relocation.c 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782
  1. /*
  2. * Copyright (C) 2009 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/slab.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "volumes.h"
  28. #include "locking.h"
  29. #include "btrfs_inode.h"
  30. #include "async-thread.h"
  31. #include "free-space-cache.h"
  32. #include "inode-map.h"
  33. #include "qgroup.h"
  34. /*
  35. * backref_node, mapping_node and tree_block start with this
  36. */
  37. struct tree_entry {
  38. struct rb_node rb_node;
  39. u64 bytenr;
  40. };
  41. /*
  42. * present a tree block in the backref cache
  43. */
  44. struct backref_node {
  45. struct rb_node rb_node;
  46. u64 bytenr;
  47. u64 new_bytenr;
  48. /* objectid of tree block owner, can be not uptodate */
  49. u64 owner;
  50. /* link to pending, changed or detached list */
  51. struct list_head list;
  52. /* list of upper level blocks reference this block */
  53. struct list_head upper;
  54. /* list of child blocks in the cache */
  55. struct list_head lower;
  56. /* NULL if this node is not tree root */
  57. struct btrfs_root *root;
  58. /* extent buffer got by COW the block */
  59. struct extent_buffer *eb;
  60. /* level of tree block */
  61. unsigned int level:8;
  62. /* is the block in non-reference counted tree */
  63. unsigned int cowonly:1;
  64. /* 1 if no child node in the cache */
  65. unsigned int lowest:1;
  66. /* is the extent buffer locked */
  67. unsigned int locked:1;
  68. /* has the block been processed */
  69. unsigned int processed:1;
  70. /* have backrefs of this block been checked */
  71. unsigned int checked:1;
  72. /*
  73. * 1 if corresponding block has been cowed but some upper
  74. * level block pointers may not point to the new location
  75. */
  76. unsigned int pending:1;
  77. /*
  78. * 1 if the backref node isn't connected to any other
  79. * backref node.
  80. */
  81. unsigned int detached:1;
  82. };
  83. /*
  84. * present a block pointer in the backref cache
  85. */
  86. struct backref_edge {
  87. struct list_head list[2];
  88. struct backref_node *node[2];
  89. };
  90. #define LOWER 0
  91. #define UPPER 1
  92. #define RELOCATION_RESERVED_NODES 256
  93. struct backref_cache {
  94. /* red black tree of all backref nodes in the cache */
  95. struct rb_root rb_root;
  96. /* for passing backref nodes to btrfs_reloc_cow_block */
  97. struct backref_node *path[BTRFS_MAX_LEVEL];
  98. /*
  99. * list of blocks that have been cowed but some block
  100. * pointers in upper level blocks may not reflect the
  101. * new location
  102. */
  103. struct list_head pending[BTRFS_MAX_LEVEL];
  104. /* list of backref nodes with no child node */
  105. struct list_head leaves;
  106. /* list of blocks that have been cowed in current transaction */
  107. struct list_head changed;
  108. /* list of detached backref node. */
  109. struct list_head detached;
  110. u64 last_trans;
  111. int nr_nodes;
  112. int nr_edges;
  113. };
  114. /*
  115. * map address of tree root to tree
  116. */
  117. struct mapping_node {
  118. struct rb_node rb_node;
  119. u64 bytenr;
  120. void *data;
  121. };
  122. struct mapping_tree {
  123. struct rb_root rb_root;
  124. spinlock_t lock;
  125. };
  126. /*
  127. * present a tree block to process
  128. */
  129. struct tree_block {
  130. struct rb_node rb_node;
  131. u64 bytenr;
  132. struct btrfs_key key;
  133. unsigned int level:8;
  134. unsigned int key_ready:1;
  135. };
  136. #define MAX_EXTENTS 128
  137. struct file_extent_cluster {
  138. u64 start;
  139. u64 end;
  140. u64 boundary[MAX_EXTENTS];
  141. unsigned int nr;
  142. };
  143. struct reloc_control {
  144. /* block group to relocate */
  145. struct btrfs_block_group_cache *block_group;
  146. /* extent tree */
  147. struct btrfs_root *extent_root;
  148. /* inode for moving data */
  149. struct inode *data_inode;
  150. struct btrfs_block_rsv *block_rsv;
  151. struct backref_cache backref_cache;
  152. struct file_extent_cluster cluster;
  153. /* tree blocks have been processed */
  154. struct extent_io_tree processed_blocks;
  155. /* map start of tree root to corresponding reloc tree */
  156. struct mapping_tree reloc_root_tree;
  157. /* list of reloc trees */
  158. struct list_head reloc_roots;
  159. /* size of metadata reservation for merging reloc trees */
  160. u64 merging_rsv_size;
  161. /* size of relocated tree nodes */
  162. u64 nodes_relocated;
  163. /* reserved size for block group relocation*/
  164. u64 reserved_bytes;
  165. u64 search_start;
  166. u64 extents_found;
  167. unsigned int stage:8;
  168. unsigned int create_reloc_tree:1;
  169. unsigned int merge_reloc_tree:1;
  170. unsigned int found_file_extent:1;
  171. };
  172. /* stages of data relocation */
  173. #define MOVE_DATA_EXTENTS 0
  174. #define UPDATE_DATA_PTRS 1
  175. static void remove_backref_node(struct backref_cache *cache,
  176. struct backref_node *node);
  177. static void __mark_block_processed(struct reloc_control *rc,
  178. struct backref_node *node);
  179. static void mapping_tree_init(struct mapping_tree *tree)
  180. {
  181. tree->rb_root = RB_ROOT;
  182. spin_lock_init(&tree->lock);
  183. }
  184. static void backref_cache_init(struct backref_cache *cache)
  185. {
  186. int i;
  187. cache->rb_root = RB_ROOT;
  188. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  189. INIT_LIST_HEAD(&cache->pending[i]);
  190. INIT_LIST_HEAD(&cache->changed);
  191. INIT_LIST_HEAD(&cache->detached);
  192. INIT_LIST_HEAD(&cache->leaves);
  193. }
  194. static void backref_cache_cleanup(struct backref_cache *cache)
  195. {
  196. struct backref_node *node;
  197. int i;
  198. while (!list_empty(&cache->detached)) {
  199. node = list_entry(cache->detached.next,
  200. struct backref_node, list);
  201. remove_backref_node(cache, node);
  202. }
  203. while (!list_empty(&cache->leaves)) {
  204. node = list_entry(cache->leaves.next,
  205. struct backref_node, lower);
  206. remove_backref_node(cache, node);
  207. }
  208. cache->last_trans = 0;
  209. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  210. ASSERT(list_empty(&cache->pending[i]));
  211. ASSERT(list_empty(&cache->changed));
  212. ASSERT(list_empty(&cache->detached));
  213. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  214. ASSERT(!cache->nr_nodes);
  215. ASSERT(!cache->nr_edges);
  216. }
  217. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  218. {
  219. struct backref_node *node;
  220. node = kzalloc(sizeof(*node), GFP_NOFS);
  221. if (node) {
  222. INIT_LIST_HEAD(&node->list);
  223. INIT_LIST_HEAD(&node->upper);
  224. INIT_LIST_HEAD(&node->lower);
  225. RB_CLEAR_NODE(&node->rb_node);
  226. cache->nr_nodes++;
  227. }
  228. return node;
  229. }
  230. static void free_backref_node(struct backref_cache *cache,
  231. struct backref_node *node)
  232. {
  233. if (node) {
  234. cache->nr_nodes--;
  235. kfree(node);
  236. }
  237. }
  238. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  239. {
  240. struct backref_edge *edge;
  241. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  242. if (edge)
  243. cache->nr_edges++;
  244. return edge;
  245. }
  246. static void free_backref_edge(struct backref_cache *cache,
  247. struct backref_edge *edge)
  248. {
  249. if (edge) {
  250. cache->nr_edges--;
  251. kfree(edge);
  252. }
  253. }
  254. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  255. struct rb_node *node)
  256. {
  257. struct rb_node **p = &root->rb_node;
  258. struct rb_node *parent = NULL;
  259. struct tree_entry *entry;
  260. while (*p) {
  261. parent = *p;
  262. entry = rb_entry(parent, struct tree_entry, rb_node);
  263. if (bytenr < entry->bytenr)
  264. p = &(*p)->rb_left;
  265. else if (bytenr > entry->bytenr)
  266. p = &(*p)->rb_right;
  267. else
  268. return parent;
  269. }
  270. rb_link_node(node, parent, p);
  271. rb_insert_color(node, root);
  272. return NULL;
  273. }
  274. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  275. {
  276. struct rb_node *n = root->rb_node;
  277. struct tree_entry *entry;
  278. while (n) {
  279. entry = rb_entry(n, struct tree_entry, rb_node);
  280. if (bytenr < entry->bytenr)
  281. n = n->rb_left;
  282. else if (bytenr > entry->bytenr)
  283. n = n->rb_right;
  284. else
  285. return n;
  286. }
  287. return NULL;
  288. }
  289. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  290. {
  291. struct btrfs_fs_info *fs_info = NULL;
  292. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  293. rb_node);
  294. if (bnode->root)
  295. fs_info = bnode->root->fs_info;
  296. btrfs_panic(fs_info, errno,
  297. "Inconsistency in backref cache found at offset %llu",
  298. bytenr);
  299. }
  300. /*
  301. * walk up backref nodes until reach node presents tree root
  302. */
  303. static struct backref_node *walk_up_backref(struct backref_node *node,
  304. struct backref_edge *edges[],
  305. int *index)
  306. {
  307. struct backref_edge *edge;
  308. int idx = *index;
  309. while (!list_empty(&node->upper)) {
  310. edge = list_entry(node->upper.next,
  311. struct backref_edge, list[LOWER]);
  312. edges[idx++] = edge;
  313. node = edge->node[UPPER];
  314. }
  315. BUG_ON(node->detached);
  316. *index = idx;
  317. return node;
  318. }
  319. /*
  320. * walk down backref nodes to find start of next reference path
  321. */
  322. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  323. int *index)
  324. {
  325. struct backref_edge *edge;
  326. struct backref_node *lower;
  327. int idx = *index;
  328. while (idx > 0) {
  329. edge = edges[idx - 1];
  330. lower = edge->node[LOWER];
  331. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  332. idx--;
  333. continue;
  334. }
  335. edge = list_entry(edge->list[LOWER].next,
  336. struct backref_edge, list[LOWER]);
  337. edges[idx - 1] = edge;
  338. *index = idx;
  339. return edge->node[UPPER];
  340. }
  341. *index = 0;
  342. return NULL;
  343. }
  344. static void unlock_node_buffer(struct backref_node *node)
  345. {
  346. if (node->locked) {
  347. btrfs_tree_unlock(node->eb);
  348. node->locked = 0;
  349. }
  350. }
  351. static void drop_node_buffer(struct backref_node *node)
  352. {
  353. if (node->eb) {
  354. unlock_node_buffer(node);
  355. free_extent_buffer(node->eb);
  356. node->eb = NULL;
  357. }
  358. }
  359. static void drop_backref_node(struct backref_cache *tree,
  360. struct backref_node *node)
  361. {
  362. BUG_ON(!list_empty(&node->upper));
  363. drop_node_buffer(node);
  364. list_del(&node->list);
  365. list_del(&node->lower);
  366. if (!RB_EMPTY_NODE(&node->rb_node))
  367. rb_erase(&node->rb_node, &tree->rb_root);
  368. free_backref_node(tree, node);
  369. }
  370. /*
  371. * remove a backref node from the backref cache
  372. */
  373. static void remove_backref_node(struct backref_cache *cache,
  374. struct backref_node *node)
  375. {
  376. struct backref_node *upper;
  377. struct backref_edge *edge;
  378. if (!node)
  379. return;
  380. BUG_ON(!node->lowest && !node->detached);
  381. while (!list_empty(&node->upper)) {
  382. edge = list_entry(node->upper.next, struct backref_edge,
  383. list[LOWER]);
  384. upper = edge->node[UPPER];
  385. list_del(&edge->list[LOWER]);
  386. list_del(&edge->list[UPPER]);
  387. free_backref_edge(cache, edge);
  388. if (RB_EMPTY_NODE(&upper->rb_node)) {
  389. BUG_ON(!list_empty(&node->upper));
  390. drop_backref_node(cache, node);
  391. node = upper;
  392. node->lowest = 1;
  393. continue;
  394. }
  395. /*
  396. * add the node to leaf node list if no other
  397. * child block cached.
  398. */
  399. if (list_empty(&upper->lower)) {
  400. list_add_tail(&upper->lower, &cache->leaves);
  401. upper->lowest = 1;
  402. }
  403. }
  404. drop_backref_node(cache, node);
  405. }
  406. static void update_backref_node(struct backref_cache *cache,
  407. struct backref_node *node, u64 bytenr)
  408. {
  409. struct rb_node *rb_node;
  410. rb_erase(&node->rb_node, &cache->rb_root);
  411. node->bytenr = bytenr;
  412. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  413. if (rb_node)
  414. backref_tree_panic(rb_node, -EEXIST, bytenr);
  415. }
  416. /*
  417. * update backref cache after a transaction commit
  418. */
  419. static int update_backref_cache(struct btrfs_trans_handle *trans,
  420. struct backref_cache *cache)
  421. {
  422. struct backref_node *node;
  423. int level = 0;
  424. if (cache->last_trans == 0) {
  425. cache->last_trans = trans->transid;
  426. return 0;
  427. }
  428. if (cache->last_trans == trans->transid)
  429. return 0;
  430. /*
  431. * detached nodes are used to avoid unnecessary backref
  432. * lookup. transaction commit changes the extent tree.
  433. * so the detached nodes are no longer useful.
  434. */
  435. while (!list_empty(&cache->detached)) {
  436. node = list_entry(cache->detached.next,
  437. struct backref_node, list);
  438. remove_backref_node(cache, node);
  439. }
  440. while (!list_empty(&cache->changed)) {
  441. node = list_entry(cache->changed.next,
  442. struct backref_node, list);
  443. list_del_init(&node->list);
  444. BUG_ON(node->pending);
  445. update_backref_node(cache, node, node->new_bytenr);
  446. }
  447. /*
  448. * some nodes can be left in the pending list if there were
  449. * errors during processing the pending nodes.
  450. */
  451. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  452. list_for_each_entry(node, &cache->pending[level], list) {
  453. BUG_ON(!node->pending);
  454. if (node->bytenr == node->new_bytenr)
  455. continue;
  456. update_backref_node(cache, node, node->new_bytenr);
  457. }
  458. }
  459. cache->last_trans = 0;
  460. return 1;
  461. }
  462. static int should_ignore_root(struct btrfs_root *root)
  463. {
  464. struct btrfs_root *reloc_root;
  465. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  466. return 0;
  467. reloc_root = root->reloc_root;
  468. if (!reloc_root)
  469. return 0;
  470. if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
  471. root->fs_info->running_transaction->transid - 1)
  472. return 0;
  473. /*
  474. * if there is reloc tree and it was created in previous
  475. * transaction backref lookup can find the reloc tree,
  476. * so backref node for the fs tree root is useless for
  477. * relocation.
  478. */
  479. return 1;
  480. }
  481. /*
  482. * find reloc tree by address of tree root
  483. */
  484. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  485. u64 bytenr)
  486. {
  487. struct rb_node *rb_node;
  488. struct mapping_node *node;
  489. struct btrfs_root *root = NULL;
  490. spin_lock(&rc->reloc_root_tree.lock);
  491. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  492. if (rb_node) {
  493. node = rb_entry(rb_node, struct mapping_node, rb_node);
  494. root = (struct btrfs_root *)node->data;
  495. }
  496. spin_unlock(&rc->reloc_root_tree.lock);
  497. return root;
  498. }
  499. static int is_cowonly_root(u64 root_objectid)
  500. {
  501. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  502. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  503. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  504. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  505. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  506. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  507. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  508. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  509. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  510. return 1;
  511. return 0;
  512. }
  513. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  514. u64 root_objectid)
  515. {
  516. struct btrfs_key key;
  517. key.objectid = root_objectid;
  518. key.type = BTRFS_ROOT_ITEM_KEY;
  519. if (is_cowonly_root(root_objectid))
  520. key.offset = 0;
  521. else
  522. key.offset = (u64)-1;
  523. return btrfs_get_fs_root(fs_info, &key, false);
  524. }
  525. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  526. static noinline_for_stack
  527. struct btrfs_root *find_tree_root(struct reloc_control *rc,
  528. struct extent_buffer *leaf,
  529. struct btrfs_extent_ref_v0 *ref0)
  530. {
  531. struct btrfs_root *root;
  532. u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
  533. u64 generation = btrfs_ref_generation_v0(leaf, ref0);
  534. BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
  535. root = read_fs_root(rc->extent_root->fs_info, root_objectid);
  536. BUG_ON(IS_ERR(root));
  537. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  538. generation != btrfs_root_generation(&root->root_item))
  539. return NULL;
  540. return root;
  541. }
  542. #endif
  543. static noinline_for_stack
  544. int find_inline_backref(struct extent_buffer *leaf, int slot,
  545. unsigned long *ptr, unsigned long *end)
  546. {
  547. struct btrfs_key key;
  548. struct btrfs_extent_item *ei;
  549. struct btrfs_tree_block_info *bi;
  550. u32 item_size;
  551. btrfs_item_key_to_cpu(leaf, &key, slot);
  552. item_size = btrfs_item_size_nr(leaf, slot);
  553. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  554. if (item_size < sizeof(*ei)) {
  555. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  556. return 1;
  557. }
  558. #endif
  559. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  560. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  561. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  562. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  563. item_size <= sizeof(*ei) + sizeof(*bi)) {
  564. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  565. return 1;
  566. }
  567. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  568. item_size <= sizeof(*ei)) {
  569. WARN_ON(item_size < sizeof(*ei));
  570. return 1;
  571. }
  572. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  573. bi = (struct btrfs_tree_block_info *)(ei + 1);
  574. *ptr = (unsigned long)(bi + 1);
  575. } else {
  576. *ptr = (unsigned long)(ei + 1);
  577. }
  578. *end = (unsigned long)ei + item_size;
  579. return 0;
  580. }
  581. /*
  582. * build backref tree for a given tree block. root of the backref tree
  583. * corresponds the tree block, leaves of the backref tree correspond
  584. * roots of b-trees that reference the tree block.
  585. *
  586. * the basic idea of this function is check backrefs of a given block
  587. * to find upper level blocks that reference the block, and then check
  588. * backrefs of these upper level blocks recursively. the recursion stop
  589. * when tree root is reached or backrefs for the block is cached.
  590. *
  591. * NOTE: if we find backrefs for a block are cached, we know backrefs
  592. * for all upper level blocks that directly/indirectly reference the
  593. * block are also cached.
  594. */
  595. static noinline_for_stack
  596. struct backref_node *build_backref_tree(struct reloc_control *rc,
  597. struct btrfs_key *node_key,
  598. int level, u64 bytenr)
  599. {
  600. struct backref_cache *cache = &rc->backref_cache;
  601. struct btrfs_path *path1;
  602. struct btrfs_path *path2;
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root;
  605. struct backref_node *cur;
  606. struct backref_node *upper;
  607. struct backref_node *lower;
  608. struct backref_node *node = NULL;
  609. struct backref_node *exist = NULL;
  610. struct backref_edge *edge;
  611. struct rb_node *rb_node;
  612. struct btrfs_key key;
  613. unsigned long end;
  614. unsigned long ptr;
  615. LIST_HEAD(list);
  616. LIST_HEAD(useless);
  617. int cowonly;
  618. int ret;
  619. int err = 0;
  620. bool need_check = true;
  621. path1 = btrfs_alloc_path();
  622. path2 = btrfs_alloc_path();
  623. if (!path1 || !path2) {
  624. err = -ENOMEM;
  625. goto out;
  626. }
  627. path1->reada = READA_FORWARD;
  628. path2->reada = READA_FORWARD;
  629. node = alloc_backref_node(cache);
  630. if (!node) {
  631. err = -ENOMEM;
  632. goto out;
  633. }
  634. node->bytenr = bytenr;
  635. node->level = level;
  636. node->lowest = 1;
  637. cur = node;
  638. again:
  639. end = 0;
  640. ptr = 0;
  641. key.objectid = cur->bytenr;
  642. key.type = BTRFS_METADATA_ITEM_KEY;
  643. key.offset = (u64)-1;
  644. path1->search_commit_root = 1;
  645. path1->skip_locking = 1;
  646. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  647. 0, 0);
  648. if (ret < 0) {
  649. err = ret;
  650. goto out;
  651. }
  652. ASSERT(ret);
  653. ASSERT(path1->slots[0]);
  654. path1->slots[0]--;
  655. WARN_ON(cur->checked);
  656. if (!list_empty(&cur->upper)) {
  657. /*
  658. * the backref was added previously when processing
  659. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  660. */
  661. ASSERT(list_is_singular(&cur->upper));
  662. edge = list_entry(cur->upper.next, struct backref_edge,
  663. list[LOWER]);
  664. ASSERT(list_empty(&edge->list[UPPER]));
  665. exist = edge->node[UPPER];
  666. /*
  667. * add the upper level block to pending list if we need
  668. * check its backrefs
  669. */
  670. if (!exist->checked)
  671. list_add_tail(&edge->list[UPPER], &list);
  672. } else {
  673. exist = NULL;
  674. }
  675. while (1) {
  676. cond_resched();
  677. eb = path1->nodes[0];
  678. if (ptr >= end) {
  679. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  680. ret = btrfs_next_leaf(rc->extent_root, path1);
  681. if (ret < 0) {
  682. err = ret;
  683. goto out;
  684. }
  685. if (ret > 0)
  686. break;
  687. eb = path1->nodes[0];
  688. }
  689. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  690. if (key.objectid != cur->bytenr) {
  691. WARN_ON(exist);
  692. break;
  693. }
  694. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  695. key.type == BTRFS_METADATA_ITEM_KEY) {
  696. ret = find_inline_backref(eb, path1->slots[0],
  697. &ptr, &end);
  698. if (ret)
  699. goto next;
  700. }
  701. }
  702. if (ptr < end) {
  703. /* update key for inline back ref */
  704. struct btrfs_extent_inline_ref *iref;
  705. iref = (struct btrfs_extent_inline_ref *)ptr;
  706. key.type = btrfs_extent_inline_ref_type(eb, iref);
  707. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  708. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  709. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  710. }
  711. if (exist &&
  712. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  713. exist->owner == key.offset) ||
  714. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  715. exist->bytenr == key.offset))) {
  716. exist = NULL;
  717. goto next;
  718. }
  719. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  720. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
  721. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  722. if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  723. struct btrfs_extent_ref_v0 *ref0;
  724. ref0 = btrfs_item_ptr(eb, path1->slots[0],
  725. struct btrfs_extent_ref_v0);
  726. if (key.objectid == key.offset) {
  727. root = find_tree_root(rc, eb, ref0);
  728. if (root && !should_ignore_root(root))
  729. cur->root = root;
  730. else
  731. list_add(&cur->list, &useless);
  732. break;
  733. }
  734. if (is_cowonly_root(btrfs_ref_root_v0(eb,
  735. ref0)))
  736. cur->cowonly = 1;
  737. }
  738. #else
  739. ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
  740. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  741. #endif
  742. if (key.objectid == key.offset) {
  743. /*
  744. * only root blocks of reloc trees use
  745. * backref of this type.
  746. */
  747. root = find_reloc_root(rc, cur->bytenr);
  748. ASSERT(root);
  749. cur->root = root;
  750. break;
  751. }
  752. edge = alloc_backref_edge(cache);
  753. if (!edge) {
  754. err = -ENOMEM;
  755. goto out;
  756. }
  757. rb_node = tree_search(&cache->rb_root, key.offset);
  758. if (!rb_node) {
  759. upper = alloc_backref_node(cache);
  760. if (!upper) {
  761. free_backref_edge(cache, edge);
  762. err = -ENOMEM;
  763. goto out;
  764. }
  765. upper->bytenr = key.offset;
  766. upper->level = cur->level + 1;
  767. /*
  768. * backrefs for the upper level block isn't
  769. * cached, add the block to pending list
  770. */
  771. list_add_tail(&edge->list[UPPER], &list);
  772. } else {
  773. upper = rb_entry(rb_node, struct backref_node,
  774. rb_node);
  775. ASSERT(upper->checked);
  776. INIT_LIST_HEAD(&edge->list[UPPER]);
  777. }
  778. list_add_tail(&edge->list[LOWER], &cur->upper);
  779. edge->node[LOWER] = cur;
  780. edge->node[UPPER] = upper;
  781. goto next;
  782. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  783. goto next;
  784. }
  785. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  786. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  787. if (IS_ERR(root)) {
  788. err = PTR_ERR(root);
  789. goto out;
  790. }
  791. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  792. cur->cowonly = 1;
  793. if (btrfs_root_level(&root->root_item) == cur->level) {
  794. /* tree root */
  795. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  796. cur->bytenr);
  797. if (should_ignore_root(root))
  798. list_add(&cur->list, &useless);
  799. else
  800. cur->root = root;
  801. break;
  802. }
  803. level = cur->level + 1;
  804. /*
  805. * searching the tree to find upper level blocks
  806. * reference the block.
  807. */
  808. path2->search_commit_root = 1;
  809. path2->skip_locking = 1;
  810. path2->lowest_level = level;
  811. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  812. path2->lowest_level = 0;
  813. if (ret < 0) {
  814. err = ret;
  815. goto out;
  816. }
  817. if (ret > 0 && path2->slots[level] > 0)
  818. path2->slots[level]--;
  819. eb = path2->nodes[level];
  820. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  821. cur->bytenr) {
  822. btrfs_err(root->fs_info,
  823. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  824. cur->bytenr, level - 1, root->objectid,
  825. node_key->objectid, node_key->type,
  826. node_key->offset);
  827. err = -ENOENT;
  828. goto out;
  829. }
  830. lower = cur;
  831. need_check = true;
  832. for (; level < BTRFS_MAX_LEVEL; level++) {
  833. if (!path2->nodes[level]) {
  834. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  835. lower->bytenr);
  836. if (should_ignore_root(root))
  837. list_add(&lower->list, &useless);
  838. else
  839. lower->root = root;
  840. break;
  841. }
  842. edge = alloc_backref_edge(cache);
  843. if (!edge) {
  844. err = -ENOMEM;
  845. goto out;
  846. }
  847. eb = path2->nodes[level];
  848. rb_node = tree_search(&cache->rb_root, eb->start);
  849. if (!rb_node) {
  850. upper = alloc_backref_node(cache);
  851. if (!upper) {
  852. free_backref_edge(cache, edge);
  853. err = -ENOMEM;
  854. goto out;
  855. }
  856. upper->bytenr = eb->start;
  857. upper->owner = btrfs_header_owner(eb);
  858. upper->level = lower->level + 1;
  859. if (!test_bit(BTRFS_ROOT_REF_COWS,
  860. &root->state))
  861. upper->cowonly = 1;
  862. /*
  863. * if we know the block isn't shared
  864. * we can void checking its backrefs.
  865. */
  866. if (btrfs_block_can_be_shared(root, eb))
  867. upper->checked = 0;
  868. else
  869. upper->checked = 1;
  870. /*
  871. * add the block to pending list if we
  872. * need check its backrefs, we only do this once
  873. * while walking up a tree as we will catch
  874. * anything else later on.
  875. */
  876. if (!upper->checked && need_check) {
  877. need_check = false;
  878. list_add_tail(&edge->list[UPPER],
  879. &list);
  880. } else {
  881. if (upper->checked)
  882. need_check = true;
  883. INIT_LIST_HEAD(&edge->list[UPPER]);
  884. }
  885. } else {
  886. upper = rb_entry(rb_node, struct backref_node,
  887. rb_node);
  888. ASSERT(upper->checked);
  889. INIT_LIST_HEAD(&edge->list[UPPER]);
  890. if (!upper->owner)
  891. upper->owner = btrfs_header_owner(eb);
  892. }
  893. list_add_tail(&edge->list[LOWER], &lower->upper);
  894. edge->node[LOWER] = lower;
  895. edge->node[UPPER] = upper;
  896. if (rb_node)
  897. break;
  898. lower = upper;
  899. upper = NULL;
  900. }
  901. btrfs_release_path(path2);
  902. next:
  903. if (ptr < end) {
  904. ptr += btrfs_extent_inline_ref_size(key.type);
  905. if (ptr >= end) {
  906. WARN_ON(ptr > end);
  907. ptr = 0;
  908. end = 0;
  909. }
  910. }
  911. if (ptr >= end)
  912. path1->slots[0]++;
  913. }
  914. btrfs_release_path(path1);
  915. cur->checked = 1;
  916. WARN_ON(exist);
  917. /* the pending list isn't empty, take the first block to process */
  918. if (!list_empty(&list)) {
  919. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  920. list_del_init(&edge->list[UPPER]);
  921. cur = edge->node[UPPER];
  922. goto again;
  923. }
  924. /*
  925. * everything goes well, connect backref nodes and insert backref nodes
  926. * into the cache.
  927. */
  928. ASSERT(node->checked);
  929. cowonly = node->cowonly;
  930. if (!cowonly) {
  931. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  932. &node->rb_node);
  933. if (rb_node)
  934. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  935. list_add_tail(&node->lower, &cache->leaves);
  936. }
  937. list_for_each_entry(edge, &node->upper, list[LOWER])
  938. list_add_tail(&edge->list[UPPER], &list);
  939. while (!list_empty(&list)) {
  940. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  941. list_del_init(&edge->list[UPPER]);
  942. upper = edge->node[UPPER];
  943. if (upper->detached) {
  944. list_del(&edge->list[LOWER]);
  945. lower = edge->node[LOWER];
  946. free_backref_edge(cache, edge);
  947. if (list_empty(&lower->upper))
  948. list_add(&lower->list, &useless);
  949. continue;
  950. }
  951. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  952. if (upper->lowest) {
  953. list_del_init(&upper->lower);
  954. upper->lowest = 0;
  955. }
  956. list_add_tail(&edge->list[UPPER], &upper->lower);
  957. continue;
  958. }
  959. if (!upper->checked) {
  960. /*
  961. * Still want to blow up for developers since this is a
  962. * logic bug.
  963. */
  964. ASSERT(0);
  965. err = -EINVAL;
  966. goto out;
  967. }
  968. if (cowonly != upper->cowonly) {
  969. ASSERT(0);
  970. err = -EINVAL;
  971. goto out;
  972. }
  973. if (!cowonly) {
  974. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  975. &upper->rb_node);
  976. if (rb_node)
  977. backref_tree_panic(rb_node, -EEXIST,
  978. upper->bytenr);
  979. }
  980. list_add_tail(&edge->list[UPPER], &upper->lower);
  981. list_for_each_entry(edge, &upper->upper, list[LOWER])
  982. list_add_tail(&edge->list[UPPER], &list);
  983. }
  984. /*
  985. * process useless backref nodes. backref nodes for tree leaves
  986. * are deleted from the cache. backref nodes for upper level
  987. * tree blocks are left in the cache to avoid unnecessary backref
  988. * lookup.
  989. */
  990. while (!list_empty(&useless)) {
  991. upper = list_entry(useless.next, struct backref_node, list);
  992. list_del_init(&upper->list);
  993. ASSERT(list_empty(&upper->upper));
  994. if (upper == node)
  995. node = NULL;
  996. if (upper->lowest) {
  997. list_del_init(&upper->lower);
  998. upper->lowest = 0;
  999. }
  1000. while (!list_empty(&upper->lower)) {
  1001. edge = list_entry(upper->lower.next,
  1002. struct backref_edge, list[UPPER]);
  1003. list_del(&edge->list[UPPER]);
  1004. list_del(&edge->list[LOWER]);
  1005. lower = edge->node[LOWER];
  1006. free_backref_edge(cache, edge);
  1007. if (list_empty(&lower->upper))
  1008. list_add(&lower->list, &useless);
  1009. }
  1010. __mark_block_processed(rc, upper);
  1011. if (upper->level > 0) {
  1012. list_add(&upper->list, &cache->detached);
  1013. upper->detached = 1;
  1014. } else {
  1015. rb_erase(&upper->rb_node, &cache->rb_root);
  1016. free_backref_node(cache, upper);
  1017. }
  1018. }
  1019. out:
  1020. btrfs_free_path(path1);
  1021. btrfs_free_path(path2);
  1022. if (err) {
  1023. while (!list_empty(&useless)) {
  1024. lower = list_entry(useless.next,
  1025. struct backref_node, list);
  1026. list_del_init(&lower->list);
  1027. }
  1028. while (!list_empty(&list)) {
  1029. edge = list_first_entry(&list, struct backref_edge,
  1030. list[UPPER]);
  1031. list_del(&edge->list[UPPER]);
  1032. list_del(&edge->list[LOWER]);
  1033. lower = edge->node[LOWER];
  1034. upper = edge->node[UPPER];
  1035. free_backref_edge(cache, edge);
  1036. /*
  1037. * Lower is no longer linked to any upper backref nodes
  1038. * and isn't in the cache, we can free it ourselves.
  1039. */
  1040. if (list_empty(&lower->upper) &&
  1041. RB_EMPTY_NODE(&lower->rb_node))
  1042. list_add(&lower->list, &useless);
  1043. if (!RB_EMPTY_NODE(&upper->rb_node))
  1044. continue;
  1045. /* Add this guy's upper edges to the list to process */
  1046. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1047. list_add_tail(&edge->list[UPPER], &list);
  1048. if (list_empty(&upper->upper))
  1049. list_add(&upper->list, &useless);
  1050. }
  1051. while (!list_empty(&useless)) {
  1052. lower = list_entry(useless.next,
  1053. struct backref_node, list);
  1054. list_del_init(&lower->list);
  1055. if (lower == node)
  1056. node = NULL;
  1057. free_backref_node(cache, lower);
  1058. }
  1059. free_backref_node(cache, node);
  1060. return ERR_PTR(err);
  1061. }
  1062. ASSERT(!node || !node->detached);
  1063. return node;
  1064. }
  1065. /*
  1066. * helper to add backref node for the newly created snapshot.
  1067. * the backref node is created by cloning backref node that
  1068. * corresponds to root of source tree
  1069. */
  1070. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1071. struct reloc_control *rc,
  1072. struct btrfs_root *src,
  1073. struct btrfs_root *dest)
  1074. {
  1075. struct btrfs_root *reloc_root = src->reloc_root;
  1076. struct backref_cache *cache = &rc->backref_cache;
  1077. struct backref_node *node = NULL;
  1078. struct backref_node *new_node;
  1079. struct backref_edge *edge;
  1080. struct backref_edge *new_edge;
  1081. struct rb_node *rb_node;
  1082. if (cache->last_trans > 0)
  1083. update_backref_cache(trans, cache);
  1084. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1085. if (rb_node) {
  1086. node = rb_entry(rb_node, struct backref_node, rb_node);
  1087. if (node->detached)
  1088. node = NULL;
  1089. else
  1090. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1091. }
  1092. if (!node) {
  1093. rb_node = tree_search(&cache->rb_root,
  1094. reloc_root->commit_root->start);
  1095. if (rb_node) {
  1096. node = rb_entry(rb_node, struct backref_node,
  1097. rb_node);
  1098. BUG_ON(node->detached);
  1099. }
  1100. }
  1101. if (!node)
  1102. return 0;
  1103. new_node = alloc_backref_node(cache);
  1104. if (!new_node)
  1105. return -ENOMEM;
  1106. new_node->bytenr = dest->node->start;
  1107. new_node->level = node->level;
  1108. new_node->lowest = node->lowest;
  1109. new_node->checked = 1;
  1110. new_node->root = dest;
  1111. if (!node->lowest) {
  1112. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1113. new_edge = alloc_backref_edge(cache);
  1114. if (!new_edge)
  1115. goto fail;
  1116. new_edge->node[UPPER] = new_node;
  1117. new_edge->node[LOWER] = edge->node[LOWER];
  1118. list_add_tail(&new_edge->list[UPPER],
  1119. &new_node->lower);
  1120. }
  1121. } else {
  1122. list_add_tail(&new_node->lower, &cache->leaves);
  1123. }
  1124. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1125. &new_node->rb_node);
  1126. if (rb_node)
  1127. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1128. if (!new_node->lowest) {
  1129. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1130. list_add_tail(&new_edge->list[LOWER],
  1131. &new_edge->node[LOWER]->upper);
  1132. }
  1133. }
  1134. return 0;
  1135. fail:
  1136. while (!list_empty(&new_node->lower)) {
  1137. new_edge = list_entry(new_node->lower.next,
  1138. struct backref_edge, list[UPPER]);
  1139. list_del(&new_edge->list[UPPER]);
  1140. free_backref_edge(cache, new_edge);
  1141. }
  1142. free_backref_node(cache, new_node);
  1143. return -ENOMEM;
  1144. }
  1145. /*
  1146. * helper to add 'address of tree root -> reloc tree' mapping
  1147. */
  1148. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1149. {
  1150. struct btrfs_fs_info *fs_info = root->fs_info;
  1151. struct rb_node *rb_node;
  1152. struct mapping_node *node;
  1153. struct reloc_control *rc = fs_info->reloc_ctl;
  1154. node = kmalloc(sizeof(*node), GFP_NOFS);
  1155. if (!node)
  1156. return -ENOMEM;
  1157. node->bytenr = root->node->start;
  1158. node->data = root;
  1159. spin_lock(&rc->reloc_root_tree.lock);
  1160. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1161. node->bytenr, &node->rb_node);
  1162. spin_unlock(&rc->reloc_root_tree.lock);
  1163. if (rb_node) {
  1164. btrfs_panic(fs_info, -EEXIST,
  1165. "Duplicate root found for start=%llu while inserting into relocation tree",
  1166. node->bytenr);
  1167. kfree(node);
  1168. return -EEXIST;
  1169. }
  1170. list_add_tail(&root->root_list, &rc->reloc_roots);
  1171. return 0;
  1172. }
  1173. /*
  1174. * helper to delete the 'address of tree root -> reloc tree'
  1175. * mapping
  1176. */
  1177. static void __del_reloc_root(struct btrfs_root *root)
  1178. {
  1179. struct btrfs_fs_info *fs_info = root->fs_info;
  1180. struct rb_node *rb_node;
  1181. struct mapping_node *node = NULL;
  1182. struct reloc_control *rc = fs_info->reloc_ctl;
  1183. spin_lock(&rc->reloc_root_tree.lock);
  1184. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1185. root->node->start);
  1186. if (rb_node) {
  1187. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1188. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1189. }
  1190. spin_unlock(&rc->reloc_root_tree.lock);
  1191. if (!node)
  1192. return;
  1193. BUG_ON((struct btrfs_root *)node->data != root);
  1194. spin_lock(&fs_info->trans_lock);
  1195. list_del_init(&root->root_list);
  1196. spin_unlock(&fs_info->trans_lock);
  1197. kfree(node);
  1198. }
  1199. /*
  1200. * helper to update the 'address of tree root -> reloc tree'
  1201. * mapping
  1202. */
  1203. static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
  1204. {
  1205. struct btrfs_fs_info *fs_info = root->fs_info;
  1206. struct rb_node *rb_node;
  1207. struct mapping_node *node = NULL;
  1208. struct reloc_control *rc = fs_info->reloc_ctl;
  1209. spin_lock(&rc->reloc_root_tree.lock);
  1210. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1211. root->node->start);
  1212. if (rb_node) {
  1213. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1214. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1215. }
  1216. spin_unlock(&rc->reloc_root_tree.lock);
  1217. if (!node)
  1218. return 0;
  1219. BUG_ON((struct btrfs_root *)node->data != root);
  1220. spin_lock(&rc->reloc_root_tree.lock);
  1221. node->bytenr = new_bytenr;
  1222. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1223. node->bytenr, &node->rb_node);
  1224. spin_unlock(&rc->reloc_root_tree.lock);
  1225. if (rb_node)
  1226. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1227. return 0;
  1228. }
  1229. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1230. struct btrfs_root *root, u64 objectid)
  1231. {
  1232. struct btrfs_fs_info *fs_info = root->fs_info;
  1233. struct btrfs_root *reloc_root;
  1234. struct extent_buffer *eb;
  1235. struct btrfs_root_item *root_item;
  1236. struct btrfs_key root_key;
  1237. int ret;
  1238. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1239. BUG_ON(!root_item);
  1240. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1241. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1242. root_key.offset = objectid;
  1243. if (root->root_key.objectid == objectid) {
  1244. u64 commit_root_gen;
  1245. /* called by btrfs_init_reloc_root */
  1246. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1247. BTRFS_TREE_RELOC_OBJECTID);
  1248. BUG_ON(ret);
  1249. /*
  1250. * Set the last_snapshot field to the generation of the commit
  1251. * root - like this ctree.c:btrfs_block_can_be_shared() behaves
  1252. * correctly (returns true) when the relocation root is created
  1253. * either inside the critical section of a transaction commit
  1254. * (through transaction.c:qgroup_account_snapshot()) and when
  1255. * it's created before the transaction commit is started.
  1256. */
  1257. commit_root_gen = btrfs_header_generation(root->commit_root);
  1258. btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
  1259. } else {
  1260. /*
  1261. * called by btrfs_reloc_post_snapshot_hook.
  1262. * the source tree is a reloc tree, all tree blocks
  1263. * modified after it was created have RELOC flag
  1264. * set in their headers. so it's OK to not update
  1265. * the 'last_snapshot'.
  1266. */
  1267. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1268. BTRFS_TREE_RELOC_OBJECTID);
  1269. BUG_ON(ret);
  1270. }
  1271. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1272. btrfs_set_root_bytenr(root_item, eb->start);
  1273. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1274. btrfs_set_root_generation(root_item, trans->transid);
  1275. if (root->root_key.objectid == objectid) {
  1276. btrfs_set_root_refs(root_item, 0);
  1277. memset(&root_item->drop_progress, 0,
  1278. sizeof(struct btrfs_disk_key));
  1279. root_item->drop_level = 0;
  1280. }
  1281. btrfs_tree_unlock(eb);
  1282. free_extent_buffer(eb);
  1283. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1284. &root_key, root_item);
  1285. BUG_ON(ret);
  1286. kfree(root_item);
  1287. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1288. BUG_ON(IS_ERR(reloc_root));
  1289. reloc_root->last_trans = trans->transid;
  1290. return reloc_root;
  1291. }
  1292. /*
  1293. * create reloc tree for a given fs tree. reloc tree is just a
  1294. * snapshot of the fs tree with special root objectid.
  1295. */
  1296. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1297. struct btrfs_root *root)
  1298. {
  1299. struct btrfs_fs_info *fs_info = root->fs_info;
  1300. struct btrfs_root *reloc_root;
  1301. struct reloc_control *rc = fs_info->reloc_ctl;
  1302. struct btrfs_block_rsv *rsv;
  1303. int clear_rsv = 0;
  1304. int ret;
  1305. if (root->reloc_root) {
  1306. reloc_root = root->reloc_root;
  1307. reloc_root->last_trans = trans->transid;
  1308. return 0;
  1309. }
  1310. if (!rc || !rc->create_reloc_tree ||
  1311. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1312. return 0;
  1313. if (!trans->reloc_reserved) {
  1314. rsv = trans->block_rsv;
  1315. trans->block_rsv = rc->block_rsv;
  1316. clear_rsv = 1;
  1317. }
  1318. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1319. if (clear_rsv)
  1320. trans->block_rsv = rsv;
  1321. ret = __add_reloc_root(reloc_root);
  1322. BUG_ON(ret < 0);
  1323. root->reloc_root = reloc_root;
  1324. return 0;
  1325. }
  1326. /*
  1327. * update root item of reloc tree
  1328. */
  1329. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1330. struct btrfs_root *root)
  1331. {
  1332. struct btrfs_fs_info *fs_info = root->fs_info;
  1333. struct btrfs_root *reloc_root;
  1334. struct btrfs_root_item *root_item;
  1335. int ret;
  1336. if (!root->reloc_root)
  1337. goto out;
  1338. reloc_root = root->reloc_root;
  1339. root_item = &reloc_root->root_item;
  1340. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1341. btrfs_root_refs(root_item) == 0) {
  1342. root->reloc_root = NULL;
  1343. __del_reloc_root(reloc_root);
  1344. }
  1345. if (reloc_root->commit_root != reloc_root->node) {
  1346. btrfs_set_root_node(root_item, reloc_root->node);
  1347. free_extent_buffer(reloc_root->commit_root);
  1348. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1349. }
  1350. ret = btrfs_update_root(trans, fs_info->tree_root,
  1351. &reloc_root->root_key, root_item);
  1352. BUG_ON(ret);
  1353. out:
  1354. return 0;
  1355. }
  1356. /*
  1357. * helper to find first cached inode with inode number >= objectid
  1358. * in a subvolume
  1359. */
  1360. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1361. {
  1362. struct rb_node *node;
  1363. struct rb_node *prev;
  1364. struct btrfs_inode *entry;
  1365. struct inode *inode;
  1366. spin_lock(&root->inode_lock);
  1367. again:
  1368. node = root->inode_tree.rb_node;
  1369. prev = NULL;
  1370. while (node) {
  1371. prev = node;
  1372. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1373. if (objectid < btrfs_ino(&entry->vfs_inode))
  1374. node = node->rb_left;
  1375. else if (objectid > btrfs_ino(&entry->vfs_inode))
  1376. node = node->rb_right;
  1377. else
  1378. break;
  1379. }
  1380. if (!node) {
  1381. while (prev) {
  1382. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1383. if (objectid <= btrfs_ino(&entry->vfs_inode)) {
  1384. node = prev;
  1385. break;
  1386. }
  1387. prev = rb_next(prev);
  1388. }
  1389. }
  1390. while (node) {
  1391. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1392. inode = igrab(&entry->vfs_inode);
  1393. if (inode) {
  1394. spin_unlock(&root->inode_lock);
  1395. return inode;
  1396. }
  1397. objectid = btrfs_ino(&entry->vfs_inode) + 1;
  1398. if (cond_resched_lock(&root->inode_lock))
  1399. goto again;
  1400. node = rb_next(node);
  1401. }
  1402. spin_unlock(&root->inode_lock);
  1403. return NULL;
  1404. }
  1405. static int in_block_group(u64 bytenr,
  1406. struct btrfs_block_group_cache *block_group)
  1407. {
  1408. if (bytenr >= block_group->key.objectid &&
  1409. bytenr < block_group->key.objectid + block_group->key.offset)
  1410. return 1;
  1411. return 0;
  1412. }
  1413. /*
  1414. * get new location of data
  1415. */
  1416. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1417. u64 bytenr, u64 num_bytes)
  1418. {
  1419. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1420. struct btrfs_path *path;
  1421. struct btrfs_file_extent_item *fi;
  1422. struct extent_buffer *leaf;
  1423. int ret;
  1424. path = btrfs_alloc_path();
  1425. if (!path)
  1426. return -ENOMEM;
  1427. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1428. ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
  1429. bytenr, 0);
  1430. if (ret < 0)
  1431. goto out;
  1432. if (ret > 0) {
  1433. ret = -ENOENT;
  1434. goto out;
  1435. }
  1436. leaf = path->nodes[0];
  1437. fi = btrfs_item_ptr(leaf, path->slots[0],
  1438. struct btrfs_file_extent_item);
  1439. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1440. btrfs_file_extent_compression(leaf, fi) ||
  1441. btrfs_file_extent_encryption(leaf, fi) ||
  1442. btrfs_file_extent_other_encoding(leaf, fi));
  1443. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1444. ret = -EINVAL;
  1445. goto out;
  1446. }
  1447. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1448. ret = 0;
  1449. out:
  1450. btrfs_free_path(path);
  1451. return ret;
  1452. }
  1453. /*
  1454. * update file extent items in the tree leaf to point to
  1455. * the new locations.
  1456. */
  1457. static noinline_for_stack
  1458. int replace_file_extents(struct btrfs_trans_handle *trans,
  1459. struct reloc_control *rc,
  1460. struct btrfs_root *root,
  1461. struct extent_buffer *leaf)
  1462. {
  1463. struct btrfs_fs_info *fs_info = root->fs_info;
  1464. struct btrfs_key key;
  1465. struct btrfs_file_extent_item *fi;
  1466. struct inode *inode = NULL;
  1467. u64 parent;
  1468. u64 bytenr;
  1469. u64 new_bytenr = 0;
  1470. u64 num_bytes;
  1471. u64 end;
  1472. u32 nritems;
  1473. u32 i;
  1474. int ret = 0;
  1475. int first = 1;
  1476. int dirty = 0;
  1477. if (rc->stage != UPDATE_DATA_PTRS)
  1478. return 0;
  1479. /* reloc trees always use full backref */
  1480. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1481. parent = leaf->start;
  1482. else
  1483. parent = 0;
  1484. nritems = btrfs_header_nritems(leaf);
  1485. for (i = 0; i < nritems; i++) {
  1486. cond_resched();
  1487. btrfs_item_key_to_cpu(leaf, &key, i);
  1488. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1489. continue;
  1490. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1491. if (btrfs_file_extent_type(leaf, fi) ==
  1492. BTRFS_FILE_EXTENT_INLINE)
  1493. continue;
  1494. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1495. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1496. if (bytenr == 0)
  1497. continue;
  1498. if (!in_block_group(bytenr, rc->block_group))
  1499. continue;
  1500. /*
  1501. * if we are modifying block in fs tree, wait for readpage
  1502. * to complete and drop the extent cache
  1503. */
  1504. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1505. if (first) {
  1506. inode = find_next_inode(root, key.objectid);
  1507. first = 0;
  1508. } else if (inode && btrfs_ino(inode) < key.objectid) {
  1509. btrfs_add_delayed_iput(inode);
  1510. inode = find_next_inode(root, key.objectid);
  1511. }
  1512. if (inode && btrfs_ino(inode) == key.objectid) {
  1513. end = key.offset +
  1514. btrfs_file_extent_num_bytes(leaf, fi);
  1515. WARN_ON(!IS_ALIGNED(key.offset,
  1516. fs_info->sectorsize));
  1517. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1518. end--;
  1519. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1520. key.offset, end);
  1521. if (!ret)
  1522. continue;
  1523. btrfs_drop_extent_cache(inode, key.offset, end,
  1524. 1);
  1525. unlock_extent(&BTRFS_I(inode)->io_tree,
  1526. key.offset, end);
  1527. }
  1528. }
  1529. ret = get_new_location(rc->data_inode, &new_bytenr,
  1530. bytenr, num_bytes);
  1531. if (ret) {
  1532. /*
  1533. * Don't have to abort since we've not changed anything
  1534. * in the file extent yet.
  1535. */
  1536. break;
  1537. }
  1538. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1539. dirty = 1;
  1540. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1541. ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
  1542. num_bytes, parent,
  1543. btrfs_header_owner(leaf),
  1544. key.objectid, key.offset);
  1545. if (ret) {
  1546. btrfs_abort_transaction(trans, ret);
  1547. break;
  1548. }
  1549. ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
  1550. parent, btrfs_header_owner(leaf),
  1551. key.objectid, key.offset);
  1552. if (ret) {
  1553. btrfs_abort_transaction(trans, ret);
  1554. break;
  1555. }
  1556. }
  1557. if (dirty)
  1558. btrfs_mark_buffer_dirty(leaf);
  1559. if (inode)
  1560. btrfs_add_delayed_iput(inode);
  1561. return ret;
  1562. }
  1563. static noinline_for_stack
  1564. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1565. struct btrfs_path *path, int level)
  1566. {
  1567. struct btrfs_disk_key key1;
  1568. struct btrfs_disk_key key2;
  1569. btrfs_node_key(eb, &key1, slot);
  1570. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1571. return memcmp(&key1, &key2, sizeof(key1));
  1572. }
  1573. /*
  1574. * try to replace tree blocks in fs tree with the new blocks
  1575. * in reloc tree. tree blocks haven't been modified since the
  1576. * reloc tree was create can be replaced.
  1577. *
  1578. * if a block was replaced, level of the block + 1 is returned.
  1579. * if no block got replaced, 0 is returned. if there are other
  1580. * errors, a negative error number is returned.
  1581. */
  1582. static noinline_for_stack
  1583. int replace_path(struct btrfs_trans_handle *trans,
  1584. struct btrfs_root *dest, struct btrfs_root *src,
  1585. struct btrfs_path *path, struct btrfs_key *next_key,
  1586. int lowest_level, int max_level)
  1587. {
  1588. struct btrfs_fs_info *fs_info = dest->fs_info;
  1589. struct extent_buffer *eb;
  1590. struct extent_buffer *parent;
  1591. struct btrfs_key key;
  1592. u64 old_bytenr;
  1593. u64 new_bytenr;
  1594. u64 old_ptr_gen;
  1595. u64 new_ptr_gen;
  1596. u64 last_snapshot;
  1597. u32 blocksize;
  1598. int cow = 0;
  1599. int level;
  1600. int ret;
  1601. int slot;
  1602. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1603. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1604. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1605. again:
  1606. slot = path->slots[lowest_level];
  1607. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1608. eb = btrfs_lock_root_node(dest);
  1609. btrfs_set_lock_blocking(eb);
  1610. level = btrfs_header_level(eb);
  1611. if (level < lowest_level) {
  1612. btrfs_tree_unlock(eb);
  1613. free_extent_buffer(eb);
  1614. return 0;
  1615. }
  1616. if (cow) {
  1617. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1618. BUG_ON(ret);
  1619. }
  1620. btrfs_set_lock_blocking(eb);
  1621. if (next_key) {
  1622. next_key->objectid = (u64)-1;
  1623. next_key->type = (u8)-1;
  1624. next_key->offset = (u64)-1;
  1625. }
  1626. parent = eb;
  1627. while (1) {
  1628. level = btrfs_header_level(parent);
  1629. BUG_ON(level < lowest_level);
  1630. ret = btrfs_bin_search(parent, &key, level, &slot);
  1631. if (ret && slot > 0)
  1632. slot--;
  1633. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1634. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1635. old_bytenr = btrfs_node_blockptr(parent, slot);
  1636. blocksize = fs_info->nodesize;
  1637. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1638. if (level <= max_level) {
  1639. eb = path->nodes[level];
  1640. new_bytenr = btrfs_node_blockptr(eb,
  1641. path->slots[level]);
  1642. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1643. path->slots[level]);
  1644. } else {
  1645. new_bytenr = 0;
  1646. new_ptr_gen = 0;
  1647. }
  1648. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1649. ret = level;
  1650. break;
  1651. }
  1652. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1653. memcmp_node_keys(parent, slot, path, level)) {
  1654. if (level <= lowest_level) {
  1655. ret = 0;
  1656. break;
  1657. }
  1658. eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
  1659. if (IS_ERR(eb)) {
  1660. ret = PTR_ERR(eb);
  1661. break;
  1662. } else if (!extent_buffer_uptodate(eb)) {
  1663. ret = -EIO;
  1664. free_extent_buffer(eb);
  1665. break;
  1666. }
  1667. btrfs_tree_lock(eb);
  1668. if (cow) {
  1669. ret = btrfs_cow_block(trans, dest, eb, parent,
  1670. slot, &eb);
  1671. BUG_ON(ret);
  1672. }
  1673. btrfs_set_lock_blocking(eb);
  1674. btrfs_tree_unlock(parent);
  1675. free_extent_buffer(parent);
  1676. parent = eb;
  1677. continue;
  1678. }
  1679. if (!cow) {
  1680. btrfs_tree_unlock(parent);
  1681. free_extent_buffer(parent);
  1682. cow = 1;
  1683. goto again;
  1684. }
  1685. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1686. path->slots[level]);
  1687. btrfs_release_path(path);
  1688. path->lowest_level = level;
  1689. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1690. path->lowest_level = 0;
  1691. BUG_ON(ret);
  1692. /*
  1693. * Info qgroup to trace both subtrees.
  1694. *
  1695. * We must trace both trees.
  1696. * 1) Tree reloc subtree
  1697. * If not traced, we will leak data numbers
  1698. * 2) Fs subtree
  1699. * If not traced, we will double count old data
  1700. * and tree block numbers, if current trans doesn't free
  1701. * data reloc tree inode.
  1702. */
  1703. ret = btrfs_qgroup_trace_subtree(trans, src, parent,
  1704. btrfs_header_generation(parent),
  1705. btrfs_header_level(parent));
  1706. if (ret < 0)
  1707. break;
  1708. ret = btrfs_qgroup_trace_subtree(trans, dest,
  1709. path->nodes[level],
  1710. btrfs_header_generation(path->nodes[level]),
  1711. btrfs_header_level(path->nodes[level]));
  1712. if (ret < 0)
  1713. break;
  1714. /*
  1715. * swap blocks in fs tree and reloc tree.
  1716. */
  1717. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1718. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1719. btrfs_mark_buffer_dirty(parent);
  1720. btrfs_set_node_blockptr(path->nodes[level],
  1721. path->slots[level], old_bytenr);
  1722. btrfs_set_node_ptr_generation(path->nodes[level],
  1723. path->slots[level], old_ptr_gen);
  1724. btrfs_mark_buffer_dirty(path->nodes[level]);
  1725. ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
  1726. blocksize, path->nodes[level]->start,
  1727. src->root_key.objectid, level - 1, 0);
  1728. BUG_ON(ret);
  1729. ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
  1730. blocksize, 0, dest->root_key.objectid,
  1731. level - 1, 0);
  1732. BUG_ON(ret);
  1733. ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
  1734. path->nodes[level]->start,
  1735. src->root_key.objectid, level - 1, 0);
  1736. BUG_ON(ret);
  1737. ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
  1738. 0, dest->root_key.objectid, level - 1,
  1739. 0);
  1740. BUG_ON(ret);
  1741. btrfs_unlock_up_safe(path, 0);
  1742. ret = level;
  1743. break;
  1744. }
  1745. btrfs_tree_unlock(parent);
  1746. free_extent_buffer(parent);
  1747. return ret;
  1748. }
  1749. /*
  1750. * helper to find next relocated block in reloc tree
  1751. */
  1752. static noinline_for_stack
  1753. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1754. int *level)
  1755. {
  1756. struct extent_buffer *eb;
  1757. int i;
  1758. u64 last_snapshot;
  1759. u32 nritems;
  1760. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1761. for (i = 0; i < *level; i++) {
  1762. free_extent_buffer(path->nodes[i]);
  1763. path->nodes[i] = NULL;
  1764. }
  1765. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1766. eb = path->nodes[i];
  1767. nritems = btrfs_header_nritems(eb);
  1768. while (path->slots[i] + 1 < nritems) {
  1769. path->slots[i]++;
  1770. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1771. last_snapshot)
  1772. continue;
  1773. *level = i;
  1774. return 0;
  1775. }
  1776. free_extent_buffer(path->nodes[i]);
  1777. path->nodes[i] = NULL;
  1778. }
  1779. return 1;
  1780. }
  1781. /*
  1782. * walk down reloc tree to find relocated block of lowest level
  1783. */
  1784. static noinline_for_stack
  1785. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1786. int *level)
  1787. {
  1788. struct btrfs_fs_info *fs_info = root->fs_info;
  1789. struct extent_buffer *eb = NULL;
  1790. int i;
  1791. u64 bytenr;
  1792. u64 ptr_gen = 0;
  1793. u64 last_snapshot;
  1794. u32 nritems;
  1795. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1796. for (i = *level; i > 0; i--) {
  1797. eb = path->nodes[i];
  1798. nritems = btrfs_header_nritems(eb);
  1799. while (path->slots[i] < nritems) {
  1800. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1801. if (ptr_gen > last_snapshot)
  1802. break;
  1803. path->slots[i]++;
  1804. }
  1805. if (path->slots[i] >= nritems) {
  1806. if (i == *level)
  1807. break;
  1808. *level = i + 1;
  1809. return 0;
  1810. }
  1811. if (i == 1) {
  1812. *level = i;
  1813. return 0;
  1814. }
  1815. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1816. eb = read_tree_block(fs_info, bytenr, ptr_gen);
  1817. if (IS_ERR(eb)) {
  1818. return PTR_ERR(eb);
  1819. } else if (!extent_buffer_uptodate(eb)) {
  1820. free_extent_buffer(eb);
  1821. return -EIO;
  1822. }
  1823. BUG_ON(btrfs_header_level(eb) != i - 1);
  1824. path->nodes[i - 1] = eb;
  1825. path->slots[i - 1] = 0;
  1826. }
  1827. return 1;
  1828. }
  1829. /*
  1830. * invalidate extent cache for file extents whose key in range of
  1831. * [min_key, max_key)
  1832. */
  1833. static int invalidate_extent_cache(struct btrfs_root *root,
  1834. struct btrfs_key *min_key,
  1835. struct btrfs_key *max_key)
  1836. {
  1837. struct btrfs_fs_info *fs_info = root->fs_info;
  1838. struct inode *inode = NULL;
  1839. u64 objectid;
  1840. u64 start, end;
  1841. u64 ino;
  1842. objectid = min_key->objectid;
  1843. while (1) {
  1844. cond_resched();
  1845. iput(inode);
  1846. if (objectid > max_key->objectid)
  1847. break;
  1848. inode = find_next_inode(root, objectid);
  1849. if (!inode)
  1850. break;
  1851. ino = btrfs_ino(inode);
  1852. if (ino > max_key->objectid) {
  1853. iput(inode);
  1854. break;
  1855. }
  1856. objectid = ino + 1;
  1857. if (!S_ISREG(inode->i_mode))
  1858. continue;
  1859. if (unlikely(min_key->objectid == ino)) {
  1860. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1861. continue;
  1862. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1863. start = 0;
  1864. else {
  1865. start = min_key->offset;
  1866. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1867. }
  1868. } else {
  1869. start = 0;
  1870. }
  1871. if (unlikely(max_key->objectid == ino)) {
  1872. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1873. continue;
  1874. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1875. end = (u64)-1;
  1876. } else {
  1877. if (max_key->offset == 0)
  1878. continue;
  1879. end = max_key->offset;
  1880. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1881. end--;
  1882. }
  1883. } else {
  1884. end = (u64)-1;
  1885. }
  1886. /* the lock_extent waits for readpage to complete */
  1887. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1888. btrfs_drop_extent_cache(inode, start, end, 1);
  1889. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1890. }
  1891. return 0;
  1892. }
  1893. static int find_next_key(struct btrfs_path *path, int level,
  1894. struct btrfs_key *key)
  1895. {
  1896. while (level < BTRFS_MAX_LEVEL) {
  1897. if (!path->nodes[level])
  1898. break;
  1899. if (path->slots[level] + 1 <
  1900. btrfs_header_nritems(path->nodes[level])) {
  1901. btrfs_node_key_to_cpu(path->nodes[level], key,
  1902. path->slots[level] + 1);
  1903. return 0;
  1904. }
  1905. level++;
  1906. }
  1907. return 1;
  1908. }
  1909. /*
  1910. * merge the relocated tree blocks in reloc tree with corresponding
  1911. * fs tree.
  1912. */
  1913. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1914. struct btrfs_root *root)
  1915. {
  1916. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1917. LIST_HEAD(inode_list);
  1918. struct btrfs_key key;
  1919. struct btrfs_key next_key;
  1920. struct btrfs_trans_handle *trans = NULL;
  1921. struct btrfs_root *reloc_root;
  1922. struct btrfs_root_item *root_item;
  1923. struct btrfs_path *path;
  1924. struct extent_buffer *leaf;
  1925. int level;
  1926. int max_level;
  1927. int replaced = 0;
  1928. int ret;
  1929. int err = 0;
  1930. u32 min_reserved;
  1931. path = btrfs_alloc_path();
  1932. if (!path)
  1933. return -ENOMEM;
  1934. path->reada = READA_FORWARD;
  1935. reloc_root = root->reloc_root;
  1936. root_item = &reloc_root->root_item;
  1937. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1938. level = btrfs_root_level(root_item);
  1939. extent_buffer_get(reloc_root->node);
  1940. path->nodes[level] = reloc_root->node;
  1941. path->slots[level] = 0;
  1942. } else {
  1943. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1944. level = root_item->drop_level;
  1945. BUG_ON(level == 0);
  1946. path->lowest_level = level;
  1947. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1948. path->lowest_level = 0;
  1949. if (ret < 0) {
  1950. btrfs_free_path(path);
  1951. return ret;
  1952. }
  1953. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1954. path->slots[level]);
  1955. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1956. btrfs_unlock_up_safe(path, 0);
  1957. }
  1958. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1959. memset(&next_key, 0, sizeof(next_key));
  1960. while (1) {
  1961. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1962. BTRFS_RESERVE_FLUSH_ALL);
  1963. if (ret) {
  1964. err = ret;
  1965. goto out;
  1966. }
  1967. trans = btrfs_start_transaction(root, 0);
  1968. if (IS_ERR(trans)) {
  1969. err = PTR_ERR(trans);
  1970. trans = NULL;
  1971. goto out;
  1972. }
  1973. trans->block_rsv = rc->block_rsv;
  1974. replaced = 0;
  1975. max_level = level;
  1976. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1977. if (ret < 0) {
  1978. err = ret;
  1979. goto out;
  1980. }
  1981. if (ret > 0)
  1982. break;
  1983. if (!find_next_key(path, level, &key) &&
  1984. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1985. ret = 0;
  1986. } else {
  1987. ret = replace_path(trans, root, reloc_root, path,
  1988. &next_key, level, max_level);
  1989. }
  1990. if (ret < 0) {
  1991. err = ret;
  1992. goto out;
  1993. }
  1994. if (ret > 0) {
  1995. level = ret;
  1996. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1997. path->slots[level]);
  1998. replaced = 1;
  1999. }
  2000. ret = walk_up_reloc_tree(reloc_root, path, &level);
  2001. if (ret > 0)
  2002. break;
  2003. BUG_ON(level == 0);
  2004. /*
  2005. * save the merging progress in the drop_progress.
  2006. * this is OK since root refs == 1 in this case.
  2007. */
  2008. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  2009. path->slots[level]);
  2010. root_item->drop_level = level;
  2011. btrfs_end_transaction_throttle(trans);
  2012. trans = NULL;
  2013. btrfs_btree_balance_dirty(fs_info);
  2014. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2015. invalidate_extent_cache(root, &key, &next_key);
  2016. }
  2017. /*
  2018. * handle the case only one block in the fs tree need to be
  2019. * relocated and the block is tree root.
  2020. */
  2021. leaf = btrfs_lock_root_node(root);
  2022. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  2023. btrfs_tree_unlock(leaf);
  2024. free_extent_buffer(leaf);
  2025. if (ret < 0)
  2026. err = ret;
  2027. out:
  2028. btrfs_free_path(path);
  2029. if (err == 0) {
  2030. memset(&root_item->drop_progress, 0,
  2031. sizeof(root_item->drop_progress));
  2032. root_item->drop_level = 0;
  2033. btrfs_set_root_refs(root_item, 0);
  2034. btrfs_update_reloc_root(trans, root);
  2035. }
  2036. if (trans)
  2037. btrfs_end_transaction_throttle(trans);
  2038. btrfs_btree_balance_dirty(fs_info);
  2039. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2040. invalidate_extent_cache(root, &key, &next_key);
  2041. return err;
  2042. }
  2043. static noinline_for_stack
  2044. int prepare_to_merge(struct reloc_control *rc, int err)
  2045. {
  2046. struct btrfs_root *root = rc->extent_root;
  2047. struct btrfs_fs_info *fs_info = root->fs_info;
  2048. struct btrfs_root *reloc_root;
  2049. struct btrfs_trans_handle *trans;
  2050. LIST_HEAD(reloc_roots);
  2051. u64 num_bytes = 0;
  2052. int ret;
  2053. mutex_lock(&fs_info->reloc_mutex);
  2054. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2055. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2056. mutex_unlock(&fs_info->reloc_mutex);
  2057. again:
  2058. if (!err) {
  2059. num_bytes = rc->merging_rsv_size;
  2060. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2061. BTRFS_RESERVE_FLUSH_ALL);
  2062. if (ret)
  2063. err = ret;
  2064. }
  2065. trans = btrfs_join_transaction(rc->extent_root);
  2066. if (IS_ERR(trans)) {
  2067. if (!err)
  2068. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2069. num_bytes);
  2070. return PTR_ERR(trans);
  2071. }
  2072. if (!err) {
  2073. if (num_bytes != rc->merging_rsv_size) {
  2074. btrfs_end_transaction(trans);
  2075. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2076. num_bytes);
  2077. goto again;
  2078. }
  2079. }
  2080. rc->merge_reloc_tree = 1;
  2081. while (!list_empty(&rc->reloc_roots)) {
  2082. reloc_root = list_entry(rc->reloc_roots.next,
  2083. struct btrfs_root, root_list);
  2084. list_del_init(&reloc_root->root_list);
  2085. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2086. BUG_ON(IS_ERR(root));
  2087. BUG_ON(root->reloc_root != reloc_root);
  2088. /*
  2089. * set reference count to 1, so btrfs_recover_relocation
  2090. * knows it should resumes merging
  2091. */
  2092. if (!err)
  2093. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2094. btrfs_update_reloc_root(trans, root);
  2095. list_add(&reloc_root->root_list, &reloc_roots);
  2096. }
  2097. list_splice(&reloc_roots, &rc->reloc_roots);
  2098. if (!err)
  2099. btrfs_commit_transaction(trans);
  2100. else
  2101. btrfs_end_transaction(trans);
  2102. return err;
  2103. }
  2104. static noinline_for_stack
  2105. void free_reloc_roots(struct list_head *list)
  2106. {
  2107. struct btrfs_root *reloc_root;
  2108. while (!list_empty(list)) {
  2109. reloc_root = list_entry(list->next, struct btrfs_root,
  2110. root_list);
  2111. free_extent_buffer(reloc_root->node);
  2112. free_extent_buffer(reloc_root->commit_root);
  2113. reloc_root->node = NULL;
  2114. reloc_root->commit_root = NULL;
  2115. __del_reloc_root(reloc_root);
  2116. }
  2117. }
  2118. static noinline_for_stack
  2119. void merge_reloc_roots(struct reloc_control *rc)
  2120. {
  2121. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2122. struct btrfs_root *root;
  2123. struct btrfs_root *reloc_root;
  2124. LIST_HEAD(reloc_roots);
  2125. int found = 0;
  2126. int ret = 0;
  2127. again:
  2128. root = rc->extent_root;
  2129. /*
  2130. * this serializes us with btrfs_record_root_in_transaction,
  2131. * we have to make sure nobody is in the middle of
  2132. * adding their roots to the list while we are
  2133. * doing this splice
  2134. */
  2135. mutex_lock(&fs_info->reloc_mutex);
  2136. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2137. mutex_unlock(&fs_info->reloc_mutex);
  2138. while (!list_empty(&reloc_roots)) {
  2139. found = 1;
  2140. reloc_root = list_entry(reloc_roots.next,
  2141. struct btrfs_root, root_list);
  2142. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2143. root = read_fs_root(fs_info,
  2144. reloc_root->root_key.offset);
  2145. BUG_ON(IS_ERR(root));
  2146. BUG_ON(root->reloc_root != reloc_root);
  2147. ret = merge_reloc_root(rc, root);
  2148. if (ret) {
  2149. if (list_empty(&reloc_root->root_list))
  2150. list_add_tail(&reloc_root->root_list,
  2151. &reloc_roots);
  2152. goto out;
  2153. }
  2154. } else {
  2155. list_del_init(&reloc_root->root_list);
  2156. }
  2157. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2158. if (ret < 0) {
  2159. if (list_empty(&reloc_root->root_list))
  2160. list_add_tail(&reloc_root->root_list,
  2161. &reloc_roots);
  2162. goto out;
  2163. }
  2164. }
  2165. if (found) {
  2166. found = 0;
  2167. goto again;
  2168. }
  2169. out:
  2170. if (ret) {
  2171. btrfs_handle_fs_error(fs_info, ret, NULL);
  2172. if (!list_empty(&reloc_roots))
  2173. free_reloc_roots(&reloc_roots);
  2174. /* new reloc root may be added */
  2175. mutex_lock(&fs_info->reloc_mutex);
  2176. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2177. mutex_unlock(&fs_info->reloc_mutex);
  2178. if (!list_empty(&reloc_roots))
  2179. free_reloc_roots(&reloc_roots);
  2180. }
  2181. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2182. }
  2183. static void free_block_list(struct rb_root *blocks)
  2184. {
  2185. struct tree_block *block;
  2186. struct rb_node *rb_node;
  2187. while ((rb_node = rb_first(blocks))) {
  2188. block = rb_entry(rb_node, struct tree_block, rb_node);
  2189. rb_erase(rb_node, blocks);
  2190. kfree(block);
  2191. }
  2192. }
  2193. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2194. struct btrfs_root *reloc_root)
  2195. {
  2196. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2197. struct btrfs_root *root;
  2198. if (reloc_root->last_trans == trans->transid)
  2199. return 0;
  2200. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2201. BUG_ON(IS_ERR(root));
  2202. BUG_ON(root->reloc_root != reloc_root);
  2203. return btrfs_record_root_in_trans(trans, root);
  2204. }
  2205. static noinline_for_stack
  2206. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2207. struct reloc_control *rc,
  2208. struct backref_node *node,
  2209. struct backref_edge *edges[])
  2210. {
  2211. struct backref_node *next;
  2212. struct btrfs_root *root;
  2213. int index = 0;
  2214. next = node;
  2215. while (1) {
  2216. cond_resched();
  2217. next = walk_up_backref(next, edges, &index);
  2218. root = next->root;
  2219. BUG_ON(!root);
  2220. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2221. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2222. record_reloc_root_in_trans(trans, root);
  2223. break;
  2224. }
  2225. btrfs_record_root_in_trans(trans, root);
  2226. root = root->reloc_root;
  2227. if (next->new_bytenr != root->node->start) {
  2228. BUG_ON(next->new_bytenr);
  2229. BUG_ON(!list_empty(&next->list));
  2230. next->new_bytenr = root->node->start;
  2231. next->root = root;
  2232. list_add_tail(&next->list,
  2233. &rc->backref_cache.changed);
  2234. __mark_block_processed(rc, next);
  2235. break;
  2236. }
  2237. WARN_ON(1);
  2238. root = NULL;
  2239. next = walk_down_backref(edges, &index);
  2240. if (!next || next->level <= node->level)
  2241. break;
  2242. }
  2243. if (!root)
  2244. return NULL;
  2245. next = node;
  2246. /* setup backref node path for btrfs_reloc_cow_block */
  2247. while (1) {
  2248. rc->backref_cache.path[next->level] = next;
  2249. if (--index < 0)
  2250. break;
  2251. next = edges[index]->node[UPPER];
  2252. }
  2253. return root;
  2254. }
  2255. /*
  2256. * select a tree root for relocation. return NULL if the block
  2257. * is reference counted. we should use do_relocation() in this
  2258. * case. return a tree root pointer if the block isn't reference
  2259. * counted. return -ENOENT if the block is root of reloc tree.
  2260. */
  2261. static noinline_for_stack
  2262. struct btrfs_root *select_one_root(struct backref_node *node)
  2263. {
  2264. struct backref_node *next;
  2265. struct btrfs_root *root;
  2266. struct btrfs_root *fs_root = NULL;
  2267. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2268. int index = 0;
  2269. next = node;
  2270. while (1) {
  2271. cond_resched();
  2272. next = walk_up_backref(next, edges, &index);
  2273. root = next->root;
  2274. BUG_ON(!root);
  2275. /* no other choice for non-references counted tree */
  2276. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2277. return root;
  2278. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2279. fs_root = root;
  2280. if (next != node)
  2281. return NULL;
  2282. next = walk_down_backref(edges, &index);
  2283. if (!next || next->level <= node->level)
  2284. break;
  2285. }
  2286. if (!fs_root)
  2287. return ERR_PTR(-ENOENT);
  2288. return fs_root;
  2289. }
  2290. static noinline_for_stack
  2291. u64 calcu_metadata_size(struct reloc_control *rc,
  2292. struct backref_node *node, int reserve)
  2293. {
  2294. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2295. struct backref_node *next = node;
  2296. struct backref_edge *edge;
  2297. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2298. u64 num_bytes = 0;
  2299. int index = 0;
  2300. BUG_ON(reserve && node->processed);
  2301. while (next) {
  2302. cond_resched();
  2303. while (1) {
  2304. if (next->processed && (reserve || next != node))
  2305. break;
  2306. num_bytes += fs_info->nodesize;
  2307. if (list_empty(&next->upper))
  2308. break;
  2309. edge = list_entry(next->upper.next,
  2310. struct backref_edge, list[LOWER]);
  2311. edges[index++] = edge;
  2312. next = edge->node[UPPER];
  2313. }
  2314. next = walk_down_backref(edges, &index);
  2315. }
  2316. return num_bytes;
  2317. }
  2318. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2319. struct reloc_control *rc,
  2320. struct backref_node *node)
  2321. {
  2322. struct btrfs_root *root = rc->extent_root;
  2323. struct btrfs_fs_info *fs_info = root->fs_info;
  2324. u64 num_bytes;
  2325. int ret;
  2326. u64 tmp;
  2327. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2328. trans->block_rsv = rc->block_rsv;
  2329. rc->reserved_bytes += num_bytes;
  2330. /*
  2331. * We are under a transaction here so we can only do limited flushing.
  2332. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2333. * transaction and try to refill when we can flush all the things.
  2334. */
  2335. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2336. BTRFS_RESERVE_FLUSH_LIMIT);
  2337. if (ret) {
  2338. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2339. while (tmp <= rc->reserved_bytes)
  2340. tmp <<= 1;
  2341. /*
  2342. * only one thread can access block_rsv at this point,
  2343. * so we don't need hold lock to protect block_rsv.
  2344. * we expand more reservation size here to allow enough
  2345. * space for relocation and we will return eailer in
  2346. * enospc case.
  2347. */
  2348. rc->block_rsv->size = tmp + fs_info->nodesize *
  2349. RELOCATION_RESERVED_NODES;
  2350. return -EAGAIN;
  2351. }
  2352. return 0;
  2353. }
  2354. /*
  2355. * relocate a block tree, and then update pointers in upper level
  2356. * blocks that reference the block to point to the new location.
  2357. *
  2358. * if called by link_to_upper, the block has already been relocated.
  2359. * in that case this function just updates pointers.
  2360. */
  2361. static int do_relocation(struct btrfs_trans_handle *trans,
  2362. struct reloc_control *rc,
  2363. struct backref_node *node,
  2364. struct btrfs_key *key,
  2365. struct btrfs_path *path, int lowest)
  2366. {
  2367. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2368. struct backref_node *upper;
  2369. struct backref_edge *edge;
  2370. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2371. struct btrfs_root *root;
  2372. struct extent_buffer *eb;
  2373. u32 blocksize;
  2374. u64 bytenr;
  2375. u64 generation;
  2376. int slot;
  2377. int ret;
  2378. int err = 0;
  2379. BUG_ON(lowest && node->eb);
  2380. path->lowest_level = node->level + 1;
  2381. rc->backref_cache.path[node->level] = node;
  2382. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2383. cond_resched();
  2384. upper = edge->node[UPPER];
  2385. root = select_reloc_root(trans, rc, upper, edges);
  2386. BUG_ON(!root);
  2387. if (upper->eb && !upper->locked) {
  2388. if (!lowest) {
  2389. ret = btrfs_bin_search(upper->eb, key,
  2390. upper->level, &slot);
  2391. BUG_ON(ret);
  2392. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2393. if (node->eb->start == bytenr)
  2394. goto next;
  2395. }
  2396. drop_node_buffer(upper);
  2397. }
  2398. if (!upper->eb) {
  2399. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2400. if (ret) {
  2401. if (ret < 0)
  2402. err = ret;
  2403. else
  2404. err = -ENOENT;
  2405. btrfs_release_path(path);
  2406. break;
  2407. }
  2408. if (!upper->eb) {
  2409. upper->eb = path->nodes[upper->level];
  2410. path->nodes[upper->level] = NULL;
  2411. } else {
  2412. BUG_ON(upper->eb != path->nodes[upper->level]);
  2413. }
  2414. upper->locked = 1;
  2415. path->locks[upper->level] = 0;
  2416. slot = path->slots[upper->level];
  2417. btrfs_release_path(path);
  2418. } else {
  2419. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2420. &slot);
  2421. BUG_ON(ret);
  2422. }
  2423. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2424. if (lowest) {
  2425. if (bytenr != node->bytenr) {
  2426. btrfs_err(root->fs_info,
  2427. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2428. bytenr, node->bytenr, slot,
  2429. upper->eb->start);
  2430. err = -EIO;
  2431. goto next;
  2432. }
  2433. } else {
  2434. if (node->eb->start == bytenr)
  2435. goto next;
  2436. }
  2437. blocksize = root->fs_info->nodesize;
  2438. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2439. eb = read_tree_block(fs_info, bytenr, generation);
  2440. if (IS_ERR(eb)) {
  2441. err = PTR_ERR(eb);
  2442. goto next;
  2443. } else if (!extent_buffer_uptodate(eb)) {
  2444. free_extent_buffer(eb);
  2445. err = -EIO;
  2446. goto next;
  2447. }
  2448. btrfs_tree_lock(eb);
  2449. btrfs_set_lock_blocking(eb);
  2450. if (!node->eb) {
  2451. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2452. slot, &eb);
  2453. btrfs_tree_unlock(eb);
  2454. free_extent_buffer(eb);
  2455. if (ret < 0) {
  2456. err = ret;
  2457. goto next;
  2458. }
  2459. BUG_ON(node->eb != eb);
  2460. } else {
  2461. btrfs_set_node_blockptr(upper->eb, slot,
  2462. node->eb->start);
  2463. btrfs_set_node_ptr_generation(upper->eb, slot,
  2464. trans->transid);
  2465. btrfs_mark_buffer_dirty(upper->eb);
  2466. ret = btrfs_inc_extent_ref(trans, root->fs_info,
  2467. node->eb->start, blocksize,
  2468. upper->eb->start,
  2469. btrfs_header_owner(upper->eb),
  2470. node->level, 0);
  2471. BUG_ON(ret);
  2472. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2473. BUG_ON(ret);
  2474. }
  2475. next:
  2476. if (!upper->pending)
  2477. drop_node_buffer(upper);
  2478. else
  2479. unlock_node_buffer(upper);
  2480. if (err)
  2481. break;
  2482. }
  2483. if (!err && node->pending) {
  2484. drop_node_buffer(node);
  2485. list_move_tail(&node->list, &rc->backref_cache.changed);
  2486. node->pending = 0;
  2487. }
  2488. path->lowest_level = 0;
  2489. BUG_ON(err == -ENOSPC);
  2490. return err;
  2491. }
  2492. static int link_to_upper(struct btrfs_trans_handle *trans,
  2493. struct reloc_control *rc,
  2494. struct backref_node *node,
  2495. struct btrfs_path *path)
  2496. {
  2497. struct btrfs_key key;
  2498. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2499. return do_relocation(trans, rc, node, &key, path, 0);
  2500. }
  2501. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2502. struct reloc_control *rc,
  2503. struct btrfs_path *path, int err)
  2504. {
  2505. LIST_HEAD(list);
  2506. struct backref_cache *cache = &rc->backref_cache;
  2507. struct backref_node *node;
  2508. int level;
  2509. int ret;
  2510. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2511. while (!list_empty(&cache->pending[level])) {
  2512. node = list_entry(cache->pending[level].next,
  2513. struct backref_node, list);
  2514. list_move_tail(&node->list, &list);
  2515. BUG_ON(!node->pending);
  2516. if (!err) {
  2517. ret = link_to_upper(trans, rc, node, path);
  2518. if (ret < 0)
  2519. err = ret;
  2520. }
  2521. }
  2522. list_splice_init(&list, &cache->pending[level]);
  2523. }
  2524. return err;
  2525. }
  2526. static void mark_block_processed(struct reloc_control *rc,
  2527. u64 bytenr, u32 blocksize)
  2528. {
  2529. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2530. EXTENT_DIRTY);
  2531. }
  2532. static void __mark_block_processed(struct reloc_control *rc,
  2533. struct backref_node *node)
  2534. {
  2535. u32 blocksize;
  2536. if (node->level == 0 ||
  2537. in_block_group(node->bytenr, rc->block_group)) {
  2538. blocksize = rc->extent_root->fs_info->nodesize;
  2539. mark_block_processed(rc, node->bytenr, blocksize);
  2540. }
  2541. node->processed = 1;
  2542. }
  2543. /*
  2544. * mark a block and all blocks directly/indirectly reference the block
  2545. * as processed.
  2546. */
  2547. static void update_processed_blocks(struct reloc_control *rc,
  2548. struct backref_node *node)
  2549. {
  2550. struct backref_node *next = node;
  2551. struct backref_edge *edge;
  2552. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2553. int index = 0;
  2554. while (next) {
  2555. cond_resched();
  2556. while (1) {
  2557. if (next->processed)
  2558. break;
  2559. __mark_block_processed(rc, next);
  2560. if (list_empty(&next->upper))
  2561. break;
  2562. edge = list_entry(next->upper.next,
  2563. struct backref_edge, list[LOWER]);
  2564. edges[index++] = edge;
  2565. next = edge->node[UPPER];
  2566. }
  2567. next = walk_down_backref(edges, &index);
  2568. }
  2569. }
  2570. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2571. {
  2572. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2573. if (test_range_bit(&rc->processed_blocks, bytenr,
  2574. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2575. return 1;
  2576. return 0;
  2577. }
  2578. static int get_tree_block_key(struct btrfs_fs_info *fs_info,
  2579. struct tree_block *block)
  2580. {
  2581. struct extent_buffer *eb;
  2582. BUG_ON(block->key_ready);
  2583. eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
  2584. if (IS_ERR(eb)) {
  2585. return PTR_ERR(eb);
  2586. } else if (!extent_buffer_uptodate(eb)) {
  2587. free_extent_buffer(eb);
  2588. return -EIO;
  2589. }
  2590. WARN_ON(btrfs_header_level(eb) != block->level);
  2591. if (block->level == 0)
  2592. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2593. else
  2594. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2595. free_extent_buffer(eb);
  2596. block->key_ready = 1;
  2597. return 0;
  2598. }
  2599. /*
  2600. * helper function to relocate a tree block
  2601. */
  2602. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2603. struct reloc_control *rc,
  2604. struct backref_node *node,
  2605. struct btrfs_key *key,
  2606. struct btrfs_path *path)
  2607. {
  2608. struct btrfs_root *root;
  2609. int ret = 0;
  2610. if (!node)
  2611. return 0;
  2612. BUG_ON(node->processed);
  2613. root = select_one_root(node);
  2614. if (root == ERR_PTR(-ENOENT)) {
  2615. update_processed_blocks(rc, node);
  2616. goto out;
  2617. }
  2618. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2619. ret = reserve_metadata_space(trans, rc, node);
  2620. if (ret)
  2621. goto out;
  2622. }
  2623. if (root) {
  2624. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2625. BUG_ON(node->new_bytenr);
  2626. BUG_ON(!list_empty(&node->list));
  2627. btrfs_record_root_in_trans(trans, root);
  2628. root = root->reloc_root;
  2629. node->new_bytenr = root->node->start;
  2630. node->root = root;
  2631. list_add_tail(&node->list, &rc->backref_cache.changed);
  2632. } else {
  2633. path->lowest_level = node->level;
  2634. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2635. btrfs_release_path(path);
  2636. if (ret > 0)
  2637. ret = 0;
  2638. }
  2639. if (!ret)
  2640. update_processed_blocks(rc, node);
  2641. } else {
  2642. ret = do_relocation(trans, rc, node, key, path, 1);
  2643. }
  2644. out:
  2645. if (ret || node->level == 0 || node->cowonly)
  2646. remove_backref_node(&rc->backref_cache, node);
  2647. return ret;
  2648. }
  2649. /*
  2650. * relocate a list of blocks
  2651. */
  2652. static noinline_for_stack
  2653. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2654. struct reloc_control *rc, struct rb_root *blocks)
  2655. {
  2656. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2657. struct backref_node *node;
  2658. struct btrfs_path *path;
  2659. struct tree_block *block;
  2660. struct rb_node *rb_node;
  2661. int ret;
  2662. int err = 0;
  2663. path = btrfs_alloc_path();
  2664. if (!path) {
  2665. err = -ENOMEM;
  2666. goto out_free_blocks;
  2667. }
  2668. rb_node = rb_first(blocks);
  2669. while (rb_node) {
  2670. block = rb_entry(rb_node, struct tree_block, rb_node);
  2671. if (!block->key_ready)
  2672. readahead_tree_block(fs_info, block->bytenr);
  2673. rb_node = rb_next(rb_node);
  2674. }
  2675. rb_node = rb_first(blocks);
  2676. while (rb_node) {
  2677. block = rb_entry(rb_node, struct tree_block, rb_node);
  2678. if (!block->key_ready) {
  2679. err = get_tree_block_key(fs_info, block);
  2680. if (err)
  2681. goto out_free_path;
  2682. }
  2683. rb_node = rb_next(rb_node);
  2684. }
  2685. rb_node = rb_first(blocks);
  2686. while (rb_node) {
  2687. block = rb_entry(rb_node, struct tree_block, rb_node);
  2688. node = build_backref_tree(rc, &block->key,
  2689. block->level, block->bytenr);
  2690. if (IS_ERR(node)) {
  2691. err = PTR_ERR(node);
  2692. goto out;
  2693. }
  2694. ret = relocate_tree_block(trans, rc, node, &block->key,
  2695. path);
  2696. if (ret < 0) {
  2697. if (ret != -EAGAIN || rb_node == rb_first(blocks))
  2698. err = ret;
  2699. goto out;
  2700. }
  2701. rb_node = rb_next(rb_node);
  2702. }
  2703. out:
  2704. err = finish_pending_nodes(trans, rc, path, err);
  2705. out_free_path:
  2706. btrfs_free_path(path);
  2707. out_free_blocks:
  2708. free_block_list(blocks);
  2709. return err;
  2710. }
  2711. static noinline_for_stack
  2712. int prealloc_file_extent_cluster(struct inode *inode,
  2713. struct file_extent_cluster *cluster)
  2714. {
  2715. u64 alloc_hint = 0;
  2716. u64 start;
  2717. u64 end;
  2718. u64 offset = BTRFS_I(inode)->index_cnt;
  2719. u64 num_bytes;
  2720. int nr = 0;
  2721. int ret = 0;
  2722. u64 prealloc_start = cluster->start - offset;
  2723. u64 prealloc_end = cluster->end - offset;
  2724. u64 cur_offset;
  2725. BUG_ON(cluster->start != cluster->boundary[0]);
  2726. inode_lock(inode);
  2727. ret = btrfs_check_data_free_space(inode, prealloc_start,
  2728. prealloc_end + 1 - prealloc_start);
  2729. if (ret)
  2730. goto out;
  2731. cur_offset = prealloc_start;
  2732. while (nr < cluster->nr) {
  2733. start = cluster->boundary[nr] - offset;
  2734. if (nr + 1 < cluster->nr)
  2735. end = cluster->boundary[nr + 1] - 1 - offset;
  2736. else
  2737. end = cluster->end - offset;
  2738. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2739. num_bytes = end + 1 - start;
  2740. if (cur_offset < start)
  2741. btrfs_free_reserved_data_space(inode, cur_offset,
  2742. start - cur_offset);
  2743. ret = btrfs_prealloc_file_range(inode, 0, start,
  2744. num_bytes, num_bytes,
  2745. end + 1, &alloc_hint);
  2746. cur_offset = end + 1;
  2747. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2748. if (ret)
  2749. break;
  2750. nr++;
  2751. }
  2752. if (cur_offset < prealloc_end)
  2753. btrfs_free_reserved_data_space(inode, cur_offset,
  2754. prealloc_end + 1 - cur_offset);
  2755. out:
  2756. inode_unlock(inode);
  2757. return ret;
  2758. }
  2759. static noinline_for_stack
  2760. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2761. u64 block_start)
  2762. {
  2763. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2764. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2765. struct extent_map *em;
  2766. int ret = 0;
  2767. em = alloc_extent_map();
  2768. if (!em)
  2769. return -ENOMEM;
  2770. em->start = start;
  2771. em->len = end + 1 - start;
  2772. em->block_len = em->len;
  2773. em->block_start = block_start;
  2774. em->bdev = fs_info->fs_devices->latest_bdev;
  2775. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2776. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2777. while (1) {
  2778. write_lock(&em_tree->lock);
  2779. ret = add_extent_mapping(em_tree, em, 0);
  2780. write_unlock(&em_tree->lock);
  2781. if (ret != -EEXIST) {
  2782. free_extent_map(em);
  2783. break;
  2784. }
  2785. btrfs_drop_extent_cache(inode, start, end, 0);
  2786. }
  2787. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2788. return ret;
  2789. }
  2790. static int relocate_file_extent_cluster(struct inode *inode,
  2791. struct file_extent_cluster *cluster)
  2792. {
  2793. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2794. u64 page_start;
  2795. u64 page_end;
  2796. u64 offset = BTRFS_I(inode)->index_cnt;
  2797. unsigned long index;
  2798. unsigned long last_index;
  2799. struct page *page;
  2800. struct file_ra_state *ra;
  2801. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2802. int nr = 0;
  2803. int ret = 0;
  2804. if (!cluster->nr)
  2805. return 0;
  2806. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2807. if (!ra)
  2808. return -ENOMEM;
  2809. ret = prealloc_file_extent_cluster(inode, cluster);
  2810. if (ret)
  2811. goto out;
  2812. file_ra_state_init(ra, inode->i_mapping);
  2813. ret = setup_extent_mapping(inode, cluster->start - offset,
  2814. cluster->end - offset, cluster->start);
  2815. if (ret)
  2816. goto out;
  2817. index = (cluster->start - offset) >> PAGE_SHIFT;
  2818. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2819. while (index <= last_index) {
  2820. ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
  2821. if (ret)
  2822. goto out;
  2823. page = find_lock_page(inode->i_mapping, index);
  2824. if (!page) {
  2825. page_cache_sync_readahead(inode->i_mapping,
  2826. ra, NULL, index,
  2827. last_index + 1 - index);
  2828. page = find_or_create_page(inode->i_mapping, index,
  2829. mask);
  2830. if (!page) {
  2831. btrfs_delalloc_release_metadata(inode,
  2832. PAGE_SIZE);
  2833. ret = -ENOMEM;
  2834. goto out;
  2835. }
  2836. }
  2837. if (PageReadahead(page)) {
  2838. page_cache_async_readahead(inode->i_mapping,
  2839. ra, NULL, page, index,
  2840. last_index + 1 - index);
  2841. }
  2842. if (!PageUptodate(page)) {
  2843. btrfs_readpage(NULL, page);
  2844. lock_page(page);
  2845. if (!PageUptodate(page)) {
  2846. unlock_page(page);
  2847. put_page(page);
  2848. btrfs_delalloc_release_metadata(inode,
  2849. PAGE_SIZE);
  2850. ret = -EIO;
  2851. goto out;
  2852. }
  2853. }
  2854. page_start = page_offset(page);
  2855. page_end = page_start + PAGE_SIZE - 1;
  2856. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2857. set_page_extent_mapped(page);
  2858. if (nr < cluster->nr &&
  2859. page_start + offset == cluster->boundary[nr]) {
  2860. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2861. page_start, page_end,
  2862. EXTENT_BOUNDARY);
  2863. nr++;
  2864. }
  2865. btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
  2866. set_page_dirty(page);
  2867. unlock_extent(&BTRFS_I(inode)->io_tree,
  2868. page_start, page_end);
  2869. unlock_page(page);
  2870. put_page(page);
  2871. index++;
  2872. balance_dirty_pages_ratelimited(inode->i_mapping);
  2873. btrfs_throttle(fs_info);
  2874. }
  2875. WARN_ON(nr != cluster->nr);
  2876. out:
  2877. kfree(ra);
  2878. return ret;
  2879. }
  2880. static noinline_for_stack
  2881. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2882. struct file_extent_cluster *cluster)
  2883. {
  2884. int ret;
  2885. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2886. ret = relocate_file_extent_cluster(inode, cluster);
  2887. if (ret)
  2888. return ret;
  2889. cluster->nr = 0;
  2890. }
  2891. if (!cluster->nr)
  2892. cluster->start = extent_key->objectid;
  2893. else
  2894. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2895. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2896. cluster->boundary[cluster->nr] = extent_key->objectid;
  2897. cluster->nr++;
  2898. if (cluster->nr >= MAX_EXTENTS) {
  2899. ret = relocate_file_extent_cluster(inode, cluster);
  2900. if (ret)
  2901. return ret;
  2902. cluster->nr = 0;
  2903. }
  2904. return 0;
  2905. }
  2906. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2907. static int get_ref_objectid_v0(struct reloc_control *rc,
  2908. struct btrfs_path *path,
  2909. struct btrfs_key *extent_key,
  2910. u64 *ref_objectid, int *path_change)
  2911. {
  2912. struct btrfs_key key;
  2913. struct extent_buffer *leaf;
  2914. struct btrfs_extent_ref_v0 *ref0;
  2915. int ret;
  2916. int slot;
  2917. leaf = path->nodes[0];
  2918. slot = path->slots[0];
  2919. while (1) {
  2920. if (slot >= btrfs_header_nritems(leaf)) {
  2921. ret = btrfs_next_leaf(rc->extent_root, path);
  2922. if (ret < 0)
  2923. return ret;
  2924. BUG_ON(ret > 0);
  2925. leaf = path->nodes[0];
  2926. slot = path->slots[0];
  2927. if (path_change)
  2928. *path_change = 1;
  2929. }
  2930. btrfs_item_key_to_cpu(leaf, &key, slot);
  2931. if (key.objectid != extent_key->objectid)
  2932. return -ENOENT;
  2933. if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
  2934. slot++;
  2935. continue;
  2936. }
  2937. ref0 = btrfs_item_ptr(leaf, slot,
  2938. struct btrfs_extent_ref_v0);
  2939. *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
  2940. break;
  2941. }
  2942. return 0;
  2943. }
  2944. #endif
  2945. /*
  2946. * helper to add a tree block to the list.
  2947. * the major work is getting the generation and level of the block
  2948. */
  2949. static int add_tree_block(struct reloc_control *rc,
  2950. struct btrfs_key *extent_key,
  2951. struct btrfs_path *path,
  2952. struct rb_root *blocks)
  2953. {
  2954. struct extent_buffer *eb;
  2955. struct btrfs_extent_item *ei;
  2956. struct btrfs_tree_block_info *bi;
  2957. struct tree_block *block;
  2958. struct rb_node *rb_node;
  2959. u32 item_size;
  2960. int level = -1;
  2961. u64 generation;
  2962. eb = path->nodes[0];
  2963. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2964. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2965. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2966. ei = btrfs_item_ptr(eb, path->slots[0],
  2967. struct btrfs_extent_item);
  2968. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2969. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2970. level = btrfs_tree_block_level(eb, bi);
  2971. } else {
  2972. level = (int)extent_key->offset;
  2973. }
  2974. generation = btrfs_extent_generation(eb, ei);
  2975. } else {
  2976. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2977. u64 ref_owner;
  2978. int ret;
  2979. BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2980. ret = get_ref_objectid_v0(rc, path, extent_key,
  2981. &ref_owner, NULL);
  2982. if (ret < 0)
  2983. return ret;
  2984. BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
  2985. level = (int)ref_owner;
  2986. /* FIXME: get real generation */
  2987. generation = 0;
  2988. #else
  2989. BUG();
  2990. #endif
  2991. }
  2992. btrfs_release_path(path);
  2993. BUG_ON(level == -1);
  2994. block = kmalloc(sizeof(*block), GFP_NOFS);
  2995. if (!block)
  2996. return -ENOMEM;
  2997. block->bytenr = extent_key->objectid;
  2998. block->key.objectid = rc->extent_root->fs_info->nodesize;
  2999. block->key.offset = generation;
  3000. block->level = level;
  3001. block->key_ready = 0;
  3002. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  3003. if (rb_node)
  3004. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  3005. return 0;
  3006. }
  3007. /*
  3008. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  3009. */
  3010. static int __add_tree_block(struct reloc_control *rc,
  3011. u64 bytenr, u32 blocksize,
  3012. struct rb_root *blocks)
  3013. {
  3014. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3015. struct btrfs_path *path;
  3016. struct btrfs_key key;
  3017. int ret;
  3018. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  3019. if (tree_block_processed(bytenr, rc))
  3020. return 0;
  3021. if (tree_search(blocks, bytenr))
  3022. return 0;
  3023. path = btrfs_alloc_path();
  3024. if (!path)
  3025. return -ENOMEM;
  3026. again:
  3027. key.objectid = bytenr;
  3028. if (skinny) {
  3029. key.type = BTRFS_METADATA_ITEM_KEY;
  3030. key.offset = (u64)-1;
  3031. } else {
  3032. key.type = BTRFS_EXTENT_ITEM_KEY;
  3033. key.offset = blocksize;
  3034. }
  3035. path->search_commit_root = 1;
  3036. path->skip_locking = 1;
  3037. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  3038. if (ret < 0)
  3039. goto out;
  3040. if (ret > 0 && skinny) {
  3041. if (path->slots[0]) {
  3042. path->slots[0]--;
  3043. btrfs_item_key_to_cpu(path->nodes[0], &key,
  3044. path->slots[0]);
  3045. if (key.objectid == bytenr &&
  3046. (key.type == BTRFS_METADATA_ITEM_KEY ||
  3047. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3048. key.offset == blocksize)))
  3049. ret = 0;
  3050. }
  3051. if (ret) {
  3052. skinny = false;
  3053. btrfs_release_path(path);
  3054. goto again;
  3055. }
  3056. }
  3057. BUG_ON(ret);
  3058. ret = add_tree_block(rc, &key, path, blocks);
  3059. out:
  3060. btrfs_free_path(path);
  3061. return ret;
  3062. }
  3063. /*
  3064. * helper to check if the block use full backrefs for pointers in it
  3065. */
  3066. static int block_use_full_backref(struct reloc_control *rc,
  3067. struct extent_buffer *eb)
  3068. {
  3069. u64 flags;
  3070. int ret;
  3071. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3072. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3073. return 1;
  3074. ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
  3075. eb->start, btrfs_header_level(eb), 1,
  3076. NULL, &flags);
  3077. BUG_ON(ret);
  3078. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3079. ret = 1;
  3080. else
  3081. ret = 0;
  3082. return ret;
  3083. }
  3084. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3085. struct btrfs_block_group_cache *block_group,
  3086. struct inode *inode,
  3087. u64 ino)
  3088. {
  3089. struct btrfs_key key;
  3090. struct btrfs_root *root = fs_info->tree_root;
  3091. struct btrfs_trans_handle *trans;
  3092. int ret = 0;
  3093. if (inode)
  3094. goto truncate;
  3095. key.objectid = ino;
  3096. key.type = BTRFS_INODE_ITEM_KEY;
  3097. key.offset = 0;
  3098. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3099. if (IS_ERR(inode) || is_bad_inode(inode)) {
  3100. if (!IS_ERR(inode))
  3101. iput(inode);
  3102. return -ENOENT;
  3103. }
  3104. truncate:
  3105. ret = btrfs_check_trunc_cache_free_space(fs_info,
  3106. &fs_info->global_block_rsv);
  3107. if (ret)
  3108. goto out;
  3109. trans = btrfs_join_transaction(root);
  3110. if (IS_ERR(trans)) {
  3111. ret = PTR_ERR(trans);
  3112. goto out;
  3113. }
  3114. ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
  3115. btrfs_end_transaction(trans);
  3116. btrfs_btree_balance_dirty(fs_info);
  3117. out:
  3118. iput(inode);
  3119. return ret;
  3120. }
  3121. /*
  3122. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3123. * this function scans fs tree to find blocks reference the data extent
  3124. */
  3125. static int find_data_references(struct reloc_control *rc,
  3126. struct btrfs_key *extent_key,
  3127. struct extent_buffer *leaf,
  3128. struct btrfs_extent_data_ref *ref,
  3129. struct rb_root *blocks)
  3130. {
  3131. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3132. struct btrfs_path *path;
  3133. struct tree_block *block;
  3134. struct btrfs_root *root;
  3135. struct btrfs_file_extent_item *fi;
  3136. struct rb_node *rb_node;
  3137. struct btrfs_key key;
  3138. u64 ref_root;
  3139. u64 ref_objectid;
  3140. u64 ref_offset;
  3141. u32 ref_count;
  3142. u32 nritems;
  3143. int err = 0;
  3144. int added = 0;
  3145. int counted;
  3146. int ret;
  3147. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3148. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3149. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3150. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3151. /*
  3152. * This is an extent belonging to the free space cache, lets just delete
  3153. * it and redo the search.
  3154. */
  3155. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3156. ret = delete_block_group_cache(fs_info, rc->block_group,
  3157. NULL, ref_objectid);
  3158. if (ret != -ENOENT)
  3159. return ret;
  3160. ret = 0;
  3161. }
  3162. path = btrfs_alloc_path();
  3163. if (!path)
  3164. return -ENOMEM;
  3165. path->reada = READA_FORWARD;
  3166. root = read_fs_root(fs_info, ref_root);
  3167. if (IS_ERR(root)) {
  3168. err = PTR_ERR(root);
  3169. goto out;
  3170. }
  3171. key.objectid = ref_objectid;
  3172. key.type = BTRFS_EXTENT_DATA_KEY;
  3173. if (ref_offset > ((u64)-1 << 32))
  3174. key.offset = 0;
  3175. else
  3176. key.offset = ref_offset;
  3177. path->search_commit_root = 1;
  3178. path->skip_locking = 1;
  3179. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3180. if (ret < 0) {
  3181. err = ret;
  3182. goto out;
  3183. }
  3184. leaf = path->nodes[0];
  3185. nritems = btrfs_header_nritems(leaf);
  3186. /*
  3187. * the references in tree blocks that use full backrefs
  3188. * are not counted in
  3189. */
  3190. if (block_use_full_backref(rc, leaf))
  3191. counted = 0;
  3192. else
  3193. counted = 1;
  3194. rb_node = tree_search(blocks, leaf->start);
  3195. if (rb_node) {
  3196. if (counted)
  3197. added = 1;
  3198. else
  3199. path->slots[0] = nritems;
  3200. }
  3201. while (ref_count > 0) {
  3202. while (path->slots[0] >= nritems) {
  3203. ret = btrfs_next_leaf(root, path);
  3204. if (ret < 0) {
  3205. err = ret;
  3206. goto out;
  3207. }
  3208. if (WARN_ON(ret > 0))
  3209. goto out;
  3210. leaf = path->nodes[0];
  3211. nritems = btrfs_header_nritems(leaf);
  3212. added = 0;
  3213. if (block_use_full_backref(rc, leaf))
  3214. counted = 0;
  3215. else
  3216. counted = 1;
  3217. rb_node = tree_search(blocks, leaf->start);
  3218. if (rb_node) {
  3219. if (counted)
  3220. added = 1;
  3221. else
  3222. path->slots[0] = nritems;
  3223. }
  3224. }
  3225. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3226. if (WARN_ON(key.objectid != ref_objectid ||
  3227. key.type != BTRFS_EXTENT_DATA_KEY))
  3228. break;
  3229. fi = btrfs_item_ptr(leaf, path->slots[0],
  3230. struct btrfs_file_extent_item);
  3231. if (btrfs_file_extent_type(leaf, fi) ==
  3232. BTRFS_FILE_EXTENT_INLINE)
  3233. goto next;
  3234. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3235. extent_key->objectid)
  3236. goto next;
  3237. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3238. if (key.offset != ref_offset)
  3239. goto next;
  3240. if (counted)
  3241. ref_count--;
  3242. if (added)
  3243. goto next;
  3244. if (!tree_block_processed(leaf->start, rc)) {
  3245. block = kmalloc(sizeof(*block), GFP_NOFS);
  3246. if (!block) {
  3247. err = -ENOMEM;
  3248. break;
  3249. }
  3250. block->bytenr = leaf->start;
  3251. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3252. block->level = 0;
  3253. block->key_ready = 1;
  3254. rb_node = tree_insert(blocks, block->bytenr,
  3255. &block->rb_node);
  3256. if (rb_node)
  3257. backref_tree_panic(rb_node, -EEXIST,
  3258. block->bytenr);
  3259. }
  3260. if (counted)
  3261. added = 1;
  3262. else
  3263. path->slots[0] = nritems;
  3264. next:
  3265. path->slots[0]++;
  3266. }
  3267. out:
  3268. btrfs_free_path(path);
  3269. return err;
  3270. }
  3271. /*
  3272. * helper to find all tree blocks that reference a given data extent
  3273. */
  3274. static noinline_for_stack
  3275. int add_data_references(struct reloc_control *rc,
  3276. struct btrfs_key *extent_key,
  3277. struct btrfs_path *path,
  3278. struct rb_root *blocks)
  3279. {
  3280. struct btrfs_key key;
  3281. struct extent_buffer *eb;
  3282. struct btrfs_extent_data_ref *dref;
  3283. struct btrfs_extent_inline_ref *iref;
  3284. unsigned long ptr;
  3285. unsigned long end;
  3286. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3287. int ret = 0;
  3288. int err = 0;
  3289. eb = path->nodes[0];
  3290. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3291. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3292. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3293. if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
  3294. ptr = end;
  3295. else
  3296. #endif
  3297. ptr += sizeof(struct btrfs_extent_item);
  3298. while (ptr < end) {
  3299. iref = (struct btrfs_extent_inline_ref *)ptr;
  3300. key.type = btrfs_extent_inline_ref_type(eb, iref);
  3301. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3302. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3303. ret = __add_tree_block(rc, key.offset, blocksize,
  3304. blocks);
  3305. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3306. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3307. ret = find_data_references(rc, extent_key,
  3308. eb, dref, blocks);
  3309. } else {
  3310. BUG();
  3311. }
  3312. if (ret) {
  3313. err = ret;
  3314. goto out;
  3315. }
  3316. ptr += btrfs_extent_inline_ref_size(key.type);
  3317. }
  3318. WARN_ON(ptr > end);
  3319. while (1) {
  3320. cond_resched();
  3321. eb = path->nodes[0];
  3322. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3323. ret = btrfs_next_leaf(rc->extent_root, path);
  3324. if (ret < 0) {
  3325. err = ret;
  3326. break;
  3327. }
  3328. if (ret > 0)
  3329. break;
  3330. eb = path->nodes[0];
  3331. }
  3332. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3333. if (key.objectid != extent_key->objectid)
  3334. break;
  3335. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3336. if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
  3337. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  3338. #else
  3339. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  3340. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3341. #endif
  3342. ret = __add_tree_block(rc, key.offset, blocksize,
  3343. blocks);
  3344. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3345. dref = btrfs_item_ptr(eb, path->slots[0],
  3346. struct btrfs_extent_data_ref);
  3347. ret = find_data_references(rc, extent_key,
  3348. eb, dref, blocks);
  3349. } else {
  3350. ret = 0;
  3351. }
  3352. if (ret) {
  3353. err = ret;
  3354. break;
  3355. }
  3356. path->slots[0]++;
  3357. }
  3358. out:
  3359. btrfs_release_path(path);
  3360. if (err)
  3361. free_block_list(blocks);
  3362. return err;
  3363. }
  3364. /*
  3365. * helper to find next unprocessed extent
  3366. */
  3367. static noinline_for_stack
  3368. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3369. struct btrfs_key *extent_key)
  3370. {
  3371. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3372. struct btrfs_key key;
  3373. struct extent_buffer *leaf;
  3374. u64 start, end, last;
  3375. int ret;
  3376. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3377. while (1) {
  3378. cond_resched();
  3379. if (rc->search_start >= last) {
  3380. ret = 1;
  3381. break;
  3382. }
  3383. key.objectid = rc->search_start;
  3384. key.type = BTRFS_EXTENT_ITEM_KEY;
  3385. key.offset = 0;
  3386. path->search_commit_root = 1;
  3387. path->skip_locking = 1;
  3388. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3389. 0, 0);
  3390. if (ret < 0)
  3391. break;
  3392. next:
  3393. leaf = path->nodes[0];
  3394. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3395. ret = btrfs_next_leaf(rc->extent_root, path);
  3396. if (ret != 0)
  3397. break;
  3398. leaf = path->nodes[0];
  3399. }
  3400. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3401. if (key.objectid >= last) {
  3402. ret = 1;
  3403. break;
  3404. }
  3405. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3406. key.type != BTRFS_METADATA_ITEM_KEY) {
  3407. path->slots[0]++;
  3408. goto next;
  3409. }
  3410. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3411. key.objectid + key.offset <= rc->search_start) {
  3412. path->slots[0]++;
  3413. goto next;
  3414. }
  3415. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3416. key.objectid + fs_info->nodesize <=
  3417. rc->search_start) {
  3418. path->slots[0]++;
  3419. goto next;
  3420. }
  3421. ret = find_first_extent_bit(&rc->processed_blocks,
  3422. key.objectid, &start, &end,
  3423. EXTENT_DIRTY, NULL);
  3424. if (ret == 0 && start <= key.objectid) {
  3425. btrfs_release_path(path);
  3426. rc->search_start = end + 1;
  3427. } else {
  3428. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3429. rc->search_start = key.objectid + key.offset;
  3430. else
  3431. rc->search_start = key.objectid +
  3432. fs_info->nodesize;
  3433. memcpy(extent_key, &key, sizeof(key));
  3434. return 0;
  3435. }
  3436. }
  3437. btrfs_release_path(path);
  3438. return ret;
  3439. }
  3440. static void set_reloc_control(struct reloc_control *rc)
  3441. {
  3442. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3443. mutex_lock(&fs_info->reloc_mutex);
  3444. fs_info->reloc_ctl = rc;
  3445. mutex_unlock(&fs_info->reloc_mutex);
  3446. }
  3447. static void unset_reloc_control(struct reloc_control *rc)
  3448. {
  3449. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3450. mutex_lock(&fs_info->reloc_mutex);
  3451. fs_info->reloc_ctl = NULL;
  3452. mutex_unlock(&fs_info->reloc_mutex);
  3453. }
  3454. static int check_extent_flags(u64 flags)
  3455. {
  3456. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3457. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3458. return 1;
  3459. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3460. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3461. return 1;
  3462. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3463. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3464. return 1;
  3465. return 0;
  3466. }
  3467. static noinline_for_stack
  3468. int prepare_to_relocate(struct reloc_control *rc)
  3469. {
  3470. struct btrfs_trans_handle *trans;
  3471. int ret;
  3472. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
  3473. BTRFS_BLOCK_RSV_TEMP);
  3474. if (!rc->block_rsv)
  3475. return -ENOMEM;
  3476. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3477. rc->search_start = rc->block_group->key.objectid;
  3478. rc->extents_found = 0;
  3479. rc->nodes_relocated = 0;
  3480. rc->merging_rsv_size = 0;
  3481. rc->reserved_bytes = 0;
  3482. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3483. RELOCATION_RESERVED_NODES;
  3484. ret = btrfs_block_rsv_refill(rc->extent_root,
  3485. rc->block_rsv, rc->block_rsv->size,
  3486. BTRFS_RESERVE_FLUSH_ALL);
  3487. if (ret)
  3488. return ret;
  3489. rc->create_reloc_tree = 1;
  3490. set_reloc_control(rc);
  3491. trans = btrfs_join_transaction(rc->extent_root);
  3492. if (IS_ERR(trans)) {
  3493. unset_reloc_control(rc);
  3494. /*
  3495. * extent tree is not a ref_cow tree and has no reloc_root to
  3496. * cleanup. And callers are responsible to free the above
  3497. * block rsv.
  3498. */
  3499. return PTR_ERR(trans);
  3500. }
  3501. btrfs_commit_transaction(trans);
  3502. return 0;
  3503. }
  3504. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3505. {
  3506. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3507. struct rb_root blocks = RB_ROOT;
  3508. struct btrfs_key key;
  3509. struct btrfs_trans_handle *trans = NULL;
  3510. struct btrfs_path *path;
  3511. struct btrfs_extent_item *ei;
  3512. u64 flags;
  3513. u32 item_size;
  3514. int ret;
  3515. int err = 0;
  3516. int progress = 0;
  3517. path = btrfs_alloc_path();
  3518. if (!path)
  3519. return -ENOMEM;
  3520. path->reada = READA_FORWARD;
  3521. ret = prepare_to_relocate(rc);
  3522. if (ret) {
  3523. err = ret;
  3524. goto out_free;
  3525. }
  3526. while (1) {
  3527. rc->reserved_bytes = 0;
  3528. ret = btrfs_block_rsv_refill(rc->extent_root,
  3529. rc->block_rsv, rc->block_rsv->size,
  3530. BTRFS_RESERVE_FLUSH_ALL);
  3531. if (ret) {
  3532. err = ret;
  3533. break;
  3534. }
  3535. progress++;
  3536. trans = btrfs_start_transaction(rc->extent_root, 0);
  3537. if (IS_ERR(trans)) {
  3538. err = PTR_ERR(trans);
  3539. trans = NULL;
  3540. break;
  3541. }
  3542. restart:
  3543. if (update_backref_cache(trans, &rc->backref_cache)) {
  3544. btrfs_end_transaction(trans);
  3545. continue;
  3546. }
  3547. ret = find_next_extent(rc, path, &key);
  3548. if (ret < 0)
  3549. err = ret;
  3550. if (ret != 0)
  3551. break;
  3552. rc->extents_found++;
  3553. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3554. struct btrfs_extent_item);
  3555. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3556. if (item_size >= sizeof(*ei)) {
  3557. flags = btrfs_extent_flags(path->nodes[0], ei);
  3558. ret = check_extent_flags(flags);
  3559. BUG_ON(ret);
  3560. } else {
  3561. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3562. u64 ref_owner;
  3563. int path_change = 0;
  3564. BUG_ON(item_size !=
  3565. sizeof(struct btrfs_extent_item_v0));
  3566. ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
  3567. &path_change);
  3568. if (ret < 0) {
  3569. err = ret;
  3570. break;
  3571. }
  3572. if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
  3573. flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  3574. else
  3575. flags = BTRFS_EXTENT_FLAG_DATA;
  3576. if (path_change) {
  3577. btrfs_release_path(path);
  3578. path->search_commit_root = 1;
  3579. path->skip_locking = 1;
  3580. ret = btrfs_search_slot(NULL, rc->extent_root,
  3581. &key, path, 0, 0);
  3582. if (ret < 0) {
  3583. err = ret;
  3584. break;
  3585. }
  3586. BUG_ON(ret > 0);
  3587. }
  3588. #else
  3589. BUG();
  3590. #endif
  3591. }
  3592. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3593. ret = add_tree_block(rc, &key, path, &blocks);
  3594. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3595. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3596. ret = add_data_references(rc, &key, path, &blocks);
  3597. } else {
  3598. btrfs_release_path(path);
  3599. ret = 0;
  3600. }
  3601. if (ret < 0) {
  3602. err = ret;
  3603. break;
  3604. }
  3605. if (!RB_EMPTY_ROOT(&blocks)) {
  3606. ret = relocate_tree_blocks(trans, rc, &blocks);
  3607. if (ret < 0) {
  3608. /*
  3609. * if we fail to relocate tree blocks, force to update
  3610. * backref cache when committing transaction.
  3611. */
  3612. rc->backref_cache.last_trans = trans->transid - 1;
  3613. if (ret != -EAGAIN) {
  3614. err = ret;
  3615. break;
  3616. }
  3617. rc->extents_found--;
  3618. rc->search_start = key.objectid;
  3619. }
  3620. }
  3621. btrfs_end_transaction_throttle(trans);
  3622. btrfs_btree_balance_dirty(fs_info);
  3623. trans = NULL;
  3624. if (rc->stage == MOVE_DATA_EXTENTS &&
  3625. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3626. rc->found_file_extent = 1;
  3627. ret = relocate_data_extent(rc->data_inode,
  3628. &key, &rc->cluster);
  3629. if (ret < 0) {
  3630. err = ret;
  3631. break;
  3632. }
  3633. }
  3634. }
  3635. if (trans && progress && err == -ENOSPC) {
  3636. ret = btrfs_force_chunk_alloc(trans, fs_info,
  3637. rc->block_group->flags);
  3638. if (ret == 1) {
  3639. err = 0;
  3640. progress = 0;
  3641. goto restart;
  3642. }
  3643. }
  3644. btrfs_release_path(path);
  3645. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3646. if (trans) {
  3647. btrfs_end_transaction_throttle(trans);
  3648. btrfs_btree_balance_dirty(fs_info);
  3649. }
  3650. if (!err) {
  3651. ret = relocate_file_extent_cluster(rc->data_inode,
  3652. &rc->cluster);
  3653. if (ret < 0)
  3654. err = ret;
  3655. }
  3656. rc->create_reloc_tree = 0;
  3657. set_reloc_control(rc);
  3658. backref_cache_cleanup(&rc->backref_cache);
  3659. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3660. err = prepare_to_merge(rc, err);
  3661. merge_reloc_roots(rc);
  3662. rc->merge_reloc_tree = 0;
  3663. unset_reloc_control(rc);
  3664. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3665. /* get rid of pinned extents */
  3666. trans = btrfs_join_transaction(rc->extent_root);
  3667. if (IS_ERR(trans)) {
  3668. err = PTR_ERR(trans);
  3669. goto out_free;
  3670. }
  3671. btrfs_commit_transaction(trans);
  3672. out_free:
  3673. btrfs_free_block_rsv(fs_info, rc->block_rsv);
  3674. btrfs_free_path(path);
  3675. return err;
  3676. }
  3677. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3678. struct btrfs_root *root, u64 objectid)
  3679. {
  3680. struct btrfs_path *path;
  3681. struct btrfs_inode_item *item;
  3682. struct extent_buffer *leaf;
  3683. int ret;
  3684. path = btrfs_alloc_path();
  3685. if (!path)
  3686. return -ENOMEM;
  3687. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3688. if (ret)
  3689. goto out;
  3690. leaf = path->nodes[0];
  3691. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3692. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3693. btrfs_set_inode_generation(leaf, item, 1);
  3694. btrfs_set_inode_size(leaf, item, 0);
  3695. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3696. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3697. BTRFS_INODE_PREALLOC);
  3698. btrfs_mark_buffer_dirty(leaf);
  3699. out:
  3700. btrfs_free_path(path);
  3701. return ret;
  3702. }
  3703. /*
  3704. * helper to create inode for data relocation.
  3705. * the inode is in data relocation tree and its link count is 0
  3706. */
  3707. static noinline_for_stack
  3708. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3709. struct btrfs_block_group_cache *group)
  3710. {
  3711. struct inode *inode = NULL;
  3712. struct btrfs_trans_handle *trans;
  3713. struct btrfs_root *root;
  3714. struct btrfs_key key;
  3715. u64 objectid;
  3716. int err = 0;
  3717. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3718. if (IS_ERR(root))
  3719. return ERR_CAST(root);
  3720. trans = btrfs_start_transaction(root, 6);
  3721. if (IS_ERR(trans))
  3722. return ERR_CAST(trans);
  3723. err = btrfs_find_free_objectid(root, &objectid);
  3724. if (err)
  3725. goto out;
  3726. err = __insert_orphan_inode(trans, root, objectid);
  3727. BUG_ON(err);
  3728. key.objectid = objectid;
  3729. key.type = BTRFS_INODE_ITEM_KEY;
  3730. key.offset = 0;
  3731. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3732. BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
  3733. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3734. err = btrfs_orphan_add(trans, inode);
  3735. out:
  3736. btrfs_end_transaction(trans);
  3737. btrfs_btree_balance_dirty(fs_info);
  3738. if (err) {
  3739. if (inode)
  3740. iput(inode);
  3741. inode = ERR_PTR(err);
  3742. }
  3743. return inode;
  3744. }
  3745. static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
  3746. {
  3747. struct reloc_control *rc;
  3748. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3749. if (!rc)
  3750. return NULL;
  3751. INIT_LIST_HEAD(&rc->reloc_roots);
  3752. backref_cache_init(&rc->backref_cache);
  3753. mapping_tree_init(&rc->reloc_root_tree);
  3754. extent_io_tree_init(&rc->processed_blocks,
  3755. fs_info->btree_inode->i_mapping);
  3756. return rc;
  3757. }
  3758. /*
  3759. * Print the block group being relocated
  3760. */
  3761. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3762. struct btrfs_block_group_cache *block_group)
  3763. {
  3764. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3765. u64 flags = block_group->flags;
  3766. /* Shouldn't happen */
  3767. if (!flags) {
  3768. strcpy(buf, "|NONE");
  3769. } else {
  3770. char *bp = buf;
  3771. #define DESCRIBE_FLAG(f, d) \
  3772. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3773. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3774. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3775. }
  3776. DESCRIBE_FLAG(DATA, "data");
  3777. DESCRIBE_FLAG(SYSTEM, "system");
  3778. DESCRIBE_FLAG(METADATA, "metadata");
  3779. DESCRIBE_FLAG(RAID0, "raid0");
  3780. DESCRIBE_FLAG(RAID1, "raid1");
  3781. DESCRIBE_FLAG(DUP, "dup");
  3782. DESCRIBE_FLAG(RAID10, "raid10");
  3783. DESCRIBE_FLAG(RAID5, "raid5");
  3784. DESCRIBE_FLAG(RAID6, "raid6");
  3785. if (flags)
  3786. snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
  3787. #undef DESCRIBE_FLAG
  3788. }
  3789. btrfs_info(fs_info,
  3790. "relocating block group %llu flags %s",
  3791. block_group->key.objectid, buf + 1);
  3792. }
  3793. /*
  3794. * function to relocate all extents in a block group.
  3795. */
  3796. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3797. {
  3798. struct btrfs_root *extent_root = fs_info->extent_root;
  3799. struct reloc_control *rc;
  3800. struct inode *inode;
  3801. struct btrfs_path *path;
  3802. int ret;
  3803. int rw = 0;
  3804. int err = 0;
  3805. rc = alloc_reloc_control(fs_info);
  3806. if (!rc)
  3807. return -ENOMEM;
  3808. rc->extent_root = extent_root;
  3809. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3810. BUG_ON(!rc->block_group);
  3811. ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
  3812. if (ret) {
  3813. err = ret;
  3814. goto out;
  3815. }
  3816. rw = 1;
  3817. path = btrfs_alloc_path();
  3818. if (!path) {
  3819. err = -ENOMEM;
  3820. goto out;
  3821. }
  3822. inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
  3823. path);
  3824. btrfs_free_path(path);
  3825. if (!IS_ERR(inode))
  3826. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3827. else
  3828. ret = PTR_ERR(inode);
  3829. if (ret && ret != -ENOENT) {
  3830. err = ret;
  3831. goto out;
  3832. }
  3833. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3834. if (IS_ERR(rc->data_inode)) {
  3835. err = PTR_ERR(rc->data_inode);
  3836. rc->data_inode = NULL;
  3837. goto out;
  3838. }
  3839. describe_relocation(fs_info, rc->block_group);
  3840. btrfs_wait_block_group_reservations(rc->block_group);
  3841. btrfs_wait_nocow_writers(rc->block_group);
  3842. btrfs_wait_ordered_roots(fs_info, -1,
  3843. rc->block_group->key.objectid,
  3844. rc->block_group->key.offset);
  3845. while (1) {
  3846. mutex_lock(&fs_info->cleaner_mutex);
  3847. ret = relocate_block_group(rc);
  3848. mutex_unlock(&fs_info->cleaner_mutex);
  3849. if (ret < 0) {
  3850. err = ret;
  3851. goto out;
  3852. }
  3853. if (rc->extents_found == 0)
  3854. break;
  3855. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3856. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3857. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3858. (u64)-1);
  3859. if (ret) {
  3860. err = ret;
  3861. goto out;
  3862. }
  3863. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3864. 0, -1);
  3865. rc->stage = UPDATE_DATA_PTRS;
  3866. }
  3867. }
  3868. WARN_ON(rc->block_group->pinned > 0);
  3869. WARN_ON(rc->block_group->reserved > 0);
  3870. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3871. out:
  3872. if (err && rw)
  3873. btrfs_dec_block_group_ro(rc->block_group);
  3874. iput(rc->data_inode);
  3875. btrfs_put_block_group(rc->block_group);
  3876. kfree(rc);
  3877. return err;
  3878. }
  3879. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3880. {
  3881. struct btrfs_fs_info *fs_info = root->fs_info;
  3882. struct btrfs_trans_handle *trans;
  3883. int ret, err;
  3884. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3885. if (IS_ERR(trans))
  3886. return PTR_ERR(trans);
  3887. memset(&root->root_item.drop_progress, 0,
  3888. sizeof(root->root_item.drop_progress));
  3889. root->root_item.drop_level = 0;
  3890. btrfs_set_root_refs(&root->root_item, 0);
  3891. ret = btrfs_update_root(trans, fs_info->tree_root,
  3892. &root->root_key, &root->root_item);
  3893. err = btrfs_end_transaction(trans);
  3894. if (err)
  3895. return err;
  3896. return ret;
  3897. }
  3898. /*
  3899. * recover relocation interrupted by system crash.
  3900. *
  3901. * this function resumes merging reloc trees with corresponding fs trees.
  3902. * this is important for keeping the sharing of tree blocks
  3903. */
  3904. int btrfs_recover_relocation(struct btrfs_root *root)
  3905. {
  3906. struct btrfs_fs_info *fs_info = root->fs_info;
  3907. LIST_HEAD(reloc_roots);
  3908. struct btrfs_key key;
  3909. struct btrfs_root *fs_root;
  3910. struct btrfs_root *reloc_root;
  3911. struct btrfs_path *path;
  3912. struct extent_buffer *leaf;
  3913. struct reloc_control *rc = NULL;
  3914. struct btrfs_trans_handle *trans;
  3915. int ret;
  3916. int err = 0;
  3917. path = btrfs_alloc_path();
  3918. if (!path)
  3919. return -ENOMEM;
  3920. path->reada = READA_BACK;
  3921. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3922. key.type = BTRFS_ROOT_ITEM_KEY;
  3923. key.offset = (u64)-1;
  3924. while (1) {
  3925. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3926. path, 0, 0);
  3927. if (ret < 0) {
  3928. err = ret;
  3929. goto out;
  3930. }
  3931. if (ret > 0) {
  3932. if (path->slots[0] == 0)
  3933. break;
  3934. path->slots[0]--;
  3935. }
  3936. leaf = path->nodes[0];
  3937. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3938. btrfs_release_path(path);
  3939. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3940. key.type != BTRFS_ROOT_ITEM_KEY)
  3941. break;
  3942. reloc_root = btrfs_read_fs_root(root, &key);
  3943. if (IS_ERR(reloc_root)) {
  3944. err = PTR_ERR(reloc_root);
  3945. goto out;
  3946. }
  3947. list_add(&reloc_root->root_list, &reloc_roots);
  3948. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3949. fs_root = read_fs_root(fs_info,
  3950. reloc_root->root_key.offset);
  3951. if (IS_ERR(fs_root)) {
  3952. ret = PTR_ERR(fs_root);
  3953. if (ret != -ENOENT) {
  3954. err = ret;
  3955. goto out;
  3956. }
  3957. ret = mark_garbage_root(reloc_root);
  3958. if (ret < 0) {
  3959. err = ret;
  3960. goto out;
  3961. }
  3962. }
  3963. }
  3964. if (key.offset == 0)
  3965. break;
  3966. key.offset--;
  3967. }
  3968. btrfs_release_path(path);
  3969. if (list_empty(&reloc_roots))
  3970. goto out;
  3971. rc = alloc_reloc_control(fs_info);
  3972. if (!rc) {
  3973. err = -ENOMEM;
  3974. goto out;
  3975. }
  3976. rc->extent_root = fs_info->extent_root;
  3977. set_reloc_control(rc);
  3978. trans = btrfs_join_transaction(rc->extent_root);
  3979. if (IS_ERR(trans)) {
  3980. unset_reloc_control(rc);
  3981. err = PTR_ERR(trans);
  3982. goto out_free;
  3983. }
  3984. rc->merge_reloc_tree = 1;
  3985. while (!list_empty(&reloc_roots)) {
  3986. reloc_root = list_entry(reloc_roots.next,
  3987. struct btrfs_root, root_list);
  3988. list_del(&reloc_root->root_list);
  3989. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3990. list_add_tail(&reloc_root->root_list,
  3991. &rc->reloc_roots);
  3992. continue;
  3993. }
  3994. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  3995. if (IS_ERR(fs_root)) {
  3996. err = PTR_ERR(fs_root);
  3997. goto out_free;
  3998. }
  3999. err = __add_reloc_root(reloc_root);
  4000. BUG_ON(err < 0); /* -ENOMEM or logic error */
  4001. fs_root->reloc_root = reloc_root;
  4002. }
  4003. err = btrfs_commit_transaction(trans);
  4004. if (err)
  4005. goto out_free;
  4006. merge_reloc_roots(rc);
  4007. unset_reloc_control(rc);
  4008. trans = btrfs_join_transaction(rc->extent_root);
  4009. if (IS_ERR(trans)) {
  4010. err = PTR_ERR(trans);
  4011. goto out_free;
  4012. }
  4013. err = btrfs_commit_transaction(trans);
  4014. out_free:
  4015. kfree(rc);
  4016. out:
  4017. if (!list_empty(&reloc_roots))
  4018. free_reloc_roots(&reloc_roots);
  4019. btrfs_free_path(path);
  4020. if (err == 0) {
  4021. /* cleanup orphan inode in data relocation tree */
  4022. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  4023. if (IS_ERR(fs_root))
  4024. err = PTR_ERR(fs_root);
  4025. else
  4026. err = btrfs_orphan_cleanup(fs_root);
  4027. }
  4028. return err;
  4029. }
  4030. /*
  4031. * helper to add ordered checksum for data relocation.
  4032. *
  4033. * cloning checksum properly handles the nodatasum extents.
  4034. * it also saves CPU time to re-calculate the checksum.
  4035. */
  4036. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  4037. {
  4038. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4039. struct btrfs_ordered_sum *sums;
  4040. struct btrfs_ordered_extent *ordered;
  4041. int ret;
  4042. u64 disk_bytenr;
  4043. u64 new_bytenr;
  4044. LIST_HEAD(list);
  4045. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  4046. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  4047. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  4048. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  4049. disk_bytenr + len - 1, &list, 0);
  4050. if (ret)
  4051. goto out;
  4052. while (!list_empty(&list)) {
  4053. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  4054. list_del_init(&sums->list);
  4055. /*
  4056. * We need to offset the new_bytenr based on where the csum is.
  4057. * We need to do this because we will read in entire prealloc
  4058. * extents but we may have written to say the middle of the
  4059. * prealloc extent, so we need to make sure the csum goes with
  4060. * the right disk offset.
  4061. *
  4062. * We can do this because the data reloc inode refers strictly
  4063. * to the on disk bytes, so we don't have to worry about
  4064. * disk_len vs real len like with real inodes since it's all
  4065. * disk length.
  4066. */
  4067. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  4068. sums->bytenr = new_bytenr;
  4069. btrfs_add_ordered_sum(inode, ordered, sums);
  4070. }
  4071. out:
  4072. btrfs_put_ordered_extent(ordered);
  4073. return ret;
  4074. }
  4075. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  4076. struct btrfs_root *root, struct extent_buffer *buf,
  4077. struct extent_buffer *cow)
  4078. {
  4079. struct btrfs_fs_info *fs_info = root->fs_info;
  4080. struct reloc_control *rc;
  4081. struct backref_node *node;
  4082. int first_cow = 0;
  4083. int level;
  4084. int ret = 0;
  4085. rc = fs_info->reloc_ctl;
  4086. if (!rc)
  4087. return 0;
  4088. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4089. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4090. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  4091. if (buf == root->node)
  4092. __update_reloc_root(root, cow->start);
  4093. }
  4094. level = btrfs_header_level(buf);
  4095. if (btrfs_header_generation(buf) <=
  4096. btrfs_root_last_snapshot(&root->root_item))
  4097. first_cow = 1;
  4098. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4099. rc->create_reloc_tree) {
  4100. WARN_ON(!first_cow && level == 0);
  4101. node = rc->backref_cache.path[level];
  4102. BUG_ON(node->bytenr != buf->start &&
  4103. node->new_bytenr != buf->start);
  4104. drop_node_buffer(node);
  4105. extent_buffer_get(cow);
  4106. node->eb = cow;
  4107. node->new_bytenr = cow->start;
  4108. if (!node->pending) {
  4109. list_move_tail(&node->list,
  4110. &rc->backref_cache.pending[level]);
  4111. node->pending = 1;
  4112. }
  4113. if (first_cow)
  4114. __mark_block_processed(rc, node);
  4115. if (first_cow && level > 0)
  4116. rc->nodes_relocated += buf->len;
  4117. }
  4118. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4119. ret = replace_file_extents(trans, rc, root, cow);
  4120. return ret;
  4121. }
  4122. /*
  4123. * called before creating snapshot. it calculates metadata reservation
  4124. * required for relocating tree blocks in the snapshot
  4125. */
  4126. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4127. u64 *bytes_to_reserve)
  4128. {
  4129. struct btrfs_root *root;
  4130. struct reloc_control *rc;
  4131. root = pending->root;
  4132. if (!root->reloc_root)
  4133. return;
  4134. rc = root->fs_info->reloc_ctl;
  4135. if (!rc->merge_reloc_tree)
  4136. return;
  4137. root = root->reloc_root;
  4138. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4139. /*
  4140. * relocation is in the stage of merging trees. the space
  4141. * used by merging a reloc tree is twice the size of
  4142. * relocated tree nodes in the worst case. half for cowing
  4143. * the reloc tree, half for cowing the fs tree. the space
  4144. * used by cowing the reloc tree will be freed after the
  4145. * tree is dropped. if we create snapshot, cowing the fs
  4146. * tree may use more space than it frees. so we need
  4147. * reserve extra space.
  4148. */
  4149. *bytes_to_reserve += rc->nodes_relocated;
  4150. }
  4151. /*
  4152. * called after snapshot is created. migrate block reservation
  4153. * and create reloc root for the newly created snapshot
  4154. */
  4155. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4156. struct btrfs_pending_snapshot *pending)
  4157. {
  4158. struct btrfs_root *root = pending->root;
  4159. struct btrfs_root *reloc_root;
  4160. struct btrfs_root *new_root;
  4161. struct reloc_control *rc;
  4162. int ret;
  4163. if (!root->reloc_root)
  4164. return 0;
  4165. rc = root->fs_info->reloc_ctl;
  4166. rc->merging_rsv_size += rc->nodes_relocated;
  4167. if (rc->merge_reloc_tree) {
  4168. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4169. rc->block_rsv,
  4170. rc->nodes_relocated, 1);
  4171. if (ret)
  4172. return ret;
  4173. }
  4174. new_root = pending->snap;
  4175. reloc_root = create_reloc_root(trans, root->reloc_root,
  4176. new_root->root_key.objectid);
  4177. if (IS_ERR(reloc_root))
  4178. return PTR_ERR(reloc_root);
  4179. ret = __add_reloc_root(reloc_root);
  4180. BUG_ON(ret < 0);
  4181. new_root->reloc_root = reloc_root;
  4182. if (rc->create_reloc_tree)
  4183. ret = clone_backref_node(trans, rc, root, reloc_root);
  4184. return ret;
  4185. }