ctree.c 153 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/rbtree.h>
  21. #include <linux/vmalloc.h>
  22. #include "ctree.h"
  23. #include "disk-io.h"
  24. #include "transaction.h"
  25. #include "print-tree.h"
  26. #include "locking.h"
  27. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_path *path, int level);
  29. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  30. *root, struct btrfs_key *ins_key,
  31. struct btrfs_path *path, int data_size, int extend);
  32. static int push_node_left(struct btrfs_trans_handle *trans,
  33. struct btrfs_fs_info *fs_info,
  34. struct extent_buffer *dst,
  35. struct extent_buffer *src, int empty);
  36. static int balance_node_right(struct btrfs_trans_handle *trans,
  37. struct btrfs_fs_info *fs_info,
  38. struct extent_buffer *dst_buf,
  39. struct extent_buffer *src_buf);
  40. static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41. int level, int slot);
  42. static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43. struct extent_buffer *eb);
  44. struct btrfs_path *btrfs_alloc_path(void)
  45. {
  46. return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  47. }
  48. /*
  49. * set all locked nodes in the path to blocking locks. This should
  50. * be done before scheduling
  51. */
  52. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  53. {
  54. int i;
  55. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  56. if (!p->nodes[i] || !p->locks[i])
  57. continue;
  58. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  59. if (p->locks[i] == BTRFS_READ_LOCK)
  60. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  61. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  62. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  63. }
  64. }
  65. /*
  66. * reset all the locked nodes in the patch to spinning locks.
  67. *
  68. * held is used to keep lockdep happy, when lockdep is enabled
  69. * we set held to a blocking lock before we go around and
  70. * retake all the spinlocks in the path. You can safely use NULL
  71. * for held
  72. */
  73. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  74. struct extent_buffer *held, int held_rw)
  75. {
  76. int i;
  77. if (held) {
  78. btrfs_set_lock_blocking_rw(held, held_rw);
  79. if (held_rw == BTRFS_WRITE_LOCK)
  80. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  81. else if (held_rw == BTRFS_READ_LOCK)
  82. held_rw = BTRFS_READ_LOCK_BLOCKING;
  83. }
  84. btrfs_set_path_blocking(p);
  85. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  86. if (p->nodes[i] && p->locks[i]) {
  87. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  88. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  89. p->locks[i] = BTRFS_WRITE_LOCK;
  90. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  91. p->locks[i] = BTRFS_READ_LOCK;
  92. }
  93. }
  94. if (held)
  95. btrfs_clear_lock_blocking_rw(held, held_rw);
  96. }
  97. /* this also releases the path */
  98. void btrfs_free_path(struct btrfs_path *p)
  99. {
  100. if (!p)
  101. return;
  102. btrfs_release_path(p);
  103. kmem_cache_free(btrfs_path_cachep, p);
  104. }
  105. /*
  106. * path release drops references on the extent buffers in the path
  107. * and it drops any locks held by this path
  108. *
  109. * It is safe to call this on paths that no locks or extent buffers held.
  110. */
  111. noinline void btrfs_release_path(struct btrfs_path *p)
  112. {
  113. int i;
  114. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  115. p->slots[i] = 0;
  116. if (!p->nodes[i])
  117. continue;
  118. if (p->locks[i]) {
  119. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  120. p->locks[i] = 0;
  121. }
  122. free_extent_buffer(p->nodes[i]);
  123. p->nodes[i] = NULL;
  124. }
  125. }
  126. /*
  127. * safely gets a reference on the root node of a tree. A lock
  128. * is not taken, so a concurrent writer may put a different node
  129. * at the root of the tree. See btrfs_lock_root_node for the
  130. * looping required.
  131. *
  132. * The extent buffer returned by this has a reference taken, so
  133. * it won't disappear. It may stop being the root of the tree
  134. * at any time because there are no locks held.
  135. */
  136. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  137. {
  138. struct extent_buffer *eb;
  139. while (1) {
  140. rcu_read_lock();
  141. eb = rcu_dereference(root->node);
  142. /*
  143. * RCU really hurts here, we could free up the root node because
  144. * it was COWed but we may not get the new root node yet so do
  145. * the inc_not_zero dance and if it doesn't work then
  146. * synchronize_rcu and try again.
  147. */
  148. if (atomic_inc_not_zero(&eb->refs)) {
  149. rcu_read_unlock();
  150. break;
  151. }
  152. rcu_read_unlock();
  153. synchronize_rcu();
  154. }
  155. return eb;
  156. }
  157. /* loop around taking references on and locking the root node of the
  158. * tree until you end up with a lock on the root. A locked buffer
  159. * is returned, with a reference held.
  160. */
  161. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  162. {
  163. struct extent_buffer *eb;
  164. while (1) {
  165. eb = btrfs_root_node(root);
  166. btrfs_tree_lock(eb);
  167. if (eb == root->node)
  168. break;
  169. btrfs_tree_unlock(eb);
  170. free_extent_buffer(eb);
  171. }
  172. return eb;
  173. }
  174. /* loop around taking references on and locking the root node of the
  175. * tree until you end up with a lock on the root. A locked buffer
  176. * is returned, with a reference held.
  177. */
  178. static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  179. {
  180. struct extent_buffer *eb;
  181. while (1) {
  182. eb = btrfs_root_node(root);
  183. btrfs_tree_read_lock(eb);
  184. if (eb == root->node)
  185. break;
  186. btrfs_tree_read_unlock(eb);
  187. free_extent_buffer(eb);
  188. }
  189. return eb;
  190. }
  191. /* cowonly root (everything not a reference counted cow subvolume), just get
  192. * put onto a simple dirty list. transaction.c walks this to make sure they
  193. * get properly updated on disk.
  194. */
  195. static void add_root_to_dirty_list(struct btrfs_root *root)
  196. {
  197. struct btrfs_fs_info *fs_info = root->fs_info;
  198. if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
  199. !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
  200. return;
  201. spin_lock(&fs_info->trans_lock);
  202. if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
  203. /* Want the extent tree to be the last on the list */
  204. if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  205. list_move_tail(&root->dirty_list,
  206. &fs_info->dirty_cowonly_roots);
  207. else
  208. list_move(&root->dirty_list,
  209. &fs_info->dirty_cowonly_roots);
  210. }
  211. spin_unlock(&fs_info->trans_lock);
  212. }
  213. /*
  214. * used by snapshot creation to make a copy of a root for a tree with
  215. * a given objectid. The buffer with the new root node is returned in
  216. * cow_ret, and this func returns zero on success or a negative error code.
  217. */
  218. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  219. struct btrfs_root *root,
  220. struct extent_buffer *buf,
  221. struct extent_buffer **cow_ret, u64 new_root_objectid)
  222. {
  223. struct btrfs_fs_info *fs_info = root->fs_info;
  224. struct extent_buffer *cow;
  225. int ret = 0;
  226. int level;
  227. struct btrfs_disk_key disk_key;
  228. WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  229. trans->transid != fs_info->running_transaction->transid);
  230. WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  231. trans->transid != root->last_trans);
  232. level = btrfs_header_level(buf);
  233. if (level == 0)
  234. btrfs_item_key(buf, &disk_key, 0);
  235. else
  236. btrfs_node_key(buf, &disk_key, 0);
  237. cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
  238. &disk_key, level, buf->start, 0);
  239. if (IS_ERR(cow))
  240. return PTR_ERR(cow);
  241. copy_extent_buffer_full(cow, buf);
  242. btrfs_set_header_bytenr(cow, cow->start);
  243. btrfs_set_header_generation(cow, trans->transid);
  244. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  245. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  246. BTRFS_HEADER_FLAG_RELOC);
  247. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  248. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  249. else
  250. btrfs_set_header_owner(cow, new_root_objectid);
  251. write_extent_buffer_fsid(cow, fs_info->fsid);
  252. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  253. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  254. ret = btrfs_inc_ref(trans, root, cow, 1);
  255. else
  256. ret = btrfs_inc_ref(trans, root, cow, 0);
  257. if (ret)
  258. return ret;
  259. btrfs_mark_buffer_dirty(cow);
  260. *cow_ret = cow;
  261. return 0;
  262. }
  263. enum mod_log_op {
  264. MOD_LOG_KEY_REPLACE,
  265. MOD_LOG_KEY_ADD,
  266. MOD_LOG_KEY_REMOVE,
  267. MOD_LOG_KEY_REMOVE_WHILE_FREEING,
  268. MOD_LOG_KEY_REMOVE_WHILE_MOVING,
  269. MOD_LOG_MOVE_KEYS,
  270. MOD_LOG_ROOT_REPLACE,
  271. };
  272. struct tree_mod_move {
  273. int dst_slot;
  274. int nr_items;
  275. };
  276. struct tree_mod_root {
  277. u64 logical;
  278. u8 level;
  279. };
  280. struct tree_mod_elem {
  281. struct rb_node node;
  282. u64 logical;
  283. u64 seq;
  284. enum mod_log_op op;
  285. /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
  286. int slot;
  287. /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
  288. u64 generation;
  289. /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
  290. struct btrfs_disk_key key;
  291. u64 blockptr;
  292. /* this is used for op == MOD_LOG_MOVE_KEYS */
  293. struct tree_mod_move move;
  294. /* this is used for op == MOD_LOG_ROOT_REPLACE */
  295. struct tree_mod_root old_root;
  296. };
  297. static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
  298. {
  299. read_lock(&fs_info->tree_mod_log_lock);
  300. }
  301. static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
  302. {
  303. read_unlock(&fs_info->tree_mod_log_lock);
  304. }
  305. static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
  306. {
  307. write_lock(&fs_info->tree_mod_log_lock);
  308. }
  309. static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
  310. {
  311. write_unlock(&fs_info->tree_mod_log_lock);
  312. }
  313. /*
  314. * Pull a new tree mod seq number for our operation.
  315. */
  316. static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
  317. {
  318. return atomic64_inc_return(&fs_info->tree_mod_seq);
  319. }
  320. /*
  321. * This adds a new blocker to the tree mod log's blocker list if the @elem
  322. * passed does not already have a sequence number set. So when a caller expects
  323. * to record tree modifications, it should ensure to set elem->seq to zero
  324. * before calling btrfs_get_tree_mod_seq.
  325. * Returns a fresh, unused tree log modification sequence number, even if no new
  326. * blocker was added.
  327. */
  328. u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
  329. struct seq_list *elem)
  330. {
  331. tree_mod_log_write_lock(fs_info);
  332. spin_lock(&fs_info->tree_mod_seq_lock);
  333. if (!elem->seq) {
  334. elem->seq = btrfs_inc_tree_mod_seq(fs_info);
  335. list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
  336. }
  337. spin_unlock(&fs_info->tree_mod_seq_lock);
  338. tree_mod_log_write_unlock(fs_info);
  339. return elem->seq;
  340. }
  341. void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
  342. struct seq_list *elem)
  343. {
  344. struct rb_root *tm_root;
  345. struct rb_node *node;
  346. struct rb_node *next;
  347. struct seq_list *cur_elem;
  348. struct tree_mod_elem *tm;
  349. u64 min_seq = (u64)-1;
  350. u64 seq_putting = elem->seq;
  351. if (!seq_putting)
  352. return;
  353. spin_lock(&fs_info->tree_mod_seq_lock);
  354. list_del(&elem->list);
  355. elem->seq = 0;
  356. list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
  357. if (cur_elem->seq < min_seq) {
  358. if (seq_putting > cur_elem->seq) {
  359. /*
  360. * blocker with lower sequence number exists, we
  361. * cannot remove anything from the log
  362. */
  363. spin_unlock(&fs_info->tree_mod_seq_lock);
  364. return;
  365. }
  366. min_seq = cur_elem->seq;
  367. }
  368. }
  369. spin_unlock(&fs_info->tree_mod_seq_lock);
  370. /*
  371. * anything that's lower than the lowest existing (read: blocked)
  372. * sequence number can be removed from the tree.
  373. */
  374. tree_mod_log_write_lock(fs_info);
  375. tm_root = &fs_info->tree_mod_log;
  376. for (node = rb_first(tm_root); node; node = next) {
  377. next = rb_next(node);
  378. tm = container_of(node, struct tree_mod_elem, node);
  379. if (tm->seq > min_seq)
  380. continue;
  381. rb_erase(node, tm_root);
  382. kfree(tm);
  383. }
  384. tree_mod_log_write_unlock(fs_info);
  385. }
  386. /*
  387. * key order of the log:
  388. * node/leaf start address -> sequence
  389. *
  390. * The 'start address' is the logical address of the *new* root node
  391. * for root replace operations, or the logical address of the affected
  392. * block for all other operations.
  393. *
  394. * Note: must be called with write lock (tree_mod_log_write_lock).
  395. */
  396. static noinline int
  397. __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
  398. {
  399. struct rb_root *tm_root;
  400. struct rb_node **new;
  401. struct rb_node *parent = NULL;
  402. struct tree_mod_elem *cur;
  403. BUG_ON(!tm);
  404. tm->seq = btrfs_inc_tree_mod_seq(fs_info);
  405. tm_root = &fs_info->tree_mod_log;
  406. new = &tm_root->rb_node;
  407. while (*new) {
  408. cur = container_of(*new, struct tree_mod_elem, node);
  409. parent = *new;
  410. if (cur->logical < tm->logical)
  411. new = &((*new)->rb_left);
  412. else if (cur->logical > tm->logical)
  413. new = &((*new)->rb_right);
  414. else if (cur->seq < tm->seq)
  415. new = &((*new)->rb_left);
  416. else if (cur->seq > tm->seq)
  417. new = &((*new)->rb_right);
  418. else
  419. return -EEXIST;
  420. }
  421. rb_link_node(&tm->node, parent, new);
  422. rb_insert_color(&tm->node, tm_root);
  423. return 0;
  424. }
  425. /*
  426. * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
  427. * returns zero with the tree_mod_log_lock acquired. The caller must hold
  428. * this until all tree mod log insertions are recorded in the rb tree and then
  429. * call tree_mod_log_write_unlock() to release.
  430. */
  431. static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
  432. struct extent_buffer *eb) {
  433. smp_mb();
  434. if (list_empty(&(fs_info)->tree_mod_seq_list))
  435. return 1;
  436. if (eb && btrfs_header_level(eb) == 0)
  437. return 1;
  438. tree_mod_log_write_lock(fs_info);
  439. if (list_empty(&(fs_info)->tree_mod_seq_list)) {
  440. tree_mod_log_write_unlock(fs_info);
  441. return 1;
  442. }
  443. return 0;
  444. }
  445. /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
  446. static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
  447. struct extent_buffer *eb)
  448. {
  449. smp_mb();
  450. if (list_empty(&(fs_info)->tree_mod_seq_list))
  451. return 0;
  452. if (eb && btrfs_header_level(eb) == 0)
  453. return 0;
  454. return 1;
  455. }
  456. static struct tree_mod_elem *
  457. alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
  458. enum mod_log_op op, gfp_t flags)
  459. {
  460. struct tree_mod_elem *tm;
  461. tm = kzalloc(sizeof(*tm), flags);
  462. if (!tm)
  463. return NULL;
  464. tm->logical = eb->start;
  465. if (op != MOD_LOG_KEY_ADD) {
  466. btrfs_node_key(eb, &tm->key, slot);
  467. tm->blockptr = btrfs_node_blockptr(eb, slot);
  468. }
  469. tm->op = op;
  470. tm->slot = slot;
  471. tm->generation = btrfs_node_ptr_generation(eb, slot);
  472. RB_CLEAR_NODE(&tm->node);
  473. return tm;
  474. }
  475. static noinline int
  476. tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
  477. struct extent_buffer *eb, int slot,
  478. enum mod_log_op op, gfp_t flags)
  479. {
  480. struct tree_mod_elem *tm;
  481. int ret;
  482. if (!tree_mod_need_log(fs_info, eb))
  483. return 0;
  484. tm = alloc_tree_mod_elem(eb, slot, op, flags);
  485. if (!tm)
  486. return -ENOMEM;
  487. if (tree_mod_dont_log(fs_info, eb)) {
  488. kfree(tm);
  489. return 0;
  490. }
  491. ret = __tree_mod_log_insert(fs_info, tm);
  492. tree_mod_log_write_unlock(fs_info);
  493. if (ret)
  494. kfree(tm);
  495. return ret;
  496. }
  497. static noinline int
  498. tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
  499. struct extent_buffer *eb, int dst_slot, int src_slot,
  500. int nr_items, gfp_t flags)
  501. {
  502. struct tree_mod_elem *tm = NULL;
  503. struct tree_mod_elem **tm_list = NULL;
  504. int ret = 0;
  505. int i;
  506. int locked = 0;
  507. if (!tree_mod_need_log(fs_info, eb))
  508. return 0;
  509. tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
  510. if (!tm_list)
  511. return -ENOMEM;
  512. tm = kzalloc(sizeof(*tm), flags);
  513. if (!tm) {
  514. ret = -ENOMEM;
  515. goto free_tms;
  516. }
  517. tm->logical = eb->start;
  518. tm->slot = src_slot;
  519. tm->move.dst_slot = dst_slot;
  520. tm->move.nr_items = nr_items;
  521. tm->op = MOD_LOG_MOVE_KEYS;
  522. for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
  523. tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
  524. MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
  525. if (!tm_list[i]) {
  526. ret = -ENOMEM;
  527. goto free_tms;
  528. }
  529. }
  530. if (tree_mod_dont_log(fs_info, eb))
  531. goto free_tms;
  532. locked = 1;
  533. /*
  534. * When we override something during the move, we log these removals.
  535. * This can only happen when we move towards the beginning of the
  536. * buffer, i.e. dst_slot < src_slot.
  537. */
  538. for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
  539. ret = __tree_mod_log_insert(fs_info, tm_list[i]);
  540. if (ret)
  541. goto free_tms;
  542. }
  543. ret = __tree_mod_log_insert(fs_info, tm);
  544. if (ret)
  545. goto free_tms;
  546. tree_mod_log_write_unlock(fs_info);
  547. kfree(tm_list);
  548. return 0;
  549. free_tms:
  550. for (i = 0; i < nr_items; i++) {
  551. if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
  552. rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
  553. kfree(tm_list[i]);
  554. }
  555. if (locked)
  556. tree_mod_log_write_unlock(fs_info);
  557. kfree(tm_list);
  558. kfree(tm);
  559. return ret;
  560. }
  561. static inline int
  562. __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  563. struct tree_mod_elem **tm_list,
  564. int nritems)
  565. {
  566. int i, j;
  567. int ret;
  568. for (i = nritems - 1; i >= 0; i--) {
  569. ret = __tree_mod_log_insert(fs_info, tm_list[i]);
  570. if (ret) {
  571. for (j = nritems - 1; j > i; j--)
  572. rb_erase(&tm_list[j]->node,
  573. &fs_info->tree_mod_log);
  574. return ret;
  575. }
  576. }
  577. return 0;
  578. }
  579. static noinline int
  580. tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
  581. struct extent_buffer *old_root,
  582. struct extent_buffer *new_root, gfp_t flags,
  583. int log_removal)
  584. {
  585. struct tree_mod_elem *tm = NULL;
  586. struct tree_mod_elem **tm_list = NULL;
  587. int nritems = 0;
  588. int ret = 0;
  589. int i;
  590. if (!tree_mod_need_log(fs_info, NULL))
  591. return 0;
  592. if (log_removal && btrfs_header_level(old_root) > 0) {
  593. nritems = btrfs_header_nritems(old_root);
  594. tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
  595. flags);
  596. if (!tm_list) {
  597. ret = -ENOMEM;
  598. goto free_tms;
  599. }
  600. for (i = 0; i < nritems; i++) {
  601. tm_list[i] = alloc_tree_mod_elem(old_root, i,
  602. MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
  603. if (!tm_list[i]) {
  604. ret = -ENOMEM;
  605. goto free_tms;
  606. }
  607. }
  608. }
  609. tm = kzalloc(sizeof(*tm), flags);
  610. if (!tm) {
  611. ret = -ENOMEM;
  612. goto free_tms;
  613. }
  614. tm->logical = new_root->start;
  615. tm->old_root.logical = old_root->start;
  616. tm->old_root.level = btrfs_header_level(old_root);
  617. tm->generation = btrfs_header_generation(old_root);
  618. tm->op = MOD_LOG_ROOT_REPLACE;
  619. if (tree_mod_dont_log(fs_info, NULL))
  620. goto free_tms;
  621. if (tm_list)
  622. ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
  623. if (!ret)
  624. ret = __tree_mod_log_insert(fs_info, tm);
  625. tree_mod_log_write_unlock(fs_info);
  626. if (ret)
  627. goto free_tms;
  628. kfree(tm_list);
  629. return ret;
  630. free_tms:
  631. if (tm_list) {
  632. for (i = 0; i < nritems; i++)
  633. kfree(tm_list[i]);
  634. kfree(tm_list);
  635. }
  636. kfree(tm);
  637. return ret;
  638. }
  639. static struct tree_mod_elem *
  640. __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
  641. int smallest)
  642. {
  643. struct rb_root *tm_root;
  644. struct rb_node *node;
  645. struct tree_mod_elem *cur = NULL;
  646. struct tree_mod_elem *found = NULL;
  647. tree_mod_log_read_lock(fs_info);
  648. tm_root = &fs_info->tree_mod_log;
  649. node = tm_root->rb_node;
  650. while (node) {
  651. cur = container_of(node, struct tree_mod_elem, node);
  652. if (cur->logical < start) {
  653. node = node->rb_left;
  654. } else if (cur->logical > start) {
  655. node = node->rb_right;
  656. } else if (cur->seq < min_seq) {
  657. node = node->rb_left;
  658. } else if (!smallest) {
  659. /* we want the node with the highest seq */
  660. if (found)
  661. BUG_ON(found->seq > cur->seq);
  662. found = cur;
  663. node = node->rb_left;
  664. } else if (cur->seq > min_seq) {
  665. /* we want the node with the smallest seq */
  666. if (found)
  667. BUG_ON(found->seq < cur->seq);
  668. found = cur;
  669. node = node->rb_right;
  670. } else {
  671. found = cur;
  672. break;
  673. }
  674. }
  675. tree_mod_log_read_unlock(fs_info);
  676. return found;
  677. }
  678. /*
  679. * this returns the element from the log with the smallest time sequence
  680. * value that's in the log (the oldest log item). any element with a time
  681. * sequence lower than min_seq will be ignored.
  682. */
  683. static struct tree_mod_elem *
  684. tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
  685. u64 min_seq)
  686. {
  687. return __tree_mod_log_search(fs_info, start, min_seq, 1);
  688. }
  689. /*
  690. * this returns the element from the log with the largest time sequence
  691. * value that's in the log (the most recent log item). any element with
  692. * a time sequence lower than min_seq will be ignored.
  693. */
  694. static struct tree_mod_elem *
  695. tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
  696. {
  697. return __tree_mod_log_search(fs_info, start, min_seq, 0);
  698. }
  699. static noinline int
  700. tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
  701. struct extent_buffer *src, unsigned long dst_offset,
  702. unsigned long src_offset, int nr_items)
  703. {
  704. int ret = 0;
  705. struct tree_mod_elem **tm_list = NULL;
  706. struct tree_mod_elem **tm_list_add, **tm_list_rem;
  707. int i;
  708. int locked = 0;
  709. if (!tree_mod_need_log(fs_info, NULL))
  710. return 0;
  711. if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
  712. return 0;
  713. tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
  714. GFP_NOFS);
  715. if (!tm_list)
  716. return -ENOMEM;
  717. tm_list_add = tm_list;
  718. tm_list_rem = tm_list + nr_items;
  719. for (i = 0; i < nr_items; i++) {
  720. tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
  721. MOD_LOG_KEY_REMOVE, GFP_NOFS);
  722. if (!tm_list_rem[i]) {
  723. ret = -ENOMEM;
  724. goto free_tms;
  725. }
  726. tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
  727. MOD_LOG_KEY_ADD, GFP_NOFS);
  728. if (!tm_list_add[i]) {
  729. ret = -ENOMEM;
  730. goto free_tms;
  731. }
  732. }
  733. if (tree_mod_dont_log(fs_info, NULL))
  734. goto free_tms;
  735. locked = 1;
  736. for (i = 0; i < nr_items; i++) {
  737. ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
  738. if (ret)
  739. goto free_tms;
  740. ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
  741. if (ret)
  742. goto free_tms;
  743. }
  744. tree_mod_log_write_unlock(fs_info);
  745. kfree(tm_list);
  746. return 0;
  747. free_tms:
  748. for (i = 0; i < nr_items * 2; i++) {
  749. if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
  750. rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
  751. kfree(tm_list[i]);
  752. }
  753. if (locked)
  754. tree_mod_log_write_unlock(fs_info);
  755. kfree(tm_list);
  756. return ret;
  757. }
  758. static inline void
  759. tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
  760. int dst_offset, int src_offset, int nr_items)
  761. {
  762. int ret;
  763. ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
  764. nr_items, GFP_NOFS);
  765. BUG_ON(ret < 0);
  766. }
  767. static noinline void
  768. tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
  769. struct extent_buffer *eb, int slot, int atomic)
  770. {
  771. int ret;
  772. ret = tree_mod_log_insert_key(fs_info, eb, slot,
  773. MOD_LOG_KEY_REPLACE,
  774. atomic ? GFP_ATOMIC : GFP_NOFS);
  775. BUG_ON(ret < 0);
  776. }
  777. static noinline int
  778. tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
  779. {
  780. struct tree_mod_elem **tm_list = NULL;
  781. int nritems = 0;
  782. int i;
  783. int ret = 0;
  784. if (btrfs_header_level(eb) == 0)
  785. return 0;
  786. if (!tree_mod_need_log(fs_info, NULL))
  787. return 0;
  788. nritems = btrfs_header_nritems(eb);
  789. tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
  790. if (!tm_list)
  791. return -ENOMEM;
  792. for (i = 0; i < nritems; i++) {
  793. tm_list[i] = alloc_tree_mod_elem(eb, i,
  794. MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
  795. if (!tm_list[i]) {
  796. ret = -ENOMEM;
  797. goto free_tms;
  798. }
  799. }
  800. if (tree_mod_dont_log(fs_info, eb))
  801. goto free_tms;
  802. ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
  803. tree_mod_log_write_unlock(fs_info);
  804. if (ret)
  805. goto free_tms;
  806. kfree(tm_list);
  807. return 0;
  808. free_tms:
  809. for (i = 0; i < nritems; i++)
  810. kfree(tm_list[i]);
  811. kfree(tm_list);
  812. return ret;
  813. }
  814. static noinline void
  815. tree_mod_log_set_root_pointer(struct btrfs_root *root,
  816. struct extent_buffer *new_root_node,
  817. int log_removal)
  818. {
  819. int ret;
  820. ret = tree_mod_log_insert_root(root->fs_info, root->node,
  821. new_root_node, GFP_NOFS, log_removal);
  822. BUG_ON(ret < 0);
  823. }
  824. /*
  825. * check if the tree block can be shared by multiple trees
  826. */
  827. int btrfs_block_can_be_shared(struct btrfs_root *root,
  828. struct extent_buffer *buf)
  829. {
  830. /*
  831. * Tree blocks not in reference counted trees and tree roots
  832. * are never shared. If a block was allocated after the last
  833. * snapshot and the block was not allocated by tree relocation,
  834. * we know the block is not shared.
  835. */
  836. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  837. buf != root->node && buf != root->commit_root &&
  838. (btrfs_header_generation(buf) <=
  839. btrfs_root_last_snapshot(&root->root_item) ||
  840. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  841. return 1;
  842. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  843. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  844. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  845. return 1;
  846. #endif
  847. return 0;
  848. }
  849. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  850. struct btrfs_root *root,
  851. struct extent_buffer *buf,
  852. struct extent_buffer *cow,
  853. int *last_ref)
  854. {
  855. struct btrfs_fs_info *fs_info = root->fs_info;
  856. u64 refs;
  857. u64 owner;
  858. u64 flags;
  859. u64 new_flags = 0;
  860. int ret;
  861. /*
  862. * Backrefs update rules:
  863. *
  864. * Always use full backrefs for extent pointers in tree block
  865. * allocated by tree relocation.
  866. *
  867. * If a shared tree block is no longer referenced by its owner
  868. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  869. * use full backrefs for extent pointers in tree block.
  870. *
  871. * If a tree block is been relocating
  872. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  873. * use full backrefs for extent pointers in tree block.
  874. * The reason for this is some operations (such as drop tree)
  875. * are only allowed for blocks use full backrefs.
  876. */
  877. if (btrfs_block_can_be_shared(root, buf)) {
  878. ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
  879. btrfs_header_level(buf), 1,
  880. &refs, &flags);
  881. if (ret)
  882. return ret;
  883. if (refs == 0) {
  884. ret = -EROFS;
  885. btrfs_handle_fs_error(fs_info, ret, NULL);
  886. return ret;
  887. }
  888. } else {
  889. refs = 1;
  890. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  891. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  892. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  893. else
  894. flags = 0;
  895. }
  896. owner = btrfs_header_owner(buf);
  897. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  898. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  899. if (refs > 1) {
  900. if ((owner == root->root_key.objectid ||
  901. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  902. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  903. ret = btrfs_inc_ref(trans, root, buf, 1);
  904. BUG_ON(ret); /* -ENOMEM */
  905. if (root->root_key.objectid ==
  906. BTRFS_TREE_RELOC_OBJECTID) {
  907. ret = btrfs_dec_ref(trans, root, buf, 0);
  908. BUG_ON(ret); /* -ENOMEM */
  909. ret = btrfs_inc_ref(trans, root, cow, 1);
  910. BUG_ON(ret); /* -ENOMEM */
  911. }
  912. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  913. } else {
  914. if (root->root_key.objectid ==
  915. BTRFS_TREE_RELOC_OBJECTID)
  916. ret = btrfs_inc_ref(trans, root, cow, 1);
  917. else
  918. ret = btrfs_inc_ref(trans, root, cow, 0);
  919. BUG_ON(ret); /* -ENOMEM */
  920. }
  921. if (new_flags != 0) {
  922. int level = btrfs_header_level(buf);
  923. ret = btrfs_set_disk_extent_flags(trans, fs_info,
  924. buf->start,
  925. buf->len,
  926. new_flags, level, 0);
  927. if (ret)
  928. return ret;
  929. }
  930. } else {
  931. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  932. if (root->root_key.objectid ==
  933. BTRFS_TREE_RELOC_OBJECTID)
  934. ret = btrfs_inc_ref(trans, root, cow, 1);
  935. else
  936. ret = btrfs_inc_ref(trans, root, cow, 0);
  937. BUG_ON(ret); /* -ENOMEM */
  938. ret = btrfs_dec_ref(trans, root, buf, 1);
  939. BUG_ON(ret); /* -ENOMEM */
  940. }
  941. clean_tree_block(trans, fs_info, buf);
  942. *last_ref = 1;
  943. }
  944. return 0;
  945. }
  946. /*
  947. * does the dirty work in cow of a single block. The parent block (if
  948. * supplied) is updated to point to the new cow copy. The new buffer is marked
  949. * dirty and returned locked. If you modify the block it needs to be marked
  950. * dirty again.
  951. *
  952. * search_start -- an allocation hint for the new block
  953. *
  954. * empty_size -- a hint that you plan on doing more cow. This is the size in
  955. * bytes the allocator should try to find free next to the block it returns.
  956. * This is just a hint and may be ignored by the allocator.
  957. */
  958. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  959. struct btrfs_root *root,
  960. struct extent_buffer *buf,
  961. struct extent_buffer *parent, int parent_slot,
  962. struct extent_buffer **cow_ret,
  963. u64 search_start, u64 empty_size)
  964. {
  965. struct btrfs_fs_info *fs_info = root->fs_info;
  966. struct btrfs_disk_key disk_key;
  967. struct extent_buffer *cow;
  968. int level, ret;
  969. int last_ref = 0;
  970. int unlock_orig = 0;
  971. u64 parent_start = 0;
  972. if (*cow_ret == buf)
  973. unlock_orig = 1;
  974. btrfs_assert_tree_locked(buf);
  975. WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  976. trans->transid != fs_info->running_transaction->transid);
  977. WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  978. trans->transid != root->last_trans);
  979. level = btrfs_header_level(buf);
  980. if (level == 0)
  981. btrfs_item_key(buf, &disk_key, 0);
  982. else
  983. btrfs_node_key(buf, &disk_key, 0);
  984. if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
  985. parent_start = parent->start;
  986. cow = btrfs_alloc_tree_block(trans, root, parent_start,
  987. root->root_key.objectid, &disk_key, level,
  988. search_start, empty_size);
  989. if (IS_ERR(cow))
  990. return PTR_ERR(cow);
  991. /* cow is set to blocking by btrfs_init_new_buffer */
  992. copy_extent_buffer_full(cow, buf);
  993. btrfs_set_header_bytenr(cow, cow->start);
  994. btrfs_set_header_generation(cow, trans->transid);
  995. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  996. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  997. BTRFS_HEADER_FLAG_RELOC);
  998. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  999. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  1000. else
  1001. btrfs_set_header_owner(cow, root->root_key.objectid);
  1002. write_extent_buffer_fsid(cow, fs_info->fsid);
  1003. ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
  1004. if (ret) {
  1005. btrfs_abort_transaction(trans, ret);
  1006. return ret;
  1007. }
  1008. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  1009. ret = btrfs_reloc_cow_block(trans, root, buf, cow);
  1010. if (ret) {
  1011. btrfs_abort_transaction(trans, ret);
  1012. return ret;
  1013. }
  1014. }
  1015. if (buf == root->node) {
  1016. WARN_ON(parent && parent != buf);
  1017. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  1018. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  1019. parent_start = buf->start;
  1020. extent_buffer_get(cow);
  1021. tree_mod_log_set_root_pointer(root, cow, 1);
  1022. rcu_assign_pointer(root->node, cow);
  1023. btrfs_free_tree_block(trans, root, buf, parent_start,
  1024. last_ref);
  1025. free_extent_buffer(buf);
  1026. add_root_to_dirty_list(root);
  1027. } else {
  1028. WARN_ON(trans->transid != btrfs_header_generation(parent));
  1029. tree_mod_log_insert_key(fs_info, parent, parent_slot,
  1030. MOD_LOG_KEY_REPLACE, GFP_NOFS);
  1031. btrfs_set_node_blockptr(parent, parent_slot,
  1032. cow->start);
  1033. btrfs_set_node_ptr_generation(parent, parent_slot,
  1034. trans->transid);
  1035. btrfs_mark_buffer_dirty(parent);
  1036. if (last_ref) {
  1037. ret = tree_mod_log_free_eb(fs_info, buf);
  1038. if (ret) {
  1039. btrfs_abort_transaction(trans, ret);
  1040. return ret;
  1041. }
  1042. }
  1043. btrfs_free_tree_block(trans, root, buf, parent_start,
  1044. last_ref);
  1045. }
  1046. if (unlock_orig)
  1047. btrfs_tree_unlock(buf);
  1048. free_extent_buffer_stale(buf);
  1049. btrfs_mark_buffer_dirty(cow);
  1050. *cow_ret = cow;
  1051. return 0;
  1052. }
  1053. /*
  1054. * returns the logical address of the oldest predecessor of the given root.
  1055. * entries older than time_seq are ignored.
  1056. */
  1057. static struct tree_mod_elem *
  1058. __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
  1059. struct extent_buffer *eb_root, u64 time_seq)
  1060. {
  1061. struct tree_mod_elem *tm;
  1062. struct tree_mod_elem *found = NULL;
  1063. u64 root_logical = eb_root->start;
  1064. int looped = 0;
  1065. if (!time_seq)
  1066. return NULL;
  1067. /*
  1068. * the very last operation that's logged for a root is the
  1069. * replacement operation (if it is replaced at all). this has
  1070. * the logical address of the *new* root, making it the very
  1071. * first operation that's logged for this root.
  1072. */
  1073. while (1) {
  1074. tm = tree_mod_log_search_oldest(fs_info, root_logical,
  1075. time_seq);
  1076. if (!looped && !tm)
  1077. return NULL;
  1078. /*
  1079. * if there are no tree operation for the oldest root, we simply
  1080. * return it. this should only happen if that (old) root is at
  1081. * level 0.
  1082. */
  1083. if (!tm)
  1084. break;
  1085. /*
  1086. * if there's an operation that's not a root replacement, we
  1087. * found the oldest version of our root. normally, we'll find a
  1088. * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
  1089. */
  1090. if (tm->op != MOD_LOG_ROOT_REPLACE)
  1091. break;
  1092. found = tm;
  1093. root_logical = tm->old_root.logical;
  1094. looped = 1;
  1095. }
  1096. /* if there's no old root to return, return what we found instead */
  1097. if (!found)
  1098. found = tm;
  1099. return found;
  1100. }
  1101. /*
  1102. * tm is a pointer to the first operation to rewind within eb. then, all
  1103. * previous operations will be rewound (until we reach something older than
  1104. * time_seq).
  1105. */
  1106. static void
  1107. __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
  1108. u64 time_seq, struct tree_mod_elem *first_tm)
  1109. {
  1110. u32 n;
  1111. struct rb_node *next;
  1112. struct tree_mod_elem *tm = first_tm;
  1113. unsigned long o_dst;
  1114. unsigned long o_src;
  1115. unsigned long p_size = sizeof(struct btrfs_key_ptr);
  1116. n = btrfs_header_nritems(eb);
  1117. tree_mod_log_read_lock(fs_info);
  1118. while (tm && tm->seq >= time_seq) {
  1119. /*
  1120. * all the operations are recorded with the operator used for
  1121. * the modification. as we're going backwards, we do the
  1122. * opposite of each operation here.
  1123. */
  1124. switch (tm->op) {
  1125. case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  1126. BUG_ON(tm->slot < n);
  1127. /* Fallthrough */
  1128. case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  1129. case MOD_LOG_KEY_REMOVE:
  1130. btrfs_set_node_key(eb, &tm->key, tm->slot);
  1131. btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
  1132. btrfs_set_node_ptr_generation(eb, tm->slot,
  1133. tm->generation);
  1134. n++;
  1135. break;
  1136. case MOD_LOG_KEY_REPLACE:
  1137. BUG_ON(tm->slot >= n);
  1138. btrfs_set_node_key(eb, &tm->key, tm->slot);
  1139. btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
  1140. btrfs_set_node_ptr_generation(eb, tm->slot,
  1141. tm->generation);
  1142. break;
  1143. case MOD_LOG_KEY_ADD:
  1144. /* if a move operation is needed it's in the log */
  1145. n--;
  1146. break;
  1147. case MOD_LOG_MOVE_KEYS:
  1148. o_dst = btrfs_node_key_ptr_offset(tm->slot);
  1149. o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
  1150. memmove_extent_buffer(eb, o_dst, o_src,
  1151. tm->move.nr_items * p_size);
  1152. break;
  1153. case MOD_LOG_ROOT_REPLACE:
  1154. /*
  1155. * this operation is special. for roots, this must be
  1156. * handled explicitly before rewinding.
  1157. * for non-roots, this operation may exist if the node
  1158. * was a root: root A -> child B; then A gets empty and
  1159. * B is promoted to the new root. in the mod log, we'll
  1160. * have a root-replace operation for B, a tree block
  1161. * that is no root. we simply ignore that operation.
  1162. */
  1163. break;
  1164. }
  1165. next = rb_next(&tm->node);
  1166. if (!next)
  1167. break;
  1168. tm = container_of(next, struct tree_mod_elem, node);
  1169. if (tm->logical != first_tm->logical)
  1170. break;
  1171. }
  1172. tree_mod_log_read_unlock(fs_info);
  1173. btrfs_set_header_nritems(eb, n);
  1174. }
  1175. /*
  1176. * Called with eb read locked. If the buffer cannot be rewound, the same buffer
  1177. * is returned. If rewind operations happen, a fresh buffer is returned. The
  1178. * returned buffer is always read-locked. If the returned buffer is not the
  1179. * input buffer, the lock on the input buffer is released and the input buffer
  1180. * is freed (its refcount is decremented).
  1181. */
  1182. static struct extent_buffer *
  1183. tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
  1184. struct extent_buffer *eb, u64 time_seq)
  1185. {
  1186. struct extent_buffer *eb_rewin;
  1187. struct tree_mod_elem *tm;
  1188. if (!time_seq)
  1189. return eb;
  1190. if (btrfs_header_level(eb) == 0)
  1191. return eb;
  1192. tm = tree_mod_log_search(fs_info, eb->start, time_seq);
  1193. if (!tm)
  1194. return eb;
  1195. btrfs_set_path_blocking(path);
  1196. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1197. if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
  1198. BUG_ON(tm->slot != 0);
  1199. eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
  1200. if (!eb_rewin) {
  1201. btrfs_tree_read_unlock_blocking(eb);
  1202. free_extent_buffer(eb);
  1203. return NULL;
  1204. }
  1205. btrfs_set_header_bytenr(eb_rewin, eb->start);
  1206. btrfs_set_header_backref_rev(eb_rewin,
  1207. btrfs_header_backref_rev(eb));
  1208. btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
  1209. btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
  1210. } else {
  1211. eb_rewin = btrfs_clone_extent_buffer(eb);
  1212. if (!eb_rewin) {
  1213. btrfs_tree_read_unlock_blocking(eb);
  1214. free_extent_buffer(eb);
  1215. return NULL;
  1216. }
  1217. }
  1218. btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
  1219. btrfs_tree_read_unlock_blocking(eb);
  1220. free_extent_buffer(eb);
  1221. extent_buffer_get(eb_rewin);
  1222. btrfs_tree_read_lock(eb_rewin);
  1223. __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
  1224. WARN_ON(btrfs_header_nritems(eb_rewin) >
  1225. BTRFS_NODEPTRS_PER_BLOCK(fs_info));
  1226. return eb_rewin;
  1227. }
  1228. /*
  1229. * get_old_root() rewinds the state of @root's root node to the given @time_seq
  1230. * value. If there are no changes, the current root->root_node is returned. If
  1231. * anything changed in between, there's a fresh buffer allocated on which the
  1232. * rewind operations are done. In any case, the returned buffer is read locked.
  1233. * Returns NULL on error (with no locks held).
  1234. */
  1235. static inline struct extent_buffer *
  1236. get_old_root(struct btrfs_root *root, u64 time_seq)
  1237. {
  1238. struct btrfs_fs_info *fs_info = root->fs_info;
  1239. struct tree_mod_elem *tm;
  1240. struct extent_buffer *eb = NULL;
  1241. struct extent_buffer *eb_root;
  1242. struct extent_buffer *old;
  1243. struct tree_mod_root *old_root = NULL;
  1244. u64 old_generation = 0;
  1245. u64 logical;
  1246. eb_root = btrfs_read_lock_root_node(root);
  1247. tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
  1248. if (!tm)
  1249. return eb_root;
  1250. if (tm->op == MOD_LOG_ROOT_REPLACE) {
  1251. old_root = &tm->old_root;
  1252. old_generation = tm->generation;
  1253. logical = old_root->logical;
  1254. } else {
  1255. logical = eb_root->start;
  1256. }
  1257. tm = tree_mod_log_search(fs_info, logical, time_seq);
  1258. if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
  1259. btrfs_tree_read_unlock(eb_root);
  1260. free_extent_buffer(eb_root);
  1261. old = read_tree_block(fs_info, logical, 0);
  1262. if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
  1263. if (!IS_ERR(old))
  1264. free_extent_buffer(old);
  1265. btrfs_warn(fs_info,
  1266. "failed to read tree block %llu from get_old_root",
  1267. logical);
  1268. } else {
  1269. eb = btrfs_clone_extent_buffer(old);
  1270. free_extent_buffer(old);
  1271. }
  1272. } else if (old_root) {
  1273. btrfs_tree_read_unlock(eb_root);
  1274. free_extent_buffer(eb_root);
  1275. eb = alloc_dummy_extent_buffer(fs_info, logical);
  1276. } else {
  1277. btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
  1278. eb = btrfs_clone_extent_buffer(eb_root);
  1279. btrfs_tree_read_unlock_blocking(eb_root);
  1280. free_extent_buffer(eb_root);
  1281. }
  1282. if (!eb)
  1283. return NULL;
  1284. extent_buffer_get(eb);
  1285. btrfs_tree_read_lock(eb);
  1286. if (old_root) {
  1287. btrfs_set_header_bytenr(eb, eb->start);
  1288. btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
  1289. btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
  1290. btrfs_set_header_level(eb, old_root->level);
  1291. btrfs_set_header_generation(eb, old_generation);
  1292. }
  1293. if (tm)
  1294. __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
  1295. else
  1296. WARN_ON(btrfs_header_level(eb) != 0);
  1297. WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
  1298. return eb;
  1299. }
  1300. int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
  1301. {
  1302. struct tree_mod_elem *tm;
  1303. int level;
  1304. struct extent_buffer *eb_root = btrfs_root_node(root);
  1305. tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
  1306. if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
  1307. level = tm->old_root.level;
  1308. } else {
  1309. level = btrfs_header_level(eb_root);
  1310. }
  1311. free_extent_buffer(eb_root);
  1312. return level;
  1313. }
  1314. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  1315. struct btrfs_root *root,
  1316. struct extent_buffer *buf)
  1317. {
  1318. if (btrfs_is_testing(root->fs_info))
  1319. return 0;
  1320. /* ensure we can see the force_cow */
  1321. smp_rmb();
  1322. /*
  1323. * We do not need to cow a block if
  1324. * 1) this block is not created or changed in this transaction;
  1325. * 2) this block does not belong to TREE_RELOC tree;
  1326. * 3) the root is not forced COW.
  1327. *
  1328. * What is forced COW:
  1329. * when we create snapshot during committing the transaction,
  1330. * after we've finished coping src root, we must COW the shared
  1331. * block to ensure the metadata consistency.
  1332. */
  1333. if (btrfs_header_generation(buf) == trans->transid &&
  1334. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  1335. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  1336. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  1337. !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
  1338. return 0;
  1339. return 1;
  1340. }
  1341. /*
  1342. * cows a single block, see __btrfs_cow_block for the real work.
  1343. * This version of it has extra checks so that a block isn't COWed more than
  1344. * once per transaction, as long as it hasn't been written yet
  1345. */
  1346. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  1347. struct btrfs_root *root, struct extent_buffer *buf,
  1348. struct extent_buffer *parent, int parent_slot,
  1349. struct extent_buffer **cow_ret)
  1350. {
  1351. struct btrfs_fs_info *fs_info = root->fs_info;
  1352. u64 search_start;
  1353. int ret;
  1354. if (trans->transaction != fs_info->running_transaction)
  1355. WARN(1, KERN_CRIT "trans %llu running %llu\n",
  1356. trans->transid,
  1357. fs_info->running_transaction->transid);
  1358. if (trans->transid != fs_info->generation)
  1359. WARN(1, KERN_CRIT "trans %llu running %llu\n",
  1360. trans->transid, fs_info->generation);
  1361. if (!should_cow_block(trans, root, buf)) {
  1362. trans->dirty = true;
  1363. *cow_ret = buf;
  1364. return 0;
  1365. }
  1366. search_start = buf->start & ~((u64)SZ_1G - 1);
  1367. if (parent)
  1368. btrfs_set_lock_blocking(parent);
  1369. btrfs_set_lock_blocking(buf);
  1370. ret = __btrfs_cow_block(trans, root, buf, parent,
  1371. parent_slot, cow_ret, search_start, 0);
  1372. trace_btrfs_cow_block(root, buf, *cow_ret);
  1373. return ret;
  1374. }
  1375. /*
  1376. * helper function for defrag to decide if two blocks pointed to by a
  1377. * node are actually close by
  1378. */
  1379. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  1380. {
  1381. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  1382. return 1;
  1383. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  1384. return 1;
  1385. return 0;
  1386. }
  1387. /*
  1388. * compare two keys in a memcmp fashion
  1389. */
  1390. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  1391. {
  1392. struct btrfs_key k1;
  1393. btrfs_disk_key_to_cpu(&k1, disk);
  1394. return btrfs_comp_cpu_keys(&k1, k2);
  1395. }
  1396. /*
  1397. * same as comp_keys only with two btrfs_key's
  1398. */
  1399. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  1400. {
  1401. if (k1->objectid > k2->objectid)
  1402. return 1;
  1403. if (k1->objectid < k2->objectid)
  1404. return -1;
  1405. if (k1->type > k2->type)
  1406. return 1;
  1407. if (k1->type < k2->type)
  1408. return -1;
  1409. if (k1->offset > k2->offset)
  1410. return 1;
  1411. if (k1->offset < k2->offset)
  1412. return -1;
  1413. return 0;
  1414. }
  1415. /*
  1416. * this is used by the defrag code to go through all the
  1417. * leaves pointed to by a node and reallocate them so that
  1418. * disk order is close to key order
  1419. */
  1420. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  1421. struct btrfs_root *root, struct extent_buffer *parent,
  1422. int start_slot, u64 *last_ret,
  1423. struct btrfs_key *progress)
  1424. {
  1425. struct btrfs_fs_info *fs_info = root->fs_info;
  1426. struct extent_buffer *cur;
  1427. u64 blocknr;
  1428. u64 gen;
  1429. u64 search_start = *last_ret;
  1430. u64 last_block = 0;
  1431. u64 other;
  1432. u32 parent_nritems;
  1433. int end_slot;
  1434. int i;
  1435. int err = 0;
  1436. int parent_level;
  1437. int uptodate;
  1438. u32 blocksize;
  1439. int progress_passed = 0;
  1440. struct btrfs_disk_key disk_key;
  1441. parent_level = btrfs_header_level(parent);
  1442. WARN_ON(trans->transaction != fs_info->running_transaction);
  1443. WARN_ON(trans->transid != fs_info->generation);
  1444. parent_nritems = btrfs_header_nritems(parent);
  1445. blocksize = fs_info->nodesize;
  1446. end_slot = parent_nritems - 1;
  1447. if (parent_nritems <= 1)
  1448. return 0;
  1449. btrfs_set_lock_blocking(parent);
  1450. for (i = start_slot; i <= end_slot; i++) {
  1451. int close = 1;
  1452. btrfs_node_key(parent, &disk_key, i);
  1453. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  1454. continue;
  1455. progress_passed = 1;
  1456. blocknr = btrfs_node_blockptr(parent, i);
  1457. gen = btrfs_node_ptr_generation(parent, i);
  1458. if (last_block == 0)
  1459. last_block = blocknr;
  1460. if (i > 0) {
  1461. other = btrfs_node_blockptr(parent, i - 1);
  1462. close = close_blocks(blocknr, other, blocksize);
  1463. }
  1464. if (!close && i < end_slot) {
  1465. other = btrfs_node_blockptr(parent, i + 1);
  1466. close = close_blocks(blocknr, other, blocksize);
  1467. }
  1468. if (close) {
  1469. last_block = blocknr;
  1470. continue;
  1471. }
  1472. cur = find_extent_buffer(fs_info, blocknr);
  1473. if (cur)
  1474. uptodate = btrfs_buffer_uptodate(cur, gen, 0);
  1475. else
  1476. uptodate = 0;
  1477. if (!cur || !uptodate) {
  1478. if (!cur) {
  1479. cur = read_tree_block(fs_info, blocknr, gen);
  1480. if (IS_ERR(cur)) {
  1481. return PTR_ERR(cur);
  1482. } else if (!extent_buffer_uptodate(cur)) {
  1483. free_extent_buffer(cur);
  1484. return -EIO;
  1485. }
  1486. } else if (!uptodate) {
  1487. err = btrfs_read_buffer(cur, gen);
  1488. if (err) {
  1489. free_extent_buffer(cur);
  1490. return err;
  1491. }
  1492. }
  1493. }
  1494. if (search_start == 0)
  1495. search_start = last_block;
  1496. btrfs_tree_lock(cur);
  1497. btrfs_set_lock_blocking(cur);
  1498. err = __btrfs_cow_block(trans, root, cur, parent, i,
  1499. &cur, search_start,
  1500. min(16 * blocksize,
  1501. (end_slot - i) * blocksize));
  1502. if (err) {
  1503. btrfs_tree_unlock(cur);
  1504. free_extent_buffer(cur);
  1505. break;
  1506. }
  1507. search_start = cur->start;
  1508. last_block = cur->start;
  1509. *last_ret = search_start;
  1510. btrfs_tree_unlock(cur);
  1511. free_extent_buffer(cur);
  1512. }
  1513. return err;
  1514. }
  1515. /*
  1516. * search for key in the extent_buffer. The items start at offset p,
  1517. * and they are item_size apart. There are 'max' items in p.
  1518. *
  1519. * the slot in the array is returned via slot, and it points to
  1520. * the place where you would insert key if it is not found in
  1521. * the array.
  1522. *
  1523. * slot may point to max if the key is bigger than all of the keys
  1524. */
  1525. static noinline int generic_bin_search(struct extent_buffer *eb,
  1526. unsigned long p,
  1527. int item_size, struct btrfs_key *key,
  1528. int max, int *slot)
  1529. {
  1530. int low = 0;
  1531. int high = max;
  1532. int mid;
  1533. int ret;
  1534. struct btrfs_disk_key *tmp = NULL;
  1535. struct btrfs_disk_key unaligned;
  1536. unsigned long offset;
  1537. char *kaddr = NULL;
  1538. unsigned long map_start = 0;
  1539. unsigned long map_len = 0;
  1540. int err;
  1541. if (low > high) {
  1542. btrfs_err(eb->fs_info,
  1543. "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
  1544. __func__, low, high, eb->start,
  1545. btrfs_header_owner(eb), btrfs_header_level(eb));
  1546. return -EINVAL;
  1547. }
  1548. while (low < high) {
  1549. mid = (low + high) / 2;
  1550. offset = p + mid * item_size;
  1551. if (!kaddr || offset < map_start ||
  1552. (offset + sizeof(struct btrfs_disk_key)) >
  1553. map_start + map_len) {
  1554. err = map_private_extent_buffer(eb, offset,
  1555. sizeof(struct btrfs_disk_key),
  1556. &kaddr, &map_start, &map_len);
  1557. if (!err) {
  1558. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  1559. map_start);
  1560. } else if (err == 1) {
  1561. read_extent_buffer(eb, &unaligned,
  1562. offset, sizeof(unaligned));
  1563. tmp = &unaligned;
  1564. } else {
  1565. return err;
  1566. }
  1567. } else {
  1568. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  1569. map_start);
  1570. }
  1571. ret = comp_keys(tmp, key);
  1572. if (ret < 0)
  1573. low = mid + 1;
  1574. else if (ret > 0)
  1575. high = mid;
  1576. else {
  1577. *slot = mid;
  1578. return 0;
  1579. }
  1580. }
  1581. *slot = low;
  1582. return 1;
  1583. }
  1584. /*
  1585. * simple bin_search frontend that does the right thing for
  1586. * leaves vs nodes
  1587. */
  1588. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  1589. int level, int *slot)
  1590. {
  1591. if (level == 0)
  1592. return generic_bin_search(eb,
  1593. offsetof(struct btrfs_leaf, items),
  1594. sizeof(struct btrfs_item),
  1595. key, btrfs_header_nritems(eb),
  1596. slot);
  1597. else
  1598. return generic_bin_search(eb,
  1599. offsetof(struct btrfs_node, ptrs),
  1600. sizeof(struct btrfs_key_ptr),
  1601. key, btrfs_header_nritems(eb),
  1602. slot);
  1603. }
  1604. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  1605. int level, int *slot)
  1606. {
  1607. return bin_search(eb, key, level, slot);
  1608. }
  1609. static void root_add_used(struct btrfs_root *root, u32 size)
  1610. {
  1611. spin_lock(&root->accounting_lock);
  1612. btrfs_set_root_used(&root->root_item,
  1613. btrfs_root_used(&root->root_item) + size);
  1614. spin_unlock(&root->accounting_lock);
  1615. }
  1616. static void root_sub_used(struct btrfs_root *root, u32 size)
  1617. {
  1618. spin_lock(&root->accounting_lock);
  1619. btrfs_set_root_used(&root->root_item,
  1620. btrfs_root_used(&root->root_item) - size);
  1621. spin_unlock(&root->accounting_lock);
  1622. }
  1623. /* given a node and slot number, this reads the blocks it points to. The
  1624. * extent buffer is returned with a reference taken (but unlocked).
  1625. */
  1626. static noinline struct extent_buffer *
  1627. read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
  1628. int slot)
  1629. {
  1630. int level = btrfs_header_level(parent);
  1631. struct extent_buffer *eb;
  1632. if (slot < 0 || slot >= btrfs_header_nritems(parent))
  1633. return ERR_PTR(-ENOENT);
  1634. BUG_ON(level == 0);
  1635. eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
  1636. btrfs_node_ptr_generation(parent, slot));
  1637. if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
  1638. free_extent_buffer(eb);
  1639. eb = ERR_PTR(-EIO);
  1640. }
  1641. return eb;
  1642. }
  1643. /*
  1644. * node level balancing, used to make sure nodes are in proper order for
  1645. * item deletion. We balance from the top down, so we have to make sure
  1646. * that a deletion won't leave an node completely empty later on.
  1647. */
  1648. static noinline int balance_level(struct btrfs_trans_handle *trans,
  1649. struct btrfs_root *root,
  1650. struct btrfs_path *path, int level)
  1651. {
  1652. struct btrfs_fs_info *fs_info = root->fs_info;
  1653. struct extent_buffer *right = NULL;
  1654. struct extent_buffer *mid;
  1655. struct extent_buffer *left = NULL;
  1656. struct extent_buffer *parent = NULL;
  1657. int ret = 0;
  1658. int wret;
  1659. int pslot;
  1660. int orig_slot = path->slots[level];
  1661. u64 orig_ptr;
  1662. if (level == 0)
  1663. return 0;
  1664. mid = path->nodes[level];
  1665. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  1666. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  1667. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1668. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1669. if (level < BTRFS_MAX_LEVEL - 1) {
  1670. parent = path->nodes[level + 1];
  1671. pslot = path->slots[level + 1];
  1672. }
  1673. /*
  1674. * deal with the case where there is only one pointer in the root
  1675. * by promoting the node below to a root
  1676. */
  1677. if (!parent) {
  1678. struct extent_buffer *child;
  1679. if (btrfs_header_nritems(mid) != 1)
  1680. return 0;
  1681. /* promote the child to a root */
  1682. child = read_node_slot(fs_info, mid, 0);
  1683. if (IS_ERR(child)) {
  1684. ret = PTR_ERR(child);
  1685. btrfs_handle_fs_error(fs_info, ret, NULL);
  1686. goto enospc;
  1687. }
  1688. btrfs_tree_lock(child);
  1689. btrfs_set_lock_blocking(child);
  1690. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  1691. if (ret) {
  1692. btrfs_tree_unlock(child);
  1693. free_extent_buffer(child);
  1694. goto enospc;
  1695. }
  1696. tree_mod_log_set_root_pointer(root, child, 1);
  1697. rcu_assign_pointer(root->node, child);
  1698. add_root_to_dirty_list(root);
  1699. btrfs_tree_unlock(child);
  1700. path->locks[level] = 0;
  1701. path->nodes[level] = NULL;
  1702. clean_tree_block(trans, fs_info, mid);
  1703. btrfs_tree_unlock(mid);
  1704. /* once for the path */
  1705. free_extent_buffer(mid);
  1706. root_sub_used(root, mid->len);
  1707. btrfs_free_tree_block(trans, root, mid, 0, 1);
  1708. /* once for the root ptr */
  1709. free_extent_buffer_stale(mid);
  1710. return 0;
  1711. }
  1712. if (btrfs_header_nritems(mid) >
  1713. BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
  1714. return 0;
  1715. left = read_node_slot(fs_info, parent, pslot - 1);
  1716. if (IS_ERR(left))
  1717. left = NULL;
  1718. if (left) {
  1719. btrfs_tree_lock(left);
  1720. btrfs_set_lock_blocking(left);
  1721. wret = btrfs_cow_block(trans, root, left,
  1722. parent, pslot - 1, &left);
  1723. if (wret) {
  1724. ret = wret;
  1725. goto enospc;
  1726. }
  1727. }
  1728. right = read_node_slot(fs_info, parent, pslot + 1);
  1729. if (IS_ERR(right))
  1730. right = NULL;
  1731. if (right) {
  1732. btrfs_tree_lock(right);
  1733. btrfs_set_lock_blocking(right);
  1734. wret = btrfs_cow_block(trans, root, right,
  1735. parent, pslot + 1, &right);
  1736. if (wret) {
  1737. ret = wret;
  1738. goto enospc;
  1739. }
  1740. }
  1741. /* first, try to make some room in the middle buffer */
  1742. if (left) {
  1743. orig_slot += btrfs_header_nritems(left);
  1744. wret = push_node_left(trans, fs_info, left, mid, 1);
  1745. if (wret < 0)
  1746. ret = wret;
  1747. }
  1748. /*
  1749. * then try to empty the right most buffer into the middle
  1750. */
  1751. if (right) {
  1752. wret = push_node_left(trans, fs_info, mid, right, 1);
  1753. if (wret < 0 && wret != -ENOSPC)
  1754. ret = wret;
  1755. if (btrfs_header_nritems(right) == 0) {
  1756. clean_tree_block(trans, fs_info, right);
  1757. btrfs_tree_unlock(right);
  1758. del_ptr(root, path, level + 1, pslot + 1);
  1759. root_sub_used(root, right->len);
  1760. btrfs_free_tree_block(trans, root, right, 0, 1);
  1761. free_extent_buffer_stale(right);
  1762. right = NULL;
  1763. } else {
  1764. struct btrfs_disk_key right_key;
  1765. btrfs_node_key(right, &right_key, 0);
  1766. tree_mod_log_set_node_key(fs_info, parent,
  1767. pslot + 1, 0);
  1768. btrfs_set_node_key(parent, &right_key, pslot + 1);
  1769. btrfs_mark_buffer_dirty(parent);
  1770. }
  1771. }
  1772. if (btrfs_header_nritems(mid) == 1) {
  1773. /*
  1774. * we're not allowed to leave a node with one item in the
  1775. * tree during a delete. A deletion from lower in the tree
  1776. * could try to delete the only pointer in this node.
  1777. * So, pull some keys from the left.
  1778. * There has to be a left pointer at this point because
  1779. * otherwise we would have pulled some pointers from the
  1780. * right
  1781. */
  1782. if (!left) {
  1783. ret = -EROFS;
  1784. btrfs_handle_fs_error(fs_info, ret, NULL);
  1785. goto enospc;
  1786. }
  1787. wret = balance_node_right(trans, fs_info, mid, left);
  1788. if (wret < 0) {
  1789. ret = wret;
  1790. goto enospc;
  1791. }
  1792. if (wret == 1) {
  1793. wret = push_node_left(trans, fs_info, left, mid, 1);
  1794. if (wret < 0)
  1795. ret = wret;
  1796. }
  1797. BUG_ON(wret == 1);
  1798. }
  1799. if (btrfs_header_nritems(mid) == 0) {
  1800. clean_tree_block(trans, fs_info, mid);
  1801. btrfs_tree_unlock(mid);
  1802. del_ptr(root, path, level + 1, pslot);
  1803. root_sub_used(root, mid->len);
  1804. btrfs_free_tree_block(trans, root, mid, 0, 1);
  1805. free_extent_buffer_stale(mid);
  1806. mid = NULL;
  1807. } else {
  1808. /* update the parent key to reflect our changes */
  1809. struct btrfs_disk_key mid_key;
  1810. btrfs_node_key(mid, &mid_key, 0);
  1811. tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
  1812. btrfs_set_node_key(parent, &mid_key, pslot);
  1813. btrfs_mark_buffer_dirty(parent);
  1814. }
  1815. /* update the path */
  1816. if (left) {
  1817. if (btrfs_header_nritems(left) > orig_slot) {
  1818. extent_buffer_get(left);
  1819. /* left was locked after cow */
  1820. path->nodes[level] = left;
  1821. path->slots[level + 1] -= 1;
  1822. path->slots[level] = orig_slot;
  1823. if (mid) {
  1824. btrfs_tree_unlock(mid);
  1825. free_extent_buffer(mid);
  1826. }
  1827. } else {
  1828. orig_slot -= btrfs_header_nritems(left);
  1829. path->slots[level] = orig_slot;
  1830. }
  1831. }
  1832. /* double check we haven't messed things up */
  1833. if (orig_ptr !=
  1834. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1835. BUG();
  1836. enospc:
  1837. if (right) {
  1838. btrfs_tree_unlock(right);
  1839. free_extent_buffer(right);
  1840. }
  1841. if (left) {
  1842. if (path->nodes[level] != left)
  1843. btrfs_tree_unlock(left);
  1844. free_extent_buffer(left);
  1845. }
  1846. return ret;
  1847. }
  1848. /* Node balancing for insertion. Here we only split or push nodes around
  1849. * when they are completely full. This is also done top down, so we
  1850. * have to be pessimistic.
  1851. */
  1852. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1853. struct btrfs_root *root,
  1854. struct btrfs_path *path, int level)
  1855. {
  1856. struct btrfs_fs_info *fs_info = root->fs_info;
  1857. struct extent_buffer *right = NULL;
  1858. struct extent_buffer *mid;
  1859. struct extent_buffer *left = NULL;
  1860. struct extent_buffer *parent = NULL;
  1861. int ret = 0;
  1862. int wret;
  1863. int pslot;
  1864. int orig_slot = path->slots[level];
  1865. if (level == 0)
  1866. return 1;
  1867. mid = path->nodes[level];
  1868. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1869. if (level < BTRFS_MAX_LEVEL - 1) {
  1870. parent = path->nodes[level + 1];
  1871. pslot = path->slots[level + 1];
  1872. }
  1873. if (!parent)
  1874. return 1;
  1875. left = read_node_slot(fs_info, parent, pslot - 1);
  1876. if (IS_ERR(left))
  1877. left = NULL;
  1878. /* first, try to make some room in the middle buffer */
  1879. if (left) {
  1880. u32 left_nr;
  1881. btrfs_tree_lock(left);
  1882. btrfs_set_lock_blocking(left);
  1883. left_nr = btrfs_header_nritems(left);
  1884. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
  1885. wret = 1;
  1886. } else {
  1887. ret = btrfs_cow_block(trans, root, left, parent,
  1888. pslot - 1, &left);
  1889. if (ret)
  1890. wret = 1;
  1891. else {
  1892. wret = push_node_left(trans, fs_info,
  1893. left, mid, 0);
  1894. }
  1895. }
  1896. if (wret < 0)
  1897. ret = wret;
  1898. if (wret == 0) {
  1899. struct btrfs_disk_key disk_key;
  1900. orig_slot += left_nr;
  1901. btrfs_node_key(mid, &disk_key, 0);
  1902. tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
  1903. btrfs_set_node_key(parent, &disk_key, pslot);
  1904. btrfs_mark_buffer_dirty(parent);
  1905. if (btrfs_header_nritems(left) > orig_slot) {
  1906. path->nodes[level] = left;
  1907. path->slots[level + 1] -= 1;
  1908. path->slots[level] = orig_slot;
  1909. btrfs_tree_unlock(mid);
  1910. free_extent_buffer(mid);
  1911. } else {
  1912. orig_slot -=
  1913. btrfs_header_nritems(left);
  1914. path->slots[level] = orig_slot;
  1915. btrfs_tree_unlock(left);
  1916. free_extent_buffer(left);
  1917. }
  1918. return 0;
  1919. }
  1920. btrfs_tree_unlock(left);
  1921. free_extent_buffer(left);
  1922. }
  1923. right = read_node_slot(fs_info, parent, pslot + 1);
  1924. if (IS_ERR(right))
  1925. right = NULL;
  1926. /*
  1927. * then try to empty the right most buffer into the middle
  1928. */
  1929. if (right) {
  1930. u32 right_nr;
  1931. btrfs_tree_lock(right);
  1932. btrfs_set_lock_blocking(right);
  1933. right_nr = btrfs_header_nritems(right);
  1934. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
  1935. wret = 1;
  1936. } else {
  1937. ret = btrfs_cow_block(trans, root, right,
  1938. parent, pslot + 1,
  1939. &right);
  1940. if (ret)
  1941. wret = 1;
  1942. else {
  1943. wret = balance_node_right(trans, fs_info,
  1944. right, mid);
  1945. }
  1946. }
  1947. if (wret < 0)
  1948. ret = wret;
  1949. if (wret == 0) {
  1950. struct btrfs_disk_key disk_key;
  1951. btrfs_node_key(right, &disk_key, 0);
  1952. tree_mod_log_set_node_key(fs_info, parent,
  1953. pslot + 1, 0);
  1954. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1955. btrfs_mark_buffer_dirty(parent);
  1956. if (btrfs_header_nritems(mid) <= orig_slot) {
  1957. path->nodes[level] = right;
  1958. path->slots[level + 1] += 1;
  1959. path->slots[level] = orig_slot -
  1960. btrfs_header_nritems(mid);
  1961. btrfs_tree_unlock(mid);
  1962. free_extent_buffer(mid);
  1963. } else {
  1964. btrfs_tree_unlock(right);
  1965. free_extent_buffer(right);
  1966. }
  1967. return 0;
  1968. }
  1969. btrfs_tree_unlock(right);
  1970. free_extent_buffer(right);
  1971. }
  1972. return 1;
  1973. }
  1974. /*
  1975. * readahead one full node of leaves, finding things that are close
  1976. * to the block in 'slot', and triggering ra on them.
  1977. */
  1978. static void reada_for_search(struct btrfs_fs_info *fs_info,
  1979. struct btrfs_path *path,
  1980. int level, int slot, u64 objectid)
  1981. {
  1982. struct extent_buffer *node;
  1983. struct btrfs_disk_key disk_key;
  1984. u32 nritems;
  1985. u64 search;
  1986. u64 target;
  1987. u64 nread = 0;
  1988. struct extent_buffer *eb;
  1989. u32 nr;
  1990. u32 blocksize;
  1991. u32 nscan = 0;
  1992. if (level != 1)
  1993. return;
  1994. if (!path->nodes[level])
  1995. return;
  1996. node = path->nodes[level];
  1997. search = btrfs_node_blockptr(node, slot);
  1998. blocksize = fs_info->nodesize;
  1999. eb = find_extent_buffer(fs_info, search);
  2000. if (eb) {
  2001. free_extent_buffer(eb);
  2002. return;
  2003. }
  2004. target = search;
  2005. nritems = btrfs_header_nritems(node);
  2006. nr = slot;
  2007. while (1) {
  2008. if (path->reada == READA_BACK) {
  2009. if (nr == 0)
  2010. break;
  2011. nr--;
  2012. } else if (path->reada == READA_FORWARD) {
  2013. nr++;
  2014. if (nr >= nritems)
  2015. break;
  2016. }
  2017. if (path->reada == READA_BACK && objectid) {
  2018. btrfs_node_key(node, &disk_key, nr);
  2019. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  2020. break;
  2021. }
  2022. search = btrfs_node_blockptr(node, nr);
  2023. if ((search <= target && target - search <= 65536) ||
  2024. (search > target && search - target <= 65536)) {
  2025. readahead_tree_block(fs_info, search);
  2026. nread += blocksize;
  2027. }
  2028. nscan++;
  2029. if ((nread > 65536 || nscan > 32))
  2030. break;
  2031. }
  2032. }
  2033. static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
  2034. struct btrfs_path *path, int level)
  2035. {
  2036. int slot;
  2037. int nritems;
  2038. struct extent_buffer *parent;
  2039. struct extent_buffer *eb;
  2040. u64 gen;
  2041. u64 block1 = 0;
  2042. u64 block2 = 0;
  2043. parent = path->nodes[level + 1];
  2044. if (!parent)
  2045. return;
  2046. nritems = btrfs_header_nritems(parent);
  2047. slot = path->slots[level + 1];
  2048. if (slot > 0) {
  2049. block1 = btrfs_node_blockptr(parent, slot - 1);
  2050. gen = btrfs_node_ptr_generation(parent, slot - 1);
  2051. eb = find_extent_buffer(fs_info, block1);
  2052. /*
  2053. * if we get -eagain from btrfs_buffer_uptodate, we
  2054. * don't want to return eagain here. That will loop
  2055. * forever
  2056. */
  2057. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  2058. block1 = 0;
  2059. free_extent_buffer(eb);
  2060. }
  2061. if (slot + 1 < nritems) {
  2062. block2 = btrfs_node_blockptr(parent, slot + 1);
  2063. gen = btrfs_node_ptr_generation(parent, slot + 1);
  2064. eb = find_extent_buffer(fs_info, block2);
  2065. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  2066. block2 = 0;
  2067. free_extent_buffer(eb);
  2068. }
  2069. if (block1)
  2070. readahead_tree_block(fs_info, block1);
  2071. if (block2)
  2072. readahead_tree_block(fs_info, block2);
  2073. }
  2074. /*
  2075. * when we walk down the tree, it is usually safe to unlock the higher layers
  2076. * in the tree. The exceptions are when our path goes through slot 0, because
  2077. * operations on the tree might require changing key pointers higher up in the
  2078. * tree.
  2079. *
  2080. * callers might also have set path->keep_locks, which tells this code to keep
  2081. * the lock if the path points to the last slot in the block. This is part of
  2082. * walking through the tree, and selecting the next slot in the higher block.
  2083. *
  2084. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  2085. * if lowest_unlock is 1, level 0 won't be unlocked
  2086. */
  2087. static noinline void unlock_up(struct btrfs_path *path, int level,
  2088. int lowest_unlock, int min_write_lock_level,
  2089. int *write_lock_level)
  2090. {
  2091. int i;
  2092. int skip_level = level;
  2093. int no_skips = 0;
  2094. struct extent_buffer *t;
  2095. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  2096. if (!path->nodes[i])
  2097. break;
  2098. if (!path->locks[i])
  2099. break;
  2100. if (!no_skips && path->slots[i] == 0) {
  2101. skip_level = i + 1;
  2102. continue;
  2103. }
  2104. if (!no_skips && path->keep_locks) {
  2105. u32 nritems;
  2106. t = path->nodes[i];
  2107. nritems = btrfs_header_nritems(t);
  2108. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  2109. skip_level = i + 1;
  2110. continue;
  2111. }
  2112. }
  2113. if (skip_level < i && i >= lowest_unlock)
  2114. no_skips = 1;
  2115. t = path->nodes[i];
  2116. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  2117. btrfs_tree_unlock_rw(t, path->locks[i]);
  2118. path->locks[i] = 0;
  2119. if (write_lock_level &&
  2120. i > min_write_lock_level &&
  2121. i <= *write_lock_level) {
  2122. *write_lock_level = i - 1;
  2123. }
  2124. }
  2125. }
  2126. }
  2127. /*
  2128. * This releases any locks held in the path starting at level and
  2129. * going all the way up to the root.
  2130. *
  2131. * btrfs_search_slot will keep the lock held on higher nodes in a few
  2132. * corner cases, such as COW of the block at slot zero in the node. This
  2133. * ignores those rules, and it should only be called when there are no
  2134. * more updates to be done higher up in the tree.
  2135. */
  2136. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  2137. {
  2138. int i;
  2139. if (path->keep_locks)
  2140. return;
  2141. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  2142. if (!path->nodes[i])
  2143. continue;
  2144. if (!path->locks[i])
  2145. continue;
  2146. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  2147. path->locks[i] = 0;
  2148. }
  2149. }
  2150. /*
  2151. * helper function for btrfs_search_slot. The goal is to find a block
  2152. * in cache without setting the path to blocking. If we find the block
  2153. * we return zero and the path is unchanged.
  2154. *
  2155. * If we can't find the block, we set the path blocking and do some
  2156. * reada. -EAGAIN is returned and the search must be repeated.
  2157. */
  2158. static int
  2159. read_block_for_search(struct btrfs_trans_handle *trans,
  2160. struct btrfs_root *root, struct btrfs_path *p,
  2161. struct extent_buffer **eb_ret, int level, int slot,
  2162. struct btrfs_key *key, u64 time_seq)
  2163. {
  2164. struct btrfs_fs_info *fs_info = root->fs_info;
  2165. u64 blocknr;
  2166. u64 gen;
  2167. struct extent_buffer *b = *eb_ret;
  2168. struct extent_buffer *tmp;
  2169. int ret;
  2170. blocknr = btrfs_node_blockptr(b, slot);
  2171. gen = btrfs_node_ptr_generation(b, slot);
  2172. tmp = find_extent_buffer(fs_info, blocknr);
  2173. if (tmp) {
  2174. /* first we do an atomic uptodate check */
  2175. if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
  2176. *eb_ret = tmp;
  2177. return 0;
  2178. }
  2179. /* the pages were up to date, but we failed
  2180. * the generation number check. Do a full
  2181. * read for the generation number that is correct.
  2182. * We must do this without dropping locks so
  2183. * we can trust our generation number
  2184. */
  2185. btrfs_set_path_blocking(p);
  2186. /* now we're allowed to do a blocking uptodate check */
  2187. ret = btrfs_read_buffer(tmp, gen);
  2188. if (!ret) {
  2189. *eb_ret = tmp;
  2190. return 0;
  2191. }
  2192. free_extent_buffer(tmp);
  2193. btrfs_release_path(p);
  2194. return -EIO;
  2195. }
  2196. /*
  2197. * reduce lock contention at high levels
  2198. * of the btree by dropping locks before
  2199. * we read. Don't release the lock on the current
  2200. * level because we need to walk this node to figure
  2201. * out which blocks to read.
  2202. */
  2203. btrfs_unlock_up_safe(p, level + 1);
  2204. btrfs_set_path_blocking(p);
  2205. free_extent_buffer(tmp);
  2206. if (p->reada != READA_NONE)
  2207. reada_for_search(fs_info, p, level, slot, key->objectid);
  2208. btrfs_release_path(p);
  2209. ret = -EAGAIN;
  2210. tmp = read_tree_block(fs_info, blocknr, 0);
  2211. if (!IS_ERR(tmp)) {
  2212. /*
  2213. * If the read above didn't mark this buffer up to date,
  2214. * it will never end up being up to date. Set ret to EIO now
  2215. * and give up so that our caller doesn't loop forever
  2216. * on our EAGAINs.
  2217. */
  2218. if (!btrfs_buffer_uptodate(tmp, 0, 0))
  2219. ret = -EIO;
  2220. free_extent_buffer(tmp);
  2221. } else {
  2222. ret = PTR_ERR(tmp);
  2223. }
  2224. return ret;
  2225. }
  2226. /*
  2227. * helper function for btrfs_search_slot. This does all of the checks
  2228. * for node-level blocks and does any balancing required based on
  2229. * the ins_len.
  2230. *
  2231. * If no extra work was required, zero is returned. If we had to
  2232. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  2233. * start over
  2234. */
  2235. static int
  2236. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  2237. struct btrfs_root *root, struct btrfs_path *p,
  2238. struct extent_buffer *b, int level, int ins_len,
  2239. int *write_lock_level)
  2240. {
  2241. struct btrfs_fs_info *fs_info = root->fs_info;
  2242. int ret;
  2243. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  2244. BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
  2245. int sret;
  2246. if (*write_lock_level < level + 1) {
  2247. *write_lock_level = level + 1;
  2248. btrfs_release_path(p);
  2249. goto again;
  2250. }
  2251. btrfs_set_path_blocking(p);
  2252. reada_for_balance(fs_info, p, level);
  2253. sret = split_node(trans, root, p, level);
  2254. btrfs_clear_path_blocking(p, NULL, 0);
  2255. BUG_ON(sret > 0);
  2256. if (sret) {
  2257. ret = sret;
  2258. goto done;
  2259. }
  2260. b = p->nodes[level];
  2261. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  2262. BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
  2263. int sret;
  2264. if (*write_lock_level < level + 1) {
  2265. *write_lock_level = level + 1;
  2266. btrfs_release_path(p);
  2267. goto again;
  2268. }
  2269. btrfs_set_path_blocking(p);
  2270. reada_for_balance(fs_info, p, level);
  2271. sret = balance_level(trans, root, p, level);
  2272. btrfs_clear_path_blocking(p, NULL, 0);
  2273. if (sret) {
  2274. ret = sret;
  2275. goto done;
  2276. }
  2277. b = p->nodes[level];
  2278. if (!b) {
  2279. btrfs_release_path(p);
  2280. goto again;
  2281. }
  2282. BUG_ON(btrfs_header_nritems(b) == 1);
  2283. }
  2284. return 0;
  2285. again:
  2286. ret = -EAGAIN;
  2287. done:
  2288. return ret;
  2289. }
  2290. static void key_search_validate(struct extent_buffer *b,
  2291. struct btrfs_key *key,
  2292. int level)
  2293. {
  2294. #ifdef CONFIG_BTRFS_ASSERT
  2295. struct btrfs_disk_key disk_key;
  2296. btrfs_cpu_key_to_disk(&disk_key, key);
  2297. if (level == 0)
  2298. ASSERT(!memcmp_extent_buffer(b, &disk_key,
  2299. offsetof(struct btrfs_leaf, items[0].key),
  2300. sizeof(disk_key)));
  2301. else
  2302. ASSERT(!memcmp_extent_buffer(b, &disk_key,
  2303. offsetof(struct btrfs_node, ptrs[0].key),
  2304. sizeof(disk_key)));
  2305. #endif
  2306. }
  2307. static int key_search(struct extent_buffer *b, struct btrfs_key *key,
  2308. int level, int *prev_cmp, int *slot)
  2309. {
  2310. if (*prev_cmp != 0) {
  2311. *prev_cmp = bin_search(b, key, level, slot);
  2312. return *prev_cmp;
  2313. }
  2314. key_search_validate(b, key, level);
  2315. *slot = 0;
  2316. return 0;
  2317. }
  2318. int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
  2319. u64 iobjectid, u64 ioff, u8 key_type,
  2320. struct btrfs_key *found_key)
  2321. {
  2322. int ret;
  2323. struct btrfs_key key;
  2324. struct extent_buffer *eb;
  2325. ASSERT(path);
  2326. ASSERT(found_key);
  2327. key.type = key_type;
  2328. key.objectid = iobjectid;
  2329. key.offset = ioff;
  2330. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  2331. if (ret < 0)
  2332. return ret;
  2333. eb = path->nodes[0];
  2334. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  2335. ret = btrfs_next_leaf(fs_root, path);
  2336. if (ret)
  2337. return ret;
  2338. eb = path->nodes[0];
  2339. }
  2340. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  2341. if (found_key->type != key.type ||
  2342. found_key->objectid != key.objectid)
  2343. return 1;
  2344. return 0;
  2345. }
  2346. /*
  2347. * look for key in the tree. path is filled in with nodes along the way
  2348. * if key is found, we return zero and you can find the item in the leaf
  2349. * level of the path (level 0)
  2350. *
  2351. * If the key isn't found, the path points to the slot where it should
  2352. * be inserted, and 1 is returned. If there are other errors during the
  2353. * search a negative error number is returned.
  2354. *
  2355. * if ins_len > 0, nodes and leaves will be split as we walk down the
  2356. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  2357. * possible)
  2358. */
  2359. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  2360. *root, struct btrfs_key *key, struct btrfs_path *p, int
  2361. ins_len, int cow)
  2362. {
  2363. struct btrfs_fs_info *fs_info = root->fs_info;
  2364. struct extent_buffer *b;
  2365. int slot;
  2366. int ret;
  2367. int err;
  2368. int level;
  2369. int lowest_unlock = 1;
  2370. int root_lock;
  2371. /* everything at write_lock_level or lower must be write locked */
  2372. int write_lock_level = 0;
  2373. u8 lowest_level = 0;
  2374. int min_write_lock_level;
  2375. int prev_cmp;
  2376. lowest_level = p->lowest_level;
  2377. WARN_ON(lowest_level && ins_len > 0);
  2378. WARN_ON(p->nodes[0] != NULL);
  2379. BUG_ON(!cow && ins_len);
  2380. if (ins_len < 0) {
  2381. lowest_unlock = 2;
  2382. /* when we are removing items, we might have to go up to level
  2383. * two as we update tree pointers Make sure we keep write
  2384. * for those levels as well
  2385. */
  2386. write_lock_level = 2;
  2387. } else if (ins_len > 0) {
  2388. /*
  2389. * for inserting items, make sure we have a write lock on
  2390. * level 1 so we can update keys
  2391. */
  2392. write_lock_level = 1;
  2393. }
  2394. if (!cow)
  2395. write_lock_level = -1;
  2396. if (cow && (p->keep_locks || p->lowest_level))
  2397. write_lock_level = BTRFS_MAX_LEVEL;
  2398. min_write_lock_level = write_lock_level;
  2399. again:
  2400. prev_cmp = -1;
  2401. /*
  2402. * we try very hard to do read locks on the root
  2403. */
  2404. root_lock = BTRFS_READ_LOCK;
  2405. level = 0;
  2406. if (p->search_commit_root) {
  2407. /*
  2408. * the commit roots are read only
  2409. * so we always do read locks
  2410. */
  2411. if (p->need_commit_sem)
  2412. down_read(&fs_info->commit_root_sem);
  2413. b = root->commit_root;
  2414. extent_buffer_get(b);
  2415. level = btrfs_header_level(b);
  2416. if (p->need_commit_sem)
  2417. up_read(&fs_info->commit_root_sem);
  2418. if (!p->skip_locking)
  2419. btrfs_tree_read_lock(b);
  2420. } else {
  2421. if (p->skip_locking) {
  2422. b = btrfs_root_node(root);
  2423. level = btrfs_header_level(b);
  2424. } else {
  2425. /* we don't know the level of the root node
  2426. * until we actually have it read locked
  2427. */
  2428. b = btrfs_read_lock_root_node(root);
  2429. level = btrfs_header_level(b);
  2430. if (level <= write_lock_level) {
  2431. /* whoops, must trade for write lock */
  2432. btrfs_tree_read_unlock(b);
  2433. free_extent_buffer(b);
  2434. b = btrfs_lock_root_node(root);
  2435. root_lock = BTRFS_WRITE_LOCK;
  2436. /* the level might have changed, check again */
  2437. level = btrfs_header_level(b);
  2438. }
  2439. }
  2440. }
  2441. p->nodes[level] = b;
  2442. if (!p->skip_locking)
  2443. p->locks[level] = root_lock;
  2444. while (b) {
  2445. level = btrfs_header_level(b);
  2446. /*
  2447. * setup the path here so we can release it under lock
  2448. * contention with the cow code
  2449. */
  2450. if (cow) {
  2451. /*
  2452. * if we don't really need to cow this block
  2453. * then we don't want to set the path blocking,
  2454. * so we test it here
  2455. */
  2456. if (!should_cow_block(trans, root, b)) {
  2457. trans->dirty = true;
  2458. goto cow_done;
  2459. }
  2460. /*
  2461. * must have write locks on this node and the
  2462. * parent
  2463. */
  2464. if (level > write_lock_level ||
  2465. (level + 1 > write_lock_level &&
  2466. level + 1 < BTRFS_MAX_LEVEL &&
  2467. p->nodes[level + 1])) {
  2468. write_lock_level = level + 1;
  2469. btrfs_release_path(p);
  2470. goto again;
  2471. }
  2472. btrfs_set_path_blocking(p);
  2473. err = btrfs_cow_block(trans, root, b,
  2474. p->nodes[level + 1],
  2475. p->slots[level + 1], &b);
  2476. if (err) {
  2477. ret = err;
  2478. goto done;
  2479. }
  2480. }
  2481. cow_done:
  2482. p->nodes[level] = b;
  2483. btrfs_clear_path_blocking(p, NULL, 0);
  2484. /*
  2485. * we have a lock on b and as long as we aren't changing
  2486. * the tree, there is no way to for the items in b to change.
  2487. * It is safe to drop the lock on our parent before we
  2488. * go through the expensive btree search on b.
  2489. *
  2490. * If we're inserting or deleting (ins_len != 0), then we might
  2491. * be changing slot zero, which may require changing the parent.
  2492. * So, we can't drop the lock until after we know which slot
  2493. * we're operating on.
  2494. */
  2495. if (!ins_len && !p->keep_locks) {
  2496. int u = level + 1;
  2497. if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
  2498. btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
  2499. p->locks[u] = 0;
  2500. }
  2501. }
  2502. ret = key_search(b, key, level, &prev_cmp, &slot);
  2503. if (ret < 0)
  2504. goto done;
  2505. if (level != 0) {
  2506. int dec = 0;
  2507. if (ret && slot > 0) {
  2508. dec = 1;
  2509. slot -= 1;
  2510. }
  2511. p->slots[level] = slot;
  2512. err = setup_nodes_for_search(trans, root, p, b, level,
  2513. ins_len, &write_lock_level);
  2514. if (err == -EAGAIN)
  2515. goto again;
  2516. if (err) {
  2517. ret = err;
  2518. goto done;
  2519. }
  2520. b = p->nodes[level];
  2521. slot = p->slots[level];
  2522. /*
  2523. * slot 0 is special, if we change the key
  2524. * we have to update the parent pointer
  2525. * which means we must have a write lock
  2526. * on the parent
  2527. */
  2528. if (slot == 0 && ins_len &&
  2529. write_lock_level < level + 1) {
  2530. write_lock_level = level + 1;
  2531. btrfs_release_path(p);
  2532. goto again;
  2533. }
  2534. unlock_up(p, level, lowest_unlock,
  2535. min_write_lock_level, &write_lock_level);
  2536. if (level == lowest_level) {
  2537. if (dec)
  2538. p->slots[level]++;
  2539. goto done;
  2540. }
  2541. err = read_block_for_search(trans, root, p,
  2542. &b, level, slot, key, 0);
  2543. if (err == -EAGAIN)
  2544. goto again;
  2545. if (err) {
  2546. ret = err;
  2547. goto done;
  2548. }
  2549. if (!p->skip_locking) {
  2550. level = btrfs_header_level(b);
  2551. if (level <= write_lock_level) {
  2552. err = btrfs_try_tree_write_lock(b);
  2553. if (!err) {
  2554. btrfs_set_path_blocking(p);
  2555. btrfs_tree_lock(b);
  2556. btrfs_clear_path_blocking(p, b,
  2557. BTRFS_WRITE_LOCK);
  2558. }
  2559. p->locks[level] = BTRFS_WRITE_LOCK;
  2560. } else {
  2561. err = btrfs_tree_read_lock_atomic(b);
  2562. if (!err) {
  2563. btrfs_set_path_blocking(p);
  2564. btrfs_tree_read_lock(b);
  2565. btrfs_clear_path_blocking(p, b,
  2566. BTRFS_READ_LOCK);
  2567. }
  2568. p->locks[level] = BTRFS_READ_LOCK;
  2569. }
  2570. p->nodes[level] = b;
  2571. }
  2572. } else {
  2573. p->slots[level] = slot;
  2574. if (ins_len > 0 &&
  2575. btrfs_leaf_free_space(fs_info, b) < ins_len) {
  2576. if (write_lock_level < 1) {
  2577. write_lock_level = 1;
  2578. btrfs_release_path(p);
  2579. goto again;
  2580. }
  2581. btrfs_set_path_blocking(p);
  2582. err = split_leaf(trans, root, key,
  2583. p, ins_len, ret == 0);
  2584. btrfs_clear_path_blocking(p, NULL, 0);
  2585. BUG_ON(err > 0);
  2586. if (err) {
  2587. ret = err;
  2588. goto done;
  2589. }
  2590. }
  2591. if (!p->search_for_split)
  2592. unlock_up(p, level, lowest_unlock,
  2593. min_write_lock_level, &write_lock_level);
  2594. goto done;
  2595. }
  2596. }
  2597. ret = 1;
  2598. done:
  2599. /*
  2600. * we don't really know what they plan on doing with the path
  2601. * from here on, so for now just mark it as blocking
  2602. */
  2603. if (!p->leave_spinning)
  2604. btrfs_set_path_blocking(p);
  2605. if (ret < 0 && !p->skip_release_on_error)
  2606. btrfs_release_path(p);
  2607. return ret;
  2608. }
  2609. /*
  2610. * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
  2611. * current state of the tree together with the operations recorded in the tree
  2612. * modification log to search for the key in a previous version of this tree, as
  2613. * denoted by the time_seq parameter.
  2614. *
  2615. * Naturally, there is no support for insert, delete or cow operations.
  2616. *
  2617. * The resulting path and return value will be set up as if we called
  2618. * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
  2619. */
  2620. int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
  2621. struct btrfs_path *p, u64 time_seq)
  2622. {
  2623. struct btrfs_fs_info *fs_info = root->fs_info;
  2624. struct extent_buffer *b;
  2625. int slot;
  2626. int ret;
  2627. int err;
  2628. int level;
  2629. int lowest_unlock = 1;
  2630. u8 lowest_level = 0;
  2631. int prev_cmp = -1;
  2632. lowest_level = p->lowest_level;
  2633. WARN_ON(p->nodes[0] != NULL);
  2634. if (p->search_commit_root) {
  2635. BUG_ON(time_seq);
  2636. return btrfs_search_slot(NULL, root, key, p, 0, 0);
  2637. }
  2638. again:
  2639. b = get_old_root(root, time_seq);
  2640. level = btrfs_header_level(b);
  2641. p->locks[level] = BTRFS_READ_LOCK;
  2642. while (b) {
  2643. level = btrfs_header_level(b);
  2644. p->nodes[level] = b;
  2645. btrfs_clear_path_blocking(p, NULL, 0);
  2646. /*
  2647. * we have a lock on b and as long as we aren't changing
  2648. * the tree, there is no way to for the items in b to change.
  2649. * It is safe to drop the lock on our parent before we
  2650. * go through the expensive btree search on b.
  2651. */
  2652. btrfs_unlock_up_safe(p, level + 1);
  2653. /*
  2654. * Since we can unwind ebs we want to do a real search every
  2655. * time.
  2656. */
  2657. prev_cmp = -1;
  2658. ret = key_search(b, key, level, &prev_cmp, &slot);
  2659. if (level != 0) {
  2660. int dec = 0;
  2661. if (ret && slot > 0) {
  2662. dec = 1;
  2663. slot -= 1;
  2664. }
  2665. p->slots[level] = slot;
  2666. unlock_up(p, level, lowest_unlock, 0, NULL);
  2667. if (level == lowest_level) {
  2668. if (dec)
  2669. p->slots[level]++;
  2670. goto done;
  2671. }
  2672. err = read_block_for_search(NULL, root, p, &b, level,
  2673. slot, key, time_seq);
  2674. if (err == -EAGAIN)
  2675. goto again;
  2676. if (err) {
  2677. ret = err;
  2678. goto done;
  2679. }
  2680. level = btrfs_header_level(b);
  2681. err = btrfs_tree_read_lock_atomic(b);
  2682. if (!err) {
  2683. btrfs_set_path_blocking(p);
  2684. btrfs_tree_read_lock(b);
  2685. btrfs_clear_path_blocking(p, b,
  2686. BTRFS_READ_LOCK);
  2687. }
  2688. b = tree_mod_log_rewind(fs_info, p, b, time_seq);
  2689. if (!b) {
  2690. ret = -ENOMEM;
  2691. goto done;
  2692. }
  2693. p->locks[level] = BTRFS_READ_LOCK;
  2694. p->nodes[level] = b;
  2695. } else {
  2696. p->slots[level] = slot;
  2697. unlock_up(p, level, lowest_unlock, 0, NULL);
  2698. goto done;
  2699. }
  2700. }
  2701. ret = 1;
  2702. done:
  2703. if (!p->leave_spinning)
  2704. btrfs_set_path_blocking(p);
  2705. if (ret < 0)
  2706. btrfs_release_path(p);
  2707. return ret;
  2708. }
  2709. /*
  2710. * helper to use instead of search slot if no exact match is needed but
  2711. * instead the next or previous item should be returned.
  2712. * When find_higher is true, the next higher item is returned, the next lower
  2713. * otherwise.
  2714. * When return_any and find_higher are both true, and no higher item is found,
  2715. * return the next lower instead.
  2716. * When return_any is true and find_higher is false, and no lower item is found,
  2717. * return the next higher instead.
  2718. * It returns 0 if any item is found, 1 if none is found (tree empty), and
  2719. * < 0 on error
  2720. */
  2721. int btrfs_search_slot_for_read(struct btrfs_root *root,
  2722. struct btrfs_key *key, struct btrfs_path *p,
  2723. int find_higher, int return_any)
  2724. {
  2725. int ret;
  2726. struct extent_buffer *leaf;
  2727. again:
  2728. ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
  2729. if (ret <= 0)
  2730. return ret;
  2731. /*
  2732. * a return value of 1 means the path is at the position where the
  2733. * item should be inserted. Normally this is the next bigger item,
  2734. * but in case the previous item is the last in a leaf, path points
  2735. * to the first free slot in the previous leaf, i.e. at an invalid
  2736. * item.
  2737. */
  2738. leaf = p->nodes[0];
  2739. if (find_higher) {
  2740. if (p->slots[0] >= btrfs_header_nritems(leaf)) {
  2741. ret = btrfs_next_leaf(root, p);
  2742. if (ret <= 0)
  2743. return ret;
  2744. if (!return_any)
  2745. return 1;
  2746. /*
  2747. * no higher item found, return the next
  2748. * lower instead
  2749. */
  2750. return_any = 0;
  2751. find_higher = 0;
  2752. btrfs_release_path(p);
  2753. goto again;
  2754. }
  2755. } else {
  2756. if (p->slots[0] == 0) {
  2757. ret = btrfs_prev_leaf(root, p);
  2758. if (ret < 0)
  2759. return ret;
  2760. if (!ret) {
  2761. leaf = p->nodes[0];
  2762. if (p->slots[0] == btrfs_header_nritems(leaf))
  2763. p->slots[0]--;
  2764. return 0;
  2765. }
  2766. if (!return_any)
  2767. return 1;
  2768. /*
  2769. * no lower item found, return the next
  2770. * higher instead
  2771. */
  2772. return_any = 0;
  2773. find_higher = 1;
  2774. btrfs_release_path(p);
  2775. goto again;
  2776. } else {
  2777. --p->slots[0];
  2778. }
  2779. }
  2780. return 0;
  2781. }
  2782. /*
  2783. * adjust the pointers going up the tree, starting at level
  2784. * making sure the right key of each node is points to 'key'.
  2785. * This is used after shifting pointers to the left, so it stops
  2786. * fixing up pointers when a given leaf/node is not in slot 0 of the
  2787. * higher levels
  2788. *
  2789. */
  2790. static void fixup_low_keys(struct btrfs_fs_info *fs_info,
  2791. struct btrfs_path *path,
  2792. struct btrfs_disk_key *key, int level)
  2793. {
  2794. int i;
  2795. struct extent_buffer *t;
  2796. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  2797. int tslot = path->slots[i];
  2798. if (!path->nodes[i])
  2799. break;
  2800. t = path->nodes[i];
  2801. tree_mod_log_set_node_key(fs_info, t, tslot, 1);
  2802. btrfs_set_node_key(t, key, tslot);
  2803. btrfs_mark_buffer_dirty(path->nodes[i]);
  2804. if (tslot != 0)
  2805. break;
  2806. }
  2807. }
  2808. /*
  2809. * update item key.
  2810. *
  2811. * This function isn't completely safe. It's the caller's responsibility
  2812. * that the new key won't break the order
  2813. */
  2814. void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
  2815. struct btrfs_path *path,
  2816. struct btrfs_key *new_key)
  2817. {
  2818. struct btrfs_disk_key disk_key;
  2819. struct extent_buffer *eb;
  2820. int slot;
  2821. eb = path->nodes[0];
  2822. slot = path->slots[0];
  2823. if (slot > 0) {
  2824. btrfs_item_key(eb, &disk_key, slot - 1);
  2825. BUG_ON(comp_keys(&disk_key, new_key) >= 0);
  2826. }
  2827. if (slot < btrfs_header_nritems(eb) - 1) {
  2828. btrfs_item_key(eb, &disk_key, slot + 1);
  2829. BUG_ON(comp_keys(&disk_key, new_key) <= 0);
  2830. }
  2831. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2832. btrfs_set_item_key(eb, &disk_key, slot);
  2833. btrfs_mark_buffer_dirty(eb);
  2834. if (slot == 0)
  2835. fixup_low_keys(fs_info, path, &disk_key, 1);
  2836. }
  2837. /*
  2838. * try to push data from one node into the next node left in the
  2839. * tree.
  2840. *
  2841. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  2842. * error, and > 0 if there was no room in the left hand block.
  2843. */
  2844. static int push_node_left(struct btrfs_trans_handle *trans,
  2845. struct btrfs_fs_info *fs_info,
  2846. struct extent_buffer *dst,
  2847. struct extent_buffer *src, int empty)
  2848. {
  2849. int push_items = 0;
  2850. int src_nritems;
  2851. int dst_nritems;
  2852. int ret = 0;
  2853. src_nritems = btrfs_header_nritems(src);
  2854. dst_nritems = btrfs_header_nritems(dst);
  2855. push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
  2856. WARN_ON(btrfs_header_generation(src) != trans->transid);
  2857. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  2858. if (!empty && src_nritems <= 8)
  2859. return 1;
  2860. if (push_items <= 0)
  2861. return 1;
  2862. if (empty) {
  2863. push_items = min(src_nritems, push_items);
  2864. if (push_items < src_nritems) {
  2865. /* leave at least 8 pointers in the node if
  2866. * we aren't going to empty it
  2867. */
  2868. if (src_nritems - push_items < 8) {
  2869. if (push_items <= 8)
  2870. return 1;
  2871. push_items -= 8;
  2872. }
  2873. }
  2874. } else
  2875. push_items = min(src_nritems - 8, push_items);
  2876. ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
  2877. push_items);
  2878. if (ret) {
  2879. btrfs_abort_transaction(trans, ret);
  2880. return ret;
  2881. }
  2882. copy_extent_buffer(dst, src,
  2883. btrfs_node_key_ptr_offset(dst_nritems),
  2884. btrfs_node_key_ptr_offset(0),
  2885. push_items * sizeof(struct btrfs_key_ptr));
  2886. if (push_items < src_nritems) {
  2887. /*
  2888. * don't call tree_mod_log_eb_move here, key removal was already
  2889. * fully logged by tree_mod_log_eb_copy above.
  2890. */
  2891. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  2892. btrfs_node_key_ptr_offset(push_items),
  2893. (src_nritems - push_items) *
  2894. sizeof(struct btrfs_key_ptr));
  2895. }
  2896. btrfs_set_header_nritems(src, src_nritems - push_items);
  2897. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  2898. btrfs_mark_buffer_dirty(src);
  2899. btrfs_mark_buffer_dirty(dst);
  2900. return ret;
  2901. }
  2902. /*
  2903. * try to push data from one node into the next node right in the
  2904. * tree.
  2905. *
  2906. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  2907. * error, and > 0 if there was no room in the right hand block.
  2908. *
  2909. * this will only push up to 1/2 the contents of the left node over
  2910. */
  2911. static int balance_node_right(struct btrfs_trans_handle *trans,
  2912. struct btrfs_fs_info *fs_info,
  2913. struct extent_buffer *dst,
  2914. struct extent_buffer *src)
  2915. {
  2916. int push_items = 0;
  2917. int max_push;
  2918. int src_nritems;
  2919. int dst_nritems;
  2920. int ret = 0;
  2921. WARN_ON(btrfs_header_generation(src) != trans->transid);
  2922. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  2923. src_nritems = btrfs_header_nritems(src);
  2924. dst_nritems = btrfs_header_nritems(dst);
  2925. push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
  2926. if (push_items <= 0)
  2927. return 1;
  2928. if (src_nritems < 4)
  2929. return 1;
  2930. max_push = src_nritems / 2 + 1;
  2931. /* don't try to empty the node */
  2932. if (max_push >= src_nritems)
  2933. return 1;
  2934. if (max_push < push_items)
  2935. push_items = max_push;
  2936. tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
  2937. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  2938. btrfs_node_key_ptr_offset(0),
  2939. (dst_nritems) *
  2940. sizeof(struct btrfs_key_ptr));
  2941. ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
  2942. src_nritems - push_items, push_items);
  2943. if (ret) {
  2944. btrfs_abort_transaction(trans, ret);
  2945. return ret;
  2946. }
  2947. copy_extent_buffer(dst, src,
  2948. btrfs_node_key_ptr_offset(0),
  2949. btrfs_node_key_ptr_offset(src_nritems - push_items),
  2950. push_items * sizeof(struct btrfs_key_ptr));
  2951. btrfs_set_header_nritems(src, src_nritems - push_items);
  2952. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  2953. btrfs_mark_buffer_dirty(src);
  2954. btrfs_mark_buffer_dirty(dst);
  2955. return ret;
  2956. }
  2957. /*
  2958. * helper function to insert a new root level in the tree.
  2959. * A new node is allocated, and a single item is inserted to
  2960. * point to the existing root
  2961. *
  2962. * returns zero on success or < 0 on failure.
  2963. */
  2964. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  2965. struct btrfs_root *root,
  2966. struct btrfs_path *path, int level)
  2967. {
  2968. struct btrfs_fs_info *fs_info = root->fs_info;
  2969. u64 lower_gen;
  2970. struct extent_buffer *lower;
  2971. struct extent_buffer *c;
  2972. struct extent_buffer *old;
  2973. struct btrfs_disk_key lower_key;
  2974. BUG_ON(path->nodes[level]);
  2975. BUG_ON(path->nodes[level-1] != root->node);
  2976. lower = path->nodes[level-1];
  2977. if (level == 1)
  2978. btrfs_item_key(lower, &lower_key, 0);
  2979. else
  2980. btrfs_node_key(lower, &lower_key, 0);
  2981. c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
  2982. &lower_key, level, root->node->start, 0);
  2983. if (IS_ERR(c))
  2984. return PTR_ERR(c);
  2985. root_add_used(root, fs_info->nodesize);
  2986. memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
  2987. btrfs_set_header_nritems(c, 1);
  2988. btrfs_set_header_level(c, level);
  2989. btrfs_set_header_bytenr(c, c->start);
  2990. btrfs_set_header_generation(c, trans->transid);
  2991. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  2992. btrfs_set_header_owner(c, root->root_key.objectid);
  2993. write_extent_buffer_fsid(c, fs_info->fsid);
  2994. write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
  2995. btrfs_set_node_key(c, &lower_key, 0);
  2996. btrfs_set_node_blockptr(c, 0, lower->start);
  2997. lower_gen = btrfs_header_generation(lower);
  2998. WARN_ON(lower_gen != trans->transid);
  2999. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  3000. btrfs_mark_buffer_dirty(c);
  3001. old = root->node;
  3002. tree_mod_log_set_root_pointer(root, c, 0);
  3003. rcu_assign_pointer(root->node, c);
  3004. /* the super has an extra ref to root->node */
  3005. free_extent_buffer(old);
  3006. add_root_to_dirty_list(root);
  3007. extent_buffer_get(c);
  3008. path->nodes[level] = c;
  3009. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  3010. path->slots[level] = 0;
  3011. return 0;
  3012. }
  3013. /*
  3014. * worker function to insert a single pointer in a node.
  3015. * the node should have enough room for the pointer already
  3016. *
  3017. * slot and level indicate where you want the key to go, and
  3018. * blocknr is the block the key points to.
  3019. */
  3020. static void insert_ptr(struct btrfs_trans_handle *trans,
  3021. struct btrfs_fs_info *fs_info, struct btrfs_path *path,
  3022. struct btrfs_disk_key *key, u64 bytenr,
  3023. int slot, int level)
  3024. {
  3025. struct extent_buffer *lower;
  3026. int nritems;
  3027. int ret;
  3028. BUG_ON(!path->nodes[level]);
  3029. btrfs_assert_tree_locked(path->nodes[level]);
  3030. lower = path->nodes[level];
  3031. nritems = btrfs_header_nritems(lower);
  3032. BUG_ON(slot > nritems);
  3033. BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
  3034. if (slot != nritems) {
  3035. if (level)
  3036. tree_mod_log_eb_move(fs_info, lower, slot + 1,
  3037. slot, nritems - slot);
  3038. memmove_extent_buffer(lower,
  3039. btrfs_node_key_ptr_offset(slot + 1),
  3040. btrfs_node_key_ptr_offset(slot),
  3041. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  3042. }
  3043. if (level) {
  3044. ret = tree_mod_log_insert_key(fs_info, lower, slot,
  3045. MOD_LOG_KEY_ADD, GFP_NOFS);
  3046. BUG_ON(ret < 0);
  3047. }
  3048. btrfs_set_node_key(lower, key, slot);
  3049. btrfs_set_node_blockptr(lower, slot, bytenr);
  3050. WARN_ON(trans->transid == 0);
  3051. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  3052. btrfs_set_header_nritems(lower, nritems + 1);
  3053. btrfs_mark_buffer_dirty(lower);
  3054. }
  3055. /*
  3056. * split the node at the specified level in path in two.
  3057. * The path is corrected to point to the appropriate node after the split
  3058. *
  3059. * Before splitting this tries to make some room in the node by pushing
  3060. * left and right, if either one works, it returns right away.
  3061. *
  3062. * returns 0 on success and < 0 on failure
  3063. */
  3064. static noinline int split_node(struct btrfs_trans_handle *trans,
  3065. struct btrfs_root *root,
  3066. struct btrfs_path *path, int level)
  3067. {
  3068. struct btrfs_fs_info *fs_info = root->fs_info;
  3069. struct extent_buffer *c;
  3070. struct extent_buffer *split;
  3071. struct btrfs_disk_key disk_key;
  3072. int mid;
  3073. int ret;
  3074. u32 c_nritems;
  3075. c = path->nodes[level];
  3076. WARN_ON(btrfs_header_generation(c) != trans->transid);
  3077. if (c == root->node) {
  3078. /*
  3079. * trying to split the root, lets make a new one
  3080. *
  3081. * tree mod log: We don't log_removal old root in
  3082. * insert_new_root, because that root buffer will be kept as a
  3083. * normal node. We are going to log removal of half of the
  3084. * elements below with tree_mod_log_eb_copy. We're holding a
  3085. * tree lock on the buffer, which is why we cannot race with
  3086. * other tree_mod_log users.
  3087. */
  3088. ret = insert_new_root(trans, root, path, level + 1);
  3089. if (ret)
  3090. return ret;
  3091. } else {
  3092. ret = push_nodes_for_insert(trans, root, path, level);
  3093. c = path->nodes[level];
  3094. if (!ret && btrfs_header_nritems(c) <
  3095. BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
  3096. return 0;
  3097. if (ret < 0)
  3098. return ret;
  3099. }
  3100. c_nritems = btrfs_header_nritems(c);
  3101. mid = (c_nritems + 1) / 2;
  3102. btrfs_node_key(c, &disk_key, mid);
  3103. split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
  3104. &disk_key, level, c->start, 0);
  3105. if (IS_ERR(split))
  3106. return PTR_ERR(split);
  3107. root_add_used(root, fs_info->nodesize);
  3108. memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
  3109. btrfs_set_header_level(split, btrfs_header_level(c));
  3110. btrfs_set_header_bytenr(split, split->start);
  3111. btrfs_set_header_generation(split, trans->transid);
  3112. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  3113. btrfs_set_header_owner(split, root->root_key.objectid);
  3114. write_extent_buffer_fsid(split, fs_info->fsid);
  3115. write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
  3116. ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
  3117. if (ret) {
  3118. btrfs_abort_transaction(trans, ret);
  3119. return ret;
  3120. }
  3121. copy_extent_buffer(split, c,
  3122. btrfs_node_key_ptr_offset(0),
  3123. btrfs_node_key_ptr_offset(mid),
  3124. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  3125. btrfs_set_header_nritems(split, c_nritems - mid);
  3126. btrfs_set_header_nritems(c, mid);
  3127. ret = 0;
  3128. btrfs_mark_buffer_dirty(c);
  3129. btrfs_mark_buffer_dirty(split);
  3130. insert_ptr(trans, fs_info, path, &disk_key, split->start,
  3131. path->slots[level + 1] + 1, level + 1);
  3132. if (path->slots[level] >= mid) {
  3133. path->slots[level] -= mid;
  3134. btrfs_tree_unlock(c);
  3135. free_extent_buffer(c);
  3136. path->nodes[level] = split;
  3137. path->slots[level + 1] += 1;
  3138. } else {
  3139. btrfs_tree_unlock(split);
  3140. free_extent_buffer(split);
  3141. }
  3142. return ret;
  3143. }
  3144. /*
  3145. * how many bytes are required to store the items in a leaf. start
  3146. * and nr indicate which items in the leaf to check. This totals up the
  3147. * space used both by the item structs and the item data
  3148. */
  3149. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  3150. {
  3151. struct btrfs_item *start_item;
  3152. struct btrfs_item *end_item;
  3153. struct btrfs_map_token token;
  3154. int data_len;
  3155. int nritems = btrfs_header_nritems(l);
  3156. int end = min(nritems, start + nr) - 1;
  3157. if (!nr)
  3158. return 0;
  3159. btrfs_init_map_token(&token);
  3160. start_item = btrfs_item_nr(start);
  3161. end_item = btrfs_item_nr(end);
  3162. data_len = btrfs_token_item_offset(l, start_item, &token) +
  3163. btrfs_token_item_size(l, start_item, &token);
  3164. data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
  3165. data_len += sizeof(struct btrfs_item) * nr;
  3166. WARN_ON(data_len < 0);
  3167. return data_len;
  3168. }
  3169. /*
  3170. * The space between the end of the leaf items and
  3171. * the start of the leaf data. IOW, how much room
  3172. * the leaf has left for both items and data
  3173. */
  3174. noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
  3175. struct extent_buffer *leaf)
  3176. {
  3177. int nritems = btrfs_header_nritems(leaf);
  3178. int ret;
  3179. ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
  3180. if (ret < 0) {
  3181. btrfs_crit(fs_info,
  3182. "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
  3183. ret,
  3184. (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
  3185. leaf_space_used(leaf, 0, nritems), nritems);
  3186. }
  3187. return ret;
  3188. }
  3189. /*
  3190. * min slot controls the lowest index we're willing to push to the
  3191. * right. We'll push up to and including min_slot, but no lower
  3192. */
  3193. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  3194. struct btrfs_fs_info *fs_info,
  3195. struct btrfs_path *path,
  3196. int data_size, int empty,
  3197. struct extent_buffer *right,
  3198. int free_space, u32 left_nritems,
  3199. u32 min_slot)
  3200. {
  3201. struct extent_buffer *left = path->nodes[0];
  3202. struct extent_buffer *upper = path->nodes[1];
  3203. struct btrfs_map_token token;
  3204. struct btrfs_disk_key disk_key;
  3205. int slot;
  3206. u32 i;
  3207. int push_space = 0;
  3208. int push_items = 0;
  3209. struct btrfs_item *item;
  3210. u32 nr;
  3211. u32 right_nritems;
  3212. u32 data_end;
  3213. u32 this_item_size;
  3214. btrfs_init_map_token(&token);
  3215. if (empty)
  3216. nr = 0;
  3217. else
  3218. nr = max_t(u32, 1, min_slot);
  3219. if (path->slots[0] >= left_nritems)
  3220. push_space += data_size;
  3221. slot = path->slots[1];
  3222. i = left_nritems - 1;
  3223. while (i >= nr) {
  3224. item = btrfs_item_nr(i);
  3225. if (!empty && push_items > 0) {
  3226. if (path->slots[0] > i)
  3227. break;
  3228. if (path->slots[0] == i) {
  3229. int space = btrfs_leaf_free_space(fs_info, left);
  3230. if (space + push_space * 2 > free_space)
  3231. break;
  3232. }
  3233. }
  3234. if (path->slots[0] == i)
  3235. push_space += data_size;
  3236. this_item_size = btrfs_item_size(left, item);
  3237. if (this_item_size + sizeof(*item) + push_space > free_space)
  3238. break;
  3239. push_items++;
  3240. push_space += this_item_size + sizeof(*item);
  3241. if (i == 0)
  3242. break;
  3243. i--;
  3244. }
  3245. if (push_items == 0)
  3246. goto out_unlock;
  3247. WARN_ON(!empty && push_items == left_nritems);
  3248. /* push left to right */
  3249. right_nritems = btrfs_header_nritems(right);
  3250. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  3251. push_space -= leaf_data_end(fs_info, left);
  3252. /* make room in the right data area */
  3253. data_end = leaf_data_end(fs_info, right);
  3254. memmove_extent_buffer(right,
  3255. btrfs_leaf_data(right) + data_end - push_space,
  3256. btrfs_leaf_data(right) + data_end,
  3257. BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
  3258. /* copy from the left data area */
  3259. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  3260. BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
  3261. btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
  3262. push_space);
  3263. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  3264. btrfs_item_nr_offset(0),
  3265. right_nritems * sizeof(struct btrfs_item));
  3266. /* copy the items from left to right */
  3267. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  3268. btrfs_item_nr_offset(left_nritems - push_items),
  3269. push_items * sizeof(struct btrfs_item));
  3270. /* update the item pointers */
  3271. right_nritems += push_items;
  3272. btrfs_set_header_nritems(right, right_nritems);
  3273. push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
  3274. for (i = 0; i < right_nritems; i++) {
  3275. item = btrfs_item_nr(i);
  3276. push_space -= btrfs_token_item_size(right, item, &token);
  3277. btrfs_set_token_item_offset(right, item, push_space, &token);
  3278. }
  3279. left_nritems -= push_items;
  3280. btrfs_set_header_nritems(left, left_nritems);
  3281. if (left_nritems)
  3282. btrfs_mark_buffer_dirty(left);
  3283. else
  3284. clean_tree_block(trans, fs_info, left);
  3285. btrfs_mark_buffer_dirty(right);
  3286. btrfs_item_key(right, &disk_key, 0);
  3287. btrfs_set_node_key(upper, &disk_key, slot + 1);
  3288. btrfs_mark_buffer_dirty(upper);
  3289. /* then fixup the leaf pointer in the path */
  3290. if (path->slots[0] >= left_nritems) {
  3291. path->slots[0] -= left_nritems;
  3292. if (btrfs_header_nritems(path->nodes[0]) == 0)
  3293. clean_tree_block(trans, fs_info, path->nodes[0]);
  3294. btrfs_tree_unlock(path->nodes[0]);
  3295. free_extent_buffer(path->nodes[0]);
  3296. path->nodes[0] = right;
  3297. path->slots[1] += 1;
  3298. } else {
  3299. btrfs_tree_unlock(right);
  3300. free_extent_buffer(right);
  3301. }
  3302. return 0;
  3303. out_unlock:
  3304. btrfs_tree_unlock(right);
  3305. free_extent_buffer(right);
  3306. return 1;
  3307. }
  3308. /*
  3309. * push some data in the path leaf to the right, trying to free up at
  3310. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  3311. *
  3312. * returns 1 if the push failed because the other node didn't have enough
  3313. * room, 0 if everything worked out and < 0 if there were major errors.
  3314. *
  3315. * this will push starting from min_slot to the end of the leaf. It won't
  3316. * push any slot lower than min_slot
  3317. */
  3318. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  3319. *root, struct btrfs_path *path,
  3320. int min_data_size, int data_size,
  3321. int empty, u32 min_slot)
  3322. {
  3323. struct btrfs_fs_info *fs_info = root->fs_info;
  3324. struct extent_buffer *left = path->nodes[0];
  3325. struct extent_buffer *right;
  3326. struct extent_buffer *upper;
  3327. int slot;
  3328. int free_space;
  3329. u32 left_nritems;
  3330. int ret;
  3331. if (!path->nodes[1])
  3332. return 1;
  3333. slot = path->slots[1];
  3334. upper = path->nodes[1];
  3335. if (slot >= btrfs_header_nritems(upper) - 1)
  3336. return 1;
  3337. btrfs_assert_tree_locked(path->nodes[1]);
  3338. right = read_node_slot(fs_info, upper, slot + 1);
  3339. /*
  3340. * slot + 1 is not valid or we fail to read the right node,
  3341. * no big deal, just return.
  3342. */
  3343. if (IS_ERR(right))
  3344. return 1;
  3345. btrfs_tree_lock(right);
  3346. btrfs_set_lock_blocking(right);
  3347. free_space = btrfs_leaf_free_space(fs_info, right);
  3348. if (free_space < data_size)
  3349. goto out_unlock;
  3350. /* cow and double check */
  3351. ret = btrfs_cow_block(trans, root, right, upper,
  3352. slot + 1, &right);
  3353. if (ret)
  3354. goto out_unlock;
  3355. free_space = btrfs_leaf_free_space(fs_info, right);
  3356. if (free_space < data_size)
  3357. goto out_unlock;
  3358. left_nritems = btrfs_header_nritems(left);
  3359. if (left_nritems == 0)
  3360. goto out_unlock;
  3361. if (path->slots[0] == left_nritems && !empty) {
  3362. /* Key greater than all keys in the leaf, right neighbor has
  3363. * enough room for it and we're not emptying our leaf to delete
  3364. * it, therefore use right neighbor to insert the new item and
  3365. * no need to touch/dirty our left leaft. */
  3366. btrfs_tree_unlock(left);
  3367. free_extent_buffer(left);
  3368. path->nodes[0] = right;
  3369. path->slots[0] = 0;
  3370. path->slots[1]++;
  3371. return 0;
  3372. }
  3373. return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
  3374. right, free_space, left_nritems, min_slot);
  3375. out_unlock:
  3376. btrfs_tree_unlock(right);
  3377. free_extent_buffer(right);
  3378. return 1;
  3379. }
  3380. /*
  3381. * push some data in the path leaf to the left, trying to free up at
  3382. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  3383. *
  3384. * max_slot can put a limit on how far into the leaf we'll push items. The
  3385. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  3386. * items
  3387. */
  3388. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  3389. struct btrfs_fs_info *fs_info,
  3390. struct btrfs_path *path, int data_size,
  3391. int empty, struct extent_buffer *left,
  3392. int free_space, u32 right_nritems,
  3393. u32 max_slot)
  3394. {
  3395. struct btrfs_disk_key disk_key;
  3396. struct extent_buffer *right = path->nodes[0];
  3397. int i;
  3398. int push_space = 0;
  3399. int push_items = 0;
  3400. struct btrfs_item *item;
  3401. u32 old_left_nritems;
  3402. u32 nr;
  3403. int ret = 0;
  3404. u32 this_item_size;
  3405. u32 old_left_item_size;
  3406. struct btrfs_map_token token;
  3407. btrfs_init_map_token(&token);
  3408. if (empty)
  3409. nr = min(right_nritems, max_slot);
  3410. else
  3411. nr = min(right_nritems - 1, max_slot);
  3412. for (i = 0; i < nr; i++) {
  3413. item = btrfs_item_nr(i);
  3414. if (!empty && push_items > 0) {
  3415. if (path->slots[0] < i)
  3416. break;
  3417. if (path->slots[0] == i) {
  3418. int space = btrfs_leaf_free_space(fs_info, right);
  3419. if (space + push_space * 2 > free_space)
  3420. break;
  3421. }
  3422. }
  3423. if (path->slots[0] == i)
  3424. push_space += data_size;
  3425. this_item_size = btrfs_item_size(right, item);
  3426. if (this_item_size + sizeof(*item) + push_space > free_space)
  3427. break;
  3428. push_items++;
  3429. push_space += this_item_size + sizeof(*item);
  3430. }
  3431. if (push_items == 0) {
  3432. ret = 1;
  3433. goto out;
  3434. }
  3435. WARN_ON(!empty && push_items == btrfs_header_nritems(right));
  3436. /* push data from right to left */
  3437. copy_extent_buffer(left, right,
  3438. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  3439. btrfs_item_nr_offset(0),
  3440. push_items * sizeof(struct btrfs_item));
  3441. push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
  3442. btrfs_item_offset_nr(right, push_items - 1);
  3443. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  3444. leaf_data_end(fs_info, left) - push_space,
  3445. btrfs_leaf_data(right) +
  3446. btrfs_item_offset_nr(right, push_items - 1),
  3447. push_space);
  3448. old_left_nritems = btrfs_header_nritems(left);
  3449. BUG_ON(old_left_nritems <= 0);
  3450. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  3451. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  3452. u32 ioff;
  3453. item = btrfs_item_nr(i);
  3454. ioff = btrfs_token_item_offset(left, item, &token);
  3455. btrfs_set_token_item_offset(left, item,
  3456. ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
  3457. &token);
  3458. }
  3459. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  3460. /* fixup right node */
  3461. if (push_items > right_nritems)
  3462. WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
  3463. right_nritems);
  3464. if (push_items < right_nritems) {
  3465. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  3466. leaf_data_end(fs_info, right);
  3467. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  3468. BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
  3469. btrfs_leaf_data(right) +
  3470. leaf_data_end(fs_info, right), push_space);
  3471. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  3472. btrfs_item_nr_offset(push_items),
  3473. (btrfs_header_nritems(right) - push_items) *
  3474. sizeof(struct btrfs_item));
  3475. }
  3476. right_nritems -= push_items;
  3477. btrfs_set_header_nritems(right, right_nritems);
  3478. push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
  3479. for (i = 0; i < right_nritems; i++) {
  3480. item = btrfs_item_nr(i);
  3481. push_space = push_space - btrfs_token_item_size(right,
  3482. item, &token);
  3483. btrfs_set_token_item_offset(right, item, push_space, &token);
  3484. }
  3485. btrfs_mark_buffer_dirty(left);
  3486. if (right_nritems)
  3487. btrfs_mark_buffer_dirty(right);
  3488. else
  3489. clean_tree_block(trans, fs_info, right);
  3490. btrfs_item_key(right, &disk_key, 0);
  3491. fixup_low_keys(fs_info, path, &disk_key, 1);
  3492. /* then fixup the leaf pointer in the path */
  3493. if (path->slots[0] < push_items) {
  3494. path->slots[0] += old_left_nritems;
  3495. btrfs_tree_unlock(path->nodes[0]);
  3496. free_extent_buffer(path->nodes[0]);
  3497. path->nodes[0] = left;
  3498. path->slots[1] -= 1;
  3499. } else {
  3500. btrfs_tree_unlock(left);
  3501. free_extent_buffer(left);
  3502. path->slots[0] -= push_items;
  3503. }
  3504. BUG_ON(path->slots[0] < 0);
  3505. return ret;
  3506. out:
  3507. btrfs_tree_unlock(left);
  3508. free_extent_buffer(left);
  3509. return ret;
  3510. }
  3511. /*
  3512. * push some data in the path leaf to the left, trying to free up at
  3513. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  3514. *
  3515. * max_slot can put a limit on how far into the leaf we'll push items. The
  3516. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  3517. * items
  3518. */
  3519. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  3520. *root, struct btrfs_path *path, int min_data_size,
  3521. int data_size, int empty, u32 max_slot)
  3522. {
  3523. struct btrfs_fs_info *fs_info = root->fs_info;
  3524. struct extent_buffer *right = path->nodes[0];
  3525. struct extent_buffer *left;
  3526. int slot;
  3527. int free_space;
  3528. u32 right_nritems;
  3529. int ret = 0;
  3530. slot = path->slots[1];
  3531. if (slot == 0)
  3532. return 1;
  3533. if (!path->nodes[1])
  3534. return 1;
  3535. right_nritems = btrfs_header_nritems(right);
  3536. if (right_nritems == 0)
  3537. return 1;
  3538. btrfs_assert_tree_locked(path->nodes[1]);
  3539. left = read_node_slot(fs_info, path->nodes[1], slot - 1);
  3540. /*
  3541. * slot - 1 is not valid or we fail to read the left node,
  3542. * no big deal, just return.
  3543. */
  3544. if (IS_ERR(left))
  3545. return 1;
  3546. btrfs_tree_lock(left);
  3547. btrfs_set_lock_blocking(left);
  3548. free_space = btrfs_leaf_free_space(fs_info, left);
  3549. if (free_space < data_size) {
  3550. ret = 1;
  3551. goto out;
  3552. }
  3553. /* cow and double check */
  3554. ret = btrfs_cow_block(trans, root, left,
  3555. path->nodes[1], slot - 1, &left);
  3556. if (ret) {
  3557. /* we hit -ENOSPC, but it isn't fatal here */
  3558. if (ret == -ENOSPC)
  3559. ret = 1;
  3560. goto out;
  3561. }
  3562. free_space = btrfs_leaf_free_space(fs_info, left);
  3563. if (free_space < data_size) {
  3564. ret = 1;
  3565. goto out;
  3566. }
  3567. return __push_leaf_left(trans, fs_info, path, min_data_size,
  3568. empty, left, free_space, right_nritems,
  3569. max_slot);
  3570. out:
  3571. btrfs_tree_unlock(left);
  3572. free_extent_buffer(left);
  3573. return ret;
  3574. }
  3575. /*
  3576. * split the path's leaf in two, making sure there is at least data_size
  3577. * available for the resulting leaf level of the path.
  3578. */
  3579. static noinline void copy_for_split(struct btrfs_trans_handle *trans,
  3580. struct btrfs_fs_info *fs_info,
  3581. struct btrfs_path *path,
  3582. struct extent_buffer *l,
  3583. struct extent_buffer *right,
  3584. int slot, int mid, int nritems)
  3585. {
  3586. int data_copy_size;
  3587. int rt_data_off;
  3588. int i;
  3589. struct btrfs_disk_key disk_key;
  3590. struct btrfs_map_token token;
  3591. btrfs_init_map_token(&token);
  3592. nritems = nritems - mid;
  3593. btrfs_set_header_nritems(right, nritems);
  3594. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
  3595. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  3596. btrfs_item_nr_offset(mid),
  3597. nritems * sizeof(struct btrfs_item));
  3598. copy_extent_buffer(right, l,
  3599. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
  3600. data_copy_size, btrfs_leaf_data(l) +
  3601. leaf_data_end(fs_info, l), data_copy_size);
  3602. rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
  3603. for (i = 0; i < nritems; i++) {
  3604. struct btrfs_item *item = btrfs_item_nr(i);
  3605. u32 ioff;
  3606. ioff = btrfs_token_item_offset(right, item, &token);
  3607. btrfs_set_token_item_offset(right, item,
  3608. ioff + rt_data_off, &token);
  3609. }
  3610. btrfs_set_header_nritems(l, mid);
  3611. btrfs_item_key(right, &disk_key, 0);
  3612. insert_ptr(trans, fs_info, path, &disk_key, right->start,
  3613. path->slots[1] + 1, 1);
  3614. btrfs_mark_buffer_dirty(right);
  3615. btrfs_mark_buffer_dirty(l);
  3616. BUG_ON(path->slots[0] != slot);
  3617. if (mid <= slot) {
  3618. btrfs_tree_unlock(path->nodes[0]);
  3619. free_extent_buffer(path->nodes[0]);
  3620. path->nodes[0] = right;
  3621. path->slots[0] -= mid;
  3622. path->slots[1] += 1;
  3623. } else {
  3624. btrfs_tree_unlock(right);
  3625. free_extent_buffer(right);
  3626. }
  3627. BUG_ON(path->slots[0] < 0);
  3628. }
  3629. /*
  3630. * double splits happen when we need to insert a big item in the middle
  3631. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  3632. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  3633. * A B C
  3634. *
  3635. * We avoid this by trying to push the items on either side of our target
  3636. * into the adjacent leaves. If all goes well we can avoid the double split
  3637. * completely.
  3638. */
  3639. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  3640. struct btrfs_root *root,
  3641. struct btrfs_path *path,
  3642. int data_size)
  3643. {
  3644. struct btrfs_fs_info *fs_info = root->fs_info;
  3645. int ret;
  3646. int progress = 0;
  3647. int slot;
  3648. u32 nritems;
  3649. int space_needed = data_size;
  3650. slot = path->slots[0];
  3651. if (slot < btrfs_header_nritems(path->nodes[0]))
  3652. space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
  3653. /*
  3654. * try to push all the items after our slot into the
  3655. * right leaf
  3656. */
  3657. ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
  3658. if (ret < 0)
  3659. return ret;
  3660. if (ret == 0)
  3661. progress++;
  3662. nritems = btrfs_header_nritems(path->nodes[0]);
  3663. /*
  3664. * our goal is to get our slot at the start or end of a leaf. If
  3665. * we've done so we're done
  3666. */
  3667. if (path->slots[0] == 0 || path->slots[0] == nritems)
  3668. return 0;
  3669. if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
  3670. return 0;
  3671. /* try to push all the items before our slot into the next leaf */
  3672. slot = path->slots[0];
  3673. ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
  3674. if (ret < 0)
  3675. return ret;
  3676. if (ret == 0)
  3677. progress++;
  3678. if (progress)
  3679. return 0;
  3680. return 1;
  3681. }
  3682. /*
  3683. * split the path's leaf in two, making sure there is at least data_size
  3684. * available for the resulting leaf level of the path.
  3685. *
  3686. * returns 0 if all went well and < 0 on failure.
  3687. */
  3688. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  3689. struct btrfs_root *root,
  3690. struct btrfs_key *ins_key,
  3691. struct btrfs_path *path, int data_size,
  3692. int extend)
  3693. {
  3694. struct btrfs_disk_key disk_key;
  3695. struct extent_buffer *l;
  3696. u32 nritems;
  3697. int mid;
  3698. int slot;
  3699. struct extent_buffer *right;
  3700. struct btrfs_fs_info *fs_info = root->fs_info;
  3701. int ret = 0;
  3702. int wret;
  3703. int split;
  3704. int num_doubles = 0;
  3705. int tried_avoid_double = 0;
  3706. l = path->nodes[0];
  3707. slot = path->slots[0];
  3708. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  3709. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
  3710. return -EOVERFLOW;
  3711. /* first try to make some room by pushing left and right */
  3712. if (data_size && path->nodes[1]) {
  3713. int space_needed = data_size;
  3714. if (slot < btrfs_header_nritems(l))
  3715. space_needed -= btrfs_leaf_free_space(fs_info, l);
  3716. wret = push_leaf_right(trans, root, path, space_needed,
  3717. space_needed, 0, 0);
  3718. if (wret < 0)
  3719. return wret;
  3720. if (wret) {
  3721. wret = push_leaf_left(trans, root, path, space_needed,
  3722. space_needed, 0, (u32)-1);
  3723. if (wret < 0)
  3724. return wret;
  3725. }
  3726. l = path->nodes[0];
  3727. /* did the pushes work? */
  3728. if (btrfs_leaf_free_space(fs_info, l) >= data_size)
  3729. return 0;
  3730. }
  3731. if (!path->nodes[1]) {
  3732. ret = insert_new_root(trans, root, path, 1);
  3733. if (ret)
  3734. return ret;
  3735. }
  3736. again:
  3737. split = 1;
  3738. l = path->nodes[0];
  3739. slot = path->slots[0];
  3740. nritems = btrfs_header_nritems(l);
  3741. mid = (nritems + 1) / 2;
  3742. if (mid <= slot) {
  3743. if (nritems == 1 ||
  3744. leaf_space_used(l, mid, nritems - mid) + data_size >
  3745. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  3746. if (slot >= nritems) {
  3747. split = 0;
  3748. } else {
  3749. mid = slot;
  3750. if (mid != nritems &&
  3751. leaf_space_used(l, mid, nritems - mid) +
  3752. data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
  3753. if (data_size && !tried_avoid_double)
  3754. goto push_for_double;
  3755. split = 2;
  3756. }
  3757. }
  3758. }
  3759. } else {
  3760. if (leaf_space_used(l, 0, mid) + data_size >
  3761. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  3762. if (!extend && data_size && slot == 0) {
  3763. split = 0;
  3764. } else if ((extend || !data_size) && slot == 0) {
  3765. mid = 1;
  3766. } else {
  3767. mid = slot;
  3768. if (mid != nritems &&
  3769. leaf_space_used(l, mid, nritems - mid) +
  3770. data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
  3771. if (data_size && !tried_avoid_double)
  3772. goto push_for_double;
  3773. split = 2;
  3774. }
  3775. }
  3776. }
  3777. }
  3778. if (split == 0)
  3779. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  3780. else
  3781. btrfs_item_key(l, &disk_key, mid);
  3782. right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
  3783. &disk_key, 0, l->start, 0);
  3784. if (IS_ERR(right))
  3785. return PTR_ERR(right);
  3786. root_add_used(root, fs_info->nodesize);
  3787. memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
  3788. btrfs_set_header_bytenr(right, right->start);
  3789. btrfs_set_header_generation(right, trans->transid);
  3790. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  3791. btrfs_set_header_owner(right, root->root_key.objectid);
  3792. btrfs_set_header_level(right, 0);
  3793. write_extent_buffer_fsid(right, fs_info->fsid);
  3794. write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
  3795. if (split == 0) {
  3796. if (mid <= slot) {
  3797. btrfs_set_header_nritems(right, 0);
  3798. insert_ptr(trans, fs_info, path, &disk_key,
  3799. right->start, path->slots[1] + 1, 1);
  3800. btrfs_tree_unlock(path->nodes[0]);
  3801. free_extent_buffer(path->nodes[0]);
  3802. path->nodes[0] = right;
  3803. path->slots[0] = 0;
  3804. path->slots[1] += 1;
  3805. } else {
  3806. btrfs_set_header_nritems(right, 0);
  3807. insert_ptr(trans, fs_info, path, &disk_key,
  3808. right->start, path->slots[1], 1);
  3809. btrfs_tree_unlock(path->nodes[0]);
  3810. free_extent_buffer(path->nodes[0]);
  3811. path->nodes[0] = right;
  3812. path->slots[0] = 0;
  3813. if (path->slots[1] == 0)
  3814. fixup_low_keys(fs_info, path, &disk_key, 1);
  3815. }
  3816. /*
  3817. * We create a new leaf 'right' for the required ins_len and
  3818. * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
  3819. * the content of ins_len to 'right'.
  3820. */
  3821. return ret;
  3822. }
  3823. copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
  3824. if (split == 2) {
  3825. BUG_ON(num_doubles != 0);
  3826. num_doubles++;
  3827. goto again;
  3828. }
  3829. return 0;
  3830. push_for_double:
  3831. push_for_double_split(trans, root, path, data_size);
  3832. tried_avoid_double = 1;
  3833. if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
  3834. return 0;
  3835. goto again;
  3836. }
  3837. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  3838. struct btrfs_root *root,
  3839. struct btrfs_path *path, int ins_len)
  3840. {
  3841. struct btrfs_fs_info *fs_info = root->fs_info;
  3842. struct btrfs_key key;
  3843. struct extent_buffer *leaf;
  3844. struct btrfs_file_extent_item *fi;
  3845. u64 extent_len = 0;
  3846. u32 item_size;
  3847. int ret;
  3848. leaf = path->nodes[0];
  3849. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3850. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  3851. key.type != BTRFS_EXTENT_CSUM_KEY);
  3852. if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
  3853. return 0;
  3854. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  3855. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  3856. fi = btrfs_item_ptr(leaf, path->slots[0],
  3857. struct btrfs_file_extent_item);
  3858. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  3859. }
  3860. btrfs_release_path(path);
  3861. path->keep_locks = 1;
  3862. path->search_for_split = 1;
  3863. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  3864. path->search_for_split = 0;
  3865. if (ret > 0)
  3866. ret = -EAGAIN;
  3867. if (ret < 0)
  3868. goto err;
  3869. ret = -EAGAIN;
  3870. leaf = path->nodes[0];
  3871. /* if our item isn't there, return now */
  3872. if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  3873. goto err;
  3874. /* the leaf has changed, it now has room. return now */
  3875. if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
  3876. goto err;
  3877. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  3878. fi = btrfs_item_ptr(leaf, path->slots[0],
  3879. struct btrfs_file_extent_item);
  3880. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  3881. goto err;
  3882. }
  3883. btrfs_set_path_blocking(path);
  3884. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  3885. if (ret)
  3886. goto err;
  3887. path->keep_locks = 0;
  3888. btrfs_unlock_up_safe(path, 1);
  3889. return 0;
  3890. err:
  3891. path->keep_locks = 0;
  3892. return ret;
  3893. }
  3894. static noinline int split_item(struct btrfs_trans_handle *trans,
  3895. struct btrfs_fs_info *fs_info,
  3896. struct btrfs_path *path,
  3897. struct btrfs_key *new_key,
  3898. unsigned long split_offset)
  3899. {
  3900. struct extent_buffer *leaf;
  3901. struct btrfs_item *item;
  3902. struct btrfs_item *new_item;
  3903. int slot;
  3904. char *buf;
  3905. u32 nritems;
  3906. u32 item_size;
  3907. u32 orig_offset;
  3908. struct btrfs_disk_key disk_key;
  3909. leaf = path->nodes[0];
  3910. BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
  3911. btrfs_set_path_blocking(path);
  3912. item = btrfs_item_nr(path->slots[0]);
  3913. orig_offset = btrfs_item_offset(leaf, item);
  3914. item_size = btrfs_item_size(leaf, item);
  3915. buf = kmalloc(item_size, GFP_NOFS);
  3916. if (!buf)
  3917. return -ENOMEM;
  3918. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  3919. path->slots[0]), item_size);
  3920. slot = path->slots[0] + 1;
  3921. nritems = btrfs_header_nritems(leaf);
  3922. if (slot != nritems) {
  3923. /* shift the items */
  3924. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  3925. btrfs_item_nr_offset(slot),
  3926. (nritems - slot) * sizeof(struct btrfs_item));
  3927. }
  3928. btrfs_cpu_key_to_disk(&disk_key, new_key);
  3929. btrfs_set_item_key(leaf, &disk_key, slot);
  3930. new_item = btrfs_item_nr(slot);
  3931. btrfs_set_item_offset(leaf, new_item, orig_offset);
  3932. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  3933. btrfs_set_item_offset(leaf, item,
  3934. orig_offset + item_size - split_offset);
  3935. btrfs_set_item_size(leaf, item, split_offset);
  3936. btrfs_set_header_nritems(leaf, nritems + 1);
  3937. /* write the data for the start of the original item */
  3938. write_extent_buffer(leaf, buf,
  3939. btrfs_item_ptr_offset(leaf, path->slots[0]),
  3940. split_offset);
  3941. /* write the data for the new item */
  3942. write_extent_buffer(leaf, buf + split_offset,
  3943. btrfs_item_ptr_offset(leaf, slot),
  3944. item_size - split_offset);
  3945. btrfs_mark_buffer_dirty(leaf);
  3946. BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
  3947. kfree(buf);
  3948. return 0;
  3949. }
  3950. /*
  3951. * This function splits a single item into two items,
  3952. * giving 'new_key' to the new item and splitting the
  3953. * old one at split_offset (from the start of the item).
  3954. *
  3955. * The path may be released by this operation. After
  3956. * the split, the path is pointing to the old item. The
  3957. * new item is going to be in the same node as the old one.
  3958. *
  3959. * Note, the item being split must be smaller enough to live alone on
  3960. * a tree block with room for one extra struct btrfs_item
  3961. *
  3962. * This allows us to split the item in place, keeping a lock on the
  3963. * leaf the entire time.
  3964. */
  3965. int btrfs_split_item(struct btrfs_trans_handle *trans,
  3966. struct btrfs_root *root,
  3967. struct btrfs_path *path,
  3968. struct btrfs_key *new_key,
  3969. unsigned long split_offset)
  3970. {
  3971. int ret;
  3972. ret = setup_leaf_for_split(trans, root, path,
  3973. sizeof(struct btrfs_item));
  3974. if (ret)
  3975. return ret;
  3976. ret = split_item(trans, root->fs_info, path, new_key, split_offset);
  3977. return ret;
  3978. }
  3979. /*
  3980. * This function duplicate a item, giving 'new_key' to the new item.
  3981. * It guarantees both items live in the same tree leaf and the new item
  3982. * is contiguous with the original item.
  3983. *
  3984. * This allows us to split file extent in place, keeping a lock on the
  3985. * leaf the entire time.
  3986. */
  3987. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  3988. struct btrfs_root *root,
  3989. struct btrfs_path *path,
  3990. struct btrfs_key *new_key)
  3991. {
  3992. struct extent_buffer *leaf;
  3993. int ret;
  3994. u32 item_size;
  3995. leaf = path->nodes[0];
  3996. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  3997. ret = setup_leaf_for_split(trans, root, path,
  3998. item_size + sizeof(struct btrfs_item));
  3999. if (ret)
  4000. return ret;
  4001. path->slots[0]++;
  4002. setup_items_for_insert(root, path, new_key, &item_size,
  4003. item_size, item_size +
  4004. sizeof(struct btrfs_item), 1);
  4005. leaf = path->nodes[0];
  4006. memcpy_extent_buffer(leaf,
  4007. btrfs_item_ptr_offset(leaf, path->slots[0]),
  4008. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  4009. item_size);
  4010. return 0;
  4011. }
  4012. /*
  4013. * make the item pointed to by the path smaller. new_size indicates
  4014. * how small to make it, and from_end tells us if we just chop bytes
  4015. * off the end of the item or if we shift the item to chop bytes off
  4016. * the front.
  4017. */
  4018. void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
  4019. struct btrfs_path *path, u32 new_size, int from_end)
  4020. {
  4021. int slot;
  4022. struct extent_buffer *leaf;
  4023. struct btrfs_item *item;
  4024. u32 nritems;
  4025. unsigned int data_end;
  4026. unsigned int old_data_start;
  4027. unsigned int old_size;
  4028. unsigned int size_diff;
  4029. int i;
  4030. struct btrfs_map_token token;
  4031. btrfs_init_map_token(&token);
  4032. leaf = path->nodes[0];
  4033. slot = path->slots[0];
  4034. old_size = btrfs_item_size_nr(leaf, slot);
  4035. if (old_size == new_size)
  4036. return;
  4037. nritems = btrfs_header_nritems(leaf);
  4038. data_end = leaf_data_end(fs_info, leaf);
  4039. old_data_start = btrfs_item_offset_nr(leaf, slot);
  4040. size_diff = old_size - new_size;
  4041. BUG_ON(slot < 0);
  4042. BUG_ON(slot >= nritems);
  4043. /*
  4044. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  4045. */
  4046. /* first correct the data pointers */
  4047. for (i = slot; i < nritems; i++) {
  4048. u32 ioff;
  4049. item = btrfs_item_nr(i);
  4050. ioff = btrfs_token_item_offset(leaf, item, &token);
  4051. btrfs_set_token_item_offset(leaf, item,
  4052. ioff + size_diff, &token);
  4053. }
  4054. /* shift the data */
  4055. if (from_end) {
  4056. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  4057. data_end + size_diff, btrfs_leaf_data(leaf) +
  4058. data_end, old_data_start + new_size - data_end);
  4059. } else {
  4060. struct btrfs_disk_key disk_key;
  4061. u64 offset;
  4062. btrfs_item_key(leaf, &disk_key, slot);
  4063. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  4064. unsigned long ptr;
  4065. struct btrfs_file_extent_item *fi;
  4066. fi = btrfs_item_ptr(leaf, slot,
  4067. struct btrfs_file_extent_item);
  4068. fi = (struct btrfs_file_extent_item *)(
  4069. (unsigned long)fi - size_diff);
  4070. if (btrfs_file_extent_type(leaf, fi) ==
  4071. BTRFS_FILE_EXTENT_INLINE) {
  4072. ptr = btrfs_item_ptr_offset(leaf, slot);
  4073. memmove_extent_buffer(leaf, ptr,
  4074. (unsigned long)fi,
  4075. BTRFS_FILE_EXTENT_INLINE_DATA_START);
  4076. }
  4077. }
  4078. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  4079. data_end + size_diff, btrfs_leaf_data(leaf) +
  4080. data_end, old_data_start - data_end);
  4081. offset = btrfs_disk_key_offset(&disk_key);
  4082. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  4083. btrfs_set_item_key(leaf, &disk_key, slot);
  4084. if (slot == 0)
  4085. fixup_low_keys(fs_info, path, &disk_key, 1);
  4086. }
  4087. item = btrfs_item_nr(slot);
  4088. btrfs_set_item_size(leaf, item, new_size);
  4089. btrfs_mark_buffer_dirty(leaf);
  4090. if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
  4091. btrfs_print_leaf(fs_info, leaf);
  4092. BUG();
  4093. }
  4094. }
  4095. /*
  4096. * make the item pointed to by the path bigger, data_size is the added size.
  4097. */
  4098. void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
  4099. u32 data_size)
  4100. {
  4101. int slot;
  4102. struct extent_buffer *leaf;
  4103. struct btrfs_item *item;
  4104. u32 nritems;
  4105. unsigned int data_end;
  4106. unsigned int old_data;
  4107. unsigned int old_size;
  4108. int i;
  4109. struct btrfs_map_token token;
  4110. btrfs_init_map_token(&token);
  4111. leaf = path->nodes[0];
  4112. nritems = btrfs_header_nritems(leaf);
  4113. data_end = leaf_data_end(fs_info, leaf);
  4114. if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
  4115. btrfs_print_leaf(fs_info, leaf);
  4116. BUG();
  4117. }
  4118. slot = path->slots[0];
  4119. old_data = btrfs_item_end_nr(leaf, slot);
  4120. BUG_ON(slot < 0);
  4121. if (slot >= nritems) {
  4122. btrfs_print_leaf(fs_info, leaf);
  4123. btrfs_crit(fs_info, "slot %d too large, nritems %d",
  4124. slot, nritems);
  4125. BUG_ON(1);
  4126. }
  4127. /*
  4128. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  4129. */
  4130. /* first correct the data pointers */
  4131. for (i = slot; i < nritems; i++) {
  4132. u32 ioff;
  4133. item = btrfs_item_nr(i);
  4134. ioff = btrfs_token_item_offset(leaf, item, &token);
  4135. btrfs_set_token_item_offset(leaf, item,
  4136. ioff - data_size, &token);
  4137. }
  4138. /* shift the data */
  4139. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  4140. data_end - data_size, btrfs_leaf_data(leaf) +
  4141. data_end, old_data - data_end);
  4142. data_end = old_data;
  4143. old_size = btrfs_item_size_nr(leaf, slot);
  4144. item = btrfs_item_nr(slot);
  4145. btrfs_set_item_size(leaf, item, old_size + data_size);
  4146. btrfs_mark_buffer_dirty(leaf);
  4147. if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
  4148. btrfs_print_leaf(fs_info, leaf);
  4149. BUG();
  4150. }
  4151. }
  4152. /*
  4153. * this is a helper for btrfs_insert_empty_items, the main goal here is
  4154. * to save stack depth by doing the bulk of the work in a function
  4155. * that doesn't call btrfs_search_slot
  4156. */
  4157. void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
  4158. struct btrfs_key *cpu_key, u32 *data_size,
  4159. u32 total_data, u32 total_size, int nr)
  4160. {
  4161. struct btrfs_fs_info *fs_info = root->fs_info;
  4162. struct btrfs_item *item;
  4163. int i;
  4164. u32 nritems;
  4165. unsigned int data_end;
  4166. struct btrfs_disk_key disk_key;
  4167. struct extent_buffer *leaf;
  4168. int slot;
  4169. struct btrfs_map_token token;
  4170. if (path->slots[0] == 0) {
  4171. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  4172. fixup_low_keys(fs_info, path, &disk_key, 1);
  4173. }
  4174. btrfs_unlock_up_safe(path, 1);
  4175. btrfs_init_map_token(&token);
  4176. leaf = path->nodes[0];
  4177. slot = path->slots[0];
  4178. nritems = btrfs_header_nritems(leaf);
  4179. data_end = leaf_data_end(fs_info, leaf);
  4180. if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
  4181. btrfs_print_leaf(fs_info, leaf);
  4182. btrfs_crit(fs_info, "not enough freespace need %u have %d",
  4183. total_size, btrfs_leaf_free_space(fs_info, leaf));
  4184. BUG();
  4185. }
  4186. if (slot != nritems) {
  4187. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  4188. if (old_data < data_end) {
  4189. btrfs_print_leaf(fs_info, leaf);
  4190. btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
  4191. slot, old_data, data_end);
  4192. BUG_ON(1);
  4193. }
  4194. /*
  4195. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  4196. */
  4197. /* first correct the data pointers */
  4198. for (i = slot; i < nritems; i++) {
  4199. u32 ioff;
  4200. item = btrfs_item_nr(i);
  4201. ioff = btrfs_token_item_offset(leaf, item, &token);
  4202. btrfs_set_token_item_offset(leaf, item,
  4203. ioff - total_data, &token);
  4204. }
  4205. /* shift the items */
  4206. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  4207. btrfs_item_nr_offset(slot),
  4208. (nritems - slot) * sizeof(struct btrfs_item));
  4209. /* shift the data */
  4210. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  4211. data_end - total_data, btrfs_leaf_data(leaf) +
  4212. data_end, old_data - data_end);
  4213. data_end = old_data;
  4214. }
  4215. /* setup the item for the new data */
  4216. for (i = 0; i < nr; i++) {
  4217. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  4218. btrfs_set_item_key(leaf, &disk_key, slot + i);
  4219. item = btrfs_item_nr(slot + i);
  4220. btrfs_set_token_item_offset(leaf, item,
  4221. data_end - data_size[i], &token);
  4222. data_end -= data_size[i];
  4223. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  4224. }
  4225. btrfs_set_header_nritems(leaf, nritems + nr);
  4226. btrfs_mark_buffer_dirty(leaf);
  4227. if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
  4228. btrfs_print_leaf(fs_info, leaf);
  4229. BUG();
  4230. }
  4231. }
  4232. /*
  4233. * Given a key and some data, insert items into the tree.
  4234. * This does all the path init required, making room in the tree if needed.
  4235. */
  4236. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  4237. struct btrfs_root *root,
  4238. struct btrfs_path *path,
  4239. struct btrfs_key *cpu_key, u32 *data_size,
  4240. int nr)
  4241. {
  4242. int ret = 0;
  4243. int slot;
  4244. int i;
  4245. u32 total_size = 0;
  4246. u32 total_data = 0;
  4247. for (i = 0; i < nr; i++)
  4248. total_data += data_size[i];
  4249. total_size = total_data + (nr * sizeof(struct btrfs_item));
  4250. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  4251. if (ret == 0)
  4252. return -EEXIST;
  4253. if (ret < 0)
  4254. return ret;
  4255. slot = path->slots[0];
  4256. BUG_ON(slot < 0);
  4257. setup_items_for_insert(root, path, cpu_key, data_size,
  4258. total_data, total_size, nr);
  4259. return 0;
  4260. }
  4261. /*
  4262. * Given a key and some data, insert an item into the tree.
  4263. * This does all the path init required, making room in the tree if needed.
  4264. */
  4265. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  4266. *root, struct btrfs_key *cpu_key, void *data, u32
  4267. data_size)
  4268. {
  4269. int ret = 0;
  4270. struct btrfs_path *path;
  4271. struct extent_buffer *leaf;
  4272. unsigned long ptr;
  4273. path = btrfs_alloc_path();
  4274. if (!path)
  4275. return -ENOMEM;
  4276. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  4277. if (!ret) {
  4278. leaf = path->nodes[0];
  4279. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  4280. write_extent_buffer(leaf, data, ptr, data_size);
  4281. btrfs_mark_buffer_dirty(leaf);
  4282. }
  4283. btrfs_free_path(path);
  4284. return ret;
  4285. }
  4286. /*
  4287. * delete the pointer from a given node.
  4288. *
  4289. * the tree should have been previously balanced so the deletion does not
  4290. * empty a node.
  4291. */
  4292. static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  4293. int level, int slot)
  4294. {
  4295. struct btrfs_fs_info *fs_info = root->fs_info;
  4296. struct extent_buffer *parent = path->nodes[level];
  4297. u32 nritems;
  4298. int ret;
  4299. nritems = btrfs_header_nritems(parent);
  4300. if (slot != nritems - 1) {
  4301. if (level)
  4302. tree_mod_log_eb_move(fs_info, parent, slot,
  4303. slot + 1, nritems - slot - 1);
  4304. memmove_extent_buffer(parent,
  4305. btrfs_node_key_ptr_offset(slot),
  4306. btrfs_node_key_ptr_offset(slot + 1),
  4307. sizeof(struct btrfs_key_ptr) *
  4308. (nritems - slot - 1));
  4309. } else if (level) {
  4310. ret = tree_mod_log_insert_key(fs_info, parent, slot,
  4311. MOD_LOG_KEY_REMOVE, GFP_NOFS);
  4312. BUG_ON(ret < 0);
  4313. }
  4314. nritems--;
  4315. btrfs_set_header_nritems(parent, nritems);
  4316. if (nritems == 0 && parent == root->node) {
  4317. BUG_ON(btrfs_header_level(root->node) != 1);
  4318. /* just turn the root into a leaf and break */
  4319. btrfs_set_header_level(root->node, 0);
  4320. } else if (slot == 0) {
  4321. struct btrfs_disk_key disk_key;
  4322. btrfs_node_key(parent, &disk_key, 0);
  4323. fixup_low_keys(fs_info, path, &disk_key, level + 1);
  4324. }
  4325. btrfs_mark_buffer_dirty(parent);
  4326. }
  4327. /*
  4328. * a helper function to delete the leaf pointed to by path->slots[1] and
  4329. * path->nodes[1].
  4330. *
  4331. * This deletes the pointer in path->nodes[1] and frees the leaf
  4332. * block extent. zero is returned if it all worked out, < 0 otherwise.
  4333. *
  4334. * The path must have already been setup for deleting the leaf, including
  4335. * all the proper balancing. path->nodes[1] must be locked.
  4336. */
  4337. static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
  4338. struct btrfs_root *root,
  4339. struct btrfs_path *path,
  4340. struct extent_buffer *leaf)
  4341. {
  4342. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  4343. del_ptr(root, path, 1, path->slots[1]);
  4344. /*
  4345. * btrfs_free_extent is expensive, we want to make sure we
  4346. * aren't holding any locks when we call it
  4347. */
  4348. btrfs_unlock_up_safe(path, 0);
  4349. root_sub_used(root, leaf->len);
  4350. extent_buffer_get(leaf);
  4351. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  4352. free_extent_buffer_stale(leaf);
  4353. }
  4354. /*
  4355. * delete the item at the leaf level in path. If that empties
  4356. * the leaf, remove it from the tree
  4357. */
  4358. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  4359. struct btrfs_path *path, int slot, int nr)
  4360. {
  4361. struct btrfs_fs_info *fs_info = root->fs_info;
  4362. struct extent_buffer *leaf;
  4363. struct btrfs_item *item;
  4364. u32 last_off;
  4365. u32 dsize = 0;
  4366. int ret = 0;
  4367. int wret;
  4368. int i;
  4369. u32 nritems;
  4370. struct btrfs_map_token token;
  4371. btrfs_init_map_token(&token);
  4372. leaf = path->nodes[0];
  4373. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  4374. for (i = 0; i < nr; i++)
  4375. dsize += btrfs_item_size_nr(leaf, slot + i);
  4376. nritems = btrfs_header_nritems(leaf);
  4377. if (slot + nr != nritems) {
  4378. int data_end = leaf_data_end(fs_info, leaf);
  4379. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  4380. data_end + dsize,
  4381. btrfs_leaf_data(leaf) + data_end,
  4382. last_off - data_end);
  4383. for (i = slot + nr; i < nritems; i++) {
  4384. u32 ioff;
  4385. item = btrfs_item_nr(i);
  4386. ioff = btrfs_token_item_offset(leaf, item, &token);
  4387. btrfs_set_token_item_offset(leaf, item,
  4388. ioff + dsize, &token);
  4389. }
  4390. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  4391. btrfs_item_nr_offset(slot + nr),
  4392. sizeof(struct btrfs_item) *
  4393. (nritems - slot - nr));
  4394. }
  4395. btrfs_set_header_nritems(leaf, nritems - nr);
  4396. nritems -= nr;
  4397. /* delete the leaf if we've emptied it */
  4398. if (nritems == 0) {
  4399. if (leaf == root->node) {
  4400. btrfs_set_header_level(leaf, 0);
  4401. } else {
  4402. btrfs_set_path_blocking(path);
  4403. clean_tree_block(trans, fs_info, leaf);
  4404. btrfs_del_leaf(trans, root, path, leaf);
  4405. }
  4406. } else {
  4407. int used = leaf_space_used(leaf, 0, nritems);
  4408. if (slot == 0) {
  4409. struct btrfs_disk_key disk_key;
  4410. btrfs_item_key(leaf, &disk_key, 0);
  4411. fixup_low_keys(fs_info, path, &disk_key, 1);
  4412. }
  4413. /* delete the leaf if it is mostly empty */
  4414. if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
  4415. /* push_leaf_left fixes the path.
  4416. * make sure the path still points to our leaf
  4417. * for possible call to del_ptr below
  4418. */
  4419. slot = path->slots[1];
  4420. extent_buffer_get(leaf);
  4421. btrfs_set_path_blocking(path);
  4422. wret = push_leaf_left(trans, root, path, 1, 1,
  4423. 1, (u32)-1);
  4424. if (wret < 0 && wret != -ENOSPC)
  4425. ret = wret;
  4426. if (path->nodes[0] == leaf &&
  4427. btrfs_header_nritems(leaf)) {
  4428. wret = push_leaf_right(trans, root, path, 1,
  4429. 1, 1, 0);
  4430. if (wret < 0 && wret != -ENOSPC)
  4431. ret = wret;
  4432. }
  4433. if (btrfs_header_nritems(leaf) == 0) {
  4434. path->slots[1] = slot;
  4435. btrfs_del_leaf(trans, root, path, leaf);
  4436. free_extent_buffer(leaf);
  4437. ret = 0;
  4438. } else {
  4439. /* if we're still in the path, make sure
  4440. * we're dirty. Otherwise, one of the
  4441. * push_leaf functions must have already
  4442. * dirtied this buffer
  4443. */
  4444. if (path->nodes[0] == leaf)
  4445. btrfs_mark_buffer_dirty(leaf);
  4446. free_extent_buffer(leaf);
  4447. }
  4448. } else {
  4449. btrfs_mark_buffer_dirty(leaf);
  4450. }
  4451. }
  4452. return ret;
  4453. }
  4454. /*
  4455. * search the tree again to find a leaf with lesser keys
  4456. * returns 0 if it found something or 1 if there are no lesser leaves.
  4457. * returns < 0 on io errors.
  4458. *
  4459. * This may release the path, and so you may lose any locks held at the
  4460. * time you call it.
  4461. */
  4462. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  4463. {
  4464. struct btrfs_key key;
  4465. struct btrfs_disk_key found_key;
  4466. int ret;
  4467. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  4468. if (key.offset > 0) {
  4469. key.offset--;
  4470. } else if (key.type > 0) {
  4471. key.type--;
  4472. key.offset = (u64)-1;
  4473. } else if (key.objectid > 0) {
  4474. key.objectid--;
  4475. key.type = (u8)-1;
  4476. key.offset = (u64)-1;
  4477. } else {
  4478. return 1;
  4479. }
  4480. btrfs_release_path(path);
  4481. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4482. if (ret < 0)
  4483. return ret;
  4484. btrfs_item_key(path->nodes[0], &found_key, 0);
  4485. ret = comp_keys(&found_key, &key);
  4486. /*
  4487. * We might have had an item with the previous key in the tree right
  4488. * before we released our path. And after we released our path, that
  4489. * item might have been pushed to the first slot (0) of the leaf we
  4490. * were holding due to a tree balance. Alternatively, an item with the
  4491. * previous key can exist as the only element of a leaf (big fat item).
  4492. * Therefore account for these 2 cases, so that our callers (like
  4493. * btrfs_previous_item) don't miss an existing item with a key matching
  4494. * the previous key we computed above.
  4495. */
  4496. if (ret <= 0)
  4497. return 0;
  4498. return 1;
  4499. }
  4500. /*
  4501. * A helper function to walk down the tree starting at min_key, and looking
  4502. * for nodes or leaves that are have a minimum transaction id.
  4503. * This is used by the btree defrag code, and tree logging
  4504. *
  4505. * This does not cow, but it does stuff the starting key it finds back
  4506. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  4507. * key and get a writable path.
  4508. *
  4509. * This does lock as it descends, and path->keep_locks should be set
  4510. * to 1 by the caller.
  4511. *
  4512. * This honors path->lowest_level to prevent descent past a given level
  4513. * of the tree.
  4514. *
  4515. * min_trans indicates the oldest transaction that you are interested
  4516. * in walking through. Any nodes or leaves older than min_trans are
  4517. * skipped over (without reading them).
  4518. *
  4519. * returns zero if something useful was found, < 0 on error and 1 if there
  4520. * was nothing in the tree that matched the search criteria.
  4521. */
  4522. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  4523. struct btrfs_path *path,
  4524. u64 min_trans)
  4525. {
  4526. struct btrfs_fs_info *fs_info = root->fs_info;
  4527. struct extent_buffer *cur;
  4528. struct btrfs_key found_key;
  4529. int slot;
  4530. int sret;
  4531. u32 nritems;
  4532. int level;
  4533. int ret = 1;
  4534. int keep_locks = path->keep_locks;
  4535. path->keep_locks = 1;
  4536. again:
  4537. cur = btrfs_read_lock_root_node(root);
  4538. level = btrfs_header_level(cur);
  4539. WARN_ON(path->nodes[level]);
  4540. path->nodes[level] = cur;
  4541. path->locks[level] = BTRFS_READ_LOCK;
  4542. if (btrfs_header_generation(cur) < min_trans) {
  4543. ret = 1;
  4544. goto out;
  4545. }
  4546. while (1) {
  4547. nritems = btrfs_header_nritems(cur);
  4548. level = btrfs_header_level(cur);
  4549. sret = bin_search(cur, min_key, level, &slot);
  4550. /* at the lowest level, we're done, setup the path and exit */
  4551. if (level == path->lowest_level) {
  4552. if (slot >= nritems)
  4553. goto find_next_key;
  4554. ret = 0;
  4555. path->slots[level] = slot;
  4556. btrfs_item_key_to_cpu(cur, &found_key, slot);
  4557. goto out;
  4558. }
  4559. if (sret && slot > 0)
  4560. slot--;
  4561. /*
  4562. * check this node pointer against the min_trans parameters.
  4563. * If it is too old, old, skip to the next one.
  4564. */
  4565. while (slot < nritems) {
  4566. u64 gen;
  4567. gen = btrfs_node_ptr_generation(cur, slot);
  4568. if (gen < min_trans) {
  4569. slot++;
  4570. continue;
  4571. }
  4572. break;
  4573. }
  4574. find_next_key:
  4575. /*
  4576. * we didn't find a candidate key in this node, walk forward
  4577. * and find another one
  4578. */
  4579. if (slot >= nritems) {
  4580. path->slots[level] = slot;
  4581. btrfs_set_path_blocking(path);
  4582. sret = btrfs_find_next_key(root, path, min_key, level,
  4583. min_trans);
  4584. if (sret == 0) {
  4585. btrfs_release_path(path);
  4586. goto again;
  4587. } else {
  4588. goto out;
  4589. }
  4590. }
  4591. /* save our key for returning back */
  4592. btrfs_node_key_to_cpu(cur, &found_key, slot);
  4593. path->slots[level] = slot;
  4594. if (level == path->lowest_level) {
  4595. ret = 0;
  4596. goto out;
  4597. }
  4598. btrfs_set_path_blocking(path);
  4599. cur = read_node_slot(fs_info, cur, slot);
  4600. if (IS_ERR(cur)) {
  4601. ret = PTR_ERR(cur);
  4602. goto out;
  4603. }
  4604. btrfs_tree_read_lock(cur);
  4605. path->locks[level - 1] = BTRFS_READ_LOCK;
  4606. path->nodes[level - 1] = cur;
  4607. unlock_up(path, level, 1, 0, NULL);
  4608. btrfs_clear_path_blocking(path, NULL, 0);
  4609. }
  4610. out:
  4611. path->keep_locks = keep_locks;
  4612. if (ret == 0) {
  4613. btrfs_unlock_up_safe(path, path->lowest_level + 1);
  4614. btrfs_set_path_blocking(path);
  4615. memcpy(min_key, &found_key, sizeof(found_key));
  4616. }
  4617. return ret;
  4618. }
  4619. static int tree_move_down(struct btrfs_fs_info *fs_info,
  4620. struct btrfs_path *path,
  4621. int *level, int root_level)
  4622. {
  4623. struct extent_buffer *eb;
  4624. BUG_ON(*level == 0);
  4625. eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
  4626. if (IS_ERR(eb))
  4627. return PTR_ERR(eb);
  4628. path->nodes[*level - 1] = eb;
  4629. path->slots[*level - 1] = 0;
  4630. (*level)--;
  4631. return 0;
  4632. }
  4633. static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
  4634. struct btrfs_path *path,
  4635. int *level, int root_level)
  4636. {
  4637. int ret = 0;
  4638. int nritems;
  4639. nritems = btrfs_header_nritems(path->nodes[*level]);
  4640. path->slots[*level]++;
  4641. while (path->slots[*level] >= nritems) {
  4642. if (*level == root_level)
  4643. return -1;
  4644. /* move upnext */
  4645. path->slots[*level] = 0;
  4646. free_extent_buffer(path->nodes[*level]);
  4647. path->nodes[*level] = NULL;
  4648. (*level)++;
  4649. path->slots[*level]++;
  4650. nritems = btrfs_header_nritems(path->nodes[*level]);
  4651. ret = 1;
  4652. }
  4653. return ret;
  4654. }
  4655. /*
  4656. * Returns 1 if it had to move up and next. 0 is returned if it moved only next
  4657. * or down.
  4658. */
  4659. static int tree_advance(struct btrfs_fs_info *fs_info,
  4660. struct btrfs_path *path,
  4661. int *level, int root_level,
  4662. int allow_down,
  4663. struct btrfs_key *key)
  4664. {
  4665. int ret;
  4666. if (*level == 0 || !allow_down) {
  4667. ret = tree_move_next_or_upnext(fs_info, path, level,
  4668. root_level);
  4669. } else {
  4670. ret = tree_move_down(fs_info, path, level, root_level);
  4671. }
  4672. if (ret >= 0) {
  4673. if (*level == 0)
  4674. btrfs_item_key_to_cpu(path->nodes[*level], key,
  4675. path->slots[*level]);
  4676. else
  4677. btrfs_node_key_to_cpu(path->nodes[*level], key,
  4678. path->slots[*level]);
  4679. }
  4680. return ret;
  4681. }
  4682. static int tree_compare_item(struct btrfs_path *left_path,
  4683. struct btrfs_path *right_path,
  4684. char *tmp_buf)
  4685. {
  4686. int cmp;
  4687. int len1, len2;
  4688. unsigned long off1, off2;
  4689. len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
  4690. len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
  4691. if (len1 != len2)
  4692. return 1;
  4693. off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
  4694. off2 = btrfs_item_ptr_offset(right_path->nodes[0],
  4695. right_path->slots[0]);
  4696. read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
  4697. cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
  4698. if (cmp)
  4699. return 1;
  4700. return 0;
  4701. }
  4702. #define ADVANCE 1
  4703. #define ADVANCE_ONLY_NEXT -1
  4704. /*
  4705. * This function compares two trees and calls the provided callback for
  4706. * every changed/new/deleted item it finds.
  4707. * If shared tree blocks are encountered, whole subtrees are skipped, making
  4708. * the compare pretty fast on snapshotted subvolumes.
  4709. *
  4710. * This currently works on commit roots only. As commit roots are read only,
  4711. * we don't do any locking. The commit roots are protected with transactions.
  4712. * Transactions are ended and rejoined when a commit is tried in between.
  4713. *
  4714. * This function checks for modifications done to the trees while comparing.
  4715. * If it detects a change, it aborts immediately.
  4716. */
  4717. int btrfs_compare_trees(struct btrfs_root *left_root,
  4718. struct btrfs_root *right_root,
  4719. btrfs_changed_cb_t changed_cb, void *ctx)
  4720. {
  4721. struct btrfs_fs_info *fs_info = left_root->fs_info;
  4722. int ret;
  4723. int cmp;
  4724. struct btrfs_path *left_path = NULL;
  4725. struct btrfs_path *right_path = NULL;
  4726. struct btrfs_key left_key;
  4727. struct btrfs_key right_key;
  4728. char *tmp_buf = NULL;
  4729. int left_root_level;
  4730. int right_root_level;
  4731. int left_level;
  4732. int right_level;
  4733. int left_end_reached;
  4734. int right_end_reached;
  4735. int advance_left;
  4736. int advance_right;
  4737. u64 left_blockptr;
  4738. u64 right_blockptr;
  4739. u64 left_gen;
  4740. u64 right_gen;
  4741. left_path = btrfs_alloc_path();
  4742. if (!left_path) {
  4743. ret = -ENOMEM;
  4744. goto out;
  4745. }
  4746. right_path = btrfs_alloc_path();
  4747. if (!right_path) {
  4748. ret = -ENOMEM;
  4749. goto out;
  4750. }
  4751. tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
  4752. if (!tmp_buf) {
  4753. tmp_buf = vmalloc(fs_info->nodesize);
  4754. if (!tmp_buf) {
  4755. ret = -ENOMEM;
  4756. goto out;
  4757. }
  4758. }
  4759. left_path->search_commit_root = 1;
  4760. left_path->skip_locking = 1;
  4761. right_path->search_commit_root = 1;
  4762. right_path->skip_locking = 1;
  4763. /*
  4764. * Strategy: Go to the first items of both trees. Then do
  4765. *
  4766. * If both trees are at level 0
  4767. * Compare keys of current items
  4768. * If left < right treat left item as new, advance left tree
  4769. * and repeat
  4770. * If left > right treat right item as deleted, advance right tree
  4771. * and repeat
  4772. * If left == right do deep compare of items, treat as changed if
  4773. * needed, advance both trees and repeat
  4774. * If both trees are at the same level but not at level 0
  4775. * Compare keys of current nodes/leafs
  4776. * If left < right advance left tree and repeat
  4777. * If left > right advance right tree and repeat
  4778. * If left == right compare blockptrs of the next nodes/leafs
  4779. * If they match advance both trees but stay at the same level
  4780. * and repeat
  4781. * If they don't match advance both trees while allowing to go
  4782. * deeper and repeat
  4783. * If tree levels are different
  4784. * Advance the tree that needs it and repeat
  4785. *
  4786. * Advancing a tree means:
  4787. * If we are at level 0, try to go to the next slot. If that's not
  4788. * possible, go one level up and repeat. Stop when we found a level
  4789. * where we could go to the next slot. We may at this point be on a
  4790. * node or a leaf.
  4791. *
  4792. * If we are not at level 0 and not on shared tree blocks, go one
  4793. * level deeper.
  4794. *
  4795. * If we are not at level 0 and on shared tree blocks, go one slot to
  4796. * the right if possible or go up and right.
  4797. */
  4798. down_read(&fs_info->commit_root_sem);
  4799. left_level = btrfs_header_level(left_root->commit_root);
  4800. left_root_level = left_level;
  4801. left_path->nodes[left_level] = left_root->commit_root;
  4802. extent_buffer_get(left_path->nodes[left_level]);
  4803. right_level = btrfs_header_level(right_root->commit_root);
  4804. right_root_level = right_level;
  4805. right_path->nodes[right_level] = right_root->commit_root;
  4806. extent_buffer_get(right_path->nodes[right_level]);
  4807. up_read(&fs_info->commit_root_sem);
  4808. if (left_level == 0)
  4809. btrfs_item_key_to_cpu(left_path->nodes[left_level],
  4810. &left_key, left_path->slots[left_level]);
  4811. else
  4812. btrfs_node_key_to_cpu(left_path->nodes[left_level],
  4813. &left_key, left_path->slots[left_level]);
  4814. if (right_level == 0)
  4815. btrfs_item_key_to_cpu(right_path->nodes[right_level],
  4816. &right_key, right_path->slots[right_level]);
  4817. else
  4818. btrfs_node_key_to_cpu(right_path->nodes[right_level],
  4819. &right_key, right_path->slots[right_level]);
  4820. left_end_reached = right_end_reached = 0;
  4821. advance_left = advance_right = 0;
  4822. while (1) {
  4823. if (advance_left && !left_end_reached) {
  4824. ret = tree_advance(fs_info, left_path, &left_level,
  4825. left_root_level,
  4826. advance_left != ADVANCE_ONLY_NEXT,
  4827. &left_key);
  4828. if (ret == -1)
  4829. left_end_reached = ADVANCE;
  4830. else if (ret < 0)
  4831. goto out;
  4832. advance_left = 0;
  4833. }
  4834. if (advance_right && !right_end_reached) {
  4835. ret = tree_advance(fs_info, right_path, &right_level,
  4836. right_root_level,
  4837. advance_right != ADVANCE_ONLY_NEXT,
  4838. &right_key);
  4839. if (ret == -1)
  4840. right_end_reached = ADVANCE;
  4841. else if (ret < 0)
  4842. goto out;
  4843. advance_right = 0;
  4844. }
  4845. if (left_end_reached && right_end_reached) {
  4846. ret = 0;
  4847. goto out;
  4848. } else if (left_end_reached) {
  4849. if (right_level == 0) {
  4850. ret = changed_cb(left_root, right_root,
  4851. left_path, right_path,
  4852. &right_key,
  4853. BTRFS_COMPARE_TREE_DELETED,
  4854. ctx);
  4855. if (ret < 0)
  4856. goto out;
  4857. }
  4858. advance_right = ADVANCE;
  4859. continue;
  4860. } else if (right_end_reached) {
  4861. if (left_level == 0) {
  4862. ret = changed_cb(left_root, right_root,
  4863. left_path, right_path,
  4864. &left_key,
  4865. BTRFS_COMPARE_TREE_NEW,
  4866. ctx);
  4867. if (ret < 0)
  4868. goto out;
  4869. }
  4870. advance_left = ADVANCE;
  4871. continue;
  4872. }
  4873. if (left_level == 0 && right_level == 0) {
  4874. cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
  4875. if (cmp < 0) {
  4876. ret = changed_cb(left_root, right_root,
  4877. left_path, right_path,
  4878. &left_key,
  4879. BTRFS_COMPARE_TREE_NEW,
  4880. ctx);
  4881. if (ret < 0)
  4882. goto out;
  4883. advance_left = ADVANCE;
  4884. } else if (cmp > 0) {
  4885. ret = changed_cb(left_root, right_root,
  4886. left_path, right_path,
  4887. &right_key,
  4888. BTRFS_COMPARE_TREE_DELETED,
  4889. ctx);
  4890. if (ret < 0)
  4891. goto out;
  4892. advance_right = ADVANCE;
  4893. } else {
  4894. enum btrfs_compare_tree_result result;
  4895. WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
  4896. ret = tree_compare_item(left_path, right_path,
  4897. tmp_buf);
  4898. if (ret)
  4899. result = BTRFS_COMPARE_TREE_CHANGED;
  4900. else
  4901. result = BTRFS_COMPARE_TREE_SAME;
  4902. ret = changed_cb(left_root, right_root,
  4903. left_path, right_path,
  4904. &left_key, result, ctx);
  4905. if (ret < 0)
  4906. goto out;
  4907. advance_left = ADVANCE;
  4908. advance_right = ADVANCE;
  4909. }
  4910. } else if (left_level == right_level) {
  4911. cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
  4912. if (cmp < 0) {
  4913. advance_left = ADVANCE;
  4914. } else if (cmp > 0) {
  4915. advance_right = ADVANCE;
  4916. } else {
  4917. left_blockptr = btrfs_node_blockptr(
  4918. left_path->nodes[left_level],
  4919. left_path->slots[left_level]);
  4920. right_blockptr = btrfs_node_blockptr(
  4921. right_path->nodes[right_level],
  4922. right_path->slots[right_level]);
  4923. left_gen = btrfs_node_ptr_generation(
  4924. left_path->nodes[left_level],
  4925. left_path->slots[left_level]);
  4926. right_gen = btrfs_node_ptr_generation(
  4927. right_path->nodes[right_level],
  4928. right_path->slots[right_level]);
  4929. if (left_blockptr == right_blockptr &&
  4930. left_gen == right_gen) {
  4931. /*
  4932. * As we're on a shared block, don't
  4933. * allow to go deeper.
  4934. */
  4935. advance_left = ADVANCE_ONLY_NEXT;
  4936. advance_right = ADVANCE_ONLY_NEXT;
  4937. } else {
  4938. advance_left = ADVANCE;
  4939. advance_right = ADVANCE;
  4940. }
  4941. }
  4942. } else if (left_level < right_level) {
  4943. advance_right = ADVANCE;
  4944. } else {
  4945. advance_left = ADVANCE;
  4946. }
  4947. }
  4948. out:
  4949. btrfs_free_path(left_path);
  4950. btrfs_free_path(right_path);
  4951. kvfree(tmp_buf);
  4952. return ret;
  4953. }
  4954. /*
  4955. * this is similar to btrfs_next_leaf, but does not try to preserve
  4956. * and fixup the path. It looks for and returns the next key in the
  4957. * tree based on the current path and the min_trans parameters.
  4958. *
  4959. * 0 is returned if another key is found, < 0 if there are any errors
  4960. * and 1 is returned if there are no higher keys in the tree
  4961. *
  4962. * path->keep_locks should be set to 1 on the search made before
  4963. * calling this function.
  4964. */
  4965. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  4966. struct btrfs_key *key, int level, u64 min_trans)
  4967. {
  4968. int slot;
  4969. struct extent_buffer *c;
  4970. WARN_ON(!path->keep_locks);
  4971. while (level < BTRFS_MAX_LEVEL) {
  4972. if (!path->nodes[level])
  4973. return 1;
  4974. slot = path->slots[level] + 1;
  4975. c = path->nodes[level];
  4976. next:
  4977. if (slot >= btrfs_header_nritems(c)) {
  4978. int ret;
  4979. int orig_lowest;
  4980. struct btrfs_key cur_key;
  4981. if (level + 1 >= BTRFS_MAX_LEVEL ||
  4982. !path->nodes[level + 1])
  4983. return 1;
  4984. if (path->locks[level + 1]) {
  4985. level++;
  4986. continue;
  4987. }
  4988. slot = btrfs_header_nritems(c) - 1;
  4989. if (level == 0)
  4990. btrfs_item_key_to_cpu(c, &cur_key, slot);
  4991. else
  4992. btrfs_node_key_to_cpu(c, &cur_key, slot);
  4993. orig_lowest = path->lowest_level;
  4994. btrfs_release_path(path);
  4995. path->lowest_level = level;
  4996. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  4997. 0, 0);
  4998. path->lowest_level = orig_lowest;
  4999. if (ret < 0)
  5000. return ret;
  5001. c = path->nodes[level];
  5002. slot = path->slots[level];
  5003. if (ret == 0)
  5004. slot++;
  5005. goto next;
  5006. }
  5007. if (level == 0)
  5008. btrfs_item_key_to_cpu(c, key, slot);
  5009. else {
  5010. u64 gen = btrfs_node_ptr_generation(c, slot);
  5011. if (gen < min_trans) {
  5012. slot++;
  5013. goto next;
  5014. }
  5015. btrfs_node_key_to_cpu(c, key, slot);
  5016. }
  5017. return 0;
  5018. }
  5019. return 1;
  5020. }
  5021. /*
  5022. * search the tree again to find a leaf with greater keys
  5023. * returns 0 if it found something or 1 if there are no greater leaves.
  5024. * returns < 0 on io errors.
  5025. */
  5026. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  5027. {
  5028. return btrfs_next_old_leaf(root, path, 0);
  5029. }
  5030. int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
  5031. u64 time_seq)
  5032. {
  5033. int slot;
  5034. int level;
  5035. struct extent_buffer *c;
  5036. struct extent_buffer *next;
  5037. struct btrfs_key key;
  5038. u32 nritems;
  5039. int ret;
  5040. int old_spinning = path->leave_spinning;
  5041. int next_rw_lock = 0;
  5042. nritems = btrfs_header_nritems(path->nodes[0]);
  5043. if (nritems == 0)
  5044. return 1;
  5045. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  5046. again:
  5047. level = 1;
  5048. next = NULL;
  5049. next_rw_lock = 0;
  5050. btrfs_release_path(path);
  5051. path->keep_locks = 1;
  5052. path->leave_spinning = 1;
  5053. if (time_seq)
  5054. ret = btrfs_search_old_slot(root, &key, path, time_seq);
  5055. else
  5056. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  5057. path->keep_locks = 0;
  5058. if (ret < 0)
  5059. return ret;
  5060. nritems = btrfs_header_nritems(path->nodes[0]);
  5061. /*
  5062. * by releasing the path above we dropped all our locks. A balance
  5063. * could have added more items next to the key that used to be
  5064. * at the very end of the block. So, check again here and
  5065. * advance the path if there are now more items available.
  5066. */
  5067. if (nritems > 0 && path->slots[0] < nritems - 1) {
  5068. if (ret == 0)
  5069. path->slots[0]++;
  5070. ret = 0;
  5071. goto done;
  5072. }
  5073. /*
  5074. * So the above check misses one case:
  5075. * - after releasing the path above, someone has removed the item that
  5076. * used to be at the very end of the block, and balance between leafs
  5077. * gets another one with bigger key.offset to replace it.
  5078. *
  5079. * This one should be returned as well, or we can get leaf corruption
  5080. * later(esp. in __btrfs_drop_extents()).
  5081. *
  5082. * And a bit more explanation about this check,
  5083. * with ret > 0, the key isn't found, the path points to the slot
  5084. * where it should be inserted, so the path->slots[0] item must be the
  5085. * bigger one.
  5086. */
  5087. if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
  5088. ret = 0;
  5089. goto done;
  5090. }
  5091. while (level < BTRFS_MAX_LEVEL) {
  5092. if (!path->nodes[level]) {
  5093. ret = 1;
  5094. goto done;
  5095. }
  5096. slot = path->slots[level] + 1;
  5097. c = path->nodes[level];
  5098. if (slot >= btrfs_header_nritems(c)) {
  5099. level++;
  5100. if (level == BTRFS_MAX_LEVEL) {
  5101. ret = 1;
  5102. goto done;
  5103. }
  5104. continue;
  5105. }
  5106. if (next) {
  5107. btrfs_tree_unlock_rw(next, next_rw_lock);
  5108. free_extent_buffer(next);
  5109. }
  5110. next = c;
  5111. next_rw_lock = path->locks[level];
  5112. ret = read_block_for_search(NULL, root, path, &next, level,
  5113. slot, &key, 0);
  5114. if (ret == -EAGAIN)
  5115. goto again;
  5116. if (ret < 0) {
  5117. btrfs_release_path(path);
  5118. goto done;
  5119. }
  5120. if (!path->skip_locking) {
  5121. ret = btrfs_try_tree_read_lock(next);
  5122. if (!ret && time_seq) {
  5123. /*
  5124. * If we don't get the lock, we may be racing
  5125. * with push_leaf_left, holding that lock while
  5126. * itself waiting for the leaf we've currently
  5127. * locked. To solve this situation, we give up
  5128. * on our lock and cycle.
  5129. */
  5130. free_extent_buffer(next);
  5131. btrfs_release_path(path);
  5132. cond_resched();
  5133. goto again;
  5134. }
  5135. if (!ret) {
  5136. btrfs_set_path_blocking(path);
  5137. btrfs_tree_read_lock(next);
  5138. btrfs_clear_path_blocking(path, next,
  5139. BTRFS_READ_LOCK);
  5140. }
  5141. next_rw_lock = BTRFS_READ_LOCK;
  5142. }
  5143. break;
  5144. }
  5145. path->slots[level] = slot;
  5146. while (1) {
  5147. level--;
  5148. c = path->nodes[level];
  5149. if (path->locks[level])
  5150. btrfs_tree_unlock_rw(c, path->locks[level]);
  5151. free_extent_buffer(c);
  5152. path->nodes[level] = next;
  5153. path->slots[level] = 0;
  5154. if (!path->skip_locking)
  5155. path->locks[level] = next_rw_lock;
  5156. if (!level)
  5157. break;
  5158. ret = read_block_for_search(NULL, root, path, &next, level,
  5159. 0, &key, 0);
  5160. if (ret == -EAGAIN)
  5161. goto again;
  5162. if (ret < 0) {
  5163. btrfs_release_path(path);
  5164. goto done;
  5165. }
  5166. if (!path->skip_locking) {
  5167. ret = btrfs_try_tree_read_lock(next);
  5168. if (!ret) {
  5169. btrfs_set_path_blocking(path);
  5170. btrfs_tree_read_lock(next);
  5171. btrfs_clear_path_blocking(path, next,
  5172. BTRFS_READ_LOCK);
  5173. }
  5174. next_rw_lock = BTRFS_READ_LOCK;
  5175. }
  5176. }
  5177. ret = 0;
  5178. done:
  5179. unlock_up(path, 0, 1, 0, NULL);
  5180. path->leave_spinning = old_spinning;
  5181. if (!old_spinning)
  5182. btrfs_set_path_blocking(path);
  5183. return ret;
  5184. }
  5185. /*
  5186. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  5187. * searching until it gets past min_objectid or finds an item of 'type'
  5188. *
  5189. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  5190. */
  5191. int btrfs_previous_item(struct btrfs_root *root,
  5192. struct btrfs_path *path, u64 min_objectid,
  5193. int type)
  5194. {
  5195. struct btrfs_key found_key;
  5196. struct extent_buffer *leaf;
  5197. u32 nritems;
  5198. int ret;
  5199. while (1) {
  5200. if (path->slots[0] == 0) {
  5201. btrfs_set_path_blocking(path);
  5202. ret = btrfs_prev_leaf(root, path);
  5203. if (ret != 0)
  5204. return ret;
  5205. } else {
  5206. path->slots[0]--;
  5207. }
  5208. leaf = path->nodes[0];
  5209. nritems = btrfs_header_nritems(leaf);
  5210. if (nritems == 0)
  5211. return 1;
  5212. if (path->slots[0] == nritems)
  5213. path->slots[0]--;
  5214. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5215. if (found_key.objectid < min_objectid)
  5216. break;
  5217. if (found_key.type == type)
  5218. return 0;
  5219. if (found_key.objectid == min_objectid &&
  5220. found_key.type < type)
  5221. break;
  5222. }
  5223. return 1;
  5224. }
  5225. /*
  5226. * search in extent tree to find a previous Metadata/Data extent item with
  5227. * min objecitd.
  5228. *
  5229. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  5230. */
  5231. int btrfs_previous_extent_item(struct btrfs_root *root,
  5232. struct btrfs_path *path, u64 min_objectid)
  5233. {
  5234. struct btrfs_key found_key;
  5235. struct extent_buffer *leaf;
  5236. u32 nritems;
  5237. int ret;
  5238. while (1) {
  5239. if (path->slots[0] == 0) {
  5240. btrfs_set_path_blocking(path);
  5241. ret = btrfs_prev_leaf(root, path);
  5242. if (ret != 0)
  5243. return ret;
  5244. } else {
  5245. path->slots[0]--;
  5246. }
  5247. leaf = path->nodes[0];
  5248. nritems = btrfs_header_nritems(leaf);
  5249. if (nritems == 0)
  5250. return 1;
  5251. if (path->slots[0] == nritems)
  5252. path->slots[0]--;
  5253. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5254. if (found_key.objectid < min_objectid)
  5255. break;
  5256. if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
  5257. found_key.type == BTRFS_METADATA_ITEM_KEY)
  5258. return 0;
  5259. if (found_key.objectid == min_objectid &&
  5260. found_key.type < BTRFS_EXTENT_ITEM_KEY)
  5261. break;
  5262. }
  5263. return 1;
  5264. }