file.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uuid.h>
  24. #include <linux/file.h>
  25. #include "f2fs.h"
  26. #include "node.h"
  27. #include "segment.h"
  28. #include "xattr.h"
  29. #include "acl.h"
  30. #include "gc.h"
  31. #include "trace.h"
  32. #include <trace/events/f2fs.h>
  33. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  34. struct vm_fault *vmf)
  35. {
  36. struct page *page = vmf->page;
  37. struct inode *inode = file_inode(vma->vm_file);
  38. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  39. struct dnode_of_data dn;
  40. int err;
  41. sb_start_pagefault(inode->i_sb);
  42. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. if (err) {
  48. f2fs_unlock_op(sbi);
  49. goto out;
  50. }
  51. f2fs_put_dnode(&dn);
  52. f2fs_unlock_op(sbi);
  53. f2fs_balance_fs(sbi, dn.node_changed);
  54. file_update_time(vma->vm_file);
  55. lock_page(page);
  56. if (unlikely(page->mapping != inode->i_mapping ||
  57. page_offset(page) > i_size_read(inode) ||
  58. !PageUptodate(page))) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto mapped;
  68. /* page is wholly or partially inside EOF */
  69. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  70. i_size_read(inode)) {
  71. unsigned offset;
  72. offset = i_size_read(inode) & ~PAGE_MASK;
  73. zero_user_segment(page, offset, PAGE_SIZE);
  74. }
  75. set_page_dirty(page);
  76. if (!PageUptodate(page))
  77. SetPageUptodate(page);
  78. trace_f2fs_vm_page_mkwrite(page, DATA);
  79. mapped:
  80. /* fill the page */
  81. f2fs_wait_on_page_writeback(page, DATA, false);
  82. /* wait for GCed encrypted page writeback */
  83. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  84. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  85. out:
  86. sb_end_pagefault(inode->i_sb);
  87. f2fs_update_time(sbi, REQ_TIME);
  88. return block_page_mkwrite_return(err);
  89. }
  90. static const struct vm_operations_struct f2fs_file_vm_ops = {
  91. .fault = filemap_fault,
  92. .map_pages = filemap_map_pages,
  93. .page_mkwrite = f2fs_vm_page_mkwrite,
  94. };
  95. static int get_parent_ino(struct inode *inode, nid_t *pino)
  96. {
  97. struct dentry *dentry;
  98. inode = igrab(inode);
  99. dentry = d_find_any_alias(inode);
  100. iput(inode);
  101. if (!dentry)
  102. return 0;
  103. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  104. dput(dentry);
  105. return 0;
  106. }
  107. *pino = parent_ino(dentry);
  108. dput(dentry);
  109. return 1;
  110. }
  111. static inline bool need_do_checkpoint(struct inode *inode)
  112. {
  113. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  114. bool need_cp = false;
  115. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  116. need_cp = true;
  117. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  118. need_cp = true;
  119. else if (file_wrong_pino(inode))
  120. need_cp = true;
  121. else if (!space_for_roll_forward(sbi))
  122. need_cp = true;
  123. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  124. need_cp = true;
  125. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  126. need_cp = true;
  127. else if (test_opt(sbi, FASTBOOT))
  128. need_cp = true;
  129. else if (sbi->active_logs == 2)
  130. need_cp = true;
  131. return need_cp;
  132. }
  133. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  134. {
  135. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  136. bool ret = false;
  137. /* But we need to avoid that there are some inode updates */
  138. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  139. ret = true;
  140. f2fs_put_page(i, 0);
  141. return ret;
  142. }
  143. static void try_to_fix_pino(struct inode *inode)
  144. {
  145. struct f2fs_inode_info *fi = F2FS_I(inode);
  146. nid_t pino;
  147. down_write(&fi->i_sem);
  148. fi->xattr_ver = 0;
  149. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  150. get_parent_ino(inode, &pino)) {
  151. f2fs_i_pino_write(inode, pino);
  152. file_got_pino(inode);
  153. }
  154. up_write(&fi->i_sem);
  155. }
  156. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  157. int datasync, bool atomic)
  158. {
  159. struct inode *inode = file->f_mapping->host;
  160. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  161. nid_t ino = inode->i_ino;
  162. int ret = 0;
  163. bool need_cp = false;
  164. struct writeback_control wbc = {
  165. .sync_mode = WB_SYNC_ALL,
  166. .nr_to_write = LONG_MAX,
  167. .for_reclaim = 0,
  168. };
  169. if (unlikely(f2fs_readonly(inode->i_sb)))
  170. return 0;
  171. trace_f2fs_sync_file_enter(inode);
  172. /* if fdatasync is triggered, let's do in-place-update */
  173. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  174. set_inode_flag(inode, FI_NEED_IPU);
  175. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  176. clear_inode_flag(inode, FI_NEED_IPU);
  177. if (ret) {
  178. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  179. return ret;
  180. }
  181. /* if the inode is dirty, let's recover all the time */
  182. if (!f2fs_skip_inode_update(inode, datasync)) {
  183. f2fs_write_inode(inode, NULL);
  184. goto go_write;
  185. }
  186. /*
  187. * if there is no written data, don't waste time to write recovery info.
  188. */
  189. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  190. !exist_written_data(sbi, ino, APPEND_INO)) {
  191. /* it may call write_inode just prior to fsync */
  192. if (need_inode_page_update(sbi, ino))
  193. goto go_write;
  194. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  195. exist_written_data(sbi, ino, UPDATE_INO))
  196. goto flush_out;
  197. goto out;
  198. }
  199. go_write:
  200. /*
  201. * Both of fdatasync() and fsync() are able to be recovered from
  202. * sudden-power-off.
  203. */
  204. down_read(&F2FS_I(inode)->i_sem);
  205. need_cp = need_do_checkpoint(inode);
  206. up_read(&F2FS_I(inode)->i_sem);
  207. if (need_cp) {
  208. /* all the dirty node pages should be flushed for POR */
  209. ret = f2fs_sync_fs(inode->i_sb, 1);
  210. /*
  211. * We've secured consistency through sync_fs. Following pino
  212. * will be used only for fsynced inodes after checkpoint.
  213. */
  214. try_to_fix_pino(inode);
  215. clear_inode_flag(inode, FI_APPEND_WRITE);
  216. clear_inode_flag(inode, FI_UPDATE_WRITE);
  217. goto out;
  218. }
  219. sync_nodes:
  220. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  221. if (ret)
  222. goto out;
  223. /* if cp_error was enabled, we should avoid infinite loop */
  224. if (unlikely(f2fs_cp_error(sbi))) {
  225. ret = -EIO;
  226. goto out;
  227. }
  228. if (need_inode_block_update(sbi, ino)) {
  229. f2fs_mark_inode_dirty_sync(inode, true);
  230. f2fs_write_inode(inode, NULL);
  231. goto sync_nodes;
  232. }
  233. ret = wait_on_node_pages_writeback(sbi, ino);
  234. if (ret)
  235. goto out;
  236. /* once recovery info is written, don't need to tack this */
  237. remove_ino_entry(sbi, ino, APPEND_INO);
  238. clear_inode_flag(inode, FI_APPEND_WRITE);
  239. flush_out:
  240. remove_ino_entry(sbi, ino, UPDATE_INO);
  241. clear_inode_flag(inode, FI_UPDATE_WRITE);
  242. ret = f2fs_issue_flush(sbi);
  243. f2fs_update_time(sbi, REQ_TIME);
  244. out:
  245. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  246. f2fs_trace_ios(NULL, 1);
  247. return ret;
  248. }
  249. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  250. {
  251. return f2fs_do_sync_file(file, start, end, datasync, false);
  252. }
  253. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  254. pgoff_t pgofs, int whence)
  255. {
  256. struct pagevec pvec;
  257. int nr_pages;
  258. if (whence != SEEK_DATA)
  259. return 0;
  260. /* find first dirty page index */
  261. pagevec_init(&pvec, 0);
  262. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  263. PAGECACHE_TAG_DIRTY, 1);
  264. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  265. pagevec_release(&pvec);
  266. return pgofs;
  267. }
  268. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  269. int whence)
  270. {
  271. switch (whence) {
  272. case SEEK_DATA:
  273. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  274. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  275. return true;
  276. break;
  277. case SEEK_HOLE:
  278. if (blkaddr == NULL_ADDR)
  279. return true;
  280. break;
  281. }
  282. return false;
  283. }
  284. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  285. {
  286. struct inode *inode = file->f_mapping->host;
  287. loff_t maxbytes = inode->i_sb->s_maxbytes;
  288. struct dnode_of_data dn;
  289. pgoff_t pgofs, end_offset, dirty;
  290. loff_t data_ofs = offset;
  291. loff_t isize;
  292. int err = 0;
  293. inode_lock(inode);
  294. isize = i_size_read(inode);
  295. if (offset >= isize)
  296. goto fail;
  297. /* handle inline data case */
  298. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  299. if (whence == SEEK_HOLE)
  300. data_ofs = isize;
  301. goto found;
  302. }
  303. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  304. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  305. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  306. set_new_dnode(&dn, inode, NULL, NULL, 0);
  307. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  308. if (err && err != -ENOENT) {
  309. goto fail;
  310. } else if (err == -ENOENT) {
  311. /* direct node does not exists */
  312. if (whence == SEEK_DATA) {
  313. pgofs = get_next_page_offset(&dn, pgofs);
  314. continue;
  315. } else {
  316. goto found;
  317. }
  318. }
  319. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  320. /* find data/hole in dnode block */
  321. for (; dn.ofs_in_node < end_offset;
  322. dn.ofs_in_node++, pgofs++,
  323. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  324. block_t blkaddr;
  325. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  326. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  327. f2fs_put_dnode(&dn);
  328. goto found;
  329. }
  330. }
  331. f2fs_put_dnode(&dn);
  332. }
  333. if (whence == SEEK_DATA)
  334. goto fail;
  335. found:
  336. if (whence == SEEK_HOLE && data_ofs > isize)
  337. data_ofs = isize;
  338. inode_unlock(inode);
  339. return vfs_setpos(file, data_ofs, maxbytes);
  340. fail:
  341. inode_unlock(inode);
  342. return -ENXIO;
  343. }
  344. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  345. {
  346. struct inode *inode = file->f_mapping->host;
  347. loff_t maxbytes = inode->i_sb->s_maxbytes;
  348. switch (whence) {
  349. case SEEK_SET:
  350. case SEEK_CUR:
  351. case SEEK_END:
  352. return generic_file_llseek_size(file, offset, whence,
  353. maxbytes, i_size_read(inode));
  354. case SEEK_DATA:
  355. case SEEK_HOLE:
  356. if (offset < 0)
  357. return -ENXIO;
  358. return f2fs_seek_block(file, offset, whence);
  359. }
  360. return -EINVAL;
  361. }
  362. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  363. {
  364. struct inode *inode = file_inode(file);
  365. int err;
  366. if (f2fs_encrypted_inode(inode)) {
  367. err = fscrypt_get_encryption_info(inode);
  368. if (err)
  369. return 0;
  370. if (!f2fs_encrypted_inode(inode))
  371. return -ENOKEY;
  372. }
  373. /* we don't need to use inline_data strictly */
  374. err = f2fs_convert_inline_inode(inode);
  375. if (err)
  376. return err;
  377. file_accessed(file);
  378. vma->vm_ops = &f2fs_file_vm_ops;
  379. return 0;
  380. }
  381. static int f2fs_file_open(struct inode *inode, struct file *filp)
  382. {
  383. int ret = generic_file_open(inode, filp);
  384. struct dentry *dir;
  385. if (!ret && f2fs_encrypted_inode(inode)) {
  386. ret = fscrypt_get_encryption_info(inode);
  387. if (ret)
  388. return -EACCES;
  389. if (!fscrypt_has_encryption_key(inode))
  390. return -ENOKEY;
  391. }
  392. dir = dget_parent(file_dentry(filp));
  393. if (f2fs_encrypted_inode(d_inode(dir)) &&
  394. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  395. dput(dir);
  396. return -EPERM;
  397. }
  398. dput(dir);
  399. return ret;
  400. }
  401. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  402. {
  403. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  404. struct f2fs_node *raw_node;
  405. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  406. __le32 *addr;
  407. raw_node = F2FS_NODE(dn->node_page);
  408. addr = blkaddr_in_node(raw_node) + ofs;
  409. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  410. block_t blkaddr = le32_to_cpu(*addr);
  411. if (blkaddr == NULL_ADDR)
  412. continue;
  413. dn->data_blkaddr = NULL_ADDR;
  414. set_data_blkaddr(dn);
  415. invalidate_blocks(sbi, blkaddr);
  416. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  417. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  418. nr_free++;
  419. }
  420. if (nr_free) {
  421. pgoff_t fofs;
  422. /*
  423. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  424. * we will invalidate all blkaddr in the whole range.
  425. */
  426. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  427. dn->inode) + ofs;
  428. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  429. dec_valid_block_count(sbi, dn->inode, nr_free);
  430. }
  431. dn->ofs_in_node = ofs;
  432. f2fs_update_time(sbi, REQ_TIME);
  433. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  434. dn->ofs_in_node, nr_free);
  435. return nr_free;
  436. }
  437. void truncate_data_blocks(struct dnode_of_data *dn)
  438. {
  439. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  440. }
  441. static int truncate_partial_data_page(struct inode *inode, u64 from,
  442. bool cache_only)
  443. {
  444. unsigned offset = from & (PAGE_SIZE - 1);
  445. pgoff_t index = from >> PAGE_SHIFT;
  446. struct address_space *mapping = inode->i_mapping;
  447. struct page *page;
  448. if (!offset && !cache_only)
  449. return 0;
  450. if (cache_only) {
  451. page = find_lock_page(mapping, index);
  452. if (page && PageUptodate(page))
  453. goto truncate_out;
  454. f2fs_put_page(page, 1);
  455. return 0;
  456. }
  457. page = get_lock_data_page(inode, index, true);
  458. if (IS_ERR(page))
  459. return 0;
  460. truncate_out:
  461. f2fs_wait_on_page_writeback(page, DATA, true);
  462. zero_user(page, offset, PAGE_SIZE - offset);
  463. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  464. !S_ISREG(inode->i_mode))
  465. set_page_dirty(page);
  466. f2fs_put_page(page, 1);
  467. return 0;
  468. }
  469. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  470. {
  471. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  472. unsigned int blocksize = inode->i_sb->s_blocksize;
  473. struct dnode_of_data dn;
  474. pgoff_t free_from;
  475. int count = 0, err = 0;
  476. struct page *ipage;
  477. bool truncate_page = false;
  478. trace_f2fs_truncate_blocks_enter(inode, from);
  479. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  480. if (free_from >= sbi->max_file_blocks)
  481. goto free_partial;
  482. if (lock)
  483. f2fs_lock_op(sbi);
  484. ipage = get_node_page(sbi, inode->i_ino);
  485. if (IS_ERR(ipage)) {
  486. err = PTR_ERR(ipage);
  487. goto out;
  488. }
  489. if (f2fs_has_inline_data(inode)) {
  490. if (truncate_inline_inode(ipage, from))
  491. set_page_dirty(ipage);
  492. f2fs_put_page(ipage, 1);
  493. truncate_page = true;
  494. goto out;
  495. }
  496. set_new_dnode(&dn, inode, ipage, NULL, 0);
  497. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  498. if (err) {
  499. if (err == -ENOENT)
  500. goto free_next;
  501. goto out;
  502. }
  503. count = ADDRS_PER_PAGE(dn.node_page, inode);
  504. count -= dn.ofs_in_node;
  505. f2fs_bug_on(sbi, count < 0);
  506. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  507. truncate_data_blocks_range(&dn, count);
  508. free_from += count;
  509. }
  510. f2fs_put_dnode(&dn);
  511. free_next:
  512. err = truncate_inode_blocks(inode, free_from);
  513. out:
  514. if (lock)
  515. f2fs_unlock_op(sbi);
  516. free_partial:
  517. /* lastly zero out the first data page */
  518. if (!err)
  519. err = truncate_partial_data_page(inode, from, truncate_page);
  520. trace_f2fs_truncate_blocks_exit(inode, err);
  521. return err;
  522. }
  523. int f2fs_truncate(struct inode *inode)
  524. {
  525. int err;
  526. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  527. S_ISLNK(inode->i_mode)))
  528. return 0;
  529. trace_f2fs_truncate(inode);
  530. /* we should check inline_data size */
  531. if (!f2fs_may_inline_data(inode)) {
  532. err = f2fs_convert_inline_inode(inode);
  533. if (err)
  534. return err;
  535. }
  536. err = truncate_blocks(inode, i_size_read(inode), true);
  537. if (err)
  538. return err;
  539. inode->i_mtime = inode->i_ctime = current_time(inode);
  540. f2fs_mark_inode_dirty_sync(inode, false);
  541. return 0;
  542. }
  543. int f2fs_getattr(struct vfsmount *mnt,
  544. struct dentry *dentry, struct kstat *stat)
  545. {
  546. struct inode *inode = d_inode(dentry);
  547. generic_fillattr(inode, stat);
  548. stat->blocks <<= 3;
  549. return 0;
  550. }
  551. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  552. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  553. {
  554. unsigned int ia_valid = attr->ia_valid;
  555. if (ia_valid & ATTR_UID)
  556. inode->i_uid = attr->ia_uid;
  557. if (ia_valid & ATTR_GID)
  558. inode->i_gid = attr->ia_gid;
  559. if (ia_valid & ATTR_ATIME)
  560. inode->i_atime = timespec_trunc(attr->ia_atime,
  561. inode->i_sb->s_time_gran);
  562. if (ia_valid & ATTR_MTIME)
  563. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  564. inode->i_sb->s_time_gran);
  565. if (ia_valid & ATTR_CTIME)
  566. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  567. inode->i_sb->s_time_gran);
  568. if (ia_valid & ATTR_MODE) {
  569. umode_t mode = attr->ia_mode;
  570. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  571. mode &= ~S_ISGID;
  572. set_acl_inode(inode, mode);
  573. }
  574. }
  575. #else
  576. #define __setattr_copy setattr_copy
  577. #endif
  578. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  579. {
  580. struct inode *inode = d_inode(dentry);
  581. int err;
  582. bool size_changed = false;
  583. err = setattr_prepare(dentry, attr);
  584. if (err)
  585. return err;
  586. if (attr->ia_valid & ATTR_SIZE) {
  587. if (f2fs_encrypted_inode(inode) &&
  588. fscrypt_get_encryption_info(inode))
  589. return -EACCES;
  590. if (attr->ia_size <= i_size_read(inode)) {
  591. truncate_setsize(inode, attr->ia_size);
  592. err = f2fs_truncate(inode);
  593. if (err)
  594. return err;
  595. } else {
  596. /*
  597. * do not trim all blocks after i_size if target size is
  598. * larger than i_size.
  599. */
  600. truncate_setsize(inode, attr->ia_size);
  601. /* should convert inline inode here */
  602. if (!f2fs_may_inline_data(inode)) {
  603. err = f2fs_convert_inline_inode(inode);
  604. if (err)
  605. return err;
  606. }
  607. inode->i_mtime = inode->i_ctime = current_time(inode);
  608. }
  609. size_changed = true;
  610. }
  611. __setattr_copy(inode, attr);
  612. if (attr->ia_valid & ATTR_MODE) {
  613. err = posix_acl_chmod(inode, get_inode_mode(inode));
  614. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  615. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  616. clear_inode_flag(inode, FI_ACL_MODE);
  617. }
  618. }
  619. /* file size may changed here */
  620. f2fs_mark_inode_dirty_sync(inode, size_changed);
  621. /* inode change will produce dirty node pages flushed by checkpoint */
  622. f2fs_balance_fs(F2FS_I_SB(inode), true);
  623. return err;
  624. }
  625. const struct inode_operations f2fs_file_inode_operations = {
  626. .getattr = f2fs_getattr,
  627. .setattr = f2fs_setattr,
  628. .get_acl = f2fs_get_acl,
  629. .set_acl = f2fs_set_acl,
  630. #ifdef CONFIG_F2FS_FS_XATTR
  631. .listxattr = f2fs_listxattr,
  632. #endif
  633. .fiemap = f2fs_fiemap,
  634. };
  635. static int fill_zero(struct inode *inode, pgoff_t index,
  636. loff_t start, loff_t len)
  637. {
  638. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  639. struct page *page;
  640. if (!len)
  641. return 0;
  642. f2fs_balance_fs(sbi, true);
  643. f2fs_lock_op(sbi);
  644. page = get_new_data_page(inode, NULL, index, false);
  645. f2fs_unlock_op(sbi);
  646. if (IS_ERR(page))
  647. return PTR_ERR(page);
  648. f2fs_wait_on_page_writeback(page, DATA, true);
  649. zero_user(page, start, len);
  650. set_page_dirty(page);
  651. f2fs_put_page(page, 1);
  652. return 0;
  653. }
  654. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  655. {
  656. int err;
  657. while (pg_start < pg_end) {
  658. struct dnode_of_data dn;
  659. pgoff_t end_offset, count;
  660. set_new_dnode(&dn, inode, NULL, NULL, 0);
  661. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  662. if (err) {
  663. if (err == -ENOENT) {
  664. pg_start++;
  665. continue;
  666. }
  667. return err;
  668. }
  669. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  670. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  671. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  672. truncate_data_blocks_range(&dn, count);
  673. f2fs_put_dnode(&dn);
  674. pg_start += count;
  675. }
  676. return 0;
  677. }
  678. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  679. {
  680. pgoff_t pg_start, pg_end;
  681. loff_t off_start, off_end;
  682. int ret;
  683. ret = f2fs_convert_inline_inode(inode);
  684. if (ret)
  685. return ret;
  686. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  687. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  688. off_start = offset & (PAGE_SIZE - 1);
  689. off_end = (offset + len) & (PAGE_SIZE - 1);
  690. if (pg_start == pg_end) {
  691. ret = fill_zero(inode, pg_start, off_start,
  692. off_end - off_start);
  693. if (ret)
  694. return ret;
  695. } else {
  696. if (off_start) {
  697. ret = fill_zero(inode, pg_start++, off_start,
  698. PAGE_SIZE - off_start);
  699. if (ret)
  700. return ret;
  701. }
  702. if (off_end) {
  703. ret = fill_zero(inode, pg_end, 0, off_end);
  704. if (ret)
  705. return ret;
  706. }
  707. if (pg_start < pg_end) {
  708. struct address_space *mapping = inode->i_mapping;
  709. loff_t blk_start, blk_end;
  710. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  711. f2fs_balance_fs(sbi, true);
  712. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  713. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  714. truncate_inode_pages_range(mapping, blk_start,
  715. blk_end - 1);
  716. f2fs_lock_op(sbi);
  717. ret = truncate_hole(inode, pg_start, pg_end);
  718. f2fs_unlock_op(sbi);
  719. }
  720. }
  721. return ret;
  722. }
  723. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  724. int *do_replace, pgoff_t off, pgoff_t len)
  725. {
  726. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  727. struct dnode_of_data dn;
  728. int ret, done, i;
  729. next_dnode:
  730. set_new_dnode(&dn, inode, NULL, NULL, 0);
  731. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  732. if (ret && ret != -ENOENT) {
  733. return ret;
  734. } else if (ret == -ENOENT) {
  735. if (dn.max_level == 0)
  736. return -ENOENT;
  737. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  738. blkaddr += done;
  739. do_replace += done;
  740. goto next;
  741. }
  742. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  743. dn.ofs_in_node, len);
  744. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  745. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  746. if (!is_checkpointed_data(sbi, *blkaddr)) {
  747. if (test_opt(sbi, LFS)) {
  748. f2fs_put_dnode(&dn);
  749. return -ENOTSUPP;
  750. }
  751. /* do not invalidate this block address */
  752. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  753. *do_replace = 1;
  754. }
  755. }
  756. f2fs_put_dnode(&dn);
  757. next:
  758. len -= done;
  759. off += done;
  760. if (len)
  761. goto next_dnode;
  762. return 0;
  763. }
  764. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  765. int *do_replace, pgoff_t off, int len)
  766. {
  767. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  768. struct dnode_of_data dn;
  769. int ret, i;
  770. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  771. if (*do_replace == 0)
  772. continue;
  773. set_new_dnode(&dn, inode, NULL, NULL, 0);
  774. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  775. if (ret) {
  776. dec_valid_block_count(sbi, inode, 1);
  777. invalidate_blocks(sbi, *blkaddr);
  778. } else {
  779. f2fs_update_data_blkaddr(&dn, *blkaddr);
  780. }
  781. f2fs_put_dnode(&dn);
  782. }
  783. return 0;
  784. }
  785. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  786. block_t *blkaddr, int *do_replace,
  787. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  788. {
  789. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  790. pgoff_t i = 0;
  791. int ret;
  792. while (i < len) {
  793. if (blkaddr[i] == NULL_ADDR && !full) {
  794. i++;
  795. continue;
  796. }
  797. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  798. struct dnode_of_data dn;
  799. struct node_info ni;
  800. size_t new_size;
  801. pgoff_t ilen;
  802. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  803. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  804. if (ret)
  805. return ret;
  806. get_node_info(sbi, dn.nid, &ni);
  807. ilen = min((pgoff_t)
  808. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  809. dn.ofs_in_node, len - i);
  810. do {
  811. dn.data_blkaddr = datablock_addr(dn.node_page,
  812. dn.ofs_in_node);
  813. truncate_data_blocks_range(&dn, 1);
  814. if (do_replace[i]) {
  815. f2fs_i_blocks_write(src_inode,
  816. 1, false);
  817. f2fs_i_blocks_write(dst_inode,
  818. 1, true);
  819. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  820. blkaddr[i], ni.version, true, false);
  821. do_replace[i] = 0;
  822. }
  823. dn.ofs_in_node++;
  824. i++;
  825. new_size = (dst + i) << PAGE_SHIFT;
  826. if (dst_inode->i_size < new_size)
  827. f2fs_i_size_write(dst_inode, new_size);
  828. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  829. f2fs_put_dnode(&dn);
  830. } else {
  831. struct page *psrc, *pdst;
  832. psrc = get_lock_data_page(src_inode, src + i, true);
  833. if (IS_ERR(psrc))
  834. return PTR_ERR(psrc);
  835. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  836. true);
  837. if (IS_ERR(pdst)) {
  838. f2fs_put_page(psrc, 1);
  839. return PTR_ERR(pdst);
  840. }
  841. f2fs_copy_page(psrc, pdst);
  842. set_page_dirty(pdst);
  843. f2fs_put_page(pdst, 1);
  844. f2fs_put_page(psrc, 1);
  845. ret = truncate_hole(src_inode, src + i, src + i + 1);
  846. if (ret)
  847. return ret;
  848. i++;
  849. }
  850. }
  851. return 0;
  852. }
  853. static int __exchange_data_block(struct inode *src_inode,
  854. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  855. pgoff_t len, bool full)
  856. {
  857. block_t *src_blkaddr;
  858. int *do_replace;
  859. pgoff_t olen;
  860. int ret;
  861. while (len) {
  862. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  863. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  864. if (!src_blkaddr)
  865. return -ENOMEM;
  866. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  867. if (!do_replace) {
  868. kvfree(src_blkaddr);
  869. return -ENOMEM;
  870. }
  871. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  872. do_replace, src, olen);
  873. if (ret)
  874. goto roll_back;
  875. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  876. do_replace, src, dst, olen, full);
  877. if (ret)
  878. goto roll_back;
  879. src += olen;
  880. dst += olen;
  881. len -= olen;
  882. kvfree(src_blkaddr);
  883. kvfree(do_replace);
  884. }
  885. return 0;
  886. roll_back:
  887. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  888. kvfree(src_blkaddr);
  889. kvfree(do_replace);
  890. return ret;
  891. }
  892. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  893. {
  894. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  895. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  896. int ret;
  897. f2fs_balance_fs(sbi, true);
  898. f2fs_lock_op(sbi);
  899. f2fs_drop_extent_tree(inode);
  900. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  901. f2fs_unlock_op(sbi);
  902. return ret;
  903. }
  904. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  905. {
  906. pgoff_t pg_start, pg_end;
  907. loff_t new_size;
  908. int ret;
  909. if (offset + len >= i_size_read(inode))
  910. return -EINVAL;
  911. /* collapse range should be aligned to block size of f2fs. */
  912. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  913. return -EINVAL;
  914. ret = f2fs_convert_inline_inode(inode);
  915. if (ret)
  916. return ret;
  917. pg_start = offset >> PAGE_SHIFT;
  918. pg_end = (offset + len) >> PAGE_SHIFT;
  919. /* write out all dirty pages from offset */
  920. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  921. if (ret)
  922. return ret;
  923. truncate_pagecache(inode, offset);
  924. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  925. if (ret)
  926. return ret;
  927. /* write out all moved pages, if possible */
  928. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  929. truncate_pagecache(inode, offset);
  930. new_size = i_size_read(inode) - len;
  931. truncate_pagecache(inode, new_size);
  932. ret = truncate_blocks(inode, new_size, true);
  933. if (!ret)
  934. f2fs_i_size_write(inode, new_size);
  935. return ret;
  936. }
  937. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  938. pgoff_t end)
  939. {
  940. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  941. pgoff_t index = start;
  942. unsigned int ofs_in_node = dn->ofs_in_node;
  943. blkcnt_t count = 0;
  944. int ret;
  945. for (; index < end; index++, dn->ofs_in_node++) {
  946. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  947. count++;
  948. }
  949. dn->ofs_in_node = ofs_in_node;
  950. ret = reserve_new_blocks(dn, count);
  951. if (ret)
  952. return ret;
  953. dn->ofs_in_node = ofs_in_node;
  954. for (index = start; index < end; index++, dn->ofs_in_node++) {
  955. dn->data_blkaddr =
  956. datablock_addr(dn->node_page, dn->ofs_in_node);
  957. /*
  958. * reserve_new_blocks will not guarantee entire block
  959. * allocation.
  960. */
  961. if (dn->data_blkaddr == NULL_ADDR) {
  962. ret = -ENOSPC;
  963. break;
  964. }
  965. if (dn->data_blkaddr != NEW_ADDR) {
  966. invalidate_blocks(sbi, dn->data_blkaddr);
  967. dn->data_blkaddr = NEW_ADDR;
  968. set_data_blkaddr(dn);
  969. }
  970. }
  971. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  972. return ret;
  973. }
  974. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  975. int mode)
  976. {
  977. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  978. struct address_space *mapping = inode->i_mapping;
  979. pgoff_t index, pg_start, pg_end;
  980. loff_t new_size = i_size_read(inode);
  981. loff_t off_start, off_end;
  982. int ret = 0;
  983. ret = inode_newsize_ok(inode, (len + offset));
  984. if (ret)
  985. return ret;
  986. ret = f2fs_convert_inline_inode(inode);
  987. if (ret)
  988. return ret;
  989. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  990. if (ret)
  991. return ret;
  992. truncate_pagecache_range(inode, offset, offset + len - 1);
  993. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  994. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  995. off_start = offset & (PAGE_SIZE - 1);
  996. off_end = (offset + len) & (PAGE_SIZE - 1);
  997. if (pg_start == pg_end) {
  998. ret = fill_zero(inode, pg_start, off_start,
  999. off_end - off_start);
  1000. if (ret)
  1001. return ret;
  1002. if (offset + len > new_size)
  1003. new_size = offset + len;
  1004. new_size = max_t(loff_t, new_size, offset + len);
  1005. } else {
  1006. if (off_start) {
  1007. ret = fill_zero(inode, pg_start++, off_start,
  1008. PAGE_SIZE - off_start);
  1009. if (ret)
  1010. return ret;
  1011. new_size = max_t(loff_t, new_size,
  1012. (loff_t)pg_start << PAGE_SHIFT);
  1013. }
  1014. for (index = pg_start; index < pg_end;) {
  1015. struct dnode_of_data dn;
  1016. unsigned int end_offset;
  1017. pgoff_t end;
  1018. f2fs_lock_op(sbi);
  1019. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1020. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1021. if (ret) {
  1022. f2fs_unlock_op(sbi);
  1023. goto out;
  1024. }
  1025. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1026. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1027. ret = f2fs_do_zero_range(&dn, index, end);
  1028. f2fs_put_dnode(&dn);
  1029. f2fs_unlock_op(sbi);
  1030. f2fs_balance_fs(sbi, dn.node_changed);
  1031. if (ret)
  1032. goto out;
  1033. index = end;
  1034. new_size = max_t(loff_t, new_size,
  1035. (loff_t)index << PAGE_SHIFT);
  1036. }
  1037. if (off_end) {
  1038. ret = fill_zero(inode, pg_end, 0, off_end);
  1039. if (ret)
  1040. goto out;
  1041. new_size = max_t(loff_t, new_size, offset + len);
  1042. }
  1043. }
  1044. out:
  1045. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1046. f2fs_i_size_write(inode, new_size);
  1047. return ret;
  1048. }
  1049. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1050. {
  1051. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1052. pgoff_t nr, pg_start, pg_end, delta, idx;
  1053. loff_t new_size;
  1054. int ret = 0;
  1055. new_size = i_size_read(inode) + len;
  1056. if (new_size > inode->i_sb->s_maxbytes)
  1057. return -EFBIG;
  1058. if (offset >= i_size_read(inode))
  1059. return -EINVAL;
  1060. /* insert range should be aligned to block size of f2fs. */
  1061. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1062. return -EINVAL;
  1063. ret = f2fs_convert_inline_inode(inode);
  1064. if (ret)
  1065. return ret;
  1066. f2fs_balance_fs(sbi, true);
  1067. ret = truncate_blocks(inode, i_size_read(inode), true);
  1068. if (ret)
  1069. return ret;
  1070. /* write out all dirty pages from offset */
  1071. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1072. if (ret)
  1073. return ret;
  1074. truncate_pagecache(inode, offset);
  1075. pg_start = offset >> PAGE_SHIFT;
  1076. pg_end = (offset + len) >> PAGE_SHIFT;
  1077. delta = pg_end - pg_start;
  1078. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1079. while (!ret && idx > pg_start) {
  1080. nr = idx - pg_start;
  1081. if (nr > delta)
  1082. nr = delta;
  1083. idx -= nr;
  1084. f2fs_lock_op(sbi);
  1085. f2fs_drop_extent_tree(inode);
  1086. ret = __exchange_data_block(inode, inode, idx,
  1087. idx + delta, nr, false);
  1088. f2fs_unlock_op(sbi);
  1089. }
  1090. /* write out all moved pages, if possible */
  1091. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1092. truncate_pagecache(inode, offset);
  1093. if (!ret)
  1094. f2fs_i_size_write(inode, new_size);
  1095. return ret;
  1096. }
  1097. static int expand_inode_data(struct inode *inode, loff_t offset,
  1098. loff_t len, int mode)
  1099. {
  1100. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1101. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1102. pgoff_t pg_end;
  1103. loff_t new_size = i_size_read(inode);
  1104. loff_t off_end;
  1105. int err;
  1106. err = inode_newsize_ok(inode, (len + offset));
  1107. if (err)
  1108. return err;
  1109. err = f2fs_convert_inline_inode(inode);
  1110. if (err)
  1111. return err;
  1112. f2fs_balance_fs(sbi, true);
  1113. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1114. off_end = (offset + len) & (PAGE_SIZE - 1);
  1115. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1116. map.m_len = pg_end - map.m_lblk;
  1117. if (off_end)
  1118. map.m_len++;
  1119. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1120. if (err) {
  1121. pgoff_t last_off;
  1122. if (!map.m_len)
  1123. return err;
  1124. last_off = map.m_lblk + map.m_len - 1;
  1125. /* update new size to the failed position */
  1126. new_size = (last_off == pg_end) ? offset + len:
  1127. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1128. } else {
  1129. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1130. }
  1131. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1132. f2fs_i_size_write(inode, new_size);
  1133. return err;
  1134. }
  1135. static long f2fs_fallocate(struct file *file, int mode,
  1136. loff_t offset, loff_t len)
  1137. {
  1138. struct inode *inode = file_inode(file);
  1139. long ret = 0;
  1140. /* f2fs only support ->fallocate for regular file */
  1141. if (!S_ISREG(inode->i_mode))
  1142. return -EINVAL;
  1143. if (f2fs_encrypted_inode(inode) &&
  1144. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1145. return -EOPNOTSUPP;
  1146. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1147. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1148. FALLOC_FL_INSERT_RANGE))
  1149. return -EOPNOTSUPP;
  1150. inode_lock(inode);
  1151. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1152. if (offset >= inode->i_size)
  1153. goto out;
  1154. ret = punch_hole(inode, offset, len);
  1155. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1156. ret = f2fs_collapse_range(inode, offset, len);
  1157. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1158. ret = f2fs_zero_range(inode, offset, len, mode);
  1159. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1160. ret = f2fs_insert_range(inode, offset, len);
  1161. } else {
  1162. ret = expand_inode_data(inode, offset, len, mode);
  1163. }
  1164. if (!ret) {
  1165. inode->i_mtime = inode->i_ctime = current_time(inode);
  1166. f2fs_mark_inode_dirty_sync(inode, false);
  1167. if (mode & FALLOC_FL_KEEP_SIZE)
  1168. file_set_keep_isize(inode);
  1169. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1170. }
  1171. out:
  1172. inode_unlock(inode);
  1173. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1174. return ret;
  1175. }
  1176. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1177. {
  1178. /*
  1179. * f2fs_relase_file is called at every close calls. So we should
  1180. * not drop any inmemory pages by close called by other process.
  1181. */
  1182. if (!(filp->f_mode & FMODE_WRITE) ||
  1183. atomic_read(&inode->i_writecount) != 1)
  1184. return 0;
  1185. /* some remained atomic pages should discarded */
  1186. if (f2fs_is_atomic_file(inode))
  1187. drop_inmem_pages(inode);
  1188. if (f2fs_is_volatile_file(inode)) {
  1189. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1190. set_inode_flag(inode, FI_DROP_CACHE);
  1191. filemap_fdatawrite(inode->i_mapping);
  1192. clear_inode_flag(inode, FI_DROP_CACHE);
  1193. }
  1194. return 0;
  1195. }
  1196. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1197. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1198. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1199. {
  1200. if (S_ISDIR(mode))
  1201. return flags;
  1202. else if (S_ISREG(mode))
  1203. return flags & F2FS_REG_FLMASK;
  1204. else
  1205. return flags & F2FS_OTHER_FLMASK;
  1206. }
  1207. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1208. {
  1209. struct inode *inode = file_inode(filp);
  1210. struct f2fs_inode_info *fi = F2FS_I(inode);
  1211. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1212. return put_user(flags, (int __user *)arg);
  1213. }
  1214. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1215. {
  1216. struct inode *inode = file_inode(filp);
  1217. struct f2fs_inode_info *fi = F2FS_I(inode);
  1218. unsigned int flags;
  1219. unsigned int oldflags;
  1220. int ret;
  1221. if (!inode_owner_or_capable(inode))
  1222. return -EACCES;
  1223. if (get_user(flags, (int __user *)arg))
  1224. return -EFAULT;
  1225. ret = mnt_want_write_file(filp);
  1226. if (ret)
  1227. return ret;
  1228. flags = f2fs_mask_flags(inode->i_mode, flags);
  1229. inode_lock(inode);
  1230. oldflags = fi->i_flags;
  1231. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1232. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1233. inode_unlock(inode);
  1234. ret = -EPERM;
  1235. goto out;
  1236. }
  1237. }
  1238. flags = flags & FS_FL_USER_MODIFIABLE;
  1239. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1240. fi->i_flags = flags;
  1241. inode_unlock(inode);
  1242. inode->i_ctime = current_time(inode);
  1243. f2fs_set_inode_flags(inode);
  1244. out:
  1245. mnt_drop_write_file(filp);
  1246. return ret;
  1247. }
  1248. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1249. {
  1250. struct inode *inode = file_inode(filp);
  1251. return put_user(inode->i_generation, (int __user *)arg);
  1252. }
  1253. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1254. {
  1255. struct inode *inode = file_inode(filp);
  1256. int ret;
  1257. if (!inode_owner_or_capable(inode))
  1258. return -EACCES;
  1259. ret = mnt_want_write_file(filp);
  1260. if (ret)
  1261. return ret;
  1262. inode_lock(inode);
  1263. if (f2fs_is_atomic_file(inode))
  1264. goto out;
  1265. ret = f2fs_convert_inline_inode(inode);
  1266. if (ret)
  1267. goto out;
  1268. set_inode_flag(inode, FI_ATOMIC_FILE);
  1269. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1270. if (!get_dirty_pages(inode))
  1271. goto out;
  1272. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1273. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1274. inode->i_ino, get_dirty_pages(inode));
  1275. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1276. if (ret)
  1277. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1278. out:
  1279. inode_unlock(inode);
  1280. mnt_drop_write_file(filp);
  1281. return ret;
  1282. }
  1283. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1284. {
  1285. struct inode *inode = file_inode(filp);
  1286. int ret;
  1287. if (!inode_owner_or_capable(inode))
  1288. return -EACCES;
  1289. ret = mnt_want_write_file(filp);
  1290. if (ret)
  1291. return ret;
  1292. inode_lock(inode);
  1293. if (f2fs_is_volatile_file(inode))
  1294. goto err_out;
  1295. if (f2fs_is_atomic_file(inode)) {
  1296. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1297. ret = commit_inmem_pages(inode);
  1298. if (ret) {
  1299. set_inode_flag(inode, FI_ATOMIC_FILE);
  1300. goto err_out;
  1301. }
  1302. }
  1303. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1304. err_out:
  1305. inode_unlock(inode);
  1306. mnt_drop_write_file(filp);
  1307. return ret;
  1308. }
  1309. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1310. {
  1311. struct inode *inode = file_inode(filp);
  1312. int ret;
  1313. if (!inode_owner_or_capable(inode))
  1314. return -EACCES;
  1315. ret = mnt_want_write_file(filp);
  1316. if (ret)
  1317. return ret;
  1318. inode_lock(inode);
  1319. if (f2fs_is_volatile_file(inode))
  1320. goto out;
  1321. ret = f2fs_convert_inline_inode(inode);
  1322. if (ret)
  1323. goto out;
  1324. set_inode_flag(inode, FI_VOLATILE_FILE);
  1325. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1326. out:
  1327. inode_unlock(inode);
  1328. mnt_drop_write_file(filp);
  1329. return ret;
  1330. }
  1331. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1332. {
  1333. struct inode *inode = file_inode(filp);
  1334. int ret;
  1335. if (!inode_owner_or_capable(inode))
  1336. return -EACCES;
  1337. ret = mnt_want_write_file(filp);
  1338. if (ret)
  1339. return ret;
  1340. inode_lock(inode);
  1341. if (!f2fs_is_volatile_file(inode))
  1342. goto out;
  1343. if (!f2fs_is_first_block_written(inode)) {
  1344. ret = truncate_partial_data_page(inode, 0, true);
  1345. goto out;
  1346. }
  1347. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1348. out:
  1349. inode_unlock(inode);
  1350. mnt_drop_write_file(filp);
  1351. return ret;
  1352. }
  1353. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1354. {
  1355. struct inode *inode = file_inode(filp);
  1356. int ret;
  1357. if (!inode_owner_or_capable(inode))
  1358. return -EACCES;
  1359. ret = mnt_want_write_file(filp);
  1360. if (ret)
  1361. return ret;
  1362. inode_lock(inode);
  1363. if (f2fs_is_atomic_file(inode))
  1364. drop_inmem_pages(inode);
  1365. if (f2fs_is_volatile_file(inode)) {
  1366. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1367. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1368. }
  1369. inode_unlock(inode);
  1370. mnt_drop_write_file(filp);
  1371. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1372. return ret;
  1373. }
  1374. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1375. {
  1376. struct inode *inode = file_inode(filp);
  1377. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1378. struct super_block *sb = sbi->sb;
  1379. __u32 in;
  1380. int ret;
  1381. if (!capable(CAP_SYS_ADMIN))
  1382. return -EPERM;
  1383. if (get_user(in, (__u32 __user *)arg))
  1384. return -EFAULT;
  1385. ret = mnt_want_write_file(filp);
  1386. if (ret)
  1387. return ret;
  1388. switch (in) {
  1389. case F2FS_GOING_DOWN_FULLSYNC:
  1390. sb = freeze_bdev(sb->s_bdev);
  1391. if (sb && !IS_ERR(sb)) {
  1392. f2fs_stop_checkpoint(sbi, false);
  1393. thaw_bdev(sb->s_bdev, sb);
  1394. }
  1395. break;
  1396. case F2FS_GOING_DOWN_METASYNC:
  1397. /* do checkpoint only */
  1398. f2fs_sync_fs(sb, 1);
  1399. f2fs_stop_checkpoint(sbi, false);
  1400. break;
  1401. case F2FS_GOING_DOWN_NOSYNC:
  1402. f2fs_stop_checkpoint(sbi, false);
  1403. break;
  1404. case F2FS_GOING_DOWN_METAFLUSH:
  1405. sync_meta_pages(sbi, META, LONG_MAX);
  1406. f2fs_stop_checkpoint(sbi, false);
  1407. break;
  1408. default:
  1409. ret = -EINVAL;
  1410. goto out;
  1411. }
  1412. f2fs_update_time(sbi, REQ_TIME);
  1413. out:
  1414. mnt_drop_write_file(filp);
  1415. return ret;
  1416. }
  1417. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1418. {
  1419. struct inode *inode = file_inode(filp);
  1420. struct super_block *sb = inode->i_sb;
  1421. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1422. struct fstrim_range range;
  1423. int ret;
  1424. if (!capable(CAP_SYS_ADMIN))
  1425. return -EPERM;
  1426. if (!blk_queue_discard(q))
  1427. return -EOPNOTSUPP;
  1428. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1429. sizeof(range)))
  1430. return -EFAULT;
  1431. ret = mnt_want_write_file(filp);
  1432. if (ret)
  1433. return ret;
  1434. range.minlen = max((unsigned int)range.minlen,
  1435. q->limits.discard_granularity);
  1436. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1437. mnt_drop_write_file(filp);
  1438. if (ret < 0)
  1439. return ret;
  1440. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1441. sizeof(range)))
  1442. return -EFAULT;
  1443. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1444. return 0;
  1445. }
  1446. static bool uuid_is_nonzero(__u8 u[16])
  1447. {
  1448. int i;
  1449. for (i = 0; i < 16; i++)
  1450. if (u[i])
  1451. return true;
  1452. return false;
  1453. }
  1454. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1455. {
  1456. struct inode *inode = file_inode(filp);
  1457. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1458. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1459. }
  1460. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1461. {
  1462. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1463. }
  1464. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1465. {
  1466. struct inode *inode = file_inode(filp);
  1467. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1468. int err;
  1469. if (!f2fs_sb_has_crypto(inode->i_sb))
  1470. return -EOPNOTSUPP;
  1471. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1472. goto got_it;
  1473. err = mnt_want_write_file(filp);
  1474. if (err)
  1475. return err;
  1476. /* update superblock with uuid */
  1477. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1478. err = f2fs_commit_super(sbi, false);
  1479. if (err) {
  1480. /* undo new data */
  1481. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1482. mnt_drop_write_file(filp);
  1483. return err;
  1484. }
  1485. mnt_drop_write_file(filp);
  1486. got_it:
  1487. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1488. 16))
  1489. return -EFAULT;
  1490. return 0;
  1491. }
  1492. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1493. {
  1494. struct inode *inode = file_inode(filp);
  1495. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1496. __u32 sync;
  1497. int ret;
  1498. if (!capable(CAP_SYS_ADMIN))
  1499. return -EPERM;
  1500. if (get_user(sync, (__u32 __user *)arg))
  1501. return -EFAULT;
  1502. if (f2fs_readonly(sbi->sb))
  1503. return -EROFS;
  1504. ret = mnt_want_write_file(filp);
  1505. if (ret)
  1506. return ret;
  1507. if (!sync) {
  1508. if (!mutex_trylock(&sbi->gc_mutex)) {
  1509. ret = -EBUSY;
  1510. goto out;
  1511. }
  1512. } else {
  1513. mutex_lock(&sbi->gc_mutex);
  1514. }
  1515. ret = f2fs_gc(sbi, sync, true);
  1516. out:
  1517. mnt_drop_write_file(filp);
  1518. return ret;
  1519. }
  1520. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1521. {
  1522. struct inode *inode = file_inode(filp);
  1523. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1524. int ret;
  1525. if (!capable(CAP_SYS_ADMIN))
  1526. return -EPERM;
  1527. if (f2fs_readonly(sbi->sb))
  1528. return -EROFS;
  1529. ret = mnt_want_write_file(filp);
  1530. if (ret)
  1531. return ret;
  1532. ret = f2fs_sync_fs(sbi->sb, 1);
  1533. mnt_drop_write_file(filp);
  1534. return ret;
  1535. }
  1536. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1537. struct file *filp,
  1538. struct f2fs_defragment *range)
  1539. {
  1540. struct inode *inode = file_inode(filp);
  1541. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1542. struct extent_info ei;
  1543. pgoff_t pg_start, pg_end;
  1544. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1545. unsigned int total = 0, sec_num;
  1546. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1547. block_t blk_end = 0;
  1548. bool fragmented = false;
  1549. int err;
  1550. /* if in-place-update policy is enabled, don't waste time here */
  1551. if (need_inplace_update(inode))
  1552. return -EINVAL;
  1553. pg_start = range->start >> PAGE_SHIFT;
  1554. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1555. f2fs_balance_fs(sbi, true);
  1556. inode_lock(inode);
  1557. /* writeback all dirty pages in the range */
  1558. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1559. range->start + range->len - 1);
  1560. if (err)
  1561. goto out;
  1562. /*
  1563. * lookup mapping info in extent cache, skip defragmenting if physical
  1564. * block addresses are continuous.
  1565. */
  1566. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1567. if (ei.fofs + ei.len >= pg_end)
  1568. goto out;
  1569. }
  1570. map.m_lblk = pg_start;
  1571. /*
  1572. * lookup mapping info in dnode page cache, skip defragmenting if all
  1573. * physical block addresses are continuous even if there are hole(s)
  1574. * in logical blocks.
  1575. */
  1576. while (map.m_lblk < pg_end) {
  1577. map.m_len = pg_end - map.m_lblk;
  1578. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1579. if (err)
  1580. goto out;
  1581. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1582. map.m_lblk++;
  1583. continue;
  1584. }
  1585. if (blk_end && blk_end != map.m_pblk) {
  1586. fragmented = true;
  1587. break;
  1588. }
  1589. blk_end = map.m_pblk + map.m_len;
  1590. map.m_lblk += map.m_len;
  1591. }
  1592. if (!fragmented)
  1593. goto out;
  1594. map.m_lblk = pg_start;
  1595. map.m_len = pg_end - pg_start;
  1596. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1597. /*
  1598. * make sure there are enough free section for LFS allocation, this can
  1599. * avoid defragment running in SSR mode when free section are allocated
  1600. * intensively
  1601. */
  1602. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1603. err = -EAGAIN;
  1604. goto out;
  1605. }
  1606. while (map.m_lblk < pg_end) {
  1607. pgoff_t idx;
  1608. int cnt = 0;
  1609. do_map:
  1610. map.m_len = pg_end - map.m_lblk;
  1611. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1612. if (err)
  1613. goto clear_out;
  1614. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1615. map.m_lblk++;
  1616. continue;
  1617. }
  1618. set_inode_flag(inode, FI_DO_DEFRAG);
  1619. idx = map.m_lblk;
  1620. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1621. struct page *page;
  1622. page = get_lock_data_page(inode, idx, true);
  1623. if (IS_ERR(page)) {
  1624. err = PTR_ERR(page);
  1625. goto clear_out;
  1626. }
  1627. set_page_dirty(page);
  1628. f2fs_put_page(page, 1);
  1629. idx++;
  1630. cnt++;
  1631. total++;
  1632. }
  1633. map.m_lblk = idx;
  1634. if (idx < pg_end && cnt < blk_per_seg)
  1635. goto do_map;
  1636. clear_inode_flag(inode, FI_DO_DEFRAG);
  1637. err = filemap_fdatawrite(inode->i_mapping);
  1638. if (err)
  1639. goto out;
  1640. }
  1641. clear_out:
  1642. clear_inode_flag(inode, FI_DO_DEFRAG);
  1643. out:
  1644. inode_unlock(inode);
  1645. if (!err)
  1646. range->len = (u64)total << PAGE_SHIFT;
  1647. return err;
  1648. }
  1649. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1650. {
  1651. struct inode *inode = file_inode(filp);
  1652. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1653. struct f2fs_defragment range;
  1654. int err;
  1655. if (!capable(CAP_SYS_ADMIN))
  1656. return -EPERM;
  1657. if (!S_ISREG(inode->i_mode))
  1658. return -EINVAL;
  1659. err = mnt_want_write_file(filp);
  1660. if (err)
  1661. return err;
  1662. if (f2fs_readonly(sbi->sb)) {
  1663. err = -EROFS;
  1664. goto out;
  1665. }
  1666. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1667. sizeof(range))) {
  1668. err = -EFAULT;
  1669. goto out;
  1670. }
  1671. /* verify alignment of offset & size */
  1672. if (range.start & (F2FS_BLKSIZE - 1) ||
  1673. range.len & (F2FS_BLKSIZE - 1)) {
  1674. err = -EINVAL;
  1675. goto out;
  1676. }
  1677. err = f2fs_defragment_range(sbi, filp, &range);
  1678. f2fs_update_time(sbi, REQ_TIME);
  1679. if (err < 0)
  1680. goto out;
  1681. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1682. sizeof(range)))
  1683. err = -EFAULT;
  1684. out:
  1685. mnt_drop_write_file(filp);
  1686. return err;
  1687. }
  1688. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1689. struct file *file_out, loff_t pos_out, size_t len)
  1690. {
  1691. struct inode *src = file_inode(file_in);
  1692. struct inode *dst = file_inode(file_out);
  1693. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1694. size_t olen = len, dst_max_i_size = 0;
  1695. size_t dst_osize;
  1696. int ret;
  1697. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1698. src->i_sb != dst->i_sb)
  1699. return -EXDEV;
  1700. if (unlikely(f2fs_readonly(src->i_sb)))
  1701. return -EROFS;
  1702. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1703. return -EINVAL;
  1704. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1705. return -EOPNOTSUPP;
  1706. if (src == dst) {
  1707. if (pos_in == pos_out)
  1708. return 0;
  1709. if (pos_out > pos_in && pos_out < pos_in + len)
  1710. return -EINVAL;
  1711. }
  1712. inode_lock(src);
  1713. if (src != dst) {
  1714. if (!inode_trylock(dst)) {
  1715. ret = -EBUSY;
  1716. goto out;
  1717. }
  1718. }
  1719. ret = -EINVAL;
  1720. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1721. goto out_unlock;
  1722. if (len == 0)
  1723. olen = len = src->i_size - pos_in;
  1724. if (pos_in + len == src->i_size)
  1725. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1726. if (len == 0) {
  1727. ret = 0;
  1728. goto out_unlock;
  1729. }
  1730. dst_osize = dst->i_size;
  1731. if (pos_out + olen > dst->i_size)
  1732. dst_max_i_size = pos_out + olen;
  1733. /* verify the end result is block aligned */
  1734. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1735. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1736. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1737. goto out_unlock;
  1738. ret = f2fs_convert_inline_inode(src);
  1739. if (ret)
  1740. goto out_unlock;
  1741. ret = f2fs_convert_inline_inode(dst);
  1742. if (ret)
  1743. goto out_unlock;
  1744. /* write out all dirty pages from offset */
  1745. ret = filemap_write_and_wait_range(src->i_mapping,
  1746. pos_in, pos_in + len);
  1747. if (ret)
  1748. goto out_unlock;
  1749. ret = filemap_write_and_wait_range(dst->i_mapping,
  1750. pos_out, pos_out + len);
  1751. if (ret)
  1752. goto out_unlock;
  1753. f2fs_balance_fs(sbi, true);
  1754. f2fs_lock_op(sbi);
  1755. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1756. pos_out >> F2FS_BLKSIZE_BITS,
  1757. len >> F2FS_BLKSIZE_BITS, false);
  1758. if (!ret) {
  1759. if (dst_max_i_size)
  1760. f2fs_i_size_write(dst, dst_max_i_size);
  1761. else if (dst_osize != dst->i_size)
  1762. f2fs_i_size_write(dst, dst_osize);
  1763. }
  1764. f2fs_unlock_op(sbi);
  1765. out_unlock:
  1766. if (src != dst)
  1767. inode_unlock(dst);
  1768. out:
  1769. inode_unlock(src);
  1770. return ret;
  1771. }
  1772. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1773. {
  1774. struct f2fs_move_range range;
  1775. struct fd dst;
  1776. int err;
  1777. if (!(filp->f_mode & FMODE_READ) ||
  1778. !(filp->f_mode & FMODE_WRITE))
  1779. return -EBADF;
  1780. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1781. sizeof(range)))
  1782. return -EFAULT;
  1783. dst = fdget(range.dst_fd);
  1784. if (!dst.file)
  1785. return -EBADF;
  1786. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1787. err = -EBADF;
  1788. goto err_out;
  1789. }
  1790. err = mnt_want_write_file(filp);
  1791. if (err)
  1792. goto err_out;
  1793. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1794. range.pos_out, range.len);
  1795. mnt_drop_write_file(filp);
  1796. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1797. &range, sizeof(range)))
  1798. err = -EFAULT;
  1799. err_out:
  1800. fdput(dst);
  1801. return err;
  1802. }
  1803. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1804. {
  1805. switch (cmd) {
  1806. case F2FS_IOC_GETFLAGS:
  1807. return f2fs_ioc_getflags(filp, arg);
  1808. case F2FS_IOC_SETFLAGS:
  1809. return f2fs_ioc_setflags(filp, arg);
  1810. case F2FS_IOC_GETVERSION:
  1811. return f2fs_ioc_getversion(filp, arg);
  1812. case F2FS_IOC_START_ATOMIC_WRITE:
  1813. return f2fs_ioc_start_atomic_write(filp);
  1814. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1815. return f2fs_ioc_commit_atomic_write(filp);
  1816. case F2FS_IOC_START_VOLATILE_WRITE:
  1817. return f2fs_ioc_start_volatile_write(filp);
  1818. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1819. return f2fs_ioc_release_volatile_write(filp);
  1820. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1821. return f2fs_ioc_abort_volatile_write(filp);
  1822. case F2FS_IOC_SHUTDOWN:
  1823. return f2fs_ioc_shutdown(filp, arg);
  1824. case FITRIM:
  1825. return f2fs_ioc_fitrim(filp, arg);
  1826. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1827. return f2fs_ioc_set_encryption_policy(filp, arg);
  1828. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1829. return f2fs_ioc_get_encryption_policy(filp, arg);
  1830. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1831. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1832. case F2FS_IOC_GARBAGE_COLLECT:
  1833. return f2fs_ioc_gc(filp, arg);
  1834. case F2FS_IOC_WRITE_CHECKPOINT:
  1835. return f2fs_ioc_write_checkpoint(filp, arg);
  1836. case F2FS_IOC_DEFRAGMENT:
  1837. return f2fs_ioc_defragment(filp, arg);
  1838. case F2FS_IOC_MOVE_RANGE:
  1839. return f2fs_ioc_move_range(filp, arg);
  1840. default:
  1841. return -ENOTTY;
  1842. }
  1843. }
  1844. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1845. {
  1846. struct file *file = iocb->ki_filp;
  1847. struct inode *inode = file_inode(file);
  1848. struct blk_plug plug;
  1849. ssize_t ret;
  1850. if (f2fs_encrypted_inode(inode) &&
  1851. !fscrypt_has_encryption_key(inode) &&
  1852. fscrypt_get_encryption_info(inode))
  1853. return -EACCES;
  1854. inode_lock(inode);
  1855. ret = generic_write_checks(iocb, from);
  1856. if (ret > 0) {
  1857. int err = f2fs_preallocate_blocks(iocb, from);
  1858. if (err) {
  1859. inode_unlock(inode);
  1860. return err;
  1861. }
  1862. blk_start_plug(&plug);
  1863. ret = __generic_file_write_iter(iocb, from);
  1864. blk_finish_plug(&plug);
  1865. }
  1866. inode_unlock(inode);
  1867. if (ret > 0)
  1868. ret = generic_write_sync(iocb, ret);
  1869. return ret;
  1870. }
  1871. #ifdef CONFIG_COMPAT
  1872. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1873. {
  1874. switch (cmd) {
  1875. case F2FS_IOC32_GETFLAGS:
  1876. cmd = F2FS_IOC_GETFLAGS;
  1877. break;
  1878. case F2FS_IOC32_SETFLAGS:
  1879. cmd = F2FS_IOC_SETFLAGS;
  1880. break;
  1881. case F2FS_IOC32_GETVERSION:
  1882. cmd = F2FS_IOC_GETVERSION;
  1883. break;
  1884. case F2FS_IOC_START_ATOMIC_WRITE:
  1885. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1886. case F2FS_IOC_START_VOLATILE_WRITE:
  1887. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1888. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1889. case F2FS_IOC_SHUTDOWN:
  1890. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1891. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1892. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1893. case F2FS_IOC_GARBAGE_COLLECT:
  1894. case F2FS_IOC_WRITE_CHECKPOINT:
  1895. case F2FS_IOC_DEFRAGMENT:
  1896. break;
  1897. case F2FS_IOC_MOVE_RANGE:
  1898. break;
  1899. default:
  1900. return -ENOIOCTLCMD;
  1901. }
  1902. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1903. }
  1904. #endif
  1905. const struct file_operations f2fs_file_operations = {
  1906. .llseek = f2fs_llseek,
  1907. .read_iter = generic_file_read_iter,
  1908. .write_iter = f2fs_file_write_iter,
  1909. .open = f2fs_file_open,
  1910. .release = f2fs_release_file,
  1911. .mmap = f2fs_file_mmap,
  1912. .fsync = f2fs_sync_file,
  1913. .fallocate = f2fs_fallocate,
  1914. .unlocked_ioctl = f2fs_ioctl,
  1915. #ifdef CONFIG_COMPAT
  1916. .compat_ioctl = f2fs_compat_ioctl,
  1917. #endif
  1918. .splice_read = generic_file_splice_read,
  1919. .splice_write = iter_file_splice_write,
  1920. };