delayed-ref.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964
  1. /*
  2. * Copyright (C) 2009 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/sort.h>
  21. #include "ctree.h"
  22. #include "delayed-ref.h"
  23. #include "transaction.h"
  24. #include "qgroup.h"
  25. struct kmem_cache *btrfs_delayed_ref_head_cachep;
  26. struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  27. struct kmem_cache *btrfs_delayed_data_ref_cachep;
  28. struct kmem_cache *btrfs_delayed_extent_op_cachep;
  29. /*
  30. * delayed back reference update tracking. For subvolume trees
  31. * we queue up extent allocations and backref maintenance for
  32. * delayed processing. This avoids deep call chains where we
  33. * add extents in the middle of btrfs_search_slot, and it allows
  34. * us to buffer up frequently modified backrefs in an rb tree instead
  35. * of hammering updates on the extent allocation tree.
  36. */
  37. /*
  38. * compare two delayed tree backrefs with same bytenr and type
  39. */
  40. static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
  41. struct btrfs_delayed_tree_ref *ref1, int type)
  42. {
  43. if (type == BTRFS_TREE_BLOCK_REF_KEY) {
  44. if (ref1->root < ref2->root)
  45. return -1;
  46. if (ref1->root > ref2->root)
  47. return 1;
  48. } else {
  49. if (ref1->parent < ref2->parent)
  50. return -1;
  51. if (ref1->parent > ref2->parent)
  52. return 1;
  53. }
  54. return 0;
  55. }
  56. /*
  57. * compare two delayed data backrefs with same bytenr and type
  58. */
  59. static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
  60. struct btrfs_delayed_data_ref *ref1)
  61. {
  62. if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
  63. if (ref1->root < ref2->root)
  64. return -1;
  65. if (ref1->root > ref2->root)
  66. return 1;
  67. if (ref1->objectid < ref2->objectid)
  68. return -1;
  69. if (ref1->objectid > ref2->objectid)
  70. return 1;
  71. if (ref1->offset < ref2->offset)
  72. return -1;
  73. if (ref1->offset > ref2->offset)
  74. return 1;
  75. } else {
  76. if (ref1->parent < ref2->parent)
  77. return -1;
  78. if (ref1->parent > ref2->parent)
  79. return 1;
  80. }
  81. return 0;
  82. }
  83. /* insert a new ref to head ref rbtree */
  84. static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
  85. struct rb_node *node)
  86. {
  87. struct rb_node **p = &root->rb_node;
  88. struct rb_node *parent_node = NULL;
  89. struct btrfs_delayed_ref_head *entry;
  90. struct btrfs_delayed_ref_head *ins;
  91. u64 bytenr;
  92. ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
  93. bytenr = ins->node.bytenr;
  94. while (*p) {
  95. parent_node = *p;
  96. entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
  97. href_node);
  98. if (bytenr < entry->node.bytenr)
  99. p = &(*p)->rb_left;
  100. else if (bytenr > entry->node.bytenr)
  101. p = &(*p)->rb_right;
  102. else
  103. return entry;
  104. }
  105. rb_link_node(node, parent_node, p);
  106. rb_insert_color(node, root);
  107. return NULL;
  108. }
  109. /*
  110. * find an head entry based on bytenr. This returns the delayed ref
  111. * head if it was able to find one, or NULL if nothing was in that spot.
  112. * If return_bigger is given, the next bigger entry is returned if no exact
  113. * match is found.
  114. */
  115. static struct btrfs_delayed_ref_head *
  116. find_ref_head(struct rb_root *root, u64 bytenr,
  117. int return_bigger)
  118. {
  119. struct rb_node *n;
  120. struct btrfs_delayed_ref_head *entry;
  121. n = root->rb_node;
  122. entry = NULL;
  123. while (n) {
  124. entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
  125. if (bytenr < entry->node.bytenr)
  126. n = n->rb_left;
  127. else if (bytenr > entry->node.bytenr)
  128. n = n->rb_right;
  129. else
  130. return entry;
  131. }
  132. if (entry && return_bigger) {
  133. if (bytenr > entry->node.bytenr) {
  134. n = rb_next(&entry->href_node);
  135. if (!n)
  136. n = rb_first(root);
  137. entry = rb_entry(n, struct btrfs_delayed_ref_head,
  138. href_node);
  139. return entry;
  140. }
  141. return entry;
  142. }
  143. return NULL;
  144. }
  145. int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
  146. struct btrfs_delayed_ref_head *head)
  147. {
  148. struct btrfs_delayed_ref_root *delayed_refs;
  149. delayed_refs = &trans->transaction->delayed_refs;
  150. assert_spin_locked(&delayed_refs->lock);
  151. if (mutex_trylock(&head->mutex))
  152. return 0;
  153. atomic_inc(&head->node.refs);
  154. spin_unlock(&delayed_refs->lock);
  155. mutex_lock(&head->mutex);
  156. spin_lock(&delayed_refs->lock);
  157. if (!head->node.in_tree) {
  158. mutex_unlock(&head->mutex);
  159. btrfs_put_delayed_ref(&head->node);
  160. return -EAGAIN;
  161. }
  162. btrfs_put_delayed_ref(&head->node);
  163. return 0;
  164. }
  165. static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
  166. struct btrfs_delayed_ref_root *delayed_refs,
  167. struct btrfs_delayed_ref_head *head,
  168. struct btrfs_delayed_ref_node *ref)
  169. {
  170. if (btrfs_delayed_ref_is_head(ref)) {
  171. head = btrfs_delayed_node_to_head(ref);
  172. rb_erase(&head->href_node, &delayed_refs->href_root);
  173. } else {
  174. assert_spin_locked(&head->lock);
  175. list_del(&ref->list);
  176. if (!list_empty(&ref->add_list))
  177. list_del(&ref->add_list);
  178. }
  179. ref->in_tree = 0;
  180. btrfs_put_delayed_ref(ref);
  181. atomic_dec(&delayed_refs->num_entries);
  182. if (trans->delayed_ref_updates)
  183. trans->delayed_ref_updates--;
  184. }
  185. static bool merge_ref(struct btrfs_trans_handle *trans,
  186. struct btrfs_delayed_ref_root *delayed_refs,
  187. struct btrfs_delayed_ref_head *head,
  188. struct btrfs_delayed_ref_node *ref,
  189. u64 seq)
  190. {
  191. struct btrfs_delayed_ref_node *next;
  192. bool done = false;
  193. next = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
  194. list);
  195. while (!done && &next->list != &head->ref_list) {
  196. int mod;
  197. struct btrfs_delayed_ref_node *next2;
  198. next2 = list_next_entry(next, list);
  199. if (next == ref)
  200. goto next;
  201. if (seq && next->seq >= seq)
  202. goto next;
  203. if (next->type != ref->type)
  204. goto next;
  205. if ((ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
  206. ref->type == BTRFS_SHARED_BLOCK_REF_KEY) &&
  207. comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref),
  208. btrfs_delayed_node_to_tree_ref(next),
  209. ref->type))
  210. goto next;
  211. if ((ref->type == BTRFS_EXTENT_DATA_REF_KEY ||
  212. ref->type == BTRFS_SHARED_DATA_REF_KEY) &&
  213. comp_data_refs(btrfs_delayed_node_to_data_ref(ref),
  214. btrfs_delayed_node_to_data_ref(next)))
  215. goto next;
  216. if (ref->action == next->action) {
  217. mod = next->ref_mod;
  218. } else {
  219. if (ref->ref_mod < next->ref_mod) {
  220. swap(ref, next);
  221. done = true;
  222. }
  223. mod = -next->ref_mod;
  224. }
  225. drop_delayed_ref(trans, delayed_refs, head, next);
  226. ref->ref_mod += mod;
  227. if (ref->ref_mod == 0) {
  228. drop_delayed_ref(trans, delayed_refs, head, ref);
  229. done = true;
  230. } else {
  231. /*
  232. * Can't have multiples of the same ref on a tree block.
  233. */
  234. WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
  235. ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
  236. }
  237. next:
  238. next = next2;
  239. }
  240. return done;
  241. }
  242. void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
  243. struct btrfs_fs_info *fs_info,
  244. struct btrfs_delayed_ref_root *delayed_refs,
  245. struct btrfs_delayed_ref_head *head)
  246. {
  247. struct btrfs_delayed_ref_node *ref;
  248. u64 seq = 0;
  249. assert_spin_locked(&head->lock);
  250. if (list_empty(&head->ref_list))
  251. return;
  252. /* We don't have too many refs to merge for data. */
  253. if (head->is_data)
  254. return;
  255. spin_lock(&fs_info->tree_mod_seq_lock);
  256. if (!list_empty(&fs_info->tree_mod_seq_list)) {
  257. struct seq_list *elem;
  258. elem = list_first_entry(&fs_info->tree_mod_seq_list,
  259. struct seq_list, list);
  260. seq = elem->seq;
  261. }
  262. spin_unlock(&fs_info->tree_mod_seq_lock);
  263. ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
  264. list);
  265. while (&ref->list != &head->ref_list) {
  266. if (seq && ref->seq >= seq)
  267. goto next;
  268. if (merge_ref(trans, delayed_refs, head, ref, seq)) {
  269. if (list_empty(&head->ref_list))
  270. break;
  271. ref = list_first_entry(&head->ref_list,
  272. struct btrfs_delayed_ref_node,
  273. list);
  274. continue;
  275. }
  276. next:
  277. ref = list_next_entry(ref, list);
  278. }
  279. }
  280. int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
  281. struct btrfs_delayed_ref_root *delayed_refs,
  282. u64 seq)
  283. {
  284. struct seq_list *elem;
  285. int ret = 0;
  286. spin_lock(&fs_info->tree_mod_seq_lock);
  287. if (!list_empty(&fs_info->tree_mod_seq_list)) {
  288. elem = list_first_entry(&fs_info->tree_mod_seq_list,
  289. struct seq_list, list);
  290. if (seq >= elem->seq) {
  291. btrfs_debug(fs_info,
  292. "holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)",
  293. (u32)(seq >> 32), (u32)seq,
  294. (u32)(elem->seq >> 32), (u32)elem->seq,
  295. delayed_refs);
  296. ret = 1;
  297. }
  298. }
  299. spin_unlock(&fs_info->tree_mod_seq_lock);
  300. return ret;
  301. }
  302. struct btrfs_delayed_ref_head *
  303. btrfs_select_ref_head(struct btrfs_trans_handle *trans)
  304. {
  305. struct btrfs_delayed_ref_root *delayed_refs;
  306. struct btrfs_delayed_ref_head *head;
  307. u64 start;
  308. bool loop = false;
  309. delayed_refs = &trans->transaction->delayed_refs;
  310. again:
  311. start = delayed_refs->run_delayed_start;
  312. head = find_ref_head(&delayed_refs->href_root, start, 1);
  313. if (!head && !loop) {
  314. delayed_refs->run_delayed_start = 0;
  315. start = 0;
  316. loop = true;
  317. head = find_ref_head(&delayed_refs->href_root, start, 1);
  318. if (!head)
  319. return NULL;
  320. } else if (!head && loop) {
  321. return NULL;
  322. }
  323. while (head->processing) {
  324. struct rb_node *node;
  325. node = rb_next(&head->href_node);
  326. if (!node) {
  327. if (loop)
  328. return NULL;
  329. delayed_refs->run_delayed_start = 0;
  330. start = 0;
  331. loop = true;
  332. goto again;
  333. }
  334. head = rb_entry(node, struct btrfs_delayed_ref_head,
  335. href_node);
  336. }
  337. head->processing = 1;
  338. WARN_ON(delayed_refs->num_heads_ready == 0);
  339. delayed_refs->num_heads_ready--;
  340. delayed_refs->run_delayed_start = head->node.bytenr +
  341. head->node.num_bytes;
  342. return head;
  343. }
  344. /*
  345. * Helper to insert the ref_node to the tail or merge with tail.
  346. *
  347. * Return 0 for insert.
  348. * Return >0 for merge.
  349. */
  350. static int
  351. add_delayed_ref_tail_merge(struct btrfs_trans_handle *trans,
  352. struct btrfs_delayed_ref_root *root,
  353. struct btrfs_delayed_ref_head *href,
  354. struct btrfs_delayed_ref_node *ref)
  355. {
  356. struct btrfs_delayed_ref_node *exist;
  357. int mod;
  358. int ret = 0;
  359. spin_lock(&href->lock);
  360. /* Check whether we can merge the tail node with ref */
  361. if (list_empty(&href->ref_list))
  362. goto add_tail;
  363. exist = list_entry(href->ref_list.prev, struct btrfs_delayed_ref_node,
  364. list);
  365. /* No need to compare bytenr nor is_head */
  366. if (exist->type != ref->type || exist->seq != ref->seq)
  367. goto add_tail;
  368. if ((exist->type == BTRFS_TREE_BLOCK_REF_KEY ||
  369. exist->type == BTRFS_SHARED_BLOCK_REF_KEY) &&
  370. comp_tree_refs(btrfs_delayed_node_to_tree_ref(exist),
  371. btrfs_delayed_node_to_tree_ref(ref),
  372. ref->type))
  373. goto add_tail;
  374. if ((exist->type == BTRFS_EXTENT_DATA_REF_KEY ||
  375. exist->type == BTRFS_SHARED_DATA_REF_KEY) &&
  376. comp_data_refs(btrfs_delayed_node_to_data_ref(exist),
  377. btrfs_delayed_node_to_data_ref(ref)))
  378. goto add_tail;
  379. /* Now we are sure we can merge */
  380. ret = 1;
  381. if (exist->action == ref->action) {
  382. mod = ref->ref_mod;
  383. } else {
  384. /* Need to change action */
  385. if (exist->ref_mod < ref->ref_mod) {
  386. exist->action = ref->action;
  387. mod = -exist->ref_mod;
  388. exist->ref_mod = ref->ref_mod;
  389. if (ref->action == BTRFS_ADD_DELAYED_REF)
  390. list_add_tail(&exist->add_list,
  391. &href->ref_add_list);
  392. else if (ref->action == BTRFS_DROP_DELAYED_REF) {
  393. ASSERT(!list_empty(&exist->add_list));
  394. list_del(&exist->add_list);
  395. } else {
  396. ASSERT(0);
  397. }
  398. } else
  399. mod = -ref->ref_mod;
  400. }
  401. exist->ref_mod += mod;
  402. /* remove existing tail if its ref_mod is zero */
  403. if (exist->ref_mod == 0)
  404. drop_delayed_ref(trans, root, href, exist);
  405. spin_unlock(&href->lock);
  406. return ret;
  407. add_tail:
  408. list_add_tail(&ref->list, &href->ref_list);
  409. if (ref->action == BTRFS_ADD_DELAYED_REF)
  410. list_add_tail(&ref->add_list, &href->ref_add_list);
  411. atomic_inc(&root->num_entries);
  412. trans->delayed_ref_updates++;
  413. spin_unlock(&href->lock);
  414. return ret;
  415. }
  416. /*
  417. * helper function to update the accounting in the head ref
  418. * existing and update must have the same bytenr
  419. */
  420. static noinline void
  421. update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs,
  422. struct btrfs_delayed_ref_node *existing,
  423. struct btrfs_delayed_ref_node *update)
  424. {
  425. struct btrfs_delayed_ref_head *existing_ref;
  426. struct btrfs_delayed_ref_head *ref;
  427. int old_ref_mod;
  428. existing_ref = btrfs_delayed_node_to_head(existing);
  429. ref = btrfs_delayed_node_to_head(update);
  430. BUG_ON(existing_ref->is_data != ref->is_data);
  431. spin_lock(&existing_ref->lock);
  432. if (ref->must_insert_reserved) {
  433. /* if the extent was freed and then
  434. * reallocated before the delayed ref
  435. * entries were processed, we can end up
  436. * with an existing head ref without
  437. * the must_insert_reserved flag set.
  438. * Set it again here
  439. */
  440. existing_ref->must_insert_reserved = ref->must_insert_reserved;
  441. /*
  442. * update the num_bytes so we make sure the accounting
  443. * is done correctly
  444. */
  445. existing->num_bytes = update->num_bytes;
  446. }
  447. if (ref->extent_op) {
  448. if (!existing_ref->extent_op) {
  449. existing_ref->extent_op = ref->extent_op;
  450. } else {
  451. if (ref->extent_op->update_key) {
  452. memcpy(&existing_ref->extent_op->key,
  453. &ref->extent_op->key,
  454. sizeof(ref->extent_op->key));
  455. existing_ref->extent_op->update_key = true;
  456. }
  457. if (ref->extent_op->update_flags) {
  458. existing_ref->extent_op->flags_to_set |=
  459. ref->extent_op->flags_to_set;
  460. existing_ref->extent_op->update_flags = true;
  461. }
  462. btrfs_free_delayed_extent_op(ref->extent_op);
  463. }
  464. }
  465. /*
  466. * update the reference mod on the head to reflect this new operation,
  467. * only need the lock for this case cause we could be processing it
  468. * currently, for refs we just added we know we're a-ok.
  469. */
  470. old_ref_mod = existing_ref->total_ref_mod;
  471. existing->ref_mod += update->ref_mod;
  472. existing_ref->total_ref_mod += update->ref_mod;
  473. /*
  474. * If we are going to from a positive ref mod to a negative or vice
  475. * versa we need to make sure to adjust pending_csums accordingly.
  476. */
  477. if (existing_ref->is_data) {
  478. if (existing_ref->total_ref_mod >= 0 && old_ref_mod < 0)
  479. delayed_refs->pending_csums -= existing->num_bytes;
  480. if (existing_ref->total_ref_mod < 0 && old_ref_mod >= 0)
  481. delayed_refs->pending_csums += existing->num_bytes;
  482. }
  483. spin_unlock(&existing_ref->lock);
  484. }
  485. /*
  486. * helper function to actually insert a head node into the rbtree.
  487. * this does all the dirty work in terms of maintaining the correct
  488. * overall modification count.
  489. */
  490. static noinline struct btrfs_delayed_ref_head *
  491. add_delayed_ref_head(struct btrfs_fs_info *fs_info,
  492. struct btrfs_trans_handle *trans,
  493. struct btrfs_delayed_ref_node *ref,
  494. struct btrfs_qgroup_extent_record *qrecord,
  495. u64 bytenr, u64 num_bytes, u64 ref_root, u64 reserved,
  496. int action, int is_data)
  497. {
  498. struct btrfs_delayed_ref_head *existing;
  499. struct btrfs_delayed_ref_head *head_ref = NULL;
  500. struct btrfs_delayed_ref_root *delayed_refs;
  501. int count_mod = 1;
  502. int must_insert_reserved = 0;
  503. /* If reserved is provided, it must be a data extent. */
  504. BUG_ON(!is_data && reserved);
  505. /*
  506. * the head node stores the sum of all the mods, so dropping a ref
  507. * should drop the sum in the head node by one.
  508. */
  509. if (action == BTRFS_UPDATE_DELAYED_HEAD)
  510. count_mod = 0;
  511. else if (action == BTRFS_DROP_DELAYED_REF)
  512. count_mod = -1;
  513. /*
  514. * BTRFS_ADD_DELAYED_EXTENT means that we need to update
  515. * the reserved accounting when the extent is finally added, or
  516. * if a later modification deletes the delayed ref without ever
  517. * inserting the extent into the extent allocation tree.
  518. * ref->must_insert_reserved is the flag used to record
  519. * that accounting mods are required.
  520. *
  521. * Once we record must_insert_reserved, switch the action to
  522. * BTRFS_ADD_DELAYED_REF because other special casing is not required.
  523. */
  524. if (action == BTRFS_ADD_DELAYED_EXTENT)
  525. must_insert_reserved = 1;
  526. else
  527. must_insert_reserved = 0;
  528. delayed_refs = &trans->transaction->delayed_refs;
  529. /* first set the basic ref node struct up */
  530. atomic_set(&ref->refs, 1);
  531. ref->bytenr = bytenr;
  532. ref->num_bytes = num_bytes;
  533. ref->ref_mod = count_mod;
  534. ref->type = 0;
  535. ref->action = 0;
  536. ref->is_head = 1;
  537. ref->in_tree = 1;
  538. ref->seq = 0;
  539. head_ref = btrfs_delayed_node_to_head(ref);
  540. head_ref->must_insert_reserved = must_insert_reserved;
  541. head_ref->is_data = is_data;
  542. INIT_LIST_HEAD(&head_ref->ref_list);
  543. INIT_LIST_HEAD(&head_ref->ref_add_list);
  544. head_ref->processing = 0;
  545. head_ref->total_ref_mod = count_mod;
  546. head_ref->qgroup_reserved = 0;
  547. head_ref->qgroup_ref_root = 0;
  548. /* Record qgroup extent info if provided */
  549. if (qrecord) {
  550. if (ref_root && reserved) {
  551. head_ref->qgroup_ref_root = ref_root;
  552. head_ref->qgroup_reserved = reserved;
  553. }
  554. qrecord->bytenr = bytenr;
  555. qrecord->num_bytes = num_bytes;
  556. qrecord->old_roots = NULL;
  557. if(btrfs_qgroup_trace_extent_nolock(fs_info,
  558. delayed_refs, qrecord))
  559. kfree(qrecord);
  560. }
  561. spin_lock_init(&head_ref->lock);
  562. mutex_init(&head_ref->mutex);
  563. trace_add_delayed_ref_head(fs_info, ref, head_ref, action);
  564. existing = htree_insert(&delayed_refs->href_root,
  565. &head_ref->href_node);
  566. if (existing) {
  567. WARN_ON(ref_root && reserved && existing->qgroup_ref_root
  568. && existing->qgroup_reserved);
  569. update_existing_head_ref(delayed_refs, &existing->node, ref);
  570. /*
  571. * we've updated the existing ref, free the newly
  572. * allocated ref
  573. */
  574. kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
  575. head_ref = existing;
  576. } else {
  577. if (is_data && count_mod < 0)
  578. delayed_refs->pending_csums += num_bytes;
  579. delayed_refs->num_heads++;
  580. delayed_refs->num_heads_ready++;
  581. atomic_inc(&delayed_refs->num_entries);
  582. trans->delayed_ref_updates++;
  583. }
  584. return head_ref;
  585. }
  586. /*
  587. * helper to insert a delayed tree ref into the rbtree.
  588. */
  589. static noinline void
  590. add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
  591. struct btrfs_trans_handle *trans,
  592. struct btrfs_delayed_ref_head *head_ref,
  593. struct btrfs_delayed_ref_node *ref, u64 bytenr,
  594. u64 num_bytes, u64 parent, u64 ref_root, int level,
  595. int action)
  596. {
  597. struct btrfs_delayed_tree_ref *full_ref;
  598. struct btrfs_delayed_ref_root *delayed_refs;
  599. u64 seq = 0;
  600. int ret;
  601. if (action == BTRFS_ADD_DELAYED_EXTENT)
  602. action = BTRFS_ADD_DELAYED_REF;
  603. if (is_fstree(ref_root))
  604. seq = atomic64_read(&fs_info->tree_mod_seq);
  605. delayed_refs = &trans->transaction->delayed_refs;
  606. /* first set the basic ref node struct up */
  607. atomic_set(&ref->refs, 1);
  608. ref->bytenr = bytenr;
  609. ref->num_bytes = num_bytes;
  610. ref->ref_mod = 1;
  611. ref->action = action;
  612. ref->is_head = 0;
  613. ref->in_tree = 1;
  614. ref->seq = seq;
  615. INIT_LIST_HEAD(&ref->list);
  616. INIT_LIST_HEAD(&ref->add_list);
  617. full_ref = btrfs_delayed_node_to_tree_ref(ref);
  618. full_ref->parent = parent;
  619. full_ref->root = ref_root;
  620. if (parent)
  621. ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
  622. else
  623. ref->type = BTRFS_TREE_BLOCK_REF_KEY;
  624. full_ref->level = level;
  625. trace_add_delayed_tree_ref(fs_info, ref, full_ref, action);
  626. ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref);
  627. /*
  628. * XXX: memory should be freed at the same level allocated.
  629. * But bad practice is anywhere... Follow it now. Need cleanup.
  630. */
  631. if (ret > 0)
  632. kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
  633. }
  634. /*
  635. * helper to insert a delayed data ref into the rbtree.
  636. */
  637. static noinline void
  638. add_delayed_data_ref(struct btrfs_fs_info *fs_info,
  639. struct btrfs_trans_handle *trans,
  640. struct btrfs_delayed_ref_head *head_ref,
  641. struct btrfs_delayed_ref_node *ref, u64 bytenr,
  642. u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
  643. u64 offset, int action)
  644. {
  645. struct btrfs_delayed_data_ref *full_ref;
  646. struct btrfs_delayed_ref_root *delayed_refs;
  647. u64 seq = 0;
  648. int ret;
  649. if (action == BTRFS_ADD_DELAYED_EXTENT)
  650. action = BTRFS_ADD_DELAYED_REF;
  651. delayed_refs = &trans->transaction->delayed_refs;
  652. if (is_fstree(ref_root))
  653. seq = atomic64_read(&fs_info->tree_mod_seq);
  654. /* first set the basic ref node struct up */
  655. atomic_set(&ref->refs, 1);
  656. ref->bytenr = bytenr;
  657. ref->num_bytes = num_bytes;
  658. ref->ref_mod = 1;
  659. ref->action = action;
  660. ref->is_head = 0;
  661. ref->in_tree = 1;
  662. ref->seq = seq;
  663. INIT_LIST_HEAD(&ref->list);
  664. INIT_LIST_HEAD(&ref->add_list);
  665. full_ref = btrfs_delayed_node_to_data_ref(ref);
  666. full_ref->parent = parent;
  667. full_ref->root = ref_root;
  668. if (parent)
  669. ref->type = BTRFS_SHARED_DATA_REF_KEY;
  670. else
  671. ref->type = BTRFS_EXTENT_DATA_REF_KEY;
  672. full_ref->objectid = owner;
  673. full_ref->offset = offset;
  674. trace_add_delayed_data_ref(fs_info, ref, full_ref, action);
  675. ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref);
  676. if (ret > 0)
  677. kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
  678. }
  679. /*
  680. * add a delayed tree ref. This does all of the accounting required
  681. * to make sure the delayed ref is eventually processed before this
  682. * transaction commits.
  683. */
  684. int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
  685. struct btrfs_trans_handle *trans,
  686. u64 bytenr, u64 num_bytes, u64 parent,
  687. u64 ref_root, int level, int action,
  688. struct btrfs_delayed_extent_op *extent_op)
  689. {
  690. struct btrfs_delayed_tree_ref *ref;
  691. struct btrfs_delayed_ref_head *head_ref;
  692. struct btrfs_delayed_ref_root *delayed_refs;
  693. struct btrfs_qgroup_extent_record *record = NULL;
  694. BUG_ON(extent_op && extent_op->is_data);
  695. ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
  696. if (!ref)
  697. return -ENOMEM;
  698. head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
  699. if (!head_ref)
  700. goto free_ref;
  701. if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
  702. is_fstree(ref_root)) {
  703. record = kmalloc(sizeof(*record), GFP_NOFS);
  704. if (!record)
  705. goto free_head_ref;
  706. }
  707. head_ref->extent_op = extent_op;
  708. delayed_refs = &trans->transaction->delayed_refs;
  709. spin_lock(&delayed_refs->lock);
  710. /*
  711. * insert both the head node and the new ref without dropping
  712. * the spin lock
  713. */
  714. head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record,
  715. bytenr, num_bytes, 0, 0, action, 0);
  716. add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
  717. num_bytes, parent, ref_root, level, action);
  718. spin_unlock(&delayed_refs->lock);
  719. return 0;
  720. free_head_ref:
  721. kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
  722. free_ref:
  723. kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
  724. return -ENOMEM;
  725. }
  726. /*
  727. * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
  728. */
  729. int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
  730. struct btrfs_trans_handle *trans,
  731. u64 bytenr, u64 num_bytes,
  732. u64 parent, u64 ref_root,
  733. u64 owner, u64 offset, u64 reserved, int action,
  734. struct btrfs_delayed_extent_op *extent_op)
  735. {
  736. struct btrfs_delayed_data_ref *ref;
  737. struct btrfs_delayed_ref_head *head_ref;
  738. struct btrfs_delayed_ref_root *delayed_refs;
  739. struct btrfs_qgroup_extent_record *record = NULL;
  740. BUG_ON(extent_op && !extent_op->is_data);
  741. ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
  742. if (!ref)
  743. return -ENOMEM;
  744. head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
  745. if (!head_ref) {
  746. kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
  747. return -ENOMEM;
  748. }
  749. if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
  750. is_fstree(ref_root)) {
  751. record = kmalloc(sizeof(*record), GFP_NOFS);
  752. if (!record) {
  753. kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
  754. kmem_cache_free(btrfs_delayed_ref_head_cachep,
  755. head_ref);
  756. return -ENOMEM;
  757. }
  758. }
  759. head_ref->extent_op = extent_op;
  760. delayed_refs = &trans->transaction->delayed_refs;
  761. spin_lock(&delayed_refs->lock);
  762. /*
  763. * insert both the head node and the new ref without dropping
  764. * the spin lock
  765. */
  766. head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record,
  767. bytenr, num_bytes, ref_root, reserved,
  768. action, 1);
  769. add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
  770. num_bytes, parent, ref_root, owner, offset,
  771. action);
  772. spin_unlock(&delayed_refs->lock);
  773. return 0;
  774. }
  775. int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
  776. struct btrfs_trans_handle *trans,
  777. u64 bytenr, u64 num_bytes,
  778. struct btrfs_delayed_extent_op *extent_op)
  779. {
  780. struct btrfs_delayed_ref_head *head_ref;
  781. struct btrfs_delayed_ref_root *delayed_refs;
  782. head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
  783. if (!head_ref)
  784. return -ENOMEM;
  785. head_ref->extent_op = extent_op;
  786. delayed_refs = &trans->transaction->delayed_refs;
  787. spin_lock(&delayed_refs->lock);
  788. add_delayed_ref_head(fs_info, trans, &head_ref->node, NULL, bytenr,
  789. num_bytes, 0, 0, BTRFS_UPDATE_DELAYED_HEAD,
  790. extent_op->is_data);
  791. spin_unlock(&delayed_refs->lock);
  792. return 0;
  793. }
  794. /*
  795. * this does a simple search for the head node for a given extent.
  796. * It must be called with the delayed ref spinlock held, and it returns
  797. * the head node if any where found, or NULL if not.
  798. */
  799. struct btrfs_delayed_ref_head *
  800. btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
  801. {
  802. struct btrfs_delayed_ref_root *delayed_refs;
  803. delayed_refs = &trans->transaction->delayed_refs;
  804. return find_ref_head(&delayed_refs->href_root, bytenr, 0);
  805. }
  806. void btrfs_delayed_ref_exit(void)
  807. {
  808. kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
  809. kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
  810. kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
  811. kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
  812. }
  813. int btrfs_delayed_ref_init(void)
  814. {
  815. btrfs_delayed_ref_head_cachep = kmem_cache_create(
  816. "btrfs_delayed_ref_head",
  817. sizeof(struct btrfs_delayed_ref_head), 0,
  818. SLAB_MEM_SPREAD, NULL);
  819. if (!btrfs_delayed_ref_head_cachep)
  820. goto fail;
  821. btrfs_delayed_tree_ref_cachep = kmem_cache_create(
  822. "btrfs_delayed_tree_ref",
  823. sizeof(struct btrfs_delayed_tree_ref), 0,
  824. SLAB_MEM_SPREAD, NULL);
  825. if (!btrfs_delayed_tree_ref_cachep)
  826. goto fail;
  827. btrfs_delayed_data_ref_cachep = kmem_cache_create(
  828. "btrfs_delayed_data_ref",
  829. sizeof(struct btrfs_delayed_data_ref), 0,
  830. SLAB_MEM_SPREAD, NULL);
  831. if (!btrfs_delayed_data_ref_cachep)
  832. goto fail;
  833. btrfs_delayed_extent_op_cachep = kmem_cache_create(
  834. "btrfs_delayed_extent_op",
  835. sizeof(struct btrfs_delayed_extent_op), 0,
  836. SLAB_MEM_SPREAD, NULL);
  837. if (!btrfs_delayed_extent_op_cachep)
  838. goto fail;
  839. return 0;
  840. fail:
  841. btrfs_delayed_ref_exit();
  842. return -ENOMEM;
  843. }