disk-io.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_fs_info *fs_info);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  75. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. int error;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev = fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, u8 *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X level %d",
  299. fs_info->sb->s_id, buf->start,
  300. val, found, btrfs_header_level(buf));
  301. if (result != (char *)&inline_result)
  302. kfree(result);
  303. return -EUCLEAN;
  304. }
  305. } else {
  306. write_extent_buffer(buf, result, 0, csum_size);
  307. }
  308. if (result != (char *)&inline_result)
  309. kfree(result);
  310. return 0;
  311. }
  312. /*
  313. * we can't consider a given block up to date unless the transid of the
  314. * block matches the transid in the parent node's pointer. This is how we
  315. * detect blocks that either didn't get written at all or got written
  316. * in the wrong place.
  317. */
  318. static int verify_parent_transid(struct extent_io_tree *io_tree,
  319. struct extent_buffer *eb, u64 parent_transid,
  320. int atomic)
  321. {
  322. struct extent_state *cached_state = NULL;
  323. int ret;
  324. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  325. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  326. return 0;
  327. if (atomic)
  328. return -EAGAIN;
  329. if (need_lock) {
  330. btrfs_tree_read_lock(eb);
  331. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  332. }
  333. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  334. &cached_state);
  335. if (extent_buffer_uptodate(eb) &&
  336. btrfs_header_generation(eb) == parent_transid) {
  337. ret = 0;
  338. goto out;
  339. }
  340. btrfs_err_rl(eb->fs_info,
  341. "parent transid verify failed on %llu wanted %llu found %llu",
  342. eb->start,
  343. parent_transid, btrfs_header_generation(eb));
  344. ret = 1;
  345. /*
  346. * Things reading via commit roots that don't have normal protection,
  347. * like send, can have a really old block in cache that may point at a
  348. * block that has been freed and re-allocated. So don't clear uptodate
  349. * if we find an eb that is under IO (dirty/writeback) because we could
  350. * end up reading in the stale data and then writing it back out and
  351. * making everybody very sad.
  352. */
  353. if (!extent_buffer_under_io(eb))
  354. clear_extent_buffer_uptodate(eb);
  355. out:
  356. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  357. &cached_state, GFP_NOFS);
  358. if (need_lock)
  359. btrfs_tree_read_unlock_blocking(eb);
  360. return ret;
  361. }
  362. /*
  363. * Return 0 if the superblock checksum type matches the checksum value of that
  364. * algorithm. Pass the raw disk superblock data.
  365. */
  366. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  367. char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  400. struct extent_buffer *eb,
  401. u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  413. btree_get_extent, mirror_num);
  414. if (!ret) {
  415. if (!verify_parent_transid(io_tree, eb,
  416. parent_transid, 0))
  417. break;
  418. else
  419. ret = -EIO;
  420. }
  421. /*
  422. * This buffer's crc is fine, but its contents are corrupted, so
  423. * there is no reason to read the other copies, they won't be
  424. * any less wrong.
  425. */
  426. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  427. break;
  428. num_copies = btrfs_num_copies(fs_info,
  429. eb->start, eb->len);
  430. if (num_copies == 1)
  431. break;
  432. if (!failed_mirror) {
  433. failed = 1;
  434. failed_mirror = eb->read_mirror;
  435. }
  436. mirror_num++;
  437. if (mirror_num == failed_mirror)
  438. mirror_num++;
  439. if (mirror_num > num_copies)
  440. break;
  441. }
  442. if (failed && !ret && failed_mirror)
  443. repair_eb_io_failure(fs_info, eb, failed_mirror);
  444. return ret;
  445. }
  446. /*
  447. * checksum a dirty tree block before IO. This has extra checks to make sure
  448. * we only fill in the checksum field in the first page of a multi-page block
  449. */
  450. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  451. {
  452. u64 start = page_offset(page);
  453. u64 found_start;
  454. struct extent_buffer *eb;
  455. eb = (struct extent_buffer *)page->private;
  456. if (page != eb->pages[0])
  457. return 0;
  458. found_start = btrfs_header_bytenr(eb);
  459. /*
  460. * Please do not consolidate these warnings into a single if.
  461. * It is useful to know what went wrong.
  462. */
  463. if (WARN_ON(found_start != start))
  464. return -EUCLEAN;
  465. if (WARN_ON(!PageUptodate(page)))
  466. return -EUCLEAN;
  467. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  468. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  469. return csum_tree_block(fs_info, eb, 0);
  470. }
  471. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  472. struct extent_buffer *eb)
  473. {
  474. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  475. u8 fsid[BTRFS_UUID_SIZE];
  476. int ret = 1;
  477. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  478. while (fs_devices) {
  479. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  480. ret = 0;
  481. break;
  482. }
  483. fs_devices = fs_devices->seed;
  484. }
  485. return ret;
  486. }
  487. #define CORRUPT(reason, eb, root, slot) \
  488. btrfs_crit(root->fs_info, \
  489. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  490. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  491. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  492. static noinline int check_leaf(struct btrfs_root *root,
  493. struct extent_buffer *leaf)
  494. {
  495. struct btrfs_fs_info *fs_info = root->fs_info;
  496. struct btrfs_key key;
  497. struct btrfs_key leaf_key;
  498. u32 nritems = btrfs_header_nritems(leaf);
  499. int slot;
  500. /*
  501. * Extent buffers from a relocation tree have a owner field that
  502. * corresponds to the subvolume tree they are based on. So just from an
  503. * extent buffer alone we can not find out what is the id of the
  504. * corresponding subvolume tree, so we can not figure out if the extent
  505. * buffer corresponds to the root of the relocation tree or not. So skip
  506. * this check for relocation trees.
  507. */
  508. if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
  509. struct btrfs_root *check_root;
  510. key.objectid = btrfs_header_owner(leaf);
  511. key.type = BTRFS_ROOT_ITEM_KEY;
  512. key.offset = (u64)-1;
  513. check_root = btrfs_get_fs_root(fs_info, &key, false);
  514. /*
  515. * The only reason we also check NULL here is that during
  516. * open_ctree() some roots has not yet been set up.
  517. */
  518. if (!IS_ERR_OR_NULL(check_root)) {
  519. struct extent_buffer *eb;
  520. eb = btrfs_root_node(check_root);
  521. /* if leaf is the root, then it's fine */
  522. if (leaf != eb) {
  523. CORRUPT("non-root leaf's nritems is 0",
  524. leaf, check_root, 0);
  525. free_extent_buffer(eb);
  526. return -EIO;
  527. }
  528. free_extent_buffer(eb);
  529. }
  530. return 0;
  531. }
  532. if (nritems == 0)
  533. return 0;
  534. /* Check the 0 item */
  535. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  536. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  537. CORRUPT("invalid item offset size pair", leaf, root, 0);
  538. return -EIO;
  539. }
  540. /*
  541. * Check to make sure each items keys are in the correct order and their
  542. * offsets make sense. We only have to loop through nritems-1 because
  543. * we check the current slot against the next slot, which verifies the
  544. * next slot's offset+size makes sense and that the current's slot
  545. * offset is correct.
  546. */
  547. for (slot = 0; slot < nritems - 1; slot++) {
  548. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  549. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  550. /* Make sure the keys are in the right order */
  551. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  552. CORRUPT("bad key order", leaf, root, slot);
  553. return -EIO;
  554. }
  555. /*
  556. * Make sure the offset and ends are right, remember that the
  557. * item data starts at the end of the leaf and grows towards the
  558. * front.
  559. */
  560. if (btrfs_item_offset_nr(leaf, slot) !=
  561. btrfs_item_end_nr(leaf, slot + 1)) {
  562. CORRUPT("slot offset bad", leaf, root, slot);
  563. return -EIO;
  564. }
  565. /*
  566. * Check to make sure that we don't point outside of the leaf,
  567. * just in case all the items are consistent to each other, but
  568. * all point outside of the leaf.
  569. */
  570. if (btrfs_item_end_nr(leaf, slot) >
  571. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  572. CORRUPT("slot end outside of leaf", leaf, root, slot);
  573. return -EIO;
  574. }
  575. }
  576. return 0;
  577. }
  578. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  579. {
  580. unsigned long nr = btrfs_header_nritems(node);
  581. struct btrfs_key key, next_key;
  582. int slot;
  583. u64 bytenr;
  584. int ret = 0;
  585. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  586. btrfs_crit(root->fs_info,
  587. "corrupt node: block %llu root %llu nritems %lu",
  588. node->start, root->objectid, nr);
  589. return -EIO;
  590. }
  591. for (slot = 0; slot < nr - 1; slot++) {
  592. bytenr = btrfs_node_blockptr(node, slot);
  593. btrfs_node_key_to_cpu(node, &key, slot);
  594. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  595. if (!bytenr) {
  596. CORRUPT("invalid item slot", node, root, slot);
  597. ret = -EIO;
  598. goto out;
  599. }
  600. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  601. CORRUPT("bad key order", node, root, slot);
  602. ret = -EIO;
  603. goto out;
  604. }
  605. }
  606. out:
  607. return ret;
  608. }
  609. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  610. u64 phy_offset, struct page *page,
  611. u64 start, u64 end, int mirror)
  612. {
  613. u64 found_start;
  614. int found_level;
  615. struct extent_buffer *eb;
  616. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  617. struct btrfs_fs_info *fs_info = root->fs_info;
  618. int ret = 0;
  619. int reads_done;
  620. if (!page->private)
  621. goto out;
  622. eb = (struct extent_buffer *)page->private;
  623. /* the pending IO might have been the only thing that kept this buffer
  624. * in memory. Make sure we have a ref for all this other checks
  625. */
  626. extent_buffer_get(eb);
  627. reads_done = atomic_dec_and_test(&eb->io_pages);
  628. if (!reads_done)
  629. goto err;
  630. eb->read_mirror = mirror;
  631. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  632. ret = -EIO;
  633. goto err;
  634. }
  635. found_start = btrfs_header_bytenr(eb);
  636. if (found_start != eb->start) {
  637. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  638. found_start, eb->start);
  639. ret = -EIO;
  640. goto err;
  641. }
  642. if (check_tree_block_fsid(fs_info, eb)) {
  643. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  644. eb->start);
  645. ret = -EIO;
  646. goto err;
  647. }
  648. found_level = btrfs_header_level(eb);
  649. if (found_level >= BTRFS_MAX_LEVEL) {
  650. btrfs_err(fs_info, "bad tree block level %d",
  651. (int)btrfs_header_level(eb));
  652. ret = -EIO;
  653. goto err;
  654. }
  655. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  656. eb, found_level);
  657. ret = csum_tree_block(fs_info, eb, 1);
  658. if (ret)
  659. goto err;
  660. /*
  661. * If this is a leaf block and it is corrupt, set the corrupt bit so
  662. * that we don't try and read the other copies of this block, just
  663. * return -EIO.
  664. */
  665. if (found_level == 0 && check_leaf(root, eb)) {
  666. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  667. ret = -EIO;
  668. }
  669. if (found_level > 0 && check_node(root, eb))
  670. ret = -EIO;
  671. if (!ret)
  672. set_extent_buffer_uptodate(eb);
  673. err:
  674. if (reads_done &&
  675. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  676. btree_readahead_hook(fs_info, eb, ret);
  677. if (ret) {
  678. /*
  679. * our io error hook is going to dec the io pages
  680. * again, we have to make sure it has something
  681. * to decrement
  682. */
  683. atomic_inc(&eb->io_pages);
  684. clear_extent_buffer_uptodate(eb);
  685. }
  686. free_extent_buffer(eb);
  687. out:
  688. return ret;
  689. }
  690. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  691. {
  692. struct extent_buffer *eb;
  693. eb = (struct extent_buffer *)page->private;
  694. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  695. eb->read_mirror = failed_mirror;
  696. atomic_dec(&eb->io_pages);
  697. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  698. btree_readahead_hook(eb->fs_info, eb, -EIO);
  699. return -EIO; /* we fixed nothing */
  700. }
  701. static void end_workqueue_bio(struct bio *bio)
  702. {
  703. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  704. struct btrfs_fs_info *fs_info;
  705. struct btrfs_workqueue *wq;
  706. btrfs_work_func_t func;
  707. fs_info = end_io_wq->info;
  708. end_io_wq->error = bio->bi_error;
  709. if (bio_op(bio) == REQ_OP_WRITE) {
  710. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  711. wq = fs_info->endio_meta_write_workers;
  712. func = btrfs_endio_meta_write_helper;
  713. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  714. wq = fs_info->endio_freespace_worker;
  715. func = btrfs_freespace_write_helper;
  716. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  717. wq = fs_info->endio_raid56_workers;
  718. func = btrfs_endio_raid56_helper;
  719. } else {
  720. wq = fs_info->endio_write_workers;
  721. func = btrfs_endio_write_helper;
  722. }
  723. } else {
  724. if (unlikely(end_io_wq->metadata ==
  725. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  726. wq = fs_info->endio_repair_workers;
  727. func = btrfs_endio_repair_helper;
  728. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  729. wq = fs_info->endio_raid56_workers;
  730. func = btrfs_endio_raid56_helper;
  731. } else if (end_io_wq->metadata) {
  732. wq = fs_info->endio_meta_workers;
  733. func = btrfs_endio_meta_helper;
  734. } else {
  735. wq = fs_info->endio_workers;
  736. func = btrfs_endio_helper;
  737. }
  738. }
  739. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  740. btrfs_queue_work(wq, &end_io_wq->work);
  741. }
  742. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  743. enum btrfs_wq_endio_type metadata)
  744. {
  745. struct btrfs_end_io_wq *end_io_wq;
  746. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  747. if (!end_io_wq)
  748. return -ENOMEM;
  749. end_io_wq->private = bio->bi_private;
  750. end_io_wq->end_io = bio->bi_end_io;
  751. end_io_wq->info = info;
  752. end_io_wq->error = 0;
  753. end_io_wq->bio = bio;
  754. end_io_wq->metadata = metadata;
  755. bio->bi_private = end_io_wq;
  756. bio->bi_end_io = end_workqueue_bio;
  757. return 0;
  758. }
  759. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  760. {
  761. unsigned long limit = min_t(unsigned long,
  762. info->thread_pool_size,
  763. info->fs_devices->open_devices);
  764. return 256 * limit;
  765. }
  766. static void run_one_async_start(struct btrfs_work *work)
  767. {
  768. struct async_submit_bio *async;
  769. int ret;
  770. async = container_of(work, struct async_submit_bio, work);
  771. ret = async->submit_bio_start(async->inode, async->bio,
  772. async->mirror_num, async->bio_flags,
  773. async->bio_offset);
  774. if (ret)
  775. async->error = ret;
  776. }
  777. static void run_one_async_done(struct btrfs_work *work)
  778. {
  779. struct btrfs_fs_info *fs_info;
  780. struct async_submit_bio *async;
  781. int limit;
  782. async = container_of(work, struct async_submit_bio, work);
  783. fs_info = BTRFS_I(async->inode)->root->fs_info;
  784. limit = btrfs_async_submit_limit(fs_info);
  785. limit = limit * 2 / 3;
  786. /*
  787. * atomic_dec_return implies a barrier for waitqueue_active
  788. */
  789. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  790. waitqueue_active(&fs_info->async_submit_wait))
  791. wake_up(&fs_info->async_submit_wait);
  792. /* If an error occurred we just want to clean up the bio and move on */
  793. if (async->error) {
  794. async->bio->bi_error = async->error;
  795. bio_endio(async->bio);
  796. return;
  797. }
  798. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  799. async->bio_flags, async->bio_offset);
  800. }
  801. static void run_one_async_free(struct btrfs_work *work)
  802. {
  803. struct async_submit_bio *async;
  804. async = container_of(work, struct async_submit_bio, work);
  805. kfree(async);
  806. }
  807. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  808. struct bio *bio, int mirror_num,
  809. unsigned long bio_flags,
  810. u64 bio_offset,
  811. extent_submit_bio_hook_t *submit_bio_start,
  812. extent_submit_bio_hook_t *submit_bio_done)
  813. {
  814. struct async_submit_bio *async;
  815. async = kmalloc(sizeof(*async), GFP_NOFS);
  816. if (!async)
  817. return -ENOMEM;
  818. async->inode = inode;
  819. async->bio = bio;
  820. async->mirror_num = mirror_num;
  821. async->submit_bio_start = submit_bio_start;
  822. async->submit_bio_done = submit_bio_done;
  823. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  824. run_one_async_done, run_one_async_free);
  825. async->bio_flags = bio_flags;
  826. async->bio_offset = bio_offset;
  827. async->error = 0;
  828. atomic_inc(&fs_info->nr_async_submits);
  829. if (op_is_sync(bio->bi_opf))
  830. btrfs_set_work_high_priority(&async->work);
  831. btrfs_queue_work(fs_info->workers, &async->work);
  832. while (atomic_read(&fs_info->async_submit_draining) &&
  833. atomic_read(&fs_info->nr_async_submits)) {
  834. wait_event(fs_info->async_submit_wait,
  835. (atomic_read(&fs_info->nr_async_submits) == 0));
  836. }
  837. return 0;
  838. }
  839. static int btree_csum_one_bio(struct bio *bio)
  840. {
  841. struct bio_vec *bvec;
  842. struct btrfs_root *root;
  843. int i, ret = 0;
  844. bio_for_each_segment_all(bvec, bio, i) {
  845. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  846. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  847. if (ret)
  848. break;
  849. }
  850. return ret;
  851. }
  852. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  853. int mirror_num, unsigned long bio_flags,
  854. u64 bio_offset)
  855. {
  856. /*
  857. * when we're called for a write, we're already in the async
  858. * submission context. Just jump into btrfs_map_bio
  859. */
  860. return btree_csum_one_bio(bio);
  861. }
  862. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  863. int mirror_num, unsigned long bio_flags,
  864. u64 bio_offset)
  865. {
  866. int ret;
  867. /*
  868. * when we're called for a write, we're already in the async
  869. * submission context. Just jump into btrfs_map_bio
  870. */
  871. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  872. if (ret) {
  873. bio->bi_error = ret;
  874. bio_endio(bio);
  875. }
  876. return ret;
  877. }
  878. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  879. {
  880. if (bio_flags & EXTENT_BIO_TREE_LOG)
  881. return 0;
  882. #ifdef CONFIG_X86
  883. if (static_cpu_has(X86_FEATURE_XMM4_2))
  884. return 0;
  885. #endif
  886. return 1;
  887. }
  888. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  889. int mirror_num, unsigned long bio_flags,
  890. u64 bio_offset)
  891. {
  892. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  893. int async = check_async_write(inode, bio_flags);
  894. int ret;
  895. if (bio_op(bio) != REQ_OP_WRITE) {
  896. /*
  897. * called for a read, do the setup so that checksum validation
  898. * can happen in the async kernel threads
  899. */
  900. ret = btrfs_bio_wq_end_io(fs_info, bio,
  901. BTRFS_WQ_ENDIO_METADATA);
  902. if (ret)
  903. goto out_w_error;
  904. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  905. } else if (!async) {
  906. ret = btree_csum_one_bio(bio);
  907. if (ret)
  908. goto out_w_error;
  909. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  910. } else {
  911. /*
  912. * kthread helpers are used to submit writes so that
  913. * checksumming can happen in parallel across all CPUs
  914. */
  915. ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
  916. bio_offset,
  917. __btree_submit_bio_start,
  918. __btree_submit_bio_done);
  919. }
  920. if (ret)
  921. goto out_w_error;
  922. return 0;
  923. out_w_error:
  924. bio->bi_error = ret;
  925. bio_endio(bio);
  926. return ret;
  927. }
  928. #ifdef CONFIG_MIGRATION
  929. static int btree_migratepage(struct address_space *mapping,
  930. struct page *newpage, struct page *page,
  931. enum migrate_mode mode)
  932. {
  933. /*
  934. * we can't safely write a btree page from here,
  935. * we haven't done the locking hook
  936. */
  937. if (PageDirty(page))
  938. return -EAGAIN;
  939. /*
  940. * Buffers may be managed in a filesystem specific way.
  941. * We must have no buffers or drop them.
  942. */
  943. if (page_has_private(page) &&
  944. !try_to_release_page(page, GFP_KERNEL))
  945. return -EAGAIN;
  946. return migrate_page(mapping, newpage, page, mode);
  947. }
  948. #endif
  949. static int btree_writepages(struct address_space *mapping,
  950. struct writeback_control *wbc)
  951. {
  952. struct btrfs_fs_info *fs_info;
  953. int ret;
  954. if (wbc->sync_mode == WB_SYNC_NONE) {
  955. if (wbc->for_kupdate)
  956. return 0;
  957. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  958. /* this is a bit racy, but that's ok */
  959. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  960. BTRFS_DIRTY_METADATA_THRESH);
  961. if (ret < 0)
  962. return 0;
  963. }
  964. return btree_write_cache_pages(mapping, wbc);
  965. }
  966. static int btree_readpage(struct file *file, struct page *page)
  967. {
  968. struct extent_io_tree *tree;
  969. tree = &BTRFS_I(page->mapping->host)->io_tree;
  970. return extent_read_full_page(tree, page, btree_get_extent, 0);
  971. }
  972. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  973. {
  974. if (PageWriteback(page) || PageDirty(page))
  975. return 0;
  976. return try_release_extent_buffer(page);
  977. }
  978. static void btree_invalidatepage(struct page *page, unsigned int offset,
  979. unsigned int length)
  980. {
  981. struct extent_io_tree *tree;
  982. tree = &BTRFS_I(page->mapping->host)->io_tree;
  983. extent_invalidatepage(tree, page, offset);
  984. btree_releasepage(page, GFP_NOFS);
  985. if (PagePrivate(page)) {
  986. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  987. "page private not zero on page %llu",
  988. (unsigned long long)page_offset(page));
  989. ClearPagePrivate(page);
  990. set_page_private(page, 0);
  991. put_page(page);
  992. }
  993. }
  994. static int btree_set_page_dirty(struct page *page)
  995. {
  996. #ifdef DEBUG
  997. struct extent_buffer *eb;
  998. BUG_ON(!PagePrivate(page));
  999. eb = (struct extent_buffer *)page->private;
  1000. BUG_ON(!eb);
  1001. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  1002. BUG_ON(!atomic_read(&eb->refs));
  1003. btrfs_assert_tree_locked(eb);
  1004. #endif
  1005. return __set_page_dirty_nobuffers(page);
  1006. }
  1007. static const struct address_space_operations btree_aops = {
  1008. .readpage = btree_readpage,
  1009. .writepages = btree_writepages,
  1010. .releasepage = btree_releasepage,
  1011. .invalidatepage = btree_invalidatepage,
  1012. #ifdef CONFIG_MIGRATION
  1013. .migratepage = btree_migratepage,
  1014. #endif
  1015. .set_page_dirty = btree_set_page_dirty,
  1016. };
  1017. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  1018. {
  1019. struct extent_buffer *buf = NULL;
  1020. struct inode *btree_inode = fs_info->btree_inode;
  1021. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1022. if (IS_ERR(buf))
  1023. return;
  1024. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1025. buf, WAIT_NONE, btree_get_extent, 0);
  1026. free_extent_buffer(buf);
  1027. }
  1028. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  1029. int mirror_num, struct extent_buffer **eb)
  1030. {
  1031. struct extent_buffer *buf = NULL;
  1032. struct inode *btree_inode = fs_info->btree_inode;
  1033. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1034. int ret;
  1035. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1036. if (IS_ERR(buf))
  1037. return 0;
  1038. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1039. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1040. btree_get_extent, mirror_num);
  1041. if (ret) {
  1042. free_extent_buffer(buf);
  1043. return ret;
  1044. }
  1045. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1046. free_extent_buffer(buf);
  1047. return -EIO;
  1048. } else if (extent_buffer_uptodate(buf)) {
  1049. *eb = buf;
  1050. } else {
  1051. free_extent_buffer(buf);
  1052. }
  1053. return 0;
  1054. }
  1055. struct extent_buffer *btrfs_find_create_tree_block(
  1056. struct btrfs_fs_info *fs_info,
  1057. u64 bytenr)
  1058. {
  1059. if (btrfs_is_testing(fs_info))
  1060. return alloc_test_extent_buffer(fs_info, bytenr);
  1061. return alloc_extent_buffer(fs_info, bytenr);
  1062. }
  1063. int btrfs_write_tree_block(struct extent_buffer *buf)
  1064. {
  1065. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1066. buf->start + buf->len - 1);
  1067. }
  1068. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1069. {
  1070. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1071. buf->start, buf->start + buf->len - 1);
  1072. }
  1073. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  1074. u64 parent_transid)
  1075. {
  1076. struct extent_buffer *buf = NULL;
  1077. int ret;
  1078. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1079. if (IS_ERR(buf))
  1080. return buf;
  1081. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  1082. if (ret) {
  1083. free_extent_buffer(buf);
  1084. return ERR_PTR(ret);
  1085. }
  1086. return buf;
  1087. }
  1088. void clean_tree_block(struct btrfs_trans_handle *trans,
  1089. struct btrfs_fs_info *fs_info,
  1090. struct extent_buffer *buf)
  1091. {
  1092. if (btrfs_header_generation(buf) ==
  1093. fs_info->running_transaction->transid) {
  1094. btrfs_assert_tree_locked(buf);
  1095. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1096. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1097. -buf->len,
  1098. fs_info->dirty_metadata_batch);
  1099. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1100. btrfs_set_lock_blocking(buf);
  1101. clear_extent_buffer_dirty(buf);
  1102. }
  1103. }
  1104. }
  1105. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1106. {
  1107. struct btrfs_subvolume_writers *writers;
  1108. int ret;
  1109. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1110. if (!writers)
  1111. return ERR_PTR(-ENOMEM);
  1112. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1113. if (ret < 0) {
  1114. kfree(writers);
  1115. return ERR_PTR(ret);
  1116. }
  1117. init_waitqueue_head(&writers->wait);
  1118. return writers;
  1119. }
  1120. static void
  1121. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1122. {
  1123. percpu_counter_destroy(&writers->counter);
  1124. kfree(writers);
  1125. }
  1126. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1127. u64 objectid)
  1128. {
  1129. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1130. root->node = NULL;
  1131. root->commit_root = NULL;
  1132. root->state = 0;
  1133. root->orphan_cleanup_state = 0;
  1134. root->objectid = objectid;
  1135. root->last_trans = 0;
  1136. root->highest_objectid = 0;
  1137. root->nr_delalloc_inodes = 0;
  1138. root->nr_ordered_extents = 0;
  1139. root->name = NULL;
  1140. root->inode_tree = RB_ROOT;
  1141. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1142. root->block_rsv = NULL;
  1143. root->orphan_block_rsv = NULL;
  1144. INIT_LIST_HEAD(&root->dirty_list);
  1145. INIT_LIST_HEAD(&root->root_list);
  1146. INIT_LIST_HEAD(&root->delalloc_inodes);
  1147. INIT_LIST_HEAD(&root->delalloc_root);
  1148. INIT_LIST_HEAD(&root->ordered_extents);
  1149. INIT_LIST_HEAD(&root->ordered_root);
  1150. INIT_LIST_HEAD(&root->logged_list[0]);
  1151. INIT_LIST_HEAD(&root->logged_list[1]);
  1152. spin_lock_init(&root->orphan_lock);
  1153. spin_lock_init(&root->inode_lock);
  1154. spin_lock_init(&root->delalloc_lock);
  1155. spin_lock_init(&root->ordered_extent_lock);
  1156. spin_lock_init(&root->accounting_lock);
  1157. spin_lock_init(&root->log_extents_lock[0]);
  1158. spin_lock_init(&root->log_extents_lock[1]);
  1159. mutex_init(&root->objectid_mutex);
  1160. mutex_init(&root->log_mutex);
  1161. mutex_init(&root->ordered_extent_mutex);
  1162. mutex_init(&root->delalloc_mutex);
  1163. init_waitqueue_head(&root->log_writer_wait);
  1164. init_waitqueue_head(&root->log_commit_wait[0]);
  1165. init_waitqueue_head(&root->log_commit_wait[1]);
  1166. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1167. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1168. atomic_set(&root->log_commit[0], 0);
  1169. atomic_set(&root->log_commit[1], 0);
  1170. atomic_set(&root->log_writers, 0);
  1171. atomic_set(&root->log_batch, 0);
  1172. atomic_set(&root->orphan_inodes, 0);
  1173. atomic_set(&root->refs, 1);
  1174. atomic_set(&root->will_be_snapshoted, 0);
  1175. atomic_set(&root->qgroup_meta_rsv, 0);
  1176. root->log_transid = 0;
  1177. root->log_transid_committed = -1;
  1178. root->last_log_commit = 0;
  1179. if (!dummy)
  1180. extent_io_tree_init(&root->dirty_log_pages,
  1181. fs_info->btree_inode->i_mapping);
  1182. memset(&root->root_key, 0, sizeof(root->root_key));
  1183. memset(&root->root_item, 0, sizeof(root->root_item));
  1184. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1185. if (!dummy)
  1186. root->defrag_trans_start = fs_info->generation;
  1187. else
  1188. root->defrag_trans_start = 0;
  1189. root->root_key.objectid = objectid;
  1190. root->anon_dev = 0;
  1191. spin_lock_init(&root->root_item_lock);
  1192. }
  1193. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1194. gfp_t flags)
  1195. {
  1196. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1197. if (root)
  1198. root->fs_info = fs_info;
  1199. return root;
  1200. }
  1201. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1202. /* Should only be used by the testing infrastructure */
  1203. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1204. {
  1205. struct btrfs_root *root;
  1206. if (!fs_info)
  1207. return ERR_PTR(-EINVAL);
  1208. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1209. if (!root)
  1210. return ERR_PTR(-ENOMEM);
  1211. /* We don't use the stripesize in selftest, set it as sectorsize */
  1212. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1213. root->alloc_bytenr = 0;
  1214. return root;
  1215. }
  1216. #endif
  1217. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1218. struct btrfs_fs_info *fs_info,
  1219. u64 objectid)
  1220. {
  1221. struct extent_buffer *leaf;
  1222. struct btrfs_root *tree_root = fs_info->tree_root;
  1223. struct btrfs_root *root;
  1224. struct btrfs_key key;
  1225. int ret = 0;
  1226. uuid_le uuid;
  1227. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1228. if (!root)
  1229. return ERR_PTR(-ENOMEM);
  1230. __setup_root(root, fs_info, objectid);
  1231. root->root_key.objectid = objectid;
  1232. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1233. root->root_key.offset = 0;
  1234. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1235. if (IS_ERR(leaf)) {
  1236. ret = PTR_ERR(leaf);
  1237. leaf = NULL;
  1238. goto fail;
  1239. }
  1240. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1241. btrfs_set_header_bytenr(leaf, leaf->start);
  1242. btrfs_set_header_generation(leaf, trans->transid);
  1243. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1244. btrfs_set_header_owner(leaf, objectid);
  1245. root->node = leaf;
  1246. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1247. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1248. btrfs_mark_buffer_dirty(leaf);
  1249. root->commit_root = btrfs_root_node(root);
  1250. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1251. root->root_item.flags = 0;
  1252. root->root_item.byte_limit = 0;
  1253. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1254. btrfs_set_root_generation(&root->root_item, trans->transid);
  1255. btrfs_set_root_level(&root->root_item, 0);
  1256. btrfs_set_root_refs(&root->root_item, 1);
  1257. btrfs_set_root_used(&root->root_item, leaf->len);
  1258. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1259. btrfs_set_root_dirid(&root->root_item, 0);
  1260. uuid_le_gen(&uuid);
  1261. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1262. root->root_item.drop_level = 0;
  1263. key.objectid = objectid;
  1264. key.type = BTRFS_ROOT_ITEM_KEY;
  1265. key.offset = 0;
  1266. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1267. if (ret)
  1268. goto fail;
  1269. btrfs_tree_unlock(leaf);
  1270. return root;
  1271. fail:
  1272. if (leaf) {
  1273. btrfs_tree_unlock(leaf);
  1274. free_extent_buffer(root->commit_root);
  1275. free_extent_buffer(leaf);
  1276. }
  1277. kfree(root);
  1278. return ERR_PTR(ret);
  1279. }
  1280. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1281. struct btrfs_fs_info *fs_info)
  1282. {
  1283. struct btrfs_root *root;
  1284. struct extent_buffer *leaf;
  1285. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1286. if (!root)
  1287. return ERR_PTR(-ENOMEM);
  1288. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1289. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1290. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1291. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1292. /*
  1293. * DON'T set REF_COWS for log trees
  1294. *
  1295. * log trees do not get reference counted because they go away
  1296. * before a real commit is actually done. They do store pointers
  1297. * to file data extents, and those reference counts still get
  1298. * updated (along with back refs to the log tree).
  1299. */
  1300. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1301. NULL, 0, 0, 0);
  1302. if (IS_ERR(leaf)) {
  1303. kfree(root);
  1304. return ERR_CAST(leaf);
  1305. }
  1306. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1307. btrfs_set_header_bytenr(leaf, leaf->start);
  1308. btrfs_set_header_generation(leaf, trans->transid);
  1309. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1310. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1311. root->node = leaf;
  1312. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1313. btrfs_mark_buffer_dirty(root->node);
  1314. btrfs_tree_unlock(root->node);
  1315. return root;
  1316. }
  1317. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1318. struct btrfs_fs_info *fs_info)
  1319. {
  1320. struct btrfs_root *log_root;
  1321. log_root = alloc_log_tree(trans, fs_info);
  1322. if (IS_ERR(log_root))
  1323. return PTR_ERR(log_root);
  1324. WARN_ON(fs_info->log_root_tree);
  1325. fs_info->log_root_tree = log_root;
  1326. return 0;
  1327. }
  1328. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1329. struct btrfs_root *root)
  1330. {
  1331. struct btrfs_fs_info *fs_info = root->fs_info;
  1332. struct btrfs_root *log_root;
  1333. struct btrfs_inode_item *inode_item;
  1334. log_root = alloc_log_tree(trans, fs_info);
  1335. if (IS_ERR(log_root))
  1336. return PTR_ERR(log_root);
  1337. log_root->last_trans = trans->transid;
  1338. log_root->root_key.offset = root->root_key.objectid;
  1339. inode_item = &log_root->root_item.inode;
  1340. btrfs_set_stack_inode_generation(inode_item, 1);
  1341. btrfs_set_stack_inode_size(inode_item, 3);
  1342. btrfs_set_stack_inode_nlink(inode_item, 1);
  1343. btrfs_set_stack_inode_nbytes(inode_item,
  1344. fs_info->nodesize);
  1345. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1346. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1347. WARN_ON(root->log_root);
  1348. root->log_root = log_root;
  1349. root->log_transid = 0;
  1350. root->log_transid_committed = -1;
  1351. root->last_log_commit = 0;
  1352. return 0;
  1353. }
  1354. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1355. struct btrfs_key *key)
  1356. {
  1357. struct btrfs_root *root;
  1358. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1359. struct btrfs_path *path;
  1360. u64 generation;
  1361. int ret;
  1362. path = btrfs_alloc_path();
  1363. if (!path)
  1364. return ERR_PTR(-ENOMEM);
  1365. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1366. if (!root) {
  1367. ret = -ENOMEM;
  1368. goto alloc_fail;
  1369. }
  1370. __setup_root(root, fs_info, key->objectid);
  1371. ret = btrfs_find_root(tree_root, key, path,
  1372. &root->root_item, &root->root_key);
  1373. if (ret) {
  1374. if (ret > 0)
  1375. ret = -ENOENT;
  1376. goto find_fail;
  1377. }
  1378. generation = btrfs_root_generation(&root->root_item);
  1379. root->node = read_tree_block(fs_info,
  1380. btrfs_root_bytenr(&root->root_item),
  1381. generation);
  1382. if (IS_ERR(root->node)) {
  1383. ret = PTR_ERR(root->node);
  1384. goto find_fail;
  1385. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1386. ret = -EIO;
  1387. free_extent_buffer(root->node);
  1388. goto find_fail;
  1389. }
  1390. root->commit_root = btrfs_root_node(root);
  1391. out:
  1392. btrfs_free_path(path);
  1393. return root;
  1394. find_fail:
  1395. kfree(root);
  1396. alloc_fail:
  1397. root = ERR_PTR(ret);
  1398. goto out;
  1399. }
  1400. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1401. struct btrfs_key *location)
  1402. {
  1403. struct btrfs_root *root;
  1404. root = btrfs_read_tree_root(tree_root, location);
  1405. if (IS_ERR(root))
  1406. return root;
  1407. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1408. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1409. btrfs_check_and_init_root_item(&root->root_item);
  1410. }
  1411. return root;
  1412. }
  1413. int btrfs_init_fs_root(struct btrfs_root *root)
  1414. {
  1415. int ret;
  1416. struct btrfs_subvolume_writers *writers;
  1417. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1418. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1419. GFP_NOFS);
  1420. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1421. ret = -ENOMEM;
  1422. goto fail;
  1423. }
  1424. writers = btrfs_alloc_subvolume_writers();
  1425. if (IS_ERR(writers)) {
  1426. ret = PTR_ERR(writers);
  1427. goto fail;
  1428. }
  1429. root->subv_writers = writers;
  1430. btrfs_init_free_ino_ctl(root);
  1431. spin_lock_init(&root->ino_cache_lock);
  1432. init_waitqueue_head(&root->ino_cache_wait);
  1433. ret = get_anon_bdev(&root->anon_dev);
  1434. if (ret)
  1435. goto fail;
  1436. mutex_lock(&root->objectid_mutex);
  1437. ret = btrfs_find_highest_objectid(root,
  1438. &root->highest_objectid);
  1439. if (ret) {
  1440. mutex_unlock(&root->objectid_mutex);
  1441. goto fail;
  1442. }
  1443. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1444. mutex_unlock(&root->objectid_mutex);
  1445. return 0;
  1446. fail:
  1447. /* the caller is responsible to call free_fs_root */
  1448. return ret;
  1449. }
  1450. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1451. u64 root_id)
  1452. {
  1453. struct btrfs_root *root;
  1454. spin_lock(&fs_info->fs_roots_radix_lock);
  1455. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1456. (unsigned long)root_id);
  1457. spin_unlock(&fs_info->fs_roots_radix_lock);
  1458. return root;
  1459. }
  1460. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1461. struct btrfs_root *root)
  1462. {
  1463. int ret;
  1464. ret = radix_tree_preload(GFP_NOFS);
  1465. if (ret)
  1466. return ret;
  1467. spin_lock(&fs_info->fs_roots_radix_lock);
  1468. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1469. (unsigned long)root->root_key.objectid,
  1470. root);
  1471. if (ret == 0)
  1472. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1473. spin_unlock(&fs_info->fs_roots_radix_lock);
  1474. radix_tree_preload_end();
  1475. return ret;
  1476. }
  1477. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1478. struct btrfs_key *location,
  1479. bool check_ref)
  1480. {
  1481. struct btrfs_root *root;
  1482. struct btrfs_path *path;
  1483. struct btrfs_key key;
  1484. int ret;
  1485. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1486. return fs_info->tree_root;
  1487. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1488. return fs_info->extent_root;
  1489. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1490. return fs_info->chunk_root;
  1491. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1492. return fs_info->dev_root;
  1493. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1494. return fs_info->csum_root;
  1495. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1496. return fs_info->quota_root ? fs_info->quota_root :
  1497. ERR_PTR(-ENOENT);
  1498. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1499. return fs_info->uuid_root ? fs_info->uuid_root :
  1500. ERR_PTR(-ENOENT);
  1501. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1502. return fs_info->free_space_root ? fs_info->free_space_root :
  1503. ERR_PTR(-ENOENT);
  1504. again:
  1505. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1506. if (root) {
  1507. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1508. return ERR_PTR(-ENOENT);
  1509. return root;
  1510. }
  1511. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1512. if (IS_ERR(root))
  1513. return root;
  1514. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1515. ret = -ENOENT;
  1516. goto fail;
  1517. }
  1518. ret = btrfs_init_fs_root(root);
  1519. if (ret)
  1520. goto fail;
  1521. path = btrfs_alloc_path();
  1522. if (!path) {
  1523. ret = -ENOMEM;
  1524. goto fail;
  1525. }
  1526. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1527. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1528. key.offset = location->objectid;
  1529. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1530. btrfs_free_path(path);
  1531. if (ret < 0)
  1532. goto fail;
  1533. if (ret == 0)
  1534. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1535. ret = btrfs_insert_fs_root(fs_info, root);
  1536. if (ret) {
  1537. if (ret == -EEXIST) {
  1538. free_fs_root(root);
  1539. goto again;
  1540. }
  1541. goto fail;
  1542. }
  1543. return root;
  1544. fail:
  1545. free_fs_root(root);
  1546. return ERR_PTR(ret);
  1547. }
  1548. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1549. {
  1550. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1551. int ret = 0;
  1552. struct btrfs_device *device;
  1553. struct backing_dev_info *bdi;
  1554. rcu_read_lock();
  1555. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1556. if (!device->bdev)
  1557. continue;
  1558. bdi = blk_get_backing_dev_info(device->bdev);
  1559. if (bdi_congested(bdi, bdi_bits)) {
  1560. ret = 1;
  1561. break;
  1562. }
  1563. }
  1564. rcu_read_unlock();
  1565. return ret;
  1566. }
  1567. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1568. {
  1569. int err;
  1570. err = bdi_setup_and_register(bdi, "btrfs");
  1571. if (err)
  1572. return err;
  1573. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1574. bdi->congested_fn = btrfs_congested_fn;
  1575. bdi->congested_data = info;
  1576. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1577. return 0;
  1578. }
  1579. /*
  1580. * called by the kthread helper functions to finally call the bio end_io
  1581. * functions. This is where read checksum verification actually happens
  1582. */
  1583. static void end_workqueue_fn(struct btrfs_work *work)
  1584. {
  1585. struct bio *bio;
  1586. struct btrfs_end_io_wq *end_io_wq;
  1587. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1588. bio = end_io_wq->bio;
  1589. bio->bi_error = end_io_wq->error;
  1590. bio->bi_private = end_io_wq->private;
  1591. bio->bi_end_io = end_io_wq->end_io;
  1592. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1593. bio_endio(bio);
  1594. }
  1595. static int cleaner_kthread(void *arg)
  1596. {
  1597. struct btrfs_root *root = arg;
  1598. struct btrfs_fs_info *fs_info = root->fs_info;
  1599. int again;
  1600. struct btrfs_trans_handle *trans;
  1601. do {
  1602. again = 0;
  1603. /* Make the cleaner go to sleep early. */
  1604. if (btrfs_need_cleaner_sleep(fs_info))
  1605. goto sleep;
  1606. /*
  1607. * Do not do anything if we might cause open_ctree() to block
  1608. * before we have finished mounting the filesystem.
  1609. */
  1610. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1611. goto sleep;
  1612. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1613. goto sleep;
  1614. /*
  1615. * Avoid the problem that we change the status of the fs
  1616. * during the above check and trylock.
  1617. */
  1618. if (btrfs_need_cleaner_sleep(fs_info)) {
  1619. mutex_unlock(&fs_info->cleaner_mutex);
  1620. goto sleep;
  1621. }
  1622. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1623. btrfs_run_delayed_iputs(fs_info);
  1624. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1625. again = btrfs_clean_one_deleted_snapshot(root);
  1626. mutex_unlock(&fs_info->cleaner_mutex);
  1627. /*
  1628. * The defragger has dealt with the R/O remount and umount,
  1629. * needn't do anything special here.
  1630. */
  1631. btrfs_run_defrag_inodes(fs_info);
  1632. /*
  1633. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1634. * with relocation (btrfs_relocate_chunk) and relocation
  1635. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1636. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1637. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1638. * unused block groups.
  1639. */
  1640. btrfs_delete_unused_bgs(fs_info);
  1641. sleep:
  1642. if (!again) {
  1643. set_current_state(TASK_INTERRUPTIBLE);
  1644. if (!kthread_should_stop())
  1645. schedule();
  1646. __set_current_state(TASK_RUNNING);
  1647. }
  1648. } while (!kthread_should_stop());
  1649. /*
  1650. * Transaction kthread is stopped before us and wakes us up.
  1651. * However we might have started a new transaction and COWed some
  1652. * tree blocks when deleting unused block groups for example. So
  1653. * make sure we commit the transaction we started to have a clean
  1654. * shutdown when evicting the btree inode - if it has dirty pages
  1655. * when we do the final iput() on it, eviction will trigger a
  1656. * writeback for it which will fail with null pointer dereferences
  1657. * since work queues and other resources were already released and
  1658. * destroyed by the time the iput/eviction/writeback is made.
  1659. */
  1660. trans = btrfs_attach_transaction(root);
  1661. if (IS_ERR(trans)) {
  1662. if (PTR_ERR(trans) != -ENOENT)
  1663. btrfs_err(fs_info,
  1664. "cleaner transaction attach returned %ld",
  1665. PTR_ERR(trans));
  1666. } else {
  1667. int ret;
  1668. ret = btrfs_commit_transaction(trans);
  1669. if (ret)
  1670. btrfs_err(fs_info,
  1671. "cleaner open transaction commit returned %d",
  1672. ret);
  1673. }
  1674. return 0;
  1675. }
  1676. static int transaction_kthread(void *arg)
  1677. {
  1678. struct btrfs_root *root = arg;
  1679. struct btrfs_fs_info *fs_info = root->fs_info;
  1680. struct btrfs_trans_handle *trans;
  1681. struct btrfs_transaction *cur;
  1682. u64 transid;
  1683. unsigned long now;
  1684. unsigned long delay;
  1685. bool cannot_commit;
  1686. do {
  1687. cannot_commit = false;
  1688. delay = HZ * fs_info->commit_interval;
  1689. mutex_lock(&fs_info->transaction_kthread_mutex);
  1690. spin_lock(&fs_info->trans_lock);
  1691. cur = fs_info->running_transaction;
  1692. if (!cur) {
  1693. spin_unlock(&fs_info->trans_lock);
  1694. goto sleep;
  1695. }
  1696. now = get_seconds();
  1697. if (cur->state < TRANS_STATE_BLOCKED &&
  1698. (now < cur->start_time ||
  1699. now - cur->start_time < fs_info->commit_interval)) {
  1700. spin_unlock(&fs_info->trans_lock);
  1701. delay = HZ * 5;
  1702. goto sleep;
  1703. }
  1704. transid = cur->transid;
  1705. spin_unlock(&fs_info->trans_lock);
  1706. /* If the file system is aborted, this will always fail. */
  1707. trans = btrfs_attach_transaction(root);
  1708. if (IS_ERR(trans)) {
  1709. if (PTR_ERR(trans) != -ENOENT)
  1710. cannot_commit = true;
  1711. goto sleep;
  1712. }
  1713. if (transid == trans->transid) {
  1714. btrfs_commit_transaction(trans);
  1715. } else {
  1716. btrfs_end_transaction(trans);
  1717. }
  1718. sleep:
  1719. wake_up_process(fs_info->cleaner_kthread);
  1720. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1721. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1722. &fs_info->fs_state)))
  1723. btrfs_cleanup_transaction(fs_info);
  1724. set_current_state(TASK_INTERRUPTIBLE);
  1725. if (!kthread_should_stop() &&
  1726. (!btrfs_transaction_blocked(fs_info) ||
  1727. cannot_commit))
  1728. schedule_timeout(delay);
  1729. __set_current_state(TASK_RUNNING);
  1730. } while (!kthread_should_stop());
  1731. return 0;
  1732. }
  1733. /*
  1734. * this will find the highest generation in the array of
  1735. * root backups. The index of the highest array is returned,
  1736. * or -1 if we can't find anything.
  1737. *
  1738. * We check to make sure the array is valid by comparing the
  1739. * generation of the latest root in the array with the generation
  1740. * in the super block. If they don't match we pitch it.
  1741. */
  1742. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1743. {
  1744. u64 cur;
  1745. int newest_index = -1;
  1746. struct btrfs_root_backup *root_backup;
  1747. int i;
  1748. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1749. root_backup = info->super_copy->super_roots + i;
  1750. cur = btrfs_backup_tree_root_gen(root_backup);
  1751. if (cur == newest_gen)
  1752. newest_index = i;
  1753. }
  1754. /* check to see if we actually wrapped around */
  1755. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1756. root_backup = info->super_copy->super_roots;
  1757. cur = btrfs_backup_tree_root_gen(root_backup);
  1758. if (cur == newest_gen)
  1759. newest_index = 0;
  1760. }
  1761. return newest_index;
  1762. }
  1763. /*
  1764. * find the oldest backup so we know where to store new entries
  1765. * in the backup array. This will set the backup_root_index
  1766. * field in the fs_info struct
  1767. */
  1768. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1769. u64 newest_gen)
  1770. {
  1771. int newest_index = -1;
  1772. newest_index = find_newest_super_backup(info, newest_gen);
  1773. /* if there was garbage in there, just move along */
  1774. if (newest_index == -1) {
  1775. info->backup_root_index = 0;
  1776. } else {
  1777. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1778. }
  1779. }
  1780. /*
  1781. * copy all the root pointers into the super backup array.
  1782. * this will bump the backup pointer by one when it is
  1783. * done
  1784. */
  1785. static void backup_super_roots(struct btrfs_fs_info *info)
  1786. {
  1787. int next_backup;
  1788. struct btrfs_root_backup *root_backup;
  1789. int last_backup;
  1790. next_backup = info->backup_root_index;
  1791. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1792. BTRFS_NUM_BACKUP_ROOTS;
  1793. /*
  1794. * just overwrite the last backup if we're at the same generation
  1795. * this happens only at umount
  1796. */
  1797. root_backup = info->super_for_commit->super_roots + last_backup;
  1798. if (btrfs_backup_tree_root_gen(root_backup) ==
  1799. btrfs_header_generation(info->tree_root->node))
  1800. next_backup = last_backup;
  1801. root_backup = info->super_for_commit->super_roots + next_backup;
  1802. /*
  1803. * make sure all of our padding and empty slots get zero filled
  1804. * regardless of which ones we use today
  1805. */
  1806. memset(root_backup, 0, sizeof(*root_backup));
  1807. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1808. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1809. btrfs_set_backup_tree_root_gen(root_backup,
  1810. btrfs_header_generation(info->tree_root->node));
  1811. btrfs_set_backup_tree_root_level(root_backup,
  1812. btrfs_header_level(info->tree_root->node));
  1813. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1814. btrfs_set_backup_chunk_root_gen(root_backup,
  1815. btrfs_header_generation(info->chunk_root->node));
  1816. btrfs_set_backup_chunk_root_level(root_backup,
  1817. btrfs_header_level(info->chunk_root->node));
  1818. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1819. btrfs_set_backup_extent_root_gen(root_backup,
  1820. btrfs_header_generation(info->extent_root->node));
  1821. btrfs_set_backup_extent_root_level(root_backup,
  1822. btrfs_header_level(info->extent_root->node));
  1823. /*
  1824. * we might commit during log recovery, which happens before we set
  1825. * the fs_root. Make sure it is valid before we fill it in.
  1826. */
  1827. if (info->fs_root && info->fs_root->node) {
  1828. btrfs_set_backup_fs_root(root_backup,
  1829. info->fs_root->node->start);
  1830. btrfs_set_backup_fs_root_gen(root_backup,
  1831. btrfs_header_generation(info->fs_root->node));
  1832. btrfs_set_backup_fs_root_level(root_backup,
  1833. btrfs_header_level(info->fs_root->node));
  1834. }
  1835. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1836. btrfs_set_backup_dev_root_gen(root_backup,
  1837. btrfs_header_generation(info->dev_root->node));
  1838. btrfs_set_backup_dev_root_level(root_backup,
  1839. btrfs_header_level(info->dev_root->node));
  1840. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1841. btrfs_set_backup_csum_root_gen(root_backup,
  1842. btrfs_header_generation(info->csum_root->node));
  1843. btrfs_set_backup_csum_root_level(root_backup,
  1844. btrfs_header_level(info->csum_root->node));
  1845. btrfs_set_backup_total_bytes(root_backup,
  1846. btrfs_super_total_bytes(info->super_copy));
  1847. btrfs_set_backup_bytes_used(root_backup,
  1848. btrfs_super_bytes_used(info->super_copy));
  1849. btrfs_set_backup_num_devices(root_backup,
  1850. btrfs_super_num_devices(info->super_copy));
  1851. /*
  1852. * if we don't copy this out to the super_copy, it won't get remembered
  1853. * for the next commit
  1854. */
  1855. memcpy(&info->super_copy->super_roots,
  1856. &info->super_for_commit->super_roots,
  1857. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1858. }
  1859. /*
  1860. * this copies info out of the root backup array and back into
  1861. * the in-memory super block. It is meant to help iterate through
  1862. * the array, so you send it the number of backups you've already
  1863. * tried and the last backup index you used.
  1864. *
  1865. * this returns -1 when it has tried all the backups
  1866. */
  1867. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1868. struct btrfs_super_block *super,
  1869. int *num_backups_tried, int *backup_index)
  1870. {
  1871. struct btrfs_root_backup *root_backup;
  1872. int newest = *backup_index;
  1873. if (*num_backups_tried == 0) {
  1874. u64 gen = btrfs_super_generation(super);
  1875. newest = find_newest_super_backup(info, gen);
  1876. if (newest == -1)
  1877. return -1;
  1878. *backup_index = newest;
  1879. *num_backups_tried = 1;
  1880. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1881. /* we've tried all the backups, all done */
  1882. return -1;
  1883. } else {
  1884. /* jump to the next oldest backup */
  1885. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1886. BTRFS_NUM_BACKUP_ROOTS;
  1887. *backup_index = newest;
  1888. *num_backups_tried += 1;
  1889. }
  1890. root_backup = super->super_roots + newest;
  1891. btrfs_set_super_generation(super,
  1892. btrfs_backup_tree_root_gen(root_backup));
  1893. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1894. btrfs_set_super_root_level(super,
  1895. btrfs_backup_tree_root_level(root_backup));
  1896. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1897. /*
  1898. * fixme: the total bytes and num_devices need to match or we should
  1899. * need a fsck
  1900. */
  1901. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1902. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1903. return 0;
  1904. }
  1905. /* helper to cleanup workers */
  1906. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1907. {
  1908. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1909. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1910. btrfs_destroy_workqueue(fs_info->workers);
  1911. btrfs_destroy_workqueue(fs_info->endio_workers);
  1912. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1913. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1914. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1915. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1916. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1917. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1918. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1919. btrfs_destroy_workqueue(fs_info->submit_workers);
  1920. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1921. btrfs_destroy_workqueue(fs_info->caching_workers);
  1922. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1923. btrfs_destroy_workqueue(fs_info->flush_workers);
  1924. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1925. btrfs_destroy_workqueue(fs_info->extent_workers);
  1926. }
  1927. static void free_root_extent_buffers(struct btrfs_root *root)
  1928. {
  1929. if (root) {
  1930. free_extent_buffer(root->node);
  1931. free_extent_buffer(root->commit_root);
  1932. root->node = NULL;
  1933. root->commit_root = NULL;
  1934. }
  1935. }
  1936. /* helper to cleanup tree roots */
  1937. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1938. {
  1939. free_root_extent_buffers(info->tree_root);
  1940. free_root_extent_buffers(info->dev_root);
  1941. free_root_extent_buffers(info->extent_root);
  1942. free_root_extent_buffers(info->csum_root);
  1943. free_root_extent_buffers(info->quota_root);
  1944. free_root_extent_buffers(info->uuid_root);
  1945. if (chunk_root)
  1946. free_root_extent_buffers(info->chunk_root);
  1947. free_root_extent_buffers(info->free_space_root);
  1948. }
  1949. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1950. {
  1951. int ret;
  1952. struct btrfs_root *gang[8];
  1953. int i;
  1954. while (!list_empty(&fs_info->dead_roots)) {
  1955. gang[0] = list_entry(fs_info->dead_roots.next,
  1956. struct btrfs_root, root_list);
  1957. list_del(&gang[0]->root_list);
  1958. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1959. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1960. } else {
  1961. free_extent_buffer(gang[0]->node);
  1962. free_extent_buffer(gang[0]->commit_root);
  1963. btrfs_put_fs_root(gang[0]);
  1964. }
  1965. }
  1966. while (1) {
  1967. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1968. (void **)gang, 0,
  1969. ARRAY_SIZE(gang));
  1970. if (!ret)
  1971. break;
  1972. for (i = 0; i < ret; i++)
  1973. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1974. }
  1975. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1976. btrfs_free_log_root_tree(NULL, fs_info);
  1977. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1978. }
  1979. }
  1980. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1981. {
  1982. mutex_init(&fs_info->scrub_lock);
  1983. atomic_set(&fs_info->scrubs_running, 0);
  1984. atomic_set(&fs_info->scrub_pause_req, 0);
  1985. atomic_set(&fs_info->scrubs_paused, 0);
  1986. atomic_set(&fs_info->scrub_cancel_req, 0);
  1987. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1988. fs_info->scrub_workers_refcnt = 0;
  1989. }
  1990. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1991. {
  1992. spin_lock_init(&fs_info->balance_lock);
  1993. mutex_init(&fs_info->balance_mutex);
  1994. atomic_set(&fs_info->balance_running, 0);
  1995. atomic_set(&fs_info->balance_pause_req, 0);
  1996. atomic_set(&fs_info->balance_cancel_req, 0);
  1997. fs_info->balance_ctl = NULL;
  1998. init_waitqueue_head(&fs_info->balance_wait_q);
  1999. }
  2000. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  2001. {
  2002. struct inode *inode = fs_info->btree_inode;
  2003. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2004. set_nlink(inode, 1);
  2005. /*
  2006. * we set the i_size on the btree inode to the max possible int.
  2007. * the real end of the address space is determined by all of
  2008. * the devices in the system
  2009. */
  2010. inode->i_size = OFFSET_MAX;
  2011. inode->i_mapping->a_ops = &btree_aops;
  2012. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2013. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
  2014. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  2015. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  2016. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  2017. BTRFS_I(inode)->root = fs_info->tree_root;
  2018. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  2019. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  2020. btrfs_insert_inode_hash(inode);
  2021. }
  2022. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2023. {
  2024. fs_info->dev_replace.lock_owner = 0;
  2025. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2026. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2027. rwlock_init(&fs_info->dev_replace.lock);
  2028. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2029. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2030. init_waitqueue_head(&fs_info->replace_wait);
  2031. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2032. }
  2033. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2034. {
  2035. spin_lock_init(&fs_info->qgroup_lock);
  2036. mutex_init(&fs_info->qgroup_ioctl_lock);
  2037. fs_info->qgroup_tree = RB_ROOT;
  2038. fs_info->qgroup_op_tree = RB_ROOT;
  2039. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2040. fs_info->qgroup_seq = 1;
  2041. fs_info->qgroup_ulist = NULL;
  2042. fs_info->qgroup_rescan_running = false;
  2043. mutex_init(&fs_info->qgroup_rescan_lock);
  2044. }
  2045. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2046. struct btrfs_fs_devices *fs_devices)
  2047. {
  2048. int max_active = fs_info->thread_pool_size;
  2049. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2050. fs_info->workers =
  2051. btrfs_alloc_workqueue(fs_info, "worker",
  2052. flags | WQ_HIGHPRI, max_active, 16);
  2053. fs_info->delalloc_workers =
  2054. btrfs_alloc_workqueue(fs_info, "delalloc",
  2055. flags, max_active, 2);
  2056. fs_info->flush_workers =
  2057. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2058. flags, max_active, 0);
  2059. fs_info->caching_workers =
  2060. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2061. /*
  2062. * a higher idle thresh on the submit workers makes it much more
  2063. * likely that bios will be send down in a sane order to the
  2064. * devices
  2065. */
  2066. fs_info->submit_workers =
  2067. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2068. min_t(u64, fs_devices->num_devices,
  2069. max_active), 64);
  2070. fs_info->fixup_workers =
  2071. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2072. /*
  2073. * endios are largely parallel and should have a very
  2074. * low idle thresh
  2075. */
  2076. fs_info->endio_workers =
  2077. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2078. fs_info->endio_meta_workers =
  2079. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2080. max_active, 4);
  2081. fs_info->endio_meta_write_workers =
  2082. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2083. max_active, 2);
  2084. fs_info->endio_raid56_workers =
  2085. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2086. max_active, 4);
  2087. fs_info->endio_repair_workers =
  2088. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2089. fs_info->rmw_workers =
  2090. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2091. fs_info->endio_write_workers =
  2092. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2093. max_active, 2);
  2094. fs_info->endio_freespace_worker =
  2095. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2096. max_active, 0);
  2097. fs_info->delayed_workers =
  2098. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2099. max_active, 0);
  2100. fs_info->readahead_workers =
  2101. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2102. max_active, 2);
  2103. fs_info->qgroup_rescan_workers =
  2104. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2105. fs_info->extent_workers =
  2106. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2107. min_t(u64, fs_devices->num_devices,
  2108. max_active), 8);
  2109. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2110. fs_info->submit_workers && fs_info->flush_workers &&
  2111. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2112. fs_info->endio_meta_write_workers &&
  2113. fs_info->endio_repair_workers &&
  2114. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2115. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2116. fs_info->caching_workers && fs_info->readahead_workers &&
  2117. fs_info->fixup_workers && fs_info->delayed_workers &&
  2118. fs_info->extent_workers &&
  2119. fs_info->qgroup_rescan_workers)) {
  2120. return -ENOMEM;
  2121. }
  2122. return 0;
  2123. }
  2124. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2125. struct btrfs_fs_devices *fs_devices)
  2126. {
  2127. int ret;
  2128. struct btrfs_root *log_tree_root;
  2129. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2130. u64 bytenr = btrfs_super_log_root(disk_super);
  2131. if (fs_devices->rw_devices == 0) {
  2132. btrfs_warn(fs_info, "log replay required on RO media");
  2133. return -EIO;
  2134. }
  2135. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2136. if (!log_tree_root)
  2137. return -ENOMEM;
  2138. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2139. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2140. fs_info->generation + 1);
  2141. if (IS_ERR(log_tree_root->node)) {
  2142. btrfs_warn(fs_info, "failed to read log tree");
  2143. ret = PTR_ERR(log_tree_root->node);
  2144. kfree(log_tree_root);
  2145. return ret;
  2146. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2147. btrfs_err(fs_info, "failed to read log tree");
  2148. free_extent_buffer(log_tree_root->node);
  2149. kfree(log_tree_root);
  2150. return -EIO;
  2151. }
  2152. /* returns with log_tree_root freed on success */
  2153. ret = btrfs_recover_log_trees(log_tree_root);
  2154. if (ret) {
  2155. btrfs_handle_fs_error(fs_info, ret,
  2156. "Failed to recover log tree");
  2157. free_extent_buffer(log_tree_root->node);
  2158. kfree(log_tree_root);
  2159. return ret;
  2160. }
  2161. if (fs_info->sb->s_flags & MS_RDONLY) {
  2162. ret = btrfs_commit_super(fs_info);
  2163. if (ret)
  2164. return ret;
  2165. }
  2166. return 0;
  2167. }
  2168. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2169. {
  2170. struct btrfs_root *tree_root = fs_info->tree_root;
  2171. struct btrfs_root *root;
  2172. struct btrfs_key location;
  2173. int ret;
  2174. BUG_ON(!fs_info->tree_root);
  2175. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2176. location.type = BTRFS_ROOT_ITEM_KEY;
  2177. location.offset = 0;
  2178. root = btrfs_read_tree_root(tree_root, &location);
  2179. if (IS_ERR(root))
  2180. return PTR_ERR(root);
  2181. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2182. fs_info->extent_root = root;
  2183. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2184. root = btrfs_read_tree_root(tree_root, &location);
  2185. if (IS_ERR(root))
  2186. return PTR_ERR(root);
  2187. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2188. fs_info->dev_root = root;
  2189. btrfs_init_devices_late(fs_info);
  2190. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2191. root = btrfs_read_tree_root(tree_root, &location);
  2192. if (IS_ERR(root))
  2193. return PTR_ERR(root);
  2194. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2195. fs_info->csum_root = root;
  2196. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2197. root = btrfs_read_tree_root(tree_root, &location);
  2198. if (!IS_ERR(root)) {
  2199. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2200. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2201. fs_info->quota_root = root;
  2202. }
  2203. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2204. root = btrfs_read_tree_root(tree_root, &location);
  2205. if (IS_ERR(root)) {
  2206. ret = PTR_ERR(root);
  2207. if (ret != -ENOENT)
  2208. return ret;
  2209. } else {
  2210. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2211. fs_info->uuid_root = root;
  2212. }
  2213. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2214. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2215. root = btrfs_read_tree_root(tree_root, &location);
  2216. if (IS_ERR(root))
  2217. return PTR_ERR(root);
  2218. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2219. fs_info->free_space_root = root;
  2220. }
  2221. return 0;
  2222. }
  2223. int open_ctree(struct super_block *sb,
  2224. struct btrfs_fs_devices *fs_devices,
  2225. char *options)
  2226. {
  2227. u32 sectorsize;
  2228. u32 nodesize;
  2229. u32 stripesize;
  2230. u64 generation;
  2231. u64 features;
  2232. struct btrfs_key location;
  2233. struct buffer_head *bh;
  2234. struct btrfs_super_block *disk_super;
  2235. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2236. struct btrfs_root *tree_root;
  2237. struct btrfs_root *chunk_root;
  2238. int ret;
  2239. int err = -EINVAL;
  2240. int num_backups_tried = 0;
  2241. int backup_index = 0;
  2242. int max_active;
  2243. int clear_free_space_tree = 0;
  2244. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2245. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2246. if (!tree_root || !chunk_root) {
  2247. err = -ENOMEM;
  2248. goto fail;
  2249. }
  2250. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2251. if (ret) {
  2252. err = ret;
  2253. goto fail;
  2254. }
  2255. ret = setup_bdi(fs_info, &fs_info->bdi);
  2256. if (ret) {
  2257. err = ret;
  2258. goto fail_srcu;
  2259. }
  2260. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2261. if (ret) {
  2262. err = ret;
  2263. goto fail_bdi;
  2264. }
  2265. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2266. (1 + ilog2(nr_cpu_ids));
  2267. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2268. if (ret) {
  2269. err = ret;
  2270. goto fail_dirty_metadata_bytes;
  2271. }
  2272. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2273. if (ret) {
  2274. err = ret;
  2275. goto fail_delalloc_bytes;
  2276. }
  2277. fs_info->btree_inode = new_inode(sb);
  2278. if (!fs_info->btree_inode) {
  2279. err = -ENOMEM;
  2280. goto fail_bio_counter;
  2281. }
  2282. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2283. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2284. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2285. INIT_LIST_HEAD(&fs_info->trans_list);
  2286. INIT_LIST_HEAD(&fs_info->dead_roots);
  2287. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2288. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2289. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2290. spin_lock_init(&fs_info->delalloc_root_lock);
  2291. spin_lock_init(&fs_info->trans_lock);
  2292. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2293. spin_lock_init(&fs_info->delayed_iput_lock);
  2294. spin_lock_init(&fs_info->defrag_inodes_lock);
  2295. spin_lock_init(&fs_info->free_chunk_lock);
  2296. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2297. spin_lock_init(&fs_info->super_lock);
  2298. spin_lock_init(&fs_info->qgroup_op_lock);
  2299. spin_lock_init(&fs_info->buffer_lock);
  2300. spin_lock_init(&fs_info->unused_bgs_lock);
  2301. rwlock_init(&fs_info->tree_mod_log_lock);
  2302. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2303. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2304. mutex_init(&fs_info->reloc_mutex);
  2305. mutex_init(&fs_info->delalloc_root_mutex);
  2306. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2307. seqlock_init(&fs_info->profiles_lock);
  2308. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2309. INIT_LIST_HEAD(&fs_info->space_info);
  2310. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2311. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2312. btrfs_mapping_init(&fs_info->mapping_tree);
  2313. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2314. BTRFS_BLOCK_RSV_GLOBAL);
  2315. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2316. BTRFS_BLOCK_RSV_DELALLOC);
  2317. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2318. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2319. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2320. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2321. BTRFS_BLOCK_RSV_DELOPS);
  2322. atomic_set(&fs_info->nr_async_submits, 0);
  2323. atomic_set(&fs_info->async_delalloc_pages, 0);
  2324. atomic_set(&fs_info->async_submit_draining, 0);
  2325. atomic_set(&fs_info->nr_async_bios, 0);
  2326. atomic_set(&fs_info->defrag_running, 0);
  2327. atomic_set(&fs_info->qgroup_op_seq, 0);
  2328. atomic_set(&fs_info->reada_works_cnt, 0);
  2329. atomic64_set(&fs_info->tree_mod_seq, 0);
  2330. fs_info->fs_frozen = 0;
  2331. fs_info->sb = sb;
  2332. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2333. fs_info->metadata_ratio = 0;
  2334. fs_info->defrag_inodes = RB_ROOT;
  2335. fs_info->free_chunk_space = 0;
  2336. fs_info->tree_mod_log = RB_ROOT;
  2337. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2338. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2339. /* readahead state */
  2340. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2341. spin_lock_init(&fs_info->reada_lock);
  2342. fs_info->thread_pool_size = min_t(unsigned long,
  2343. num_online_cpus() + 2, 8);
  2344. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2345. spin_lock_init(&fs_info->ordered_root_lock);
  2346. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2347. GFP_KERNEL);
  2348. if (!fs_info->delayed_root) {
  2349. err = -ENOMEM;
  2350. goto fail_iput;
  2351. }
  2352. btrfs_init_delayed_root(fs_info->delayed_root);
  2353. btrfs_init_scrub(fs_info);
  2354. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2355. fs_info->check_integrity_print_mask = 0;
  2356. #endif
  2357. btrfs_init_balance(fs_info);
  2358. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2359. sb->s_blocksize = 4096;
  2360. sb->s_blocksize_bits = blksize_bits(4096);
  2361. sb->s_bdi = &fs_info->bdi;
  2362. btrfs_init_btree_inode(fs_info);
  2363. spin_lock_init(&fs_info->block_group_cache_lock);
  2364. fs_info->block_group_cache_tree = RB_ROOT;
  2365. fs_info->first_logical_byte = (u64)-1;
  2366. extent_io_tree_init(&fs_info->freed_extents[0],
  2367. fs_info->btree_inode->i_mapping);
  2368. extent_io_tree_init(&fs_info->freed_extents[1],
  2369. fs_info->btree_inode->i_mapping);
  2370. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2371. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2372. mutex_init(&fs_info->ordered_operations_mutex);
  2373. mutex_init(&fs_info->tree_log_mutex);
  2374. mutex_init(&fs_info->chunk_mutex);
  2375. mutex_init(&fs_info->transaction_kthread_mutex);
  2376. mutex_init(&fs_info->cleaner_mutex);
  2377. mutex_init(&fs_info->volume_mutex);
  2378. mutex_init(&fs_info->ro_block_group_mutex);
  2379. init_rwsem(&fs_info->commit_root_sem);
  2380. init_rwsem(&fs_info->cleanup_work_sem);
  2381. init_rwsem(&fs_info->subvol_sem);
  2382. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2383. btrfs_init_dev_replace_locks(fs_info);
  2384. btrfs_init_qgroup(fs_info);
  2385. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2386. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2387. init_waitqueue_head(&fs_info->transaction_throttle);
  2388. init_waitqueue_head(&fs_info->transaction_wait);
  2389. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2390. init_waitqueue_head(&fs_info->async_submit_wait);
  2391. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2392. /* Usable values until the real ones are cached from the superblock */
  2393. fs_info->nodesize = 4096;
  2394. fs_info->sectorsize = 4096;
  2395. fs_info->stripesize = 4096;
  2396. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2397. if (ret) {
  2398. err = ret;
  2399. goto fail_alloc;
  2400. }
  2401. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2402. invalidate_bdev(fs_devices->latest_bdev);
  2403. /*
  2404. * Read super block and check the signature bytes only
  2405. */
  2406. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2407. if (IS_ERR(bh)) {
  2408. err = PTR_ERR(bh);
  2409. goto fail_alloc;
  2410. }
  2411. /*
  2412. * We want to check superblock checksum, the type is stored inside.
  2413. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2414. */
  2415. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2416. btrfs_err(fs_info, "superblock checksum mismatch");
  2417. err = -EINVAL;
  2418. brelse(bh);
  2419. goto fail_alloc;
  2420. }
  2421. /*
  2422. * super_copy is zeroed at allocation time and we never touch the
  2423. * following bytes up to INFO_SIZE, the checksum is calculated from
  2424. * the whole block of INFO_SIZE
  2425. */
  2426. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2427. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2428. sizeof(*fs_info->super_for_commit));
  2429. brelse(bh);
  2430. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2431. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2432. if (ret) {
  2433. btrfs_err(fs_info, "superblock contains fatal errors");
  2434. err = -EINVAL;
  2435. goto fail_alloc;
  2436. }
  2437. disk_super = fs_info->super_copy;
  2438. if (!btrfs_super_root(disk_super))
  2439. goto fail_alloc;
  2440. /* check FS state, whether FS is broken. */
  2441. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2442. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2443. /*
  2444. * run through our array of backup supers and setup
  2445. * our ring pointer to the oldest one
  2446. */
  2447. generation = btrfs_super_generation(disk_super);
  2448. find_oldest_super_backup(fs_info, generation);
  2449. /*
  2450. * In the long term, we'll store the compression type in the super
  2451. * block, and it'll be used for per file compression control.
  2452. */
  2453. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2454. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2455. if (ret) {
  2456. err = ret;
  2457. goto fail_alloc;
  2458. }
  2459. features = btrfs_super_incompat_flags(disk_super) &
  2460. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2461. if (features) {
  2462. btrfs_err(fs_info,
  2463. "cannot mount because of unsupported optional features (%llx)",
  2464. features);
  2465. err = -EINVAL;
  2466. goto fail_alloc;
  2467. }
  2468. features = btrfs_super_incompat_flags(disk_super);
  2469. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2470. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2471. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2472. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2473. btrfs_info(fs_info, "has skinny extents");
  2474. /*
  2475. * flag our filesystem as having big metadata blocks if
  2476. * they are bigger than the page size
  2477. */
  2478. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2479. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2480. btrfs_info(fs_info,
  2481. "flagging fs with big metadata feature");
  2482. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2483. }
  2484. nodesize = btrfs_super_nodesize(disk_super);
  2485. sectorsize = btrfs_super_sectorsize(disk_super);
  2486. stripesize = sectorsize;
  2487. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2488. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2489. /* Cache block sizes */
  2490. fs_info->nodesize = nodesize;
  2491. fs_info->sectorsize = sectorsize;
  2492. fs_info->stripesize = stripesize;
  2493. /*
  2494. * mixed block groups end up with duplicate but slightly offset
  2495. * extent buffers for the same range. It leads to corruptions
  2496. */
  2497. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2498. (sectorsize != nodesize)) {
  2499. btrfs_err(fs_info,
  2500. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2501. nodesize, sectorsize);
  2502. goto fail_alloc;
  2503. }
  2504. /*
  2505. * Needn't use the lock because there is no other task which will
  2506. * update the flag.
  2507. */
  2508. btrfs_set_super_incompat_flags(disk_super, features);
  2509. features = btrfs_super_compat_ro_flags(disk_super) &
  2510. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2511. if (!(sb->s_flags & MS_RDONLY) && features) {
  2512. btrfs_err(fs_info,
  2513. "cannot mount read-write because of unsupported optional features (%llx)",
  2514. features);
  2515. err = -EINVAL;
  2516. goto fail_alloc;
  2517. }
  2518. max_active = fs_info->thread_pool_size;
  2519. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2520. if (ret) {
  2521. err = ret;
  2522. goto fail_sb_buffer;
  2523. }
  2524. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2525. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2526. SZ_4M / PAGE_SIZE);
  2527. sb->s_blocksize = sectorsize;
  2528. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2529. mutex_lock(&fs_info->chunk_mutex);
  2530. ret = btrfs_read_sys_array(fs_info);
  2531. mutex_unlock(&fs_info->chunk_mutex);
  2532. if (ret) {
  2533. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2534. goto fail_sb_buffer;
  2535. }
  2536. generation = btrfs_super_chunk_root_generation(disk_super);
  2537. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2538. chunk_root->node = read_tree_block(fs_info,
  2539. btrfs_super_chunk_root(disk_super),
  2540. generation);
  2541. if (IS_ERR(chunk_root->node) ||
  2542. !extent_buffer_uptodate(chunk_root->node)) {
  2543. btrfs_err(fs_info, "failed to read chunk root");
  2544. if (!IS_ERR(chunk_root->node))
  2545. free_extent_buffer(chunk_root->node);
  2546. chunk_root->node = NULL;
  2547. goto fail_tree_roots;
  2548. }
  2549. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2550. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2551. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2552. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2553. ret = btrfs_read_chunk_tree(fs_info);
  2554. if (ret) {
  2555. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2556. goto fail_tree_roots;
  2557. }
  2558. /*
  2559. * keep the device that is marked to be the target device for the
  2560. * dev_replace procedure
  2561. */
  2562. btrfs_close_extra_devices(fs_devices, 0);
  2563. if (!fs_devices->latest_bdev) {
  2564. btrfs_err(fs_info, "failed to read devices");
  2565. goto fail_tree_roots;
  2566. }
  2567. retry_root_backup:
  2568. generation = btrfs_super_generation(disk_super);
  2569. tree_root->node = read_tree_block(fs_info,
  2570. btrfs_super_root(disk_super),
  2571. generation);
  2572. if (IS_ERR(tree_root->node) ||
  2573. !extent_buffer_uptodate(tree_root->node)) {
  2574. btrfs_warn(fs_info, "failed to read tree root");
  2575. if (!IS_ERR(tree_root->node))
  2576. free_extent_buffer(tree_root->node);
  2577. tree_root->node = NULL;
  2578. goto recovery_tree_root;
  2579. }
  2580. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2581. tree_root->commit_root = btrfs_root_node(tree_root);
  2582. btrfs_set_root_refs(&tree_root->root_item, 1);
  2583. mutex_lock(&tree_root->objectid_mutex);
  2584. ret = btrfs_find_highest_objectid(tree_root,
  2585. &tree_root->highest_objectid);
  2586. if (ret) {
  2587. mutex_unlock(&tree_root->objectid_mutex);
  2588. goto recovery_tree_root;
  2589. }
  2590. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2591. mutex_unlock(&tree_root->objectid_mutex);
  2592. ret = btrfs_read_roots(fs_info);
  2593. if (ret)
  2594. goto recovery_tree_root;
  2595. fs_info->generation = generation;
  2596. fs_info->last_trans_committed = generation;
  2597. ret = btrfs_recover_balance(fs_info);
  2598. if (ret) {
  2599. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2600. goto fail_block_groups;
  2601. }
  2602. ret = btrfs_init_dev_stats(fs_info);
  2603. if (ret) {
  2604. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2605. goto fail_block_groups;
  2606. }
  2607. ret = btrfs_init_dev_replace(fs_info);
  2608. if (ret) {
  2609. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2610. goto fail_block_groups;
  2611. }
  2612. btrfs_close_extra_devices(fs_devices, 1);
  2613. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2614. if (ret) {
  2615. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2616. ret);
  2617. goto fail_block_groups;
  2618. }
  2619. ret = btrfs_sysfs_add_device(fs_devices);
  2620. if (ret) {
  2621. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2622. ret);
  2623. goto fail_fsdev_sysfs;
  2624. }
  2625. ret = btrfs_sysfs_add_mounted(fs_info);
  2626. if (ret) {
  2627. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2628. goto fail_fsdev_sysfs;
  2629. }
  2630. ret = btrfs_init_space_info(fs_info);
  2631. if (ret) {
  2632. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2633. goto fail_sysfs;
  2634. }
  2635. ret = btrfs_read_block_groups(fs_info);
  2636. if (ret) {
  2637. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2638. goto fail_sysfs;
  2639. }
  2640. fs_info->num_tolerated_disk_barrier_failures =
  2641. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2642. if (fs_info->fs_devices->missing_devices >
  2643. fs_info->num_tolerated_disk_barrier_failures &&
  2644. !(sb->s_flags & MS_RDONLY)) {
  2645. btrfs_warn(fs_info,
  2646. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2647. fs_info->fs_devices->missing_devices,
  2648. fs_info->num_tolerated_disk_barrier_failures);
  2649. goto fail_sysfs;
  2650. }
  2651. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2652. "btrfs-cleaner");
  2653. if (IS_ERR(fs_info->cleaner_kthread))
  2654. goto fail_sysfs;
  2655. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2656. tree_root,
  2657. "btrfs-transaction");
  2658. if (IS_ERR(fs_info->transaction_kthread))
  2659. goto fail_cleaner;
  2660. if (!btrfs_test_opt(fs_info, SSD) &&
  2661. !btrfs_test_opt(fs_info, NOSSD) &&
  2662. !fs_info->fs_devices->rotating) {
  2663. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2664. btrfs_set_opt(fs_info->mount_opt, SSD);
  2665. }
  2666. /*
  2667. * Mount does not set all options immediately, we can do it now and do
  2668. * not have to wait for transaction commit
  2669. */
  2670. btrfs_apply_pending_changes(fs_info);
  2671. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2672. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2673. ret = btrfsic_mount(fs_info, fs_devices,
  2674. btrfs_test_opt(fs_info,
  2675. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2676. 1 : 0,
  2677. fs_info->check_integrity_print_mask);
  2678. if (ret)
  2679. btrfs_warn(fs_info,
  2680. "failed to initialize integrity check module: %d",
  2681. ret);
  2682. }
  2683. #endif
  2684. ret = btrfs_read_qgroup_config(fs_info);
  2685. if (ret)
  2686. goto fail_trans_kthread;
  2687. /* do not make disk changes in broken FS or nologreplay is given */
  2688. if (btrfs_super_log_root(disk_super) != 0 &&
  2689. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2690. ret = btrfs_replay_log(fs_info, fs_devices);
  2691. if (ret) {
  2692. err = ret;
  2693. goto fail_qgroup;
  2694. }
  2695. }
  2696. ret = btrfs_find_orphan_roots(fs_info);
  2697. if (ret)
  2698. goto fail_qgroup;
  2699. if (!(sb->s_flags & MS_RDONLY)) {
  2700. ret = btrfs_cleanup_fs_roots(fs_info);
  2701. if (ret)
  2702. goto fail_qgroup;
  2703. mutex_lock(&fs_info->cleaner_mutex);
  2704. ret = btrfs_recover_relocation(tree_root);
  2705. mutex_unlock(&fs_info->cleaner_mutex);
  2706. if (ret < 0) {
  2707. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2708. ret);
  2709. err = -EINVAL;
  2710. goto fail_qgroup;
  2711. }
  2712. }
  2713. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2714. location.type = BTRFS_ROOT_ITEM_KEY;
  2715. location.offset = 0;
  2716. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2717. if (IS_ERR(fs_info->fs_root)) {
  2718. err = PTR_ERR(fs_info->fs_root);
  2719. goto fail_qgroup;
  2720. }
  2721. if (sb->s_flags & MS_RDONLY)
  2722. return 0;
  2723. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2724. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2725. clear_free_space_tree = 1;
  2726. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2727. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2728. btrfs_warn(fs_info, "free space tree is invalid");
  2729. clear_free_space_tree = 1;
  2730. }
  2731. if (clear_free_space_tree) {
  2732. btrfs_info(fs_info, "clearing free space tree");
  2733. ret = btrfs_clear_free_space_tree(fs_info);
  2734. if (ret) {
  2735. btrfs_warn(fs_info,
  2736. "failed to clear free space tree: %d", ret);
  2737. close_ctree(fs_info);
  2738. return ret;
  2739. }
  2740. }
  2741. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2742. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2743. btrfs_info(fs_info, "creating free space tree");
  2744. ret = btrfs_create_free_space_tree(fs_info);
  2745. if (ret) {
  2746. btrfs_warn(fs_info,
  2747. "failed to create free space tree: %d", ret);
  2748. close_ctree(fs_info);
  2749. return ret;
  2750. }
  2751. }
  2752. down_read(&fs_info->cleanup_work_sem);
  2753. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2754. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2755. up_read(&fs_info->cleanup_work_sem);
  2756. close_ctree(fs_info);
  2757. return ret;
  2758. }
  2759. up_read(&fs_info->cleanup_work_sem);
  2760. ret = btrfs_resume_balance_async(fs_info);
  2761. if (ret) {
  2762. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2763. close_ctree(fs_info);
  2764. return ret;
  2765. }
  2766. ret = btrfs_resume_dev_replace_async(fs_info);
  2767. if (ret) {
  2768. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2769. close_ctree(fs_info);
  2770. return ret;
  2771. }
  2772. btrfs_qgroup_rescan_resume(fs_info);
  2773. if (!fs_info->uuid_root) {
  2774. btrfs_info(fs_info, "creating UUID tree");
  2775. ret = btrfs_create_uuid_tree(fs_info);
  2776. if (ret) {
  2777. btrfs_warn(fs_info,
  2778. "failed to create the UUID tree: %d", ret);
  2779. close_ctree(fs_info);
  2780. return ret;
  2781. }
  2782. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2783. fs_info->generation !=
  2784. btrfs_super_uuid_tree_generation(disk_super)) {
  2785. btrfs_info(fs_info, "checking UUID tree");
  2786. ret = btrfs_check_uuid_tree(fs_info);
  2787. if (ret) {
  2788. btrfs_warn(fs_info,
  2789. "failed to check the UUID tree: %d", ret);
  2790. close_ctree(fs_info);
  2791. return ret;
  2792. }
  2793. } else {
  2794. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2795. }
  2796. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2797. /*
  2798. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2799. * no need to keep the flag
  2800. */
  2801. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2802. return 0;
  2803. fail_qgroup:
  2804. btrfs_free_qgroup_config(fs_info);
  2805. fail_trans_kthread:
  2806. kthread_stop(fs_info->transaction_kthread);
  2807. btrfs_cleanup_transaction(fs_info);
  2808. btrfs_free_fs_roots(fs_info);
  2809. fail_cleaner:
  2810. kthread_stop(fs_info->cleaner_kthread);
  2811. /*
  2812. * make sure we're done with the btree inode before we stop our
  2813. * kthreads
  2814. */
  2815. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2816. fail_sysfs:
  2817. btrfs_sysfs_remove_mounted(fs_info);
  2818. fail_fsdev_sysfs:
  2819. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2820. fail_block_groups:
  2821. btrfs_put_block_group_cache(fs_info);
  2822. btrfs_free_block_groups(fs_info);
  2823. fail_tree_roots:
  2824. free_root_pointers(fs_info, 1);
  2825. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2826. fail_sb_buffer:
  2827. btrfs_stop_all_workers(fs_info);
  2828. fail_alloc:
  2829. fail_iput:
  2830. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2831. iput(fs_info->btree_inode);
  2832. fail_bio_counter:
  2833. percpu_counter_destroy(&fs_info->bio_counter);
  2834. fail_delalloc_bytes:
  2835. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2836. fail_dirty_metadata_bytes:
  2837. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2838. fail_bdi:
  2839. bdi_destroy(&fs_info->bdi);
  2840. fail_srcu:
  2841. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2842. fail:
  2843. btrfs_free_stripe_hash_table(fs_info);
  2844. btrfs_close_devices(fs_info->fs_devices);
  2845. return err;
  2846. recovery_tree_root:
  2847. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2848. goto fail_tree_roots;
  2849. free_root_pointers(fs_info, 0);
  2850. /* don't use the log in recovery mode, it won't be valid */
  2851. btrfs_set_super_log_root(disk_super, 0);
  2852. /* we can't trust the free space cache either */
  2853. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2854. ret = next_root_backup(fs_info, fs_info->super_copy,
  2855. &num_backups_tried, &backup_index);
  2856. if (ret == -1)
  2857. goto fail_block_groups;
  2858. goto retry_root_backup;
  2859. }
  2860. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2861. {
  2862. if (uptodate) {
  2863. set_buffer_uptodate(bh);
  2864. } else {
  2865. struct btrfs_device *device = (struct btrfs_device *)
  2866. bh->b_private;
  2867. btrfs_warn_rl_in_rcu(device->fs_info,
  2868. "lost page write due to IO error on %s",
  2869. rcu_str_deref(device->name));
  2870. /* note, we don't set_buffer_write_io_error because we have
  2871. * our own ways of dealing with the IO errors
  2872. */
  2873. clear_buffer_uptodate(bh);
  2874. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2875. }
  2876. unlock_buffer(bh);
  2877. put_bh(bh);
  2878. }
  2879. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2880. struct buffer_head **bh_ret)
  2881. {
  2882. struct buffer_head *bh;
  2883. struct btrfs_super_block *super;
  2884. u64 bytenr;
  2885. bytenr = btrfs_sb_offset(copy_num);
  2886. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2887. return -EINVAL;
  2888. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2889. /*
  2890. * If we fail to read from the underlying devices, as of now
  2891. * the best option we have is to mark it EIO.
  2892. */
  2893. if (!bh)
  2894. return -EIO;
  2895. super = (struct btrfs_super_block *)bh->b_data;
  2896. if (btrfs_super_bytenr(super) != bytenr ||
  2897. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2898. brelse(bh);
  2899. return -EINVAL;
  2900. }
  2901. *bh_ret = bh;
  2902. return 0;
  2903. }
  2904. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2905. {
  2906. struct buffer_head *bh;
  2907. struct buffer_head *latest = NULL;
  2908. struct btrfs_super_block *super;
  2909. int i;
  2910. u64 transid = 0;
  2911. int ret = -EINVAL;
  2912. /* we would like to check all the supers, but that would make
  2913. * a btrfs mount succeed after a mkfs from a different FS.
  2914. * So, we need to add a special mount option to scan for
  2915. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2916. */
  2917. for (i = 0; i < 1; i++) {
  2918. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2919. if (ret)
  2920. continue;
  2921. super = (struct btrfs_super_block *)bh->b_data;
  2922. if (!latest || btrfs_super_generation(super) > transid) {
  2923. brelse(latest);
  2924. latest = bh;
  2925. transid = btrfs_super_generation(super);
  2926. } else {
  2927. brelse(bh);
  2928. }
  2929. }
  2930. if (!latest)
  2931. return ERR_PTR(ret);
  2932. return latest;
  2933. }
  2934. /*
  2935. * this should be called twice, once with wait == 0 and
  2936. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2937. * we write are pinned.
  2938. *
  2939. * They are released when wait == 1 is done.
  2940. * max_mirrors must be the same for both runs, and it indicates how
  2941. * many supers on this one device should be written.
  2942. *
  2943. * max_mirrors == 0 means to write them all.
  2944. */
  2945. static int write_dev_supers(struct btrfs_device *device,
  2946. struct btrfs_super_block *sb,
  2947. int do_barriers, int wait, int max_mirrors)
  2948. {
  2949. struct buffer_head *bh;
  2950. int i;
  2951. int ret;
  2952. int errors = 0;
  2953. u32 crc;
  2954. u64 bytenr;
  2955. if (max_mirrors == 0)
  2956. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2957. for (i = 0; i < max_mirrors; i++) {
  2958. bytenr = btrfs_sb_offset(i);
  2959. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2960. device->commit_total_bytes)
  2961. break;
  2962. if (wait) {
  2963. bh = __find_get_block(device->bdev, bytenr / 4096,
  2964. BTRFS_SUPER_INFO_SIZE);
  2965. if (!bh) {
  2966. errors++;
  2967. continue;
  2968. }
  2969. wait_on_buffer(bh);
  2970. if (!buffer_uptodate(bh))
  2971. errors++;
  2972. /* drop our reference */
  2973. brelse(bh);
  2974. /* drop the reference from the wait == 0 run */
  2975. brelse(bh);
  2976. continue;
  2977. } else {
  2978. btrfs_set_super_bytenr(sb, bytenr);
  2979. crc = ~(u32)0;
  2980. crc = btrfs_csum_data((char *)sb +
  2981. BTRFS_CSUM_SIZE, crc,
  2982. BTRFS_SUPER_INFO_SIZE -
  2983. BTRFS_CSUM_SIZE);
  2984. btrfs_csum_final(crc, sb->csum);
  2985. /*
  2986. * one reference for us, and we leave it for the
  2987. * caller
  2988. */
  2989. bh = __getblk(device->bdev, bytenr / 4096,
  2990. BTRFS_SUPER_INFO_SIZE);
  2991. if (!bh) {
  2992. btrfs_err(device->fs_info,
  2993. "couldn't get super buffer head for bytenr %llu",
  2994. bytenr);
  2995. errors++;
  2996. continue;
  2997. }
  2998. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2999. /* one reference for submit_bh */
  3000. get_bh(bh);
  3001. set_buffer_uptodate(bh);
  3002. lock_buffer(bh);
  3003. bh->b_end_io = btrfs_end_buffer_write_sync;
  3004. bh->b_private = device;
  3005. }
  3006. /*
  3007. * we fua the first super. The others we allow
  3008. * to go down lazy.
  3009. */
  3010. if (i == 0)
  3011. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
  3012. else
  3013. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
  3014. if (ret)
  3015. errors++;
  3016. }
  3017. return errors < i ? 0 : -1;
  3018. }
  3019. /*
  3020. * endio for the write_dev_flush, this will wake anyone waiting
  3021. * for the barrier when it is done
  3022. */
  3023. static void btrfs_end_empty_barrier(struct bio *bio)
  3024. {
  3025. if (bio->bi_private)
  3026. complete(bio->bi_private);
  3027. bio_put(bio);
  3028. }
  3029. /*
  3030. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3031. * sent down. With wait == 1, it waits for the previous flush.
  3032. *
  3033. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3034. * capable
  3035. */
  3036. static int write_dev_flush(struct btrfs_device *device, int wait)
  3037. {
  3038. struct bio *bio;
  3039. int ret = 0;
  3040. if (device->nobarriers)
  3041. return 0;
  3042. if (wait) {
  3043. bio = device->flush_bio;
  3044. if (!bio)
  3045. return 0;
  3046. wait_for_completion(&device->flush_wait);
  3047. if (bio->bi_error) {
  3048. ret = bio->bi_error;
  3049. btrfs_dev_stat_inc_and_print(device,
  3050. BTRFS_DEV_STAT_FLUSH_ERRS);
  3051. }
  3052. /* drop the reference from the wait == 0 run */
  3053. bio_put(bio);
  3054. device->flush_bio = NULL;
  3055. return ret;
  3056. }
  3057. /*
  3058. * one reference for us, and we leave it for the
  3059. * caller
  3060. */
  3061. device->flush_bio = NULL;
  3062. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3063. if (!bio)
  3064. return -ENOMEM;
  3065. bio->bi_end_io = btrfs_end_empty_barrier;
  3066. bio->bi_bdev = device->bdev;
  3067. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  3068. init_completion(&device->flush_wait);
  3069. bio->bi_private = &device->flush_wait;
  3070. device->flush_bio = bio;
  3071. bio_get(bio);
  3072. btrfsic_submit_bio(bio);
  3073. return 0;
  3074. }
  3075. /*
  3076. * send an empty flush down to each device in parallel,
  3077. * then wait for them
  3078. */
  3079. static int barrier_all_devices(struct btrfs_fs_info *info)
  3080. {
  3081. struct list_head *head;
  3082. struct btrfs_device *dev;
  3083. int errors_send = 0;
  3084. int errors_wait = 0;
  3085. int ret;
  3086. /* send down all the barriers */
  3087. head = &info->fs_devices->devices;
  3088. list_for_each_entry_rcu(dev, head, dev_list) {
  3089. if (dev->missing)
  3090. continue;
  3091. if (!dev->bdev) {
  3092. errors_send++;
  3093. continue;
  3094. }
  3095. if (!dev->in_fs_metadata || !dev->writeable)
  3096. continue;
  3097. ret = write_dev_flush(dev, 0);
  3098. if (ret)
  3099. errors_send++;
  3100. }
  3101. /* wait for all the barriers */
  3102. list_for_each_entry_rcu(dev, head, dev_list) {
  3103. if (dev->missing)
  3104. continue;
  3105. if (!dev->bdev) {
  3106. errors_wait++;
  3107. continue;
  3108. }
  3109. if (!dev->in_fs_metadata || !dev->writeable)
  3110. continue;
  3111. ret = write_dev_flush(dev, 1);
  3112. if (ret)
  3113. errors_wait++;
  3114. }
  3115. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3116. errors_wait > info->num_tolerated_disk_barrier_failures)
  3117. return -EIO;
  3118. return 0;
  3119. }
  3120. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3121. {
  3122. int raid_type;
  3123. int min_tolerated = INT_MAX;
  3124. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3125. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3126. min_tolerated = min(min_tolerated,
  3127. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3128. tolerated_failures);
  3129. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3130. if (raid_type == BTRFS_RAID_SINGLE)
  3131. continue;
  3132. if (!(flags & btrfs_raid_group[raid_type]))
  3133. continue;
  3134. min_tolerated = min(min_tolerated,
  3135. btrfs_raid_array[raid_type].
  3136. tolerated_failures);
  3137. }
  3138. if (min_tolerated == INT_MAX) {
  3139. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3140. min_tolerated = 0;
  3141. }
  3142. return min_tolerated;
  3143. }
  3144. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3145. struct btrfs_fs_info *fs_info)
  3146. {
  3147. struct btrfs_ioctl_space_info space;
  3148. struct btrfs_space_info *sinfo;
  3149. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3150. BTRFS_BLOCK_GROUP_SYSTEM,
  3151. BTRFS_BLOCK_GROUP_METADATA,
  3152. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3153. int i;
  3154. int c;
  3155. int num_tolerated_disk_barrier_failures =
  3156. (int)fs_info->fs_devices->num_devices;
  3157. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3158. struct btrfs_space_info *tmp;
  3159. sinfo = NULL;
  3160. rcu_read_lock();
  3161. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3162. if (tmp->flags == types[i]) {
  3163. sinfo = tmp;
  3164. break;
  3165. }
  3166. }
  3167. rcu_read_unlock();
  3168. if (!sinfo)
  3169. continue;
  3170. down_read(&sinfo->groups_sem);
  3171. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3172. u64 flags;
  3173. if (list_empty(&sinfo->block_groups[c]))
  3174. continue;
  3175. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3176. &space);
  3177. if (space.total_bytes == 0 || space.used_bytes == 0)
  3178. continue;
  3179. flags = space.flags;
  3180. num_tolerated_disk_barrier_failures = min(
  3181. num_tolerated_disk_barrier_failures,
  3182. btrfs_get_num_tolerated_disk_barrier_failures(
  3183. flags));
  3184. }
  3185. up_read(&sinfo->groups_sem);
  3186. }
  3187. return num_tolerated_disk_barrier_failures;
  3188. }
  3189. static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3190. {
  3191. struct list_head *head;
  3192. struct btrfs_device *dev;
  3193. struct btrfs_super_block *sb;
  3194. struct btrfs_dev_item *dev_item;
  3195. int ret;
  3196. int do_barriers;
  3197. int max_errors;
  3198. int total_errors = 0;
  3199. u64 flags;
  3200. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3201. backup_super_roots(fs_info);
  3202. sb = fs_info->super_for_commit;
  3203. dev_item = &sb->dev_item;
  3204. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3205. head = &fs_info->fs_devices->devices;
  3206. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3207. if (do_barriers) {
  3208. ret = barrier_all_devices(fs_info);
  3209. if (ret) {
  3210. mutex_unlock(
  3211. &fs_info->fs_devices->device_list_mutex);
  3212. btrfs_handle_fs_error(fs_info, ret,
  3213. "errors while submitting device barriers.");
  3214. return ret;
  3215. }
  3216. }
  3217. list_for_each_entry_rcu(dev, head, dev_list) {
  3218. if (!dev->bdev) {
  3219. total_errors++;
  3220. continue;
  3221. }
  3222. if (!dev->in_fs_metadata || !dev->writeable)
  3223. continue;
  3224. btrfs_set_stack_device_generation(dev_item, 0);
  3225. btrfs_set_stack_device_type(dev_item, dev->type);
  3226. btrfs_set_stack_device_id(dev_item, dev->devid);
  3227. btrfs_set_stack_device_total_bytes(dev_item,
  3228. dev->commit_total_bytes);
  3229. btrfs_set_stack_device_bytes_used(dev_item,
  3230. dev->commit_bytes_used);
  3231. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3232. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3233. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3234. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3235. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3236. flags = btrfs_super_flags(sb);
  3237. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3238. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3239. if (ret)
  3240. total_errors++;
  3241. }
  3242. if (total_errors > max_errors) {
  3243. btrfs_err(fs_info, "%d errors while writing supers",
  3244. total_errors);
  3245. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3246. /* FUA is masked off if unsupported and can't be the reason */
  3247. btrfs_handle_fs_error(fs_info, -EIO,
  3248. "%d errors while writing supers",
  3249. total_errors);
  3250. return -EIO;
  3251. }
  3252. total_errors = 0;
  3253. list_for_each_entry_rcu(dev, head, dev_list) {
  3254. if (!dev->bdev)
  3255. continue;
  3256. if (!dev->in_fs_metadata || !dev->writeable)
  3257. continue;
  3258. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3259. if (ret)
  3260. total_errors++;
  3261. }
  3262. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3263. if (total_errors > max_errors) {
  3264. btrfs_handle_fs_error(fs_info, -EIO,
  3265. "%d errors while writing supers",
  3266. total_errors);
  3267. return -EIO;
  3268. }
  3269. return 0;
  3270. }
  3271. int write_ctree_super(struct btrfs_trans_handle *trans,
  3272. struct btrfs_fs_info *fs_info, int max_mirrors)
  3273. {
  3274. return write_all_supers(fs_info, max_mirrors);
  3275. }
  3276. /* Drop a fs root from the radix tree and free it. */
  3277. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3278. struct btrfs_root *root)
  3279. {
  3280. spin_lock(&fs_info->fs_roots_radix_lock);
  3281. radix_tree_delete(&fs_info->fs_roots_radix,
  3282. (unsigned long)root->root_key.objectid);
  3283. spin_unlock(&fs_info->fs_roots_radix_lock);
  3284. if (btrfs_root_refs(&root->root_item) == 0)
  3285. synchronize_srcu(&fs_info->subvol_srcu);
  3286. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3287. btrfs_free_log(NULL, root);
  3288. if (root->reloc_root) {
  3289. free_extent_buffer(root->reloc_root->node);
  3290. free_extent_buffer(root->reloc_root->commit_root);
  3291. btrfs_put_fs_root(root->reloc_root);
  3292. root->reloc_root = NULL;
  3293. }
  3294. }
  3295. if (root->free_ino_pinned)
  3296. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3297. if (root->free_ino_ctl)
  3298. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3299. free_fs_root(root);
  3300. }
  3301. static void free_fs_root(struct btrfs_root *root)
  3302. {
  3303. iput(root->ino_cache_inode);
  3304. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3305. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3306. root->orphan_block_rsv = NULL;
  3307. if (root->anon_dev)
  3308. free_anon_bdev(root->anon_dev);
  3309. if (root->subv_writers)
  3310. btrfs_free_subvolume_writers(root->subv_writers);
  3311. free_extent_buffer(root->node);
  3312. free_extent_buffer(root->commit_root);
  3313. kfree(root->free_ino_ctl);
  3314. kfree(root->free_ino_pinned);
  3315. kfree(root->name);
  3316. btrfs_put_fs_root(root);
  3317. }
  3318. void btrfs_free_fs_root(struct btrfs_root *root)
  3319. {
  3320. free_fs_root(root);
  3321. }
  3322. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3323. {
  3324. u64 root_objectid = 0;
  3325. struct btrfs_root *gang[8];
  3326. int i = 0;
  3327. int err = 0;
  3328. unsigned int ret = 0;
  3329. int index;
  3330. while (1) {
  3331. index = srcu_read_lock(&fs_info->subvol_srcu);
  3332. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3333. (void **)gang, root_objectid,
  3334. ARRAY_SIZE(gang));
  3335. if (!ret) {
  3336. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3337. break;
  3338. }
  3339. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3340. for (i = 0; i < ret; i++) {
  3341. /* Avoid to grab roots in dead_roots */
  3342. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3343. gang[i] = NULL;
  3344. continue;
  3345. }
  3346. /* grab all the search result for later use */
  3347. gang[i] = btrfs_grab_fs_root(gang[i]);
  3348. }
  3349. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3350. for (i = 0; i < ret; i++) {
  3351. if (!gang[i])
  3352. continue;
  3353. root_objectid = gang[i]->root_key.objectid;
  3354. err = btrfs_orphan_cleanup(gang[i]);
  3355. if (err)
  3356. break;
  3357. btrfs_put_fs_root(gang[i]);
  3358. }
  3359. root_objectid++;
  3360. }
  3361. /* release the uncleaned roots due to error */
  3362. for (; i < ret; i++) {
  3363. if (gang[i])
  3364. btrfs_put_fs_root(gang[i]);
  3365. }
  3366. return err;
  3367. }
  3368. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3369. {
  3370. struct btrfs_root *root = fs_info->tree_root;
  3371. struct btrfs_trans_handle *trans;
  3372. mutex_lock(&fs_info->cleaner_mutex);
  3373. btrfs_run_delayed_iputs(fs_info);
  3374. mutex_unlock(&fs_info->cleaner_mutex);
  3375. wake_up_process(fs_info->cleaner_kthread);
  3376. /* wait until ongoing cleanup work done */
  3377. down_write(&fs_info->cleanup_work_sem);
  3378. up_write(&fs_info->cleanup_work_sem);
  3379. trans = btrfs_join_transaction(root);
  3380. if (IS_ERR(trans))
  3381. return PTR_ERR(trans);
  3382. return btrfs_commit_transaction(trans);
  3383. }
  3384. void close_ctree(struct btrfs_fs_info *fs_info)
  3385. {
  3386. struct btrfs_root *root = fs_info->tree_root;
  3387. int ret;
  3388. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3389. /* wait for the qgroup rescan worker to stop */
  3390. btrfs_qgroup_wait_for_completion(fs_info, false);
  3391. /* wait for the uuid_scan task to finish */
  3392. down(&fs_info->uuid_tree_rescan_sem);
  3393. /* avoid complains from lockdep et al., set sem back to initial state */
  3394. up(&fs_info->uuid_tree_rescan_sem);
  3395. /* pause restriper - we want to resume on mount */
  3396. btrfs_pause_balance(fs_info);
  3397. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3398. btrfs_scrub_cancel(fs_info);
  3399. /* wait for any defraggers to finish */
  3400. wait_event(fs_info->transaction_wait,
  3401. (atomic_read(&fs_info->defrag_running) == 0));
  3402. /* clear out the rbtree of defraggable inodes */
  3403. btrfs_cleanup_defrag_inodes(fs_info);
  3404. cancel_work_sync(&fs_info->async_reclaim_work);
  3405. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3406. /*
  3407. * If the cleaner thread is stopped and there are
  3408. * block groups queued for removal, the deletion will be
  3409. * skipped when we quit the cleaner thread.
  3410. */
  3411. btrfs_delete_unused_bgs(fs_info);
  3412. ret = btrfs_commit_super(fs_info);
  3413. if (ret)
  3414. btrfs_err(fs_info, "commit super ret %d", ret);
  3415. }
  3416. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3417. btrfs_error_commit_super(fs_info);
  3418. kthread_stop(fs_info->transaction_kthread);
  3419. kthread_stop(fs_info->cleaner_kthread);
  3420. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3421. btrfs_free_qgroup_config(fs_info);
  3422. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3423. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3424. percpu_counter_sum(&fs_info->delalloc_bytes));
  3425. }
  3426. btrfs_sysfs_remove_mounted(fs_info);
  3427. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3428. btrfs_free_fs_roots(fs_info);
  3429. btrfs_put_block_group_cache(fs_info);
  3430. btrfs_free_block_groups(fs_info);
  3431. /*
  3432. * we must make sure there is not any read request to
  3433. * submit after we stopping all workers.
  3434. */
  3435. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3436. btrfs_stop_all_workers(fs_info);
  3437. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3438. free_root_pointers(fs_info, 1);
  3439. iput(fs_info->btree_inode);
  3440. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3441. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3442. btrfsic_unmount(fs_info->fs_devices);
  3443. #endif
  3444. btrfs_close_devices(fs_info->fs_devices);
  3445. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3446. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3447. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3448. percpu_counter_destroy(&fs_info->bio_counter);
  3449. bdi_destroy(&fs_info->bdi);
  3450. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3451. btrfs_free_stripe_hash_table(fs_info);
  3452. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3453. root->orphan_block_rsv = NULL;
  3454. mutex_lock(&fs_info->chunk_mutex);
  3455. while (!list_empty(&fs_info->pinned_chunks)) {
  3456. struct extent_map *em;
  3457. em = list_first_entry(&fs_info->pinned_chunks,
  3458. struct extent_map, list);
  3459. list_del_init(&em->list);
  3460. free_extent_map(em);
  3461. }
  3462. mutex_unlock(&fs_info->chunk_mutex);
  3463. }
  3464. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3465. int atomic)
  3466. {
  3467. int ret;
  3468. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3469. ret = extent_buffer_uptodate(buf);
  3470. if (!ret)
  3471. return ret;
  3472. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3473. parent_transid, atomic);
  3474. if (ret == -EAGAIN)
  3475. return ret;
  3476. return !ret;
  3477. }
  3478. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3479. {
  3480. struct btrfs_fs_info *fs_info;
  3481. struct btrfs_root *root;
  3482. u64 transid = btrfs_header_generation(buf);
  3483. int was_dirty;
  3484. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3485. /*
  3486. * This is a fast path so only do this check if we have sanity tests
  3487. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3488. * outside of the sanity tests.
  3489. */
  3490. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3491. return;
  3492. #endif
  3493. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3494. fs_info = root->fs_info;
  3495. btrfs_assert_tree_locked(buf);
  3496. if (transid != fs_info->generation)
  3497. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3498. buf->start, transid, fs_info->generation);
  3499. was_dirty = set_extent_buffer_dirty(buf);
  3500. if (!was_dirty)
  3501. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  3502. buf->len,
  3503. fs_info->dirty_metadata_batch);
  3504. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3505. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3506. btrfs_print_leaf(fs_info, buf);
  3507. ASSERT(0);
  3508. }
  3509. #endif
  3510. }
  3511. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3512. int flush_delayed)
  3513. {
  3514. /*
  3515. * looks as though older kernels can get into trouble with
  3516. * this code, they end up stuck in balance_dirty_pages forever
  3517. */
  3518. int ret;
  3519. if (current->flags & PF_MEMALLOC)
  3520. return;
  3521. if (flush_delayed)
  3522. btrfs_balance_delayed_items(fs_info);
  3523. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3524. BTRFS_DIRTY_METADATA_THRESH);
  3525. if (ret > 0) {
  3526. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3527. }
  3528. }
  3529. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3530. {
  3531. __btrfs_btree_balance_dirty(fs_info, 1);
  3532. }
  3533. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3534. {
  3535. __btrfs_btree_balance_dirty(fs_info, 0);
  3536. }
  3537. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3538. {
  3539. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3540. struct btrfs_fs_info *fs_info = root->fs_info;
  3541. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3542. }
  3543. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3544. int read_only)
  3545. {
  3546. struct btrfs_super_block *sb = fs_info->super_copy;
  3547. u64 nodesize = btrfs_super_nodesize(sb);
  3548. u64 sectorsize = btrfs_super_sectorsize(sb);
  3549. int ret = 0;
  3550. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3551. btrfs_err(fs_info, "no valid FS found");
  3552. ret = -EINVAL;
  3553. }
  3554. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3555. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3556. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3557. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3558. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3559. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3560. ret = -EINVAL;
  3561. }
  3562. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3563. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3564. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3565. ret = -EINVAL;
  3566. }
  3567. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3568. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3569. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3570. ret = -EINVAL;
  3571. }
  3572. /*
  3573. * Check sectorsize and nodesize first, other check will need it.
  3574. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3575. */
  3576. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3577. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3578. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3579. ret = -EINVAL;
  3580. }
  3581. /* Only PAGE SIZE is supported yet */
  3582. if (sectorsize != PAGE_SIZE) {
  3583. btrfs_err(fs_info,
  3584. "sectorsize %llu not supported yet, only support %lu",
  3585. sectorsize, PAGE_SIZE);
  3586. ret = -EINVAL;
  3587. }
  3588. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3589. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3590. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3591. ret = -EINVAL;
  3592. }
  3593. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3594. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3595. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3596. ret = -EINVAL;
  3597. }
  3598. /* Root alignment check */
  3599. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3600. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3601. btrfs_super_root(sb));
  3602. ret = -EINVAL;
  3603. }
  3604. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3605. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3606. btrfs_super_chunk_root(sb));
  3607. ret = -EINVAL;
  3608. }
  3609. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3610. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3611. btrfs_super_log_root(sb));
  3612. ret = -EINVAL;
  3613. }
  3614. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3615. btrfs_err(fs_info,
  3616. "dev_item UUID does not match fsid: %pU != %pU",
  3617. fs_info->fsid, sb->dev_item.fsid);
  3618. ret = -EINVAL;
  3619. }
  3620. /*
  3621. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3622. * done later
  3623. */
  3624. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3625. btrfs_err(fs_info, "bytes_used is too small %llu",
  3626. btrfs_super_bytes_used(sb));
  3627. ret = -EINVAL;
  3628. }
  3629. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3630. btrfs_err(fs_info, "invalid stripesize %u",
  3631. btrfs_super_stripesize(sb));
  3632. ret = -EINVAL;
  3633. }
  3634. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3635. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3636. btrfs_super_num_devices(sb));
  3637. if (btrfs_super_num_devices(sb) == 0) {
  3638. btrfs_err(fs_info, "number of devices is 0");
  3639. ret = -EINVAL;
  3640. }
  3641. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3642. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3643. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3644. ret = -EINVAL;
  3645. }
  3646. /*
  3647. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3648. * and one chunk
  3649. */
  3650. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3651. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3652. btrfs_super_sys_array_size(sb),
  3653. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3654. ret = -EINVAL;
  3655. }
  3656. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3657. + sizeof(struct btrfs_chunk)) {
  3658. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3659. btrfs_super_sys_array_size(sb),
  3660. sizeof(struct btrfs_disk_key)
  3661. + sizeof(struct btrfs_chunk));
  3662. ret = -EINVAL;
  3663. }
  3664. /*
  3665. * The generation is a global counter, we'll trust it more than the others
  3666. * but it's still possible that it's the one that's wrong.
  3667. */
  3668. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3669. btrfs_warn(fs_info,
  3670. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3671. btrfs_super_generation(sb),
  3672. btrfs_super_chunk_root_generation(sb));
  3673. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3674. && btrfs_super_cache_generation(sb) != (u64)-1)
  3675. btrfs_warn(fs_info,
  3676. "suspicious: generation < cache_generation: %llu < %llu",
  3677. btrfs_super_generation(sb),
  3678. btrfs_super_cache_generation(sb));
  3679. return ret;
  3680. }
  3681. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3682. {
  3683. mutex_lock(&fs_info->cleaner_mutex);
  3684. btrfs_run_delayed_iputs(fs_info);
  3685. mutex_unlock(&fs_info->cleaner_mutex);
  3686. down_write(&fs_info->cleanup_work_sem);
  3687. up_write(&fs_info->cleanup_work_sem);
  3688. /* cleanup FS via transaction */
  3689. btrfs_cleanup_transaction(fs_info);
  3690. }
  3691. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3692. {
  3693. struct btrfs_ordered_extent *ordered;
  3694. spin_lock(&root->ordered_extent_lock);
  3695. /*
  3696. * This will just short circuit the ordered completion stuff which will
  3697. * make sure the ordered extent gets properly cleaned up.
  3698. */
  3699. list_for_each_entry(ordered, &root->ordered_extents,
  3700. root_extent_list)
  3701. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3702. spin_unlock(&root->ordered_extent_lock);
  3703. }
  3704. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3705. {
  3706. struct btrfs_root *root;
  3707. struct list_head splice;
  3708. INIT_LIST_HEAD(&splice);
  3709. spin_lock(&fs_info->ordered_root_lock);
  3710. list_splice_init(&fs_info->ordered_roots, &splice);
  3711. while (!list_empty(&splice)) {
  3712. root = list_first_entry(&splice, struct btrfs_root,
  3713. ordered_root);
  3714. list_move_tail(&root->ordered_root,
  3715. &fs_info->ordered_roots);
  3716. spin_unlock(&fs_info->ordered_root_lock);
  3717. btrfs_destroy_ordered_extents(root);
  3718. cond_resched();
  3719. spin_lock(&fs_info->ordered_root_lock);
  3720. }
  3721. spin_unlock(&fs_info->ordered_root_lock);
  3722. }
  3723. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3724. struct btrfs_fs_info *fs_info)
  3725. {
  3726. struct rb_node *node;
  3727. struct btrfs_delayed_ref_root *delayed_refs;
  3728. struct btrfs_delayed_ref_node *ref;
  3729. int ret = 0;
  3730. delayed_refs = &trans->delayed_refs;
  3731. spin_lock(&delayed_refs->lock);
  3732. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3733. spin_unlock(&delayed_refs->lock);
  3734. btrfs_info(fs_info, "delayed_refs has NO entry");
  3735. return ret;
  3736. }
  3737. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3738. struct btrfs_delayed_ref_head *head;
  3739. struct btrfs_delayed_ref_node *tmp;
  3740. bool pin_bytes = false;
  3741. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3742. href_node);
  3743. if (!mutex_trylock(&head->mutex)) {
  3744. atomic_inc(&head->node.refs);
  3745. spin_unlock(&delayed_refs->lock);
  3746. mutex_lock(&head->mutex);
  3747. mutex_unlock(&head->mutex);
  3748. btrfs_put_delayed_ref(&head->node);
  3749. spin_lock(&delayed_refs->lock);
  3750. continue;
  3751. }
  3752. spin_lock(&head->lock);
  3753. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3754. list) {
  3755. ref->in_tree = 0;
  3756. list_del(&ref->list);
  3757. if (!list_empty(&ref->add_list))
  3758. list_del(&ref->add_list);
  3759. atomic_dec(&delayed_refs->num_entries);
  3760. btrfs_put_delayed_ref(ref);
  3761. }
  3762. if (head->must_insert_reserved)
  3763. pin_bytes = true;
  3764. btrfs_free_delayed_extent_op(head->extent_op);
  3765. delayed_refs->num_heads--;
  3766. if (head->processing == 0)
  3767. delayed_refs->num_heads_ready--;
  3768. atomic_dec(&delayed_refs->num_entries);
  3769. head->node.in_tree = 0;
  3770. rb_erase(&head->href_node, &delayed_refs->href_root);
  3771. spin_unlock(&head->lock);
  3772. spin_unlock(&delayed_refs->lock);
  3773. mutex_unlock(&head->mutex);
  3774. if (pin_bytes)
  3775. btrfs_pin_extent(fs_info, head->node.bytenr,
  3776. head->node.num_bytes, 1);
  3777. btrfs_put_delayed_ref(&head->node);
  3778. cond_resched();
  3779. spin_lock(&delayed_refs->lock);
  3780. }
  3781. spin_unlock(&delayed_refs->lock);
  3782. return ret;
  3783. }
  3784. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3785. {
  3786. struct btrfs_inode *btrfs_inode;
  3787. struct list_head splice;
  3788. INIT_LIST_HEAD(&splice);
  3789. spin_lock(&root->delalloc_lock);
  3790. list_splice_init(&root->delalloc_inodes, &splice);
  3791. while (!list_empty(&splice)) {
  3792. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3793. delalloc_inodes);
  3794. list_del_init(&btrfs_inode->delalloc_inodes);
  3795. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3796. &btrfs_inode->runtime_flags);
  3797. spin_unlock(&root->delalloc_lock);
  3798. btrfs_invalidate_inodes(btrfs_inode->root);
  3799. spin_lock(&root->delalloc_lock);
  3800. }
  3801. spin_unlock(&root->delalloc_lock);
  3802. }
  3803. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3804. {
  3805. struct btrfs_root *root;
  3806. struct list_head splice;
  3807. INIT_LIST_HEAD(&splice);
  3808. spin_lock(&fs_info->delalloc_root_lock);
  3809. list_splice_init(&fs_info->delalloc_roots, &splice);
  3810. while (!list_empty(&splice)) {
  3811. root = list_first_entry(&splice, struct btrfs_root,
  3812. delalloc_root);
  3813. list_del_init(&root->delalloc_root);
  3814. root = btrfs_grab_fs_root(root);
  3815. BUG_ON(!root);
  3816. spin_unlock(&fs_info->delalloc_root_lock);
  3817. btrfs_destroy_delalloc_inodes(root);
  3818. btrfs_put_fs_root(root);
  3819. spin_lock(&fs_info->delalloc_root_lock);
  3820. }
  3821. spin_unlock(&fs_info->delalloc_root_lock);
  3822. }
  3823. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3824. struct extent_io_tree *dirty_pages,
  3825. int mark)
  3826. {
  3827. int ret;
  3828. struct extent_buffer *eb;
  3829. u64 start = 0;
  3830. u64 end;
  3831. while (1) {
  3832. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3833. mark, NULL);
  3834. if (ret)
  3835. break;
  3836. clear_extent_bits(dirty_pages, start, end, mark);
  3837. while (start <= end) {
  3838. eb = find_extent_buffer(fs_info, start);
  3839. start += fs_info->nodesize;
  3840. if (!eb)
  3841. continue;
  3842. wait_on_extent_buffer_writeback(eb);
  3843. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3844. &eb->bflags))
  3845. clear_extent_buffer_dirty(eb);
  3846. free_extent_buffer_stale(eb);
  3847. }
  3848. }
  3849. return ret;
  3850. }
  3851. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3852. struct extent_io_tree *pinned_extents)
  3853. {
  3854. struct extent_io_tree *unpin;
  3855. u64 start;
  3856. u64 end;
  3857. int ret;
  3858. bool loop = true;
  3859. unpin = pinned_extents;
  3860. again:
  3861. while (1) {
  3862. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3863. EXTENT_DIRTY, NULL);
  3864. if (ret)
  3865. break;
  3866. clear_extent_dirty(unpin, start, end);
  3867. btrfs_error_unpin_extent_range(fs_info, start, end);
  3868. cond_resched();
  3869. }
  3870. if (loop) {
  3871. if (unpin == &fs_info->freed_extents[0])
  3872. unpin = &fs_info->freed_extents[1];
  3873. else
  3874. unpin = &fs_info->freed_extents[0];
  3875. loop = false;
  3876. goto again;
  3877. }
  3878. return 0;
  3879. }
  3880. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3881. {
  3882. struct inode *inode;
  3883. inode = cache->io_ctl.inode;
  3884. if (inode) {
  3885. invalidate_inode_pages2(inode->i_mapping);
  3886. BTRFS_I(inode)->generation = 0;
  3887. cache->io_ctl.inode = NULL;
  3888. iput(inode);
  3889. }
  3890. btrfs_put_block_group(cache);
  3891. }
  3892. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3893. struct btrfs_fs_info *fs_info)
  3894. {
  3895. struct btrfs_block_group_cache *cache;
  3896. spin_lock(&cur_trans->dirty_bgs_lock);
  3897. while (!list_empty(&cur_trans->dirty_bgs)) {
  3898. cache = list_first_entry(&cur_trans->dirty_bgs,
  3899. struct btrfs_block_group_cache,
  3900. dirty_list);
  3901. if (!cache) {
  3902. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3903. spin_unlock(&cur_trans->dirty_bgs_lock);
  3904. return;
  3905. }
  3906. if (!list_empty(&cache->io_list)) {
  3907. spin_unlock(&cur_trans->dirty_bgs_lock);
  3908. list_del_init(&cache->io_list);
  3909. btrfs_cleanup_bg_io(cache);
  3910. spin_lock(&cur_trans->dirty_bgs_lock);
  3911. }
  3912. list_del_init(&cache->dirty_list);
  3913. spin_lock(&cache->lock);
  3914. cache->disk_cache_state = BTRFS_DC_ERROR;
  3915. spin_unlock(&cache->lock);
  3916. spin_unlock(&cur_trans->dirty_bgs_lock);
  3917. btrfs_put_block_group(cache);
  3918. spin_lock(&cur_trans->dirty_bgs_lock);
  3919. }
  3920. spin_unlock(&cur_trans->dirty_bgs_lock);
  3921. while (!list_empty(&cur_trans->io_bgs)) {
  3922. cache = list_first_entry(&cur_trans->io_bgs,
  3923. struct btrfs_block_group_cache,
  3924. io_list);
  3925. if (!cache) {
  3926. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3927. return;
  3928. }
  3929. list_del_init(&cache->io_list);
  3930. spin_lock(&cache->lock);
  3931. cache->disk_cache_state = BTRFS_DC_ERROR;
  3932. spin_unlock(&cache->lock);
  3933. btrfs_cleanup_bg_io(cache);
  3934. }
  3935. }
  3936. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3937. struct btrfs_fs_info *fs_info)
  3938. {
  3939. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3940. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3941. ASSERT(list_empty(&cur_trans->io_bgs));
  3942. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3943. cur_trans->state = TRANS_STATE_COMMIT_START;
  3944. wake_up(&fs_info->transaction_blocked_wait);
  3945. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3946. wake_up(&fs_info->transaction_wait);
  3947. btrfs_destroy_delayed_inodes(fs_info);
  3948. btrfs_assert_delayed_root_empty(fs_info);
  3949. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3950. EXTENT_DIRTY);
  3951. btrfs_destroy_pinned_extent(fs_info,
  3952. fs_info->pinned_extents);
  3953. cur_trans->state =TRANS_STATE_COMPLETED;
  3954. wake_up(&cur_trans->commit_wait);
  3955. /*
  3956. memset(cur_trans, 0, sizeof(*cur_trans));
  3957. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3958. */
  3959. }
  3960. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3961. {
  3962. struct btrfs_transaction *t;
  3963. mutex_lock(&fs_info->transaction_kthread_mutex);
  3964. spin_lock(&fs_info->trans_lock);
  3965. while (!list_empty(&fs_info->trans_list)) {
  3966. t = list_first_entry(&fs_info->trans_list,
  3967. struct btrfs_transaction, list);
  3968. if (t->state >= TRANS_STATE_COMMIT_START) {
  3969. atomic_inc(&t->use_count);
  3970. spin_unlock(&fs_info->trans_lock);
  3971. btrfs_wait_for_commit(fs_info, t->transid);
  3972. btrfs_put_transaction(t);
  3973. spin_lock(&fs_info->trans_lock);
  3974. continue;
  3975. }
  3976. if (t == fs_info->running_transaction) {
  3977. t->state = TRANS_STATE_COMMIT_DOING;
  3978. spin_unlock(&fs_info->trans_lock);
  3979. /*
  3980. * We wait for 0 num_writers since we don't hold a trans
  3981. * handle open currently for this transaction.
  3982. */
  3983. wait_event(t->writer_wait,
  3984. atomic_read(&t->num_writers) == 0);
  3985. } else {
  3986. spin_unlock(&fs_info->trans_lock);
  3987. }
  3988. btrfs_cleanup_one_transaction(t, fs_info);
  3989. spin_lock(&fs_info->trans_lock);
  3990. if (t == fs_info->running_transaction)
  3991. fs_info->running_transaction = NULL;
  3992. list_del_init(&t->list);
  3993. spin_unlock(&fs_info->trans_lock);
  3994. btrfs_put_transaction(t);
  3995. trace_btrfs_transaction_commit(fs_info->tree_root);
  3996. spin_lock(&fs_info->trans_lock);
  3997. }
  3998. spin_unlock(&fs_info->trans_lock);
  3999. btrfs_destroy_all_ordered_extents(fs_info);
  4000. btrfs_destroy_delayed_inodes(fs_info);
  4001. btrfs_assert_delayed_root_empty(fs_info);
  4002. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  4003. btrfs_destroy_all_delalloc_inodes(fs_info);
  4004. mutex_unlock(&fs_info->transaction_kthread_mutex);
  4005. return 0;
  4006. }
  4007. static const struct extent_io_ops btree_extent_io_ops = {
  4008. .readpage_end_io_hook = btree_readpage_end_io_hook,
  4009. .readpage_io_failed_hook = btree_io_failed_hook,
  4010. .submit_bio_hook = btree_submit_bio_hook,
  4011. /* note we're sharing with inode.c for the merge bio hook */
  4012. .merge_bio_hook = btrfs_merge_bio_hook,
  4013. };