi, blkstart, NULL);
  638. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  639. if (i != start) {
  640. struct block_device *bdev2 =
  641. f2fs_target_device(sbi, i, NULL);
  642. if (bdev2 != bdev) {
  643. err = __issue_discard_async(sbi, bdev,
  644. start, len);
  645. if (err)
  646. return err;
  647. bdev = bdev2;
  648. start = i;
  649. len = 0;
  650. }
  651. }
  652. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  653. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  654. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  655. sbi->discard_blks--;
  656. }
  657. if (len)
  658. err = __issue_discard_async(sbi, bdev, start, len);
  659. return err;
  660. }
  661. static void __add_discard_entry(struct f2fs_sb_info *sbi,
  662. struct cp_control *cpc, struct seg_entry *se,
  663. unsigned int start, unsigned int end)
  664. {
  665. struct list_head *head = &SM_I(sbi)->discard_list;
  666. struct discard_entry *new, *last;
  667. if (!list_empty(head)) {
  668. last = list_last_entry(head, struct discard_entry, list);
  669. if (START_BLOCK(sbi, cpc->trim_start) + start ==
  670. last->blkaddr + last->len) {
  671. last->len += end - start;
  672. goto done;
  673. }
  674. }
  675. new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
  676. INIT_LIST_HEAD(&new->list);
  677. new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
  678. new->len = end - start;
  679. list_add_tail(&new->list, head);
  680. done:
  681. SM_I(sbi)->nr_discards += end - start;
  682. }
  683. static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  684. {
  685. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  686. int max_blocks = sbi->blocks_per_seg;
  687. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  688. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  689. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  690. unsigned long *discard_map = (unsigned long *)se->discard_map;
  691. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  692. unsigned int start = 0, end = -1;
  693. bool force = (cpc->reason == CP_DISCARD);
  694. int i;
  695. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  696. return;
  697. if (!force) {
  698. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  699. SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
  700. return;
  701. }
  702. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  703. for (i = 0; i < entries; i++)
  704. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  705. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  706. while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
  707. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  708. if (start >= max_blocks)
  709. break;
  710. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  711. if (force && start && end != max_blocks
  712. && (end - start) < cpc->trim_minlen)
  713. continue;
  714. __add_discard_entry(sbi, cpc, se, start, end);
  715. }
  716. }
  717. void release_discard_addrs(struct f2fs_sb_info *sbi)
  718. {
  719. struct list_head *head = &(SM_I(sbi)->discard_list);
  720. struct discard_entry *entry, *this;
  721. /* drop caches */
  722. list_for_each_entry_safe(entry, this, head, list) {
  723. list_del(&entry->list);
  724. kmem_cache_free(discard_entry_slab, entry);
  725. }
  726. }
  727. /*
  728. * Should call clear_prefree_segments after checkpoint is done.
  729. */
  730. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  731. {
  732. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  733. unsigned int segno;
  734. mutex_lock(&dirty_i->seglist_lock);
  735. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  736. __set_test_and_free(sbi, segno);
  737. mutex_unlock(&dirty_i->seglist_lock);
  738. }
  739. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  740. {
  741. struct list_head *head = &(SM_I(sbi)->discard_list);
  742. struct discard_entry *entry, *this;
  743. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  744. struct blk_plug plug;
  745. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  746. unsigned int start = 0, end = -1;
  747. unsigned int secno, start_segno;
  748. bool force = (cpc->reason == CP_DISCARD);
  749. blk_start_plug(&plug);
  750. mutex_lock(&dirty_i->seglist_lock);
  751. while (1) {
  752. int i;
  753. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  754. if (start >= MAIN_SEGS(sbi))
  755. break;
  756. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  757. start + 1);
  758. for (i = start; i < end; i++)
  759. clear_bit(i, prefree_map);
  760. dirty_i->nr_dirty[PRE] -= end - start;
  761. if (force || !test_opt(sbi, DISCARD))
  762. continue;
  763. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  764. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  765. (end - start) << sbi->log_blocks_per_seg);
  766. continue;
  767. }
  768. next:
  769. secno = GET_SECNO(sbi, start);
  770. start_segno = secno * sbi->segs_per_sec;
  771. if (!IS_CURSEC(sbi, secno) &&
  772. !get_valid_blocks(sbi, start, sbi->segs_per_sec))
  773. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  774. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  775. start = start_segno + sbi->segs_per_sec;
  776. if (start < end)
  777. goto next;
  778. }
  779. mutex_unlock(&dirty_i->seglist_lock);
  780. /* send small discards */
  781. list_for_each_entry_safe(entry, this, head, list) {
  782. if (force && entry->len < cpc->trim_minlen)
  783. goto skip;
  784. f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
  785. cpc->trimmed += entry->len;
  786. skip:
  787. list_del(&entry->list);
  788. SM_I(sbi)->nr_discards -= entry->len;
  789. kmem_cache_free(discard_entry_slab, entry);
  790. }
  791. blk_finish_plug(&plug);
  792. }
  793. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  794. {
  795. struct sit_info *sit_i = SIT_I(sbi);
  796. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  797. sit_i->dirty_sentries++;
  798. return false;
  799. }
  800. return true;
  801. }
  802. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  803. unsigned int segno, int modified)
  804. {
  805. struct seg_entry *se = get_seg_entry(sbi, segno);
  806. se->type = type;
  807. if (modified)
  808. __mark_sit_entry_dirty(sbi, segno);
  809. }
  810. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  811. {
  812. struct seg_entry *se;
  813. unsigned int segno, offset;
  814. long int new_vblocks;
  815. segno = GET_SEGNO(sbi, blkaddr);
  816. se = get_seg_entry(sbi, segno);
  817. new_vblocks = se->valid_blocks + del;
  818. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  819. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  820. (new_vblocks > sbi->blocks_per_seg)));
  821. se->valid_blocks = new_vblocks;
  822. se->mtime = get_mtime(sbi);
  823. SIT_I(sbi)->max_mtime = se->mtime;
  824. /* Update valid block bitmap */
  825. if (del > 0) {
  826. if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
  827. f2fs_bug_on(sbi, 1);
  828. if (f2fs_discard_en(sbi) &&
  829. !f2fs_test_and_set_bit(offset, se->discard_map))
  830. sbi->discard_blks--;
  831. } else {
  832. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
  833. f2fs_bug_on(sbi, 1);
  834. if (f2fs_discard_en(sbi) &&
  835. f2fs_test_and_clear_bit(offset, se->discard_map))
  836. sbi->discard_blks++;
  837. }
  838. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  839. se->ckpt_valid_blocks += del;
  840. __mark_sit_entry_dirty(sbi, segno);
  841. /* update total number of valid blocks to be written in ckpt area */
  842. SIT_I(sbi)->written_valid_blocks += del;
  843. if (sbi->segs_per_sec > 1)
  844. get_sec_entry(sbi, segno)->valid_blocks += del;
  845. }
  846. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  847. {
  848. update_sit_entry(sbi, new, 1);
  849. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  850. update_sit_entry(sbi, old, -1);
  851. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  852. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  853. }
  854. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  855. {
  856. unsigned int segno = GET_SEGNO(sbi, addr);
  857. struct sit_info *sit_i = SIT_I(sbi);
  858. f2fs_bug_on(sbi, addr == NULL_ADDR);
  859. if (addr == NEW_ADDR)
  860. return;
  861. /* add it into sit main buffer */
  862. mutex_lock(&sit_i->sentry_lock);
  863. update_sit_entry(sbi, addr, -1);
  864. /* add it into dirty seglist */
  865. locate_dirty_segment(sbi, segno);
  866. mutex_unlock(&sit_i->sentry_lock);
  867. }
  868. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  869. {
  870. struct sit_info *sit_i = SIT_I(sbi);
  871. unsigned int segno, offset;
  872. struct seg_entry *se;
  873. bool is_cp = false;
  874. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  875. return true;
  876. mutex_lock(&sit_i->sentry_lock);
  877. segno = GET_SEGNO(sbi, blkaddr);
  878. se = get_seg_entry(sbi, segno);
  879. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  880. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  881. is_cp = true;
  882. mutex_unlock(&sit_i->sentry_lock);
  883. return is_cp;
  884. }
  885. /*
  886. * This function should be resided under the curseg_mutex lock
  887. */
  888. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  889. struct f2fs_summary *sum)
  890. {
  891. struct curseg_info *curseg = CURSEG_I(sbi, type);
  892. void *addr = curseg->sum_blk;
  893. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  894. memcpy(addr, sum, sizeof(struct f2fs_summary));
  895. }
  896. /*
  897. * Calculate the number of current summary pages for writing
  898. */
  899. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  900. {
  901. int valid_sum_count = 0;
  902. int i, sum_in_page;
  903. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  904. if (sbi->ckpt->alloc_type[i] == SSR)
  905. valid_sum_count += sbi->blocks_per_seg;
  906. else {
  907. if (for_ra)
  908. valid_sum_count += le16_to_cpu(
  909. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  910. else
  911. valid_sum_count += curseg_blkoff(sbi, i);
  912. }
  913. }
  914. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  915. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  916. if (valid_sum_count <= sum_in_page)
  917. return 1;
  918. else if ((valid_sum_count - sum_in_page) <=
  919. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  920. return 2;
  921. return 3;
  922. }
  923. /*
  924. * Caller should put this summary page
  925. */
  926. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  927. {
  928. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  929. }
  930. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  931. {
  932. struct page *page = grab_meta_page(sbi, blk_addr);
  933. void *dst = page_address(page);
  934. if (src)
  935. memcpy(dst, src, PAGE_SIZE);
  936. else
  937. memset(dst, 0, PAGE_SIZE);
  938. set_page_dirty(page);
  939. f2fs_put_page(page, 1);
  940. }
  941. static void write_sum_page(struct f2fs_sb_info *sbi,
  942. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  943. {
  944. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  945. }
  946. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  947. int type, block_t blk_addr)
  948. {
  949. struct curseg_info *curseg = CURSEG_I(sbi, type);
  950. struct page *page = grab_meta_page(sbi, blk_addr);
  951. struct f2fs_summary_block *src = curseg->sum_blk;
  952. struct f2fs_summary_block *dst;
  953. dst = (struct f2fs_summary_block *)page_address(page);
  954. mutex_lock(&curseg->curseg_mutex);
  955. down_read(&curseg->journal_rwsem);
  956. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  957. up_read(&curseg->journal_rwsem);
  958. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  959. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  960. mutex_unlock(&curseg->curseg_mutex);
  961. set_page_dirty(page);
  962. f2fs_put_page(page, 1);
  963. }
  964. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  965. {
  966. struct curseg_info *curseg = CURSEG_I(sbi, type);
  967. unsigned int segno = curseg->segno + 1;
  968. struct free_segmap_info *free_i = FREE_I(sbi);
  969. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  970. return !test_bit(segno, free_i->free_segmap);
  971. return 0;
  972. }
  973. /*
  974. * Find a new segment from the free segments bitmap to right order
  975. * This function should be returned with success, otherwise BUG
  976. */
  977. static void get_new_segment(struct f2fs_sb_info *sbi,
  978. unsigned int *newseg, bool new_sec, int dir)
  979. {
  980. struct free_segmap_info *free_i = FREE_I(sbi);
  981. unsigned int segno, secno, zoneno;
  982. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  983. unsigned int hint = *newseg / sbi->segs_per_sec;
  984. unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
  985. unsigned int left_start = hint;
  986. bool init = true;
  987. int go_left = 0;
  988. int i;
  989. spin_lock(&free_i->segmap_lock);
  990. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  991. segno = find_next_zero_bit(free_i->free_segmap,
  992. (hint + 1) * sbi->segs_per_sec, *newseg + 1);
  993. if (segno < (hint + 1) * sbi->segs_per_sec)
  994. goto got_it;
  995. }
  996. find_other_zone:
  997. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  998. if (secno >= MAIN_SECS(sbi)) {
  999. if (dir == ALLOC_RIGHT) {
  1000. secno = find_next_zero_bit(free_i->free_secmap,
  1001. MAIN_SECS(sbi), 0);
  1002. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1003. } else {
  1004. go_left = 1;
  1005. left_start = hint - 1;
  1006. }
  1007. }
  1008. if (go_left == 0)
  1009. goto skip_left;
  1010. while (test_bit(left_start, free_i->free_secmap)) {
  1011. if (left_start > 0) {
  1012. left_start--;
  1013. continue;
  1014. }
  1015. left_start = find_next_zero_bit(free_i->free_secmap,
  1016. MAIN_SECS(sbi), 0);
  1017. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1018. break;
  1019. }
  1020. secno = left_start;
  1021. skip_left:
  1022. hint = secno;
  1023. segno = secno * sbi->segs_per_sec;
  1024. zoneno = secno / sbi->secs_per_zone;
  1025. /* give up on finding another zone */
  1026. if (!init)
  1027. goto got_it;
  1028. if (sbi->secs_per_zone == 1)
  1029. goto got_it;
  1030. if (zoneno == old_zoneno)
  1031. goto got_it;
  1032. if (dir == ALLOC_LEFT) {
  1033. if (!go_left && zoneno + 1 >= total_zones)
  1034. goto got_it;
  1035. if (go_left && zoneno == 0)
  1036. goto got_it;
  1037. }
  1038. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1039. if (CURSEG_I(sbi, i)->zone == zoneno)
  1040. break;
  1041. if (i < NR_CURSEG_TYPE) {
  1042. /* zone is in user, try another */
  1043. if (go_left)
  1044. hint = zoneno * sbi->secs_per_zone - 1;
  1045. else if (zoneno + 1 >= total_zones)
  1046. hint = 0;
  1047. else
  1048. hint = (zoneno + 1) * sbi->secs_per_zone;
  1049. init = false;
  1050. goto find_other_zone;
  1051. }
  1052. got_it:
  1053. /* set it as dirty segment in free segmap */
  1054. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1055. __set_inuse(sbi, segno);
  1056. *newseg = segno;
  1057. spin_unlock(&free_i->segmap_lock);
  1058. }
  1059. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1060. {
  1061. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1062. struct summary_footer *sum_footer;
  1063. curseg->segno = curseg->next_segno;
  1064. curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
  1065. curseg->next_blkoff = 0;
  1066. curseg->next_segno = NULL_SEGNO;
  1067. sum_footer = &(curseg->sum_blk->footer);
  1068. memset(sum_footer, 0, sizeof(struct summary_footer));
  1069. if (IS_DATASEG(type))
  1070. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1071. if (IS_NODESEG(type))
  1072. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1073. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1074. }
  1075. /*
  1076. * Allocate a current working segment.
  1077. * This function always allocates a free segment in LFS manner.
  1078. */
  1079. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1080. {
  1081. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1082. unsigned int segno = curseg->segno;
  1083. int dir = ALLOC_LEFT;
  1084. write_sum_page(sbi, curseg->sum_blk,
  1085. GET_SUM_BLOCK(sbi, segno));
  1086. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1087. dir = ALLOC_RIGHT;
  1088. if (test_opt(sbi, NOHEAP))
  1089. dir = ALLOC_RIGHT;
  1090. get_new_segment(sbi, &segno, new_sec, dir);
  1091. curseg->next_segno = segno;
  1092. reset_curseg(sbi, type, 1);
  1093. curseg->alloc_type = LFS;
  1094. }
  1095. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1096. struct curseg_info *seg, block_t start)
  1097. {
  1098. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1099. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1100. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1101. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1102. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1103. int i, pos;
  1104. for (i = 0; i < entries; i++)
  1105. target_map[i] = ckpt_map[i] | cur_map[i];
  1106. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1107. seg->next_blkoff = pos;
  1108. }
  1109. /*
  1110. * If a segment is written by LFS manner, next block offset is just obtained
  1111. * by increasing the current block offset. However, if a segment is written by
  1112. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1113. */
  1114. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1115. struct curseg_info *seg)
  1116. {
  1117. if (seg->alloc_type == SSR)
  1118. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1119. else
  1120. seg->next_blkoff++;
  1121. }
  1122. /*
  1123. * This function always allocates a used segment(from dirty seglist) by SSR
  1124. * manner, so it should recover the existing segment information of valid blocks
  1125. */
  1126. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1127. {
  1128. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1129. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1130. unsigned int new_segno = curseg->next_segno;
  1131. struct f2fs_summary_block *sum_node;
  1132. struct page *sum_page;
  1133. write_sum_page(sbi, curseg->sum_blk,
  1134. GET_SUM_BLOCK(sbi, curseg->segno));
  1135. __set_test_and_inuse(sbi, new_segno);
  1136. mutex_lock(&dirty_i->seglist_lock);
  1137. __remove_dirty_segment(sbi, new_segno, PRE);
  1138. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1139. mutex_unlock(&dirty_i->seglist_lock);
  1140. reset_curseg(sbi, type, 1);
  1141. curseg->alloc_type = SSR;
  1142. __next_free_blkoff(sbi, curseg, 0);
  1143. if (reuse) {
  1144. sum_page = get_sum_page(sbi, new_segno);
  1145. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1146. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1147. f2fs_put_page(sum_page, 1);
  1148. }
  1149. }
  1150. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1151. {
  1152. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1153. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1154. if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
  1155. return v_ops->get_victim(sbi,
  1156. &(curseg)->next_segno, BG_GC, type, SSR);
  1157. /* For data segments, let's do SSR more intensively */
  1158. for (; type >= CURSEG_HOT_DATA; type--)
  1159. if (v_ops->get_victim(sbi, &(curseg)->next_segno,
  1160. BG_GC, type, SSR))
  1161. return 1;
  1162. return 0;
  1163. }
  1164. /*
  1165. * flush out current segment and replace it with new segment
  1166. * This function should be returned with success, otherwise BUG
  1167. */
  1168. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1169. int type, bool force)
  1170. {
  1171. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1172. if (force)
  1173. new_curseg(sbi, type, true);
  1174. else if (type == CURSEG_WARM_NODE)
  1175. new_curseg(sbi, type, false);
  1176. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1177. new_curseg(sbi, type, false);
  1178. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1179. change_curseg(sbi, type, true);
  1180. else
  1181. new_curseg(sbi, type, false);
  1182. stat_inc_seg_type(sbi, curseg);
  1183. }
  1184. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1185. {
  1186. struct curseg_info *curseg;
  1187. unsigned int old_segno;
  1188. int i;
  1189. if (test_opt(sbi, LFS))
  1190. return;
  1191. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1192. curseg = CURSEG_I(sbi, i);
  1193. old_segno = curseg->segno;
  1194. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1195. locate_dirty_segment(sbi, old_segno);
  1196. }
  1197. }
  1198. static const struct segment_allocation default_salloc_ops = {
  1199. .allocate_segment = allocate_segment_by_default,
  1200. };
  1201. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1202. {
  1203. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1204. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1205. unsigned int start_segno, end_segno;
  1206. struct cp_control cpc;
  1207. int err = 0;
  1208. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1209. return -EINVAL;
  1210. cpc.trimmed = 0;
  1211. if (end <= MAIN_BLKADDR(sbi))
  1212. goto out;
  1213. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1214. f2fs_msg(sbi->sb, KERN_WARNING,
  1215. "Found FS corruption, run fsck to fix.");
  1216. goto out;
  1217. }
  1218. /* start/end segment number in main_area */
  1219. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1220. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1221. GET_SEGNO(sbi, end);
  1222. cpc.reason = CP_DISCARD;
  1223. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1224. /* do checkpoint to issue discard commands safely */
  1225. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1226. cpc.trim_start = start_segno;
  1227. if (sbi->discard_blks == 0)
  1228. break;
  1229. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1230. cpc.trim_end = end_segno;
  1231. else
  1232. cpc.trim_end = min_t(unsigned int,
  1233. rounddown(start_segno +
  1234. BATCHED_TRIM_SEGMENTS(sbi),
  1235. sbi->segs_per_sec) - 1, end_segno);
  1236. mutex_lock(&sbi->gc_mutex);
  1237. err = write_checkpoint(sbi, &cpc);
  1238. mutex_unlock(&sbi->gc_mutex);
  1239. if (err)
  1240. break;
  1241. schedule();
  1242. }
  1243. out:
  1244. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1245. return err;
  1246. }
  1247. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1248. {
  1249. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1250. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1251. return true;
  1252. return false;
  1253. }
  1254. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1255. {
  1256. if (p_type == DATA)
  1257. return CURSEG_HOT_DATA;
  1258. else
  1259. return CURSEG_HOT_NODE;
  1260. }
  1261. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1262. {
  1263. if (p_type == DATA) {
  1264. struct inode *inode = page->mapping->host;
  1265. if (S_ISDIR(inode->i_mode))
  1266. return CURSEG_HOT_DATA;
  1267. else
  1268. return CURSEG_COLD_DATA;
  1269. } else {
  1270. if (IS_DNODE(page) && is_cold_node(page))
  1271. return CURSEG_WARM_NODE;
  1272. else
  1273. return CURSEG_COLD_NODE;
  1274. }
  1275. }
  1276. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1277. {
  1278. if (p_type == DATA) {
  1279. struct inode *inode = page->mapping->host;
  1280. if (S_ISDIR(inode->i_mode))
  1281. return CURSEG_HOT_DATA;
  1282. else if (is_cold_data(page) || file_is_cold(inode))
  1283. return CURSEG_COLD_DATA;
  1284. else
  1285. return CURSEG_WARM_DATA;
  1286. } else {
  1287. if (IS_DNODE(page))
  1288. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1289. CURSEG_HOT_NODE;
  1290. else
  1291. return CURSEG_COLD_NODE;
  1292. }
  1293. }
  1294. static int __get_segment_type(struct page *page, enum page_type p_type)
  1295. {
  1296. switch (F2FS_P_SB(page)->active_logs) {
  1297. case 2:
  1298. return __get_segment_type_2(page, p_type);
  1299. case 4:
  1300. return __get_segment_type_4(page, p_type);
  1301. }
  1302. /* NR_CURSEG_TYPE(6) logs by default */
  1303. f2fs_bug_on(F2FS_P_SB(page),
  1304. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1305. return __get_segment_type_6(page, p_type);
  1306. }
  1307. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1308. block_t old_blkaddr, block_t *new_blkaddr,
  1309. struct f2fs_summary *sum, int type)
  1310. {
  1311. struct sit_info *sit_i = SIT_I(sbi);
  1312. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1313. mutex_lock(&curseg->curseg_mutex);
  1314. mutex_lock(&sit_i->sentry_lock);
  1315. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1316. /*
  1317. * __add_sum_entry should be resided under the curseg_mutex
  1318. * because, this function updates a summary entry in the
  1319. * current summary block.
  1320. */
  1321. __add_sum_entry(sbi, type, sum);
  1322. __refresh_next_blkoff(sbi, curseg);
  1323. stat_inc_block_count(sbi, curseg);
  1324. if (!__has_curseg_space(sbi, type))
  1325. sit_i->s_ops->allocate_segment(sbi, type, false);
  1326. /*
  1327. * SIT information should be updated before segment allocation,
  1328. * since SSR needs latest valid block information.
  1329. */
  1330. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1331. mutex_unlock(&sit_i->sentry_lock);
  1332. if (page && IS_NODESEG(type))
  1333. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1334. mutex_unlock(&curseg->curseg_mutex);
  1335. }
  1336. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1337. {
  1338. int type = __get_segment_type(fio->page, fio->type);
  1339. if (fio->type == NODE || fio->type == DATA)
  1340. mutex_lock(&fio->sbi->wio_mutex[fio->type]);
  1341. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1342. &fio->new_blkaddr, sum, type);
  1343. /* writeout dirty page into bdev */
  1344. f2fs_submit_page_mbio(fio);
  1345. if (fio->type == NODE || fio->type == DATA)
  1346. mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
  1347. }
  1348. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1349. {
  1350. struct f2fs_io_info fio = {
  1351. .sbi = sbi,
  1352. .type = META,
  1353. .op = REQ_OP_WRITE,
  1354. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1355. .old_blkaddr = page->index,
  1356. .new_blkaddr = page->index,
  1357. .page = page,
  1358. .encrypted_page = NULL,
  1359. };
  1360. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1361. fio.op_flags &= ~REQ_META;
  1362. set_page_writeback(page);
  1363. f2fs_submit_page_mbio(&fio);
  1364. }
  1365. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1366. {
  1367. struct f2fs_summary sum;
  1368. set_summary(&sum, nid, 0, 0);
  1369. do_write_page(&sum, fio);
  1370. }
  1371. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1372. {
  1373. struct f2fs_sb_info *sbi = fio->sbi;
  1374. struct f2fs_summary sum;
  1375. struct node_info ni;
  1376. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1377. get_node_info(sbi, dn->nid, &ni);
  1378. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1379. do_write_page(&sum, fio);
  1380. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1381. }
  1382. void rewrite_data_page(struct f2fs_io_info *fio)
  1383. {
  1384. fio->new_blkaddr = fio->old_blkaddr;
  1385. stat_inc_inplace_blocks(fio->sbi);
  1386. f2fs_submit_page_mbio(fio);
  1387. }
  1388. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1389. block_t old_blkaddr, block_t new_blkaddr,
  1390. bool recover_curseg, bool recover_newaddr)
  1391. {
  1392. struct sit_info *sit_i = SIT_I(sbi);
  1393. struct curseg_info *curseg;
  1394. unsigned int segno, old_cursegno;
  1395. struct seg_entry *se;
  1396. int type;
  1397. unsigned short old_blkoff;
  1398. segno = GET_SEGNO(sbi, new_blkaddr);
  1399. se = get_seg_entry(sbi, segno);
  1400. type = se->type;
  1401. if (!recover_curseg) {
  1402. /* for recovery flow */
  1403. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1404. if (old_blkaddr == NULL_ADDR)
  1405. type = CURSEG_COLD_DATA;
  1406. else
  1407. type = CURSEG_WARM_DATA;
  1408. }
  1409. } else {
  1410. if (!IS_CURSEG(sbi, segno))
  1411. type = CURSEG_WARM_DATA;
  1412. }
  1413. curseg = CURSEG_I(sbi, type);
  1414. mutex_lock(&curseg->curseg_mutex);
  1415. mutex_lock(&sit_i->sentry_lock);
  1416. old_cursegno = curseg->segno;
  1417. old_blkoff = curseg->next_blkoff;
  1418. /* change the current segment */
  1419. if (segno != curseg->segno) {
  1420. curseg->next_segno = segno;
  1421. change_curseg(sbi, type, true);
  1422. }
  1423. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1424. __add_sum_entry(sbi, type, sum);
  1425. if (!recover_curseg || recover_newaddr)
  1426. update_sit_entry(sbi, new_blkaddr, 1);
  1427. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1428. update_sit_entry(sbi, old_blkaddr, -1);
  1429. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1430. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1431. locate_dirty_segment(sbi, old_cursegno);
  1432. if (recover_curseg) {
  1433. if (old_cursegno != curseg->segno) {
  1434. curseg->next_segno = old_cursegno;
  1435. change_curseg(sbi, type, true);
  1436. }
  1437. curseg->next_blkoff = old_blkoff;
  1438. }
  1439. mutex_unlock(&sit_i->sentry_lock);
  1440. mutex_unlock(&curseg->curseg_mutex);
  1441. }
  1442. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1443. block_t old_addr, block_t new_addr,
  1444. unsigned char version, bool recover_curseg,
  1445. bool recover_newaddr)
  1446. {
  1447. struct f2fs_summary sum;
  1448. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1449. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1450. recover_curseg, recover_newaddr);
  1451. f2fs_update_data_blkaddr(dn, new_addr);
  1452. }
  1453. void f2fs_wait_on_page_writeback(struct page *page,
  1454. enum page_type type, bool ordered)
  1455. {
  1456. if (PageWriteback(page)) {
  1457. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1458. f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
  1459. if (ordered)
  1460. wait_on_page_writeback(page);
  1461. else
  1462. wait_for_stable_page(page);
  1463. }
  1464. }
  1465. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1466. block_t blkaddr)
  1467. {
  1468. struct page *cpage;
  1469. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1470. return;
  1471. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1472. if (cpage) {
  1473. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1474. f2fs_put_page(cpage, 1);
  1475. }
  1476. }
  1477. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1478. {
  1479. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1480. struct curseg_info *seg_i;
  1481. unsigned char *kaddr;
  1482. struct page *page;
  1483. block_t start;
  1484. int i, j, offset;
  1485. start = start_sum_block(sbi);
  1486. page = get_meta_page(sbi, start++);
  1487. kaddr = (unsigned char *)page_address(page);
  1488. /* Step 1: restore nat cache */
  1489. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1490. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1491. /* Step 2: restore sit cache */
  1492. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1493. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1494. offset = 2 * SUM_JOURNAL_SIZE;
  1495. /* Step 3: restore summary entries */
  1496. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1497. unsigned short blk_off;
  1498. unsigned int segno;
  1499. seg_i = CURSEG_I(sbi, i);
  1500. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1501. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1502. seg_i->next_segno = segno;
  1503. reset_curseg(sbi, i, 0);
  1504. seg_i->alloc_type = ckpt->alloc_type[i];
  1505. seg_i->next_blkoff = blk_off;
  1506. if (seg_i->alloc_type == SSR)
  1507. blk_off = sbi->blocks_per_seg;
  1508. for (j = 0; j < blk_off; j++) {
  1509. struct f2fs_summary *s;
  1510. s = (struct f2fs_summary *)(kaddr + offset);
  1511. seg_i->sum_blk->entries[j] = *s;
  1512. offset += SUMMARY_SIZE;
  1513. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1514. SUM_FOOTER_SIZE)
  1515. continue;
  1516. f2fs_put_page(page, 1);
  1517. page = NULL;
  1518. page = get_meta_page(sbi, start++);
  1519. kaddr = (unsigned char *)page_address(page);
  1520. offset = 0;
  1521. }
  1522. }
  1523. f2fs_put_page(page, 1);
  1524. return 0;
  1525. }
  1526. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1527. {
  1528. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1529. struct f2fs_summary_block *sum;
  1530. struct curseg_info *curseg;
  1531. struct page *new;
  1532. unsigned short blk_off;
  1533. unsigned int segno = 0;
  1534. block_t blk_addr = 0;
  1535. /* get segment number and block addr */
  1536. if (IS_DATASEG(type)) {
  1537. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  1538. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  1539. CURSEG_HOT_DATA]);
  1540. if (__exist_node_summaries(sbi))
  1541. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  1542. else
  1543. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  1544. } else {
  1545. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  1546. CURSEG_HOT_NODE]);
  1547. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  1548. CURSEG_HOT_NODE]);
  1549. if (__exist_node_summaries(sbi))
  1550. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  1551. type - CURSEG_HOT_NODE);
  1552. else
  1553. blk_addr = GET_SUM_BLOCK(sbi, segno);
  1554. }
  1555. new = get_meta_page(sbi, blk_addr);
  1556. sum = (struct f2fs_summary_block *)page_address(new);
  1557. if (IS_NODESEG(type)) {
  1558. if (__exist_node_summaries(sbi)) {
  1559. struct f2fs_summary *ns = &sum->entries[0];
  1560. int i;
  1561. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  1562. ns->version = 0;
  1563. ns->ofs_in_node = 0;
  1564. }
  1565. } else {
  1566. int err;
  1567. err = restore_node_summary(sbi, segno, sum);
  1568. if (err) {
  1569. f2fs_put_page(new, 1);
  1570. return err;
  1571. }
  1572. }
  1573. }
  1574. /* set uncompleted segment to curseg */
  1575. curseg = CURSEG_I(sbi, type);
  1576. mutex_lock(&curseg->curseg_mutex);
  1577. /* update journal info */
  1578. down_write(&curseg->journal_rwsem);
  1579. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  1580. up_write(&curseg->journal_rwsem);
  1581. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  1582. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  1583. curseg->next_segno = segno;
  1584. reset_curseg(sbi, type, 0);
  1585. curseg->alloc_type = ckpt->alloc_type[type];
  1586. curseg->next_blkoff = blk_off;
  1587. mutex_unlock(&curseg->curseg_mutex);
  1588. f2fs_put_page(new, 1);
  1589. return 0;
  1590. }
  1591. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  1592. {
  1593. int type = CURSEG_HOT_DATA;
  1594. int err;
  1595. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  1596. int npages = npages_for_summary_flush(sbi, true);
  1597. if (npages >= 2)
  1598. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  1599. META_CP, true);
  1600. /* restore for compacted data summary */
  1601. if (read_compacted_summaries(sbi))
  1602. return -EINVAL;
  1603. type = CURSEG_HOT_NODE;
  1604. }
  1605. if (__exist_node_summaries(sbi))
  1606. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  1607. NR_CURSEG_TYPE - type, META_CP, true);
  1608. for (; type <= CURSEG_COLD_NODE; type++) {
  1609. err = read_normal_summaries(sbi, type);
  1610. if (err)
  1611. return err;
  1612. }
  1613. return 0;
  1614. }
  1615. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  1616. {
  1617. struct page *page;
  1618. unsigned char *kaddr;
  1619. struct f2fs_summary *summary;
  1620. struct curseg_info *seg_i;
  1621. int written_size = 0;
  1622. int i, j;
  1623. page = grab_meta_page(sbi, blkaddr++);
  1624. kaddr = (unsigned char *)page_address(page);
  1625. /* Step 1: write nat cache */
  1626. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1627. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  1628. written_size += SUM_JOURNAL_SIZE;
  1629. /* Step 2: write sit cache */
  1630. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1631. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  1632. written_size += SUM_JOURNAL_SIZE;
  1633. /* Step 3: write summary entries */
  1634. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1635. unsigned short blkoff;
  1636. seg_i = CURSEG_I(sbi, i);
  1637. if (sbi->ckpt->alloc_type[i] == SSR)
  1638. blkoff = sbi->blocks_per_seg;
  1639. else
  1640. blkoff = curseg_blkoff(sbi, i);
  1641. for (j = 0; j < blkoff; j++) {
  1642. if (!page) {
  1643. page = grab_meta_page(sbi, blkaddr++);
  1644. kaddr = (unsigned char *)page_address(page);
  1645. written_size = 0;
  1646. }
  1647. summary = (struct f2fs_summary *)(kaddr + written_size);
  1648. *summary = seg_i->sum_blk->entries[j];
  1649. written_size += SUMMARY_SIZE;
  1650. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  1651. SUM_FOOTER_SIZE)
  1652. continue;
  1653. set_page_dirty(page);
  1654. f2fs_put_page(page, 1);
  1655. page = NULL;
  1656. }
  1657. }
  1658. if (page) {
  1659. set_page_dirty(page);
  1660. f2fs_put_page(page, 1);
  1661. }
  1662. }
  1663. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  1664. block_t blkaddr, int type)
  1665. {
  1666. int i, end;
  1667. if (IS_DATASEG(type))
  1668. end = type + NR_CURSEG_DATA_TYPE;
  1669. else
  1670. end = type + NR_CURSEG_NODE_TYPE;
  1671. for (i = type; i < end; i++)
  1672. write_current_sum_page(sbi, i, blkaddr + (i - type));
  1673. }
  1674. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1675. {
  1676. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  1677. write_compacted_summaries(sbi, start_blk);
  1678. else
  1679. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  1680. }
  1681. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  1682. {
  1683. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  1684. }
  1685. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  1686. unsigned int val, int alloc)
  1687. {
  1688. int i;
  1689. if (type == NAT_JOURNAL) {
  1690. for (i = 0; i < nats_in_cursum(journal); i++) {
  1691. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  1692. return i;
  1693. }
  1694. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  1695. return update_nats_in_cursum(journal, 1);
  1696. } else if (type == SIT_JOURNAL) {
  1697. for (i = 0; i < sits_in_cursum(journal); i++)
  1698. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  1699. return i;
  1700. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  1701. return update_sits_in_cursum(journal, 1);
  1702. }
  1703. return -1;
  1704. }
  1705. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  1706. unsigned int segno)
  1707. {
  1708. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  1709. }
  1710. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  1711. unsigned int start)
  1712. {
  1713. struct sit_info *sit_i = SIT_I(sbi);
  1714. struct page *src_page, *dst_page;
  1715. pgoff_t src_off, dst_off;
  1716. void *src_addr, *dst_addr;
  1717. src_off = current_sit_addr(sbi, start);
  1718. dst_off = next_sit_addr(sbi, src_off);
  1719. /* get current sit block page without lock */
  1720. src_page = get_meta_page(sbi, src_off);
  1721. dst_page = grab_meta_page(sbi, dst_off);
  1722. f2fs_bug_on(sbi, PageDirty(src_page));
  1723. src_addr = page_address(src_page);
  1724. dst_addr = page_address(dst_page);
  1725. memcpy(dst_addr, src_addr, PAGE_SIZE);
  1726. set_page_dirty(dst_page);
  1727. f2fs_put_page(src_page, 1);
  1728. set_to_next_sit(sit_i, start);
  1729. return dst_page;
  1730. }
  1731. static struct sit_entry_set *grab_sit_entry_set(void)
  1732. {
  1733. struct sit_entry_set *ses =
  1734. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  1735. ses->entry_cnt = 0;
  1736. INIT_LIST_HEAD(&ses->set_list);
  1737. return ses;
  1738. }
  1739. static void release_sit_entry_set(struct sit_entry_set *ses)
  1740. {
  1741. list_del(&ses->set_list);
  1742. kmem_cache_free(sit_entry_set_slab, ses);
  1743. }
  1744. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  1745. struct list_head *head)
  1746. {
  1747. struct sit_entry_set *next = ses;
  1748. if (list_is_last(&ses->set_list, head))
  1749. return;
  1750. list_for_each_entry_continue(next, head, set_list)
  1751. if (ses->entry_cnt <= next->entry_cnt)
  1752. break;
  1753. list_move_tail(&ses->set_list, &next->set_list);
  1754. }
  1755. static void add_sit_entry(unsigned int segno, struct list_head *head)
  1756. {
  1757. struct sit_entry_set *ses;
  1758. unsigned int start_segno = START_SEGNO(segno);
  1759. list_for_each_entry(ses, head, set_list) {
  1760. if (ses->start_segno == start_segno) {
  1761. ses->entry_cnt++;
  1762. adjust_sit_entry_set(ses, head);
  1763. return;
  1764. }
  1765. }
  1766. ses = grab_sit_entry_set();
  1767. ses->start_segno = start_segno;
  1768. ses->entry_cnt++;
  1769. list_add(&ses->set_list, head);
  1770. }
  1771. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  1772. {
  1773. struct f2fs_sm_info *sm_info = SM_I(sbi);
  1774. struct list_head *set_list = &sm_info->sit_entry_set;
  1775. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  1776. unsigned int segno;
  1777. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  1778. add_sit_entry(segno, set_list);
  1779. }
  1780. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  1781. {
  1782. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1783. struct f2fs_journal *journal = curseg->journal;
  1784. int i;
  1785. down_write(&curseg->journal_rwsem);
  1786. for (i = 0; i < sits_in_cursum(journal); i++) {
  1787. unsigned int segno;
  1788. bool dirtied;
  1789. segno = le32_to_cpu(segno_in_journal(journal, i));
  1790. dirtied = __mark_sit_entry_dirty(sbi, segno);
  1791. if (!dirtied)
  1792. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  1793. }
  1794. update_sits_in_cursum(journal, -i);
  1795. up_write(&curseg->journal_rwsem);
  1796. }
  1797. /*
  1798. * CP calls this function, which flushes SIT entries including sit_journal,
  1799. * and moves prefree segs to free segs.
  1800. */
  1801. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1802. {
  1803. struct sit_info *sit_i = SIT_I(sbi);
  1804. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  1805. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1806. struct f2fs_journal *journal = curseg->journal;
  1807. struct sit_entry_set *ses, *tmp;
  1808. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  1809. bool to_journal = true;
  1810. struct seg_entry *se;
  1811. mutex_lock(&sit_i->sentry_lock);
  1812. if (!sit_i->dirty_sentries)
  1813. goto out;
  1814. /*
  1815. * add and account sit entries of dirty bitmap in sit entry
  1816. * set temporarily
  1817. */
  1818. add_sits_in_set(sbi);
  1819. /*
  1820. * if there are no enough space in journal to store dirty sit
  1821. * entries, remove all entries from journal and add and account
  1822. * them in sit entry set.
  1823. */
  1824. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  1825. remove_sits_in_journal(sbi);
  1826. /*
  1827. * there are two steps to flush sit entries:
  1828. * #1, flush sit entries to journal in current cold data summary block.
  1829. * #2, flush sit entries to sit page.
  1830. */
  1831. list_for_each_entry_safe(ses, tmp, head, set_list) {
  1832. struct page *page = NULL;
  1833. struct f2fs_sit_block *raw_sit = NULL;
  1834. unsigned int start_segno = ses->start_segno;
  1835. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  1836. (unsigned long)MAIN_SEGS(sbi));
  1837. unsigned int segno = start_segno;
  1838. if (to_journal &&
  1839. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  1840. to_journal = false;
  1841. if (to_journal) {
  1842. down_write(&curseg->journal_rwsem);
  1843. } else {
  1844. page = get_next_sit_page(sbi, start_segno);
  1845. raw_sit = page_address(page);
  1846. }
  1847. /* flush dirty sit entries in region of current sit set */
  1848. for_each_set_bit_from(segno, bitmap, end) {
  1849. int offset, sit_offset;
  1850. se = get_seg_entry(sbi, segno);
  1851. /* add discard candidates */
  1852. if (cpc->reason != CP_DISCARD) {
  1853. cpc->trim_start = segno;
  1854. add_discard_addrs(sbi, cpc);
  1855. }
  1856. if (to_journal) {
  1857. offset = lookup_journal_in_cursum(journal,
  1858. SIT_JOURNAL, segno, 1);
  1859. f2fs_bug_on(sbi, offset < 0);
  1860. segno_in_journal(journal, offset) =
  1861. cpu_to_le32(segno);
  1862. seg_info_to_raw_sit(se,
  1863. &sit_in_journal(journal, offset));
  1864. } else {
  1865. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  1866. seg_info_to_raw_sit(se,
  1867. &raw_sit->entries[sit_offset]);
  1868. }
  1869. __clear_bit(segno, bitmap);
  1870. sit_i->dirty_sentries--;
  1871. ses->entry_cnt--;
  1872. }
  1873. if (to_journal)
  1874. up_write(&curseg->journal_rwsem);
  1875. else
  1876. f2fs_put_page(page, 1);
  1877. f2fs_bug_on(sbi, ses->entry_cnt);
  1878. release_sit_entry_set(ses);
  1879. }
  1880. f2fs_bug_on(sbi, !list_empty(head));
  1881. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  1882. out:
  1883. if (cpc->reason == CP_DISCARD) {
  1884. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  1885. add_discard_addrs(sbi, cpc);
  1886. }
  1887. mutex_unlock(&sit_i->sentry_lock);
  1888. set_prefree_as_free_segments(sbi);
  1889. }
  1890. static int build_sit_info(struct f2fs_sb_info *sbi)
  1891. {
  1892. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  1893. struct sit_info *sit_i;
  1894. unsigned int sit_segs, start;
  1895. char *src_bitmap, *dst_bitmap;
  1896. unsigned int bitmap_size;
  1897. /* allocate memory for SIT information */
  1898. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  1899. if (!sit_i)
  1900. return -ENOMEM;
  1901. SM_I(sbi)->sit_info = sit_i;
  1902. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  1903. sizeof(struct seg_entry), GFP_KERNEL);
  1904. if (!sit_i->sentries)
  1905. return -ENOMEM;
  1906. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  1907. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  1908. if (!sit_i->dirty_sentries_bitmap)
  1909. return -ENOMEM;
  1910. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  1911. sit_i->sentries[start].cur_valid_map
  1912. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1913. sit_i->sentries[start].ckpt_valid_map
  1914. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1915. if (!sit_i->sentries[start].cur_valid_map ||
  1916. !sit_i->sentries[start].ckpt_valid_map)
  1917. return -ENOMEM;
  1918. if (f2fs_discard_en(sbi)) {
  1919. sit_i->sentries[start].discard_map
  1920. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1921. if (!sit_i->sentries[start].discard_map)
  1922. return -ENOMEM;
  1923. }
  1924. }
  1925. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  1926. if (!sit_i->tmp_map)
  1927. return -ENOMEM;
  1928. if (sbi->segs_per_sec > 1) {
  1929. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  1930. sizeof(struct sec_entry), GFP_KERNEL);
  1931. if (!sit_i->sec_entries)
  1932. return -ENOMEM;
  1933. }
  1934. /* get information related with SIT */
  1935. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  1936. /* setup SIT bitmap from ckeckpoint pack */
  1937. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  1938. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  1939. dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  1940. if (!dst_bitmap)
  1941. return -ENOMEM;
  1942. /* init SIT information */
  1943. sit_i->s_ops = &default_salloc_ops;
  1944. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  1945. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  1946. sit_i->written_valid_blocks = 0;
  1947. sit_i->sit_bitmap = dst_bitmap;
  1948. sit_i->bitmap_size = bitmap_size;
  1949. sit_i->dirty_sentries = 0;
  1950. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  1951. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  1952. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  1953. mutex_init(&sit_i->sentry_lock);
  1954. return 0;
  1955. }
  1956. static int build_free_segmap(struct f2fs_sb_info *sbi)
  1957. {
  1958. struct free_segmap_info *free_i;
  1959. unsigned int bitmap_size, sec_bitmap_size;
  1960. /* allocate memory for free segmap information */
  1961. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  1962. if (!free_i)
  1963. return -ENOMEM;
  1964. SM_I(sbi)->free_info = free_i;
  1965. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  1966. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  1967. if (!free_i->free_segmap)
  1968. return -ENOMEM;
  1969. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  1970. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  1971. if (!free_i->free_secmap)
  1972. return -ENOMEM;
  1973. /* set all segments as dirty temporarily */
  1974. memset(free_i->free_segmap, 0xff, bitmap_size);
  1975. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  1976. /* init free segmap information */
  1977. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  1978. free_i->free_segments = 0;
  1979. free_i->free_sections = 0;
  1980. spin_lock_init(&free_i->segmap_lock);
  1981. return 0;
  1982. }
  1983. static int build_curseg(struct f2fs_sb_info *sbi)
  1984. {
  1985. struct curseg_info *array;
  1986. int i;
  1987. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  1988. if (!array)
  1989. return -ENOMEM;
  1990. SM_I(sbi)->curseg_array = array;
  1991. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  1992. mutex_init(&array[i].curseg_mutex);
  1993. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1994. if (!array[i].sum_blk)
  1995. return -ENOMEM;
  1996. init_rwsem(&array[i].journal_rwsem);
  1997. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  1998. GFP_KERNEL);
  1999. if (!array[i].journal)
  2000. return -ENOMEM;
  2001. array[i].segno = NULL_SEGNO;
  2002. array[i].next_blkoff = 0;
  2003. }
  2004. return restore_curseg_summaries(sbi);
  2005. }
  2006. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2007. {
  2008. struct sit_info *sit_i = SIT_I(sbi);
  2009. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2010. struct f2fs_journal *journal = curseg->journal;
  2011. struct seg_entry *se;
  2012. struct f2fs_sit_entry sit;
  2013. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2014. unsigned int i, start, end;
  2015. unsigned int readed, start_blk = 0;
  2016. do {
  2017. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2018. META_SIT, true);
  2019. start = start_blk * sit_i->sents_per_block;
  2020. end = (start_blk + readed) * sit_i->sents_per_block;
  2021. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2022. struct f2fs_sit_block *sit_blk;
  2023. struct page *page;
  2024. se = &sit_i->sentries[start];
  2025. page = get_current_sit_page(sbi, start);
  2026. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2027. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2028. f2fs_put_page(page, 1);
  2029. check_block_count(sbi, start, &sit);
  2030. seg_info_from_raw_sit(se, &sit);
  2031. /* build discard map only one time */
  2032. if (f2fs_discard_en(sbi)) {
  2033. memcpy(se->discard_map, se->cur_valid_map,
  2034. SIT_VBLOCK_MAP_SIZE);
  2035. sbi->discard_blks += sbi->blocks_per_seg -
  2036. se->valid_blocks;
  2037. }
  2038. if (sbi->segs_per_sec > 1)
  2039. get_sec_entry(sbi, start)->valid_blocks +=
  2040. se->valid_blocks;
  2041. }
  2042. start_blk += readed;
  2043. } while (start_blk < sit_blk_cnt);
  2044. down_read(&curseg->journal_rwsem);
  2045. for (i = 0; i < sits_in_cursum(journal); i++) {
  2046. unsigned int old_valid_blocks;
  2047. start = le32_to_cpu(segno_in_journal(journal, i));
  2048. se = &sit_i->sentries[start];
  2049. sit = sit_in_journal(journal, i);
  2050. old_valid_blocks = se->valid_blocks;
  2051. check_block_count(sbi, start, &sit);
  2052. seg_info_from_raw_sit(se, &sit);
  2053. if (f2fs_discard_en(sbi)) {
  2054. memcpy(se->discard_map, se->cur_valid_map,
  2055. SIT_VBLOCK_MAP_SIZE);
  2056. sbi->discard_blks += old_valid_blocks -
  2057. se->valid_blocks;
  2058. }
  2059. if (sbi->segs_per_sec > 1)
  2060. get_sec_entry(sbi, start)->valid_blocks +=
  2061. se->valid_blocks - old_valid_blocks;
  2062. }
  2063. up_read(&curseg->journal_rwsem);
  2064. }
  2065. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2066. {
  2067. unsigned int start;
  2068. int type;
  2069. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2070. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2071. if (!sentry->valid_blocks)
  2072. __set_free(sbi, start);
  2073. else
  2074. SIT_I(sbi)->written_valid_blocks +=
  2075. sentry->valid_blocks;
  2076. }
  2077. /* set use the current segments */
  2078. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2079. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2080. __set_test_and_inuse(sbi, curseg_t->segno);
  2081. }
  2082. }
  2083. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2084. {
  2085. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2086. struct free_segmap_info *free_i = FREE_I(sbi);
  2087. unsigned int segno = 0, offset = 0;
  2088. unsigned short valid_blocks;
  2089. while (1) {
  2090. /* find dirty segment based on free segmap */
  2091. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2092. if (segno >= MAIN_SEGS(sbi))
  2093. break;
  2094. offset = segno + 1;
  2095. valid_blocks = get_valid_blocks(sbi, segno, 0);
  2096. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2097. continue;
  2098. if (valid_blocks > sbi->blocks_per_seg) {
  2099. f2fs_bug_on(sbi, 1);
  2100. continue;
  2101. }
  2102. mutex_lock(&dirty_i->seglist_lock);
  2103. __locate_dirty_segment(sbi, segno, DIRTY);
  2104. mutex_unlock(&dirty_i->seglist_lock);
  2105. }
  2106. }
  2107. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2108. {
  2109. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2110. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2111. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2112. if (!dirty_i->victim_secmap)
  2113. return -ENOMEM;
  2114. return 0;
  2115. }
  2116. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2117. {
  2118. struct dirty_seglist_info *dirty_i;
  2119. unsigned int bitmap_size, i;
  2120. /* allocate memory for dirty segments list information */
  2121. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2122. if (!dirty_i)
  2123. return -ENOMEM;
  2124. SM_I(sbi)->dirty_info = dirty_i;
  2125. mutex_init(&dirty_i->seglist_lock);
  2126. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2127. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2128. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2129. if (!dirty_i->dirty_segmap[i])
  2130. return -ENOMEM;
  2131. }
  2132. init_dirty_segmap(sbi);
  2133. return init_victim_secmap(sbi);
  2134. }
  2135. /*
  2136. * Update min, max modified time for cost-benefit GC algorithm
  2137. */
  2138. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2139. {
  2140. struct sit_info *sit_i = SIT_I(sbi);
  2141. unsigned int segno;
  2142. mutex_lock(&sit_i->sentry_lock);
  2143. sit_i->min_mtime = LLONG_MAX;
  2144. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2145. unsigned int i;
  2146. unsigned long long mtime = 0;
  2147. for (i = 0; i < sbi->segs_per_sec; i++)
  2148. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2149. mtime = div_u64(mtime, sbi->segs_per_sec);
  2150. if (sit_i->min_mtime > mtime)
  2151. sit_i->min_mtime = mtime;
  2152. }
  2153. sit_i->max_mtime = get_mtime(sbi);
  2154. mutex_unlock(&sit_i->sentry_lock);
  2155. }
  2156. int build_segment_manager(struct f2fs_sb_info *sbi)
  2157. {
  2158. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2159. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2160. struct f2fs_sm_info *sm_info;
  2161. int err;
  2162. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2163. if (!sm_info)
  2164. return -ENOMEM;
  2165. /* init sm info */
  2166. sbi->sm_info = sm_info;
  2167. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2168. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2169. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2170. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2171. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2172. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2173. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2174. sm_info->rec_prefree_segments = sm_info->main_segments *
  2175. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2176. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2177. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2178. if (!test_opt(sbi, LFS))
  2179. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2180. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2181. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2182. INIT_LIST_HEAD(&sm_info->discard_list);
  2183. INIT_LIST_HEAD(&sm_info->wait_list);
  2184. sm_info->nr_discards = 0;
  2185. sm_info->max_discards = 0;
  2186. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2187. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2188. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2189. err = create_flush_cmd_control(sbi);
  2190. if (err)
  2191. return err;
  2192. }
  2193. err = build_sit_info(sbi);
  2194. if (err)
  2195. return err;
  2196. err = build_free_segmap(sbi);
  2197. if (err)
  2198. return err;
  2199. err = build_curseg(sbi);
  2200. if (err)
  2201. return err;
  2202. /* reinit free segmap based on SIT */
  2203. build_sit_entries(sbi);
  2204. init_free_segmap(sbi);
  2205. err = build_dirty_segmap(sbi);
  2206. if (err)
  2207. return err;
  2208. init_min_max_mtime(sbi);
  2209. return 0;
  2210. }
  2211. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2212. enum dirty_type dirty_type)
  2213. {
  2214. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2215. mutex_lock(&dirty_i->seglist_lock);
  2216. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2217. dirty_i->nr_dirty[dirty_type] = 0;
  2218. mutex_unlock(&dirty_i->seglist_lock);
  2219. }
  2220. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2221. {
  2222. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2223. kvfree(dirty_i->victim_secmap);
  2224. }
  2225. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2226. {
  2227. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2228. int i;
  2229. if (!dirty_i)
  2230. return;
  2231. /* discard pre-free/dirty segments list */
  2232. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2233. discard_dirty_segmap(sbi, i);
  2234. destroy_victim_secmap(sbi);
  2235. SM_I(sbi)->dirty_info = NULL;
  2236. kfree(dirty_i);
  2237. }
  2238. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2239. {
  2240. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2241. int i;
  2242. if (!array)
  2243. return;
  2244. SM_I(sbi)->curseg_array = NULL;
  2245. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2246. kfree(array[i].sum_blk);
  2247. kfree(array[i].journal);
  2248. }
  2249. kfree(array);
  2250. }
  2251. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2252. {
  2253. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2254. if (!free_i)
  2255. return;
  2256. SM_I(sbi)->free_info = NULL;
  2257. kvfree(free_i->free_segmap);
  2258. kvfree(free_i->free_secmap);
  2259. kfree(free_i);
  2260. }
  2261. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2262. {
  2263. struct sit_info *sit_i = SIT_I(sbi);
  2264. unsigned int start;
  2265. if (!sit_i)
  2266. return;
  2267. if (sit_i->sentries) {
  2268. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2269. kfree(sit_i->sentries[start].cur_valid_map);
  2270. kfree(sit_i->sentries[start].ckpt_valid_map);
  2271. kfree(sit_i->sentries[start].discard_map);
  2272. }
  2273. }
  2274. kfree(sit_i->tmp_map);
  2275. kvfree(sit_i->sentries);
  2276. kvfree(sit_i->sec_entries);
  2277. kvfree(sit_i->dirty_sentries_bitmap);
  2278. SM_I(sbi)->sit_info = NULL;
  2279. kfree(sit_i->sit_bitmap);
  2280. kfree(sit_i);
  2281. }
  2282. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2283. {
  2284. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2285. if (!sm_info)
  2286. return;
  2287. destroy_flush_cmd_control(sbi, true);
  2288. destroy_dirty_segmap(sbi);
  2289. destroy_curseg(sbi);
  2290. destroy_free_segmap(sbi);
  2291. destroy_sit_info(sbi);
  2292. sbi->sm_info = NULL;
  2293. kfree(sm_info);
  2294. }
  2295. int __init create_segment_manager_caches(void)
  2296. {
  2297. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2298. sizeof(struct discard_entry));
  2299. if (!discard_entry_slab)
  2300. goto fail;
  2301. bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
  2302. sizeof(struct bio_entry));
  2303. if (!bio_entry_slab)
  2304. goto destroy_discard_entry;
  2305. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2306. sizeof(struct sit_entry_set));
  2307. if (!sit_entry_set_slab)
  2308. goto destroy_bio_entry;
  2309. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2310. sizeof(struct inmem_pages));
  2311. if (!inmem_entry_slab)
  2312. goto destroy_sit_entry_set;
  2313. return 0;
  2314. destroy_sit_entry_set:
  2315. kmem_cache_destroy(sit_entry_set_slab);
  2316. destroy_bio_entry:
  2317. kmem_cache_destroy(bio_entry_slab);
  2318. destroy_discard_entry:
  2319. kmem_cache_destroy(discard_entry_slab);
  2320. fail:
  2321. return -ENOMEM;
  2322. }
  2323. void destroy_segment_manager_caches(void)
  2324. {
  2325. kmem_cache_destroy(sit_entry_set_slab);
  2326. kmem_cache_destroy(bio_entry_slab);
  2327. kmem_cache_destroy(discard_entry_slab);
  2328. kmem_cache_destroy(inmem_entry_slab);
  2329. }