inline.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA)
  21. return false;
  22. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. void *src_addr, *dst_addr;
  37. if (PageUptodate(page))
  38. return;
  39. f2fs_bug_on(F2FS_P_SB(page), page->index);
  40. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  41. /* Copy the whole inline data block */
  42. src_addr = inline_data_addr(ipage);
  43. dst_addr = kmap_atomic(page);
  44. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  45. flush_dcache_page(page);
  46. kunmap_atomic(dst_addr);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. }
  50. bool truncate_inline_inode(struct page *ipage, u64 from)
  51. {
  52. void *addr;
  53. if (from >= MAX_INLINE_DATA)
  54. return false;
  55. addr = inline_data_addr(ipage);
  56. f2fs_wait_on_page_writeback(ipage, NODE, true);
  57. memset(addr + from, 0, MAX_INLINE_DATA - from);
  58. set_page_dirty(ipage);
  59. return true;
  60. }
  61. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  62. {
  63. struct page *ipage;
  64. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  65. if (IS_ERR(ipage)) {
  66. unlock_page(page);
  67. return PTR_ERR(ipage);
  68. }
  69. if (!f2fs_has_inline_data(inode)) {
  70. f2fs_put_page(ipage, 1);
  71. return -EAGAIN;
  72. }
  73. if (page->index)
  74. zero_user_segment(page, 0, PAGE_SIZE);
  75. else
  76. read_inline_data(page, ipage);
  77. if (!PageUptodate(page))
  78. SetPageUptodate(page);
  79. f2fs_put_page(ipage, 1);
  80. unlock_page(page);
  81. return 0;
  82. }
  83. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  84. {
  85. struct f2fs_io_info fio = {
  86. .sbi = F2FS_I_SB(dn->inode),
  87. .type = DATA,
  88. .op = REQ_OP_WRITE,
  89. .op_flags = REQ_SYNC | REQ_PRIO,
  90. .page = page,
  91. .encrypted_page = NULL,
  92. };
  93. int dirty, err;
  94. if (!f2fs_exist_data(dn->inode))
  95. goto clear_out;
  96. err = f2fs_reserve_block(dn, 0);
  97. if (err)
  98. return err;
  99. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  100. read_inline_data(page, dn->inode_page);
  101. set_page_dirty(page);
  102. /* clear dirty state */
  103. dirty = clear_page_dirty_for_io(page);
  104. /* write data page to try to make data consistent */
  105. set_page_writeback(page);
  106. fio.old_blkaddr = dn->data_blkaddr;
  107. write_data_page(dn, &fio);
  108. f2fs_wait_on_page_writeback(page, DATA, true);
  109. if (dirty) {
  110. inode_dec_dirty_pages(dn->inode);
  111. remove_dirty_inode(dn->inode);
  112. }
  113. /* this converted inline_data should be recovered. */
  114. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  115. /* clear inline data and flag after data writeback */
  116. truncate_inline_inode(dn->inode_page, 0);
  117. clear_inline_node(dn->inode_page);
  118. clear_out:
  119. stat_dec_inline_inode(dn->inode);
  120. f2fs_clear_inline_inode(dn->inode);
  121. f2fs_put_dnode(dn);
  122. return 0;
  123. }
  124. int f2fs_convert_inline_inode(struct inode *inode)
  125. {
  126. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  127. struct dnode_of_data dn;
  128. struct page *ipage, *page;
  129. int err = 0;
  130. if (!f2fs_has_inline_data(inode))
  131. return 0;
  132. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  133. if (!page)
  134. return -ENOMEM;
  135. f2fs_lock_op(sbi);
  136. ipage = get_node_page(sbi, inode->i_ino);
  137. if (IS_ERR(ipage)) {
  138. err = PTR_ERR(ipage);
  139. goto out;
  140. }
  141. set_new_dnode(&dn, inode, ipage, ipage, 0);
  142. if (f2fs_has_inline_data(inode))
  143. err = f2fs_convert_inline_page(&dn, page);
  144. f2fs_put_dnode(&dn);
  145. out:
  146. f2fs_unlock_op(sbi);
  147. f2fs_put_page(page, 1);
  148. f2fs_balance_fs(sbi, dn.node_changed);
  149. return err;
  150. }
  151. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  152. {
  153. void *src_addr, *dst_addr;
  154. struct dnode_of_data dn;
  155. int err;
  156. set_new_dnode(&dn, inode, NULL, NULL, 0);
  157. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  158. if (err)
  159. return err;
  160. if (!f2fs_has_inline_data(inode)) {
  161. f2fs_put_dnode(&dn);
  162. return -EAGAIN;
  163. }
  164. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  165. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  166. src_addr = kmap_atomic(page);
  167. dst_addr = inline_data_addr(dn.inode_page);
  168. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  169. kunmap_atomic(src_addr);
  170. set_page_dirty(dn.inode_page);
  171. set_inode_flag(inode, FI_APPEND_WRITE);
  172. set_inode_flag(inode, FI_DATA_EXIST);
  173. clear_inline_node(dn.inode_page);
  174. f2fs_put_dnode(&dn);
  175. return 0;
  176. }
  177. bool recover_inline_data(struct inode *inode, struct page *npage)
  178. {
  179. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  180. struct f2fs_inode *ri = NULL;
  181. void *src_addr, *dst_addr;
  182. struct page *ipage;
  183. /*
  184. * The inline_data recovery policy is as follows.
  185. * [prev.] [next] of inline_data flag
  186. * o o -> recover inline_data
  187. * o x -> remove inline_data, and then recover data blocks
  188. * x o -> remove inline_data, and then recover inline_data
  189. * x x -> recover data blocks
  190. */
  191. if (IS_INODE(npage))
  192. ri = F2FS_INODE(npage);
  193. if (f2fs_has_inline_data(inode) &&
  194. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  195. process_inline:
  196. ipage = get_node_page(sbi, inode->i_ino);
  197. f2fs_bug_on(sbi, IS_ERR(ipage));
  198. f2fs_wait_on_page_writeback(ipage, NODE, true);
  199. src_addr = inline_data_addr(npage);
  200. dst_addr = inline_data_addr(ipage);
  201. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  202. set_inode_flag(inode, FI_INLINE_DATA);
  203. set_inode_flag(inode, FI_DATA_EXIST);
  204. set_page_dirty(ipage);
  205. f2fs_put_page(ipage, 1);
  206. return true;
  207. }
  208. if (f2fs_has_inline_data(inode)) {
  209. ipage = get_node_page(sbi, inode->i_ino);
  210. f2fs_bug_on(sbi, IS_ERR(ipage));
  211. if (!truncate_inline_inode(ipage, 0))
  212. return false;
  213. f2fs_clear_inline_inode(inode);
  214. f2fs_put_page(ipage, 1);
  215. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  216. if (truncate_blocks(inode, 0, false))
  217. return false;
  218. goto process_inline;
  219. }
  220. return false;
  221. }
  222. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  223. struct fscrypt_name *fname, struct page **res_page)
  224. {
  225. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  226. struct f2fs_inline_dentry *inline_dentry;
  227. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  228. struct f2fs_dir_entry *de;
  229. struct f2fs_dentry_ptr d;
  230. struct page *ipage;
  231. f2fs_hash_t namehash;
  232. ipage = get_node_page(sbi, dir->i_ino);
  233. if (IS_ERR(ipage)) {
  234. *res_page = ipage;
  235. return NULL;
  236. }
  237. namehash = f2fs_dentry_hash(&name);
  238. inline_dentry = inline_data_addr(ipage);
  239. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  240. de = find_target_dentry(fname, namehash, NULL, &d);
  241. unlock_page(ipage);
  242. if (de)
  243. *res_page = ipage;
  244. else
  245. f2fs_put_page(ipage, 0);
  246. return de;
  247. }
  248. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  249. struct page *ipage)
  250. {
  251. struct f2fs_inline_dentry *dentry_blk;
  252. struct f2fs_dentry_ptr d;
  253. dentry_blk = inline_data_addr(ipage);
  254. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  255. do_make_empty_dir(inode, parent, &d);
  256. set_page_dirty(ipage);
  257. /* update i_size to MAX_INLINE_DATA */
  258. if (i_size_read(inode) < MAX_INLINE_DATA)
  259. f2fs_i_size_write(inode, MAX_INLINE_DATA);
  260. return 0;
  261. }
  262. /*
  263. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  264. * release ipage in this function.
  265. */
  266. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  267. struct f2fs_inline_dentry *inline_dentry)
  268. {
  269. struct page *page;
  270. struct dnode_of_data dn;
  271. struct f2fs_dentry_block *dentry_blk;
  272. int err;
  273. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  274. if (!page) {
  275. f2fs_put_page(ipage, 1);
  276. return -ENOMEM;
  277. }
  278. set_new_dnode(&dn, dir, ipage, NULL, 0);
  279. err = f2fs_reserve_block(&dn, 0);
  280. if (err)
  281. goto out;
  282. f2fs_wait_on_page_writeback(page, DATA, true);
  283. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  284. dentry_blk = kmap_atomic(page);
  285. /* copy data from inline dentry block to new dentry block */
  286. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  287. INLINE_DENTRY_BITMAP_SIZE);
  288. memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
  289. SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
  290. /*
  291. * we do not need to zero out remainder part of dentry and filename
  292. * field, since we have used bitmap for marking the usage status of
  293. * them, besides, we can also ignore copying/zeroing reserved space
  294. * of dentry block, because them haven't been used so far.
  295. */
  296. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  297. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  298. memcpy(dentry_blk->filename, inline_dentry->filename,
  299. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  300. kunmap_atomic(dentry_blk);
  301. if (!PageUptodate(page))
  302. SetPageUptodate(page);
  303. set_page_dirty(page);
  304. /* clear inline dir and flag after data writeback */
  305. truncate_inline_inode(ipage, 0);
  306. stat_dec_inline_dir(dir);
  307. clear_inode_flag(dir, FI_INLINE_DENTRY);
  308. f2fs_i_depth_write(dir, 1);
  309. if (i_size_read(dir) < PAGE_SIZE)
  310. f2fs_i_size_write(dir, PAGE_SIZE);
  311. out:
  312. f2fs_put_page(page, 1);
  313. return err;
  314. }
  315. static int f2fs_add_inline_entries(struct inode *dir,
  316. struct f2fs_inline_dentry *inline_dentry)
  317. {
  318. struct f2fs_dentry_ptr d;
  319. unsigned long bit_pos = 0;
  320. int err = 0;
  321. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  322. while (bit_pos < d.max) {
  323. struct f2fs_dir_entry *de;
  324. struct qstr new_name;
  325. nid_t ino;
  326. umode_t fake_mode;
  327. if (!test_bit_le(bit_pos, d.bitmap)) {
  328. bit_pos++;
  329. continue;
  330. }
  331. de = &d.dentry[bit_pos];
  332. if (unlikely(!de->name_len)) {
  333. bit_pos++;
  334. continue;
  335. }
  336. new_name.name = d.filename[bit_pos];
  337. new_name.len = le16_to_cpu(de->name_len);
  338. ino = le32_to_cpu(de->ino);
  339. fake_mode = get_de_type(de) << S_SHIFT;
  340. err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
  341. ino, fake_mode);
  342. if (err)
  343. goto punch_dentry_pages;
  344. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  345. }
  346. return 0;
  347. punch_dentry_pages:
  348. truncate_inode_pages(&dir->i_data, 0);
  349. truncate_blocks(dir, 0, false);
  350. remove_dirty_inode(dir);
  351. return err;
  352. }
  353. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  354. struct f2fs_inline_dentry *inline_dentry)
  355. {
  356. struct f2fs_inline_dentry *backup_dentry;
  357. int err;
  358. backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
  359. sizeof(struct f2fs_inline_dentry), GFP_F2FS_ZERO);
  360. if (!backup_dentry) {
  361. f2fs_put_page(ipage, 1);
  362. return -ENOMEM;
  363. }
  364. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
  365. truncate_inline_inode(ipage, 0);
  366. unlock_page(ipage);
  367. err = f2fs_add_inline_entries(dir, backup_dentry);
  368. if (err)
  369. goto recover;
  370. lock_page(ipage);
  371. stat_dec_inline_dir(dir);
  372. clear_inode_flag(dir, FI_INLINE_DENTRY);
  373. kfree(backup_dentry);
  374. return 0;
  375. recover:
  376. lock_page(ipage);
  377. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
  378. f2fs_i_depth_write(dir, 0);
  379. f2fs_i_size_write(dir, MAX_INLINE_DATA);
  380. set_page_dirty(ipage);
  381. f2fs_put_page(ipage, 1);
  382. kfree(backup_dentry);
  383. return err;
  384. }
  385. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  386. struct f2fs_inline_dentry *inline_dentry)
  387. {
  388. if (!F2FS_I(dir)->i_dir_level)
  389. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  390. else
  391. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  392. }
  393. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
  394. const struct qstr *orig_name,
  395. struct inode *inode, nid_t ino, umode_t mode)
  396. {
  397. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  398. struct page *ipage;
  399. unsigned int bit_pos;
  400. f2fs_hash_t name_hash;
  401. struct f2fs_inline_dentry *dentry_blk = NULL;
  402. struct f2fs_dentry_ptr d;
  403. int slots = GET_DENTRY_SLOTS(new_name->len);
  404. struct page *page = NULL;
  405. int err = 0;
  406. ipage = get_node_page(sbi, dir->i_ino);
  407. if (IS_ERR(ipage))
  408. return PTR_ERR(ipage);
  409. dentry_blk = inline_data_addr(ipage);
  410. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  411. slots, NR_INLINE_DENTRY);
  412. if (bit_pos >= NR_INLINE_DENTRY) {
  413. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  414. if (err)
  415. return err;
  416. err = -EAGAIN;
  417. goto out;
  418. }
  419. if (inode) {
  420. down_write(&F2FS_I(inode)->i_sem);
  421. page = init_inode_metadata(inode, dir, new_name,
  422. orig_name, ipage);
  423. if (IS_ERR(page)) {
  424. err = PTR_ERR(page);
  425. goto fail;
  426. }
  427. if (f2fs_encrypted_inode(dir))
  428. file_set_enc_name(inode);
  429. }
  430. f2fs_wait_on_page_writeback(ipage, NODE, true);
  431. name_hash = f2fs_dentry_hash(new_name);
  432. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  433. f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
  434. set_page_dirty(ipage);
  435. /* we don't need to mark_inode_dirty now */
  436. if (inode) {
  437. f2fs_i_pino_write(inode, dir->i_ino);
  438. f2fs_put_page(page, 1);
  439. }
  440. update_parent_metadata(dir, inode, 0);
  441. fail:
  442. if (inode)
  443. up_write(&F2FS_I(inode)->i_sem);
  444. out:
  445. f2fs_put_page(ipage, 1);
  446. return err;
  447. }
  448. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  449. struct inode *dir, struct inode *inode)
  450. {
  451. struct f2fs_inline_dentry *inline_dentry;
  452. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  453. unsigned int bit_pos;
  454. int i;
  455. lock_page(page);
  456. f2fs_wait_on_page_writeback(page, NODE, true);
  457. inline_dentry = inline_data_addr(page);
  458. bit_pos = dentry - inline_dentry->dentry;
  459. for (i = 0; i < slots; i++)
  460. __clear_bit_le(bit_pos + i,
  461. &inline_dentry->dentry_bitmap);
  462. set_page_dirty(page);
  463. f2fs_put_page(page, 1);
  464. dir->i_ctime = dir->i_mtime = current_time(dir);
  465. f2fs_mark_inode_dirty_sync(dir, false);
  466. if (inode)
  467. f2fs_drop_nlink(dir, inode);
  468. }
  469. bool f2fs_empty_inline_dir(struct inode *dir)
  470. {
  471. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  472. struct page *ipage;
  473. unsigned int bit_pos = 2;
  474. struct f2fs_inline_dentry *dentry_blk;
  475. ipage = get_node_page(sbi, dir->i_ino);
  476. if (IS_ERR(ipage))
  477. return false;
  478. dentry_blk = inline_data_addr(ipage);
  479. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  480. NR_INLINE_DENTRY,
  481. bit_pos);
  482. f2fs_put_page(ipage, 1);
  483. if (bit_pos < NR_INLINE_DENTRY)
  484. return false;
  485. return true;
  486. }
  487. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  488. struct fscrypt_str *fstr)
  489. {
  490. struct inode *inode = file_inode(file);
  491. struct f2fs_inline_dentry *inline_dentry = NULL;
  492. struct page *ipage = NULL;
  493. struct f2fs_dentry_ptr d;
  494. int err;
  495. if (ctx->pos == NR_INLINE_DENTRY)
  496. return 0;
  497. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  498. if (IS_ERR(ipage))
  499. return PTR_ERR(ipage);
  500. inline_dentry = inline_data_addr(ipage);
  501. make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
  502. err = f2fs_fill_dentries(ctx, &d, 0, fstr);
  503. if (!err)
  504. ctx->pos = NR_INLINE_DENTRY;
  505. f2fs_put_page(ipage, 1);
  506. return err < 0 ? err : 0;
  507. }
  508. int f2fs_inline_data_fiemap(struct inode *inode,
  509. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  510. {
  511. __u64 byteaddr, ilen;
  512. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  513. FIEMAP_EXTENT_LAST;
  514. struct node_info ni;
  515. struct page *ipage;
  516. int err = 0;
  517. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  518. if (IS_ERR(ipage))
  519. return PTR_ERR(ipage);
  520. if (!f2fs_has_inline_data(inode)) {
  521. err = -EAGAIN;
  522. goto out;
  523. }
  524. ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
  525. if (start >= ilen)
  526. goto out;
  527. if (start + len < ilen)
  528. ilen = start + len;
  529. ilen -= start;
  530. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  531. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  532. byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
  533. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  534. out:
  535. f2fs_put_page(ipage, 1);
  536. return err;
  537. }