target_core_rd.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*******************************************************************************
  2. * Filename: target_core_rd.c
  3. *
  4. * This file contains the Storage Engine <-> Ramdisk transport
  5. * specific functions.
  6. *
  7. * (c) Copyright 2003-2013 Datera, Inc.
  8. *
  9. * Nicholas A. Bellinger <nab@kernel.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  24. *
  25. ******************************************************************************/
  26. #include <linux/string.h>
  27. #include <linux/parser.h>
  28. #include <linux/highmem.h>
  29. #include <linux/timer.h>
  30. #include <linux/scatterlist.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include <scsi/scsi_proto.h>
  34. #include <target/target_core_base.h>
  35. #include <target/target_core_backend.h>
  36. #include "target_core_rd.h"
  37. static inline struct rd_dev *RD_DEV(struct se_device *dev)
  38. {
  39. return container_of(dev, struct rd_dev, dev);
  40. }
  41. static int rd_attach_hba(struct se_hba *hba, u32 host_id)
  42. {
  43. struct rd_host *rd_host;
  44. rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
  45. if (!rd_host) {
  46. pr_err("Unable to allocate memory for struct rd_host\n");
  47. return -ENOMEM;
  48. }
  49. rd_host->rd_host_id = host_id;
  50. hba->hba_ptr = rd_host;
  51. pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
  52. " Generic Target Core Stack %s\n", hba->hba_id,
  53. RD_HBA_VERSION, TARGET_CORE_VERSION);
  54. return 0;
  55. }
  56. static void rd_detach_hba(struct se_hba *hba)
  57. {
  58. struct rd_host *rd_host = hba->hba_ptr;
  59. pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
  60. " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
  61. kfree(rd_host);
  62. hba->hba_ptr = NULL;
  63. }
  64. static u32 rd_release_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
  65. u32 sg_table_count)
  66. {
  67. struct page *pg;
  68. struct scatterlist *sg;
  69. u32 i, j, page_count = 0, sg_per_table;
  70. for (i = 0; i < sg_table_count; i++) {
  71. sg = sg_table[i].sg_table;
  72. sg_per_table = sg_table[i].rd_sg_count;
  73. for (j = 0; j < sg_per_table; j++) {
  74. pg = sg_page(&sg[j]);
  75. if (pg) {
  76. __free_page(pg);
  77. page_count++;
  78. }
  79. }
  80. kfree(sg);
  81. }
  82. kfree(sg_table);
  83. return page_count;
  84. }
  85. static void rd_release_device_space(struct rd_dev *rd_dev)
  86. {
  87. u32 page_count;
  88. if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
  89. return;
  90. page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_table_array,
  91. rd_dev->sg_table_count);
  92. pr_debug("CORE_RD[%u] - Released device space for Ramdisk"
  93. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  94. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  95. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  96. rd_dev->sg_table_array = NULL;
  97. rd_dev->sg_table_count = 0;
  98. }
  99. /* rd_build_device_space():
  100. *
  101. *
  102. */
  103. static int rd_allocate_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
  104. u32 total_sg_needed, unsigned char init_payload)
  105. {
  106. u32 i = 0, j, page_offset = 0, sg_per_table;
  107. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  108. sizeof(struct scatterlist));
  109. struct page *pg;
  110. struct scatterlist *sg;
  111. unsigned char *p;
  112. while (total_sg_needed) {
  113. unsigned int chain_entry = 0;
  114. sg_per_table = (total_sg_needed > max_sg_per_table) ?
  115. max_sg_per_table : total_sg_needed;
  116. /*
  117. * Reserve extra element for chain entry
  118. */
  119. if (sg_per_table < total_sg_needed)
  120. chain_entry = 1;
  121. sg = kcalloc(sg_per_table + chain_entry, sizeof(*sg),
  122. GFP_KERNEL);
  123. if (!sg) {
  124. pr_err("Unable to allocate scatterlist array"
  125. " for struct rd_dev\n");
  126. return -ENOMEM;
  127. }
  128. sg_init_table(sg, sg_per_table + chain_entry);
  129. if (i > 0) {
  130. sg_chain(sg_table[i - 1].sg_table,
  131. max_sg_per_table + 1, sg);
  132. }
  133. sg_table[i].sg_table = sg;
  134. sg_table[i].rd_sg_count = sg_per_table;
  135. sg_table[i].page_start_offset = page_offset;
  136. sg_table[i++].page_end_offset = (page_offset + sg_per_table)
  137. - 1;
  138. for (j = 0; j < sg_per_table; j++) {
  139. pg = alloc_pages(GFP_KERNEL, 0);
  140. if (!pg) {
  141. pr_err("Unable to allocate scatterlist"
  142. " pages for struct rd_dev_sg_table\n");
  143. return -ENOMEM;
  144. }
  145. sg_assign_page(&sg[j], pg);
  146. sg[j].length = PAGE_SIZE;
  147. p = kmap(pg);
  148. memset(p, init_payload, PAGE_SIZE);
  149. kunmap(pg);
  150. }
  151. page_offset += sg_per_table;
  152. total_sg_needed -= sg_per_table;
  153. }
  154. return 0;
  155. }
  156. static int rd_build_device_space(struct rd_dev *rd_dev)
  157. {
  158. struct rd_dev_sg_table *sg_table;
  159. u32 sg_tables, total_sg_needed;
  160. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  161. sizeof(struct scatterlist));
  162. int rc;
  163. if (rd_dev->rd_page_count <= 0) {
  164. pr_err("Illegal page count: %u for Ramdisk device\n",
  165. rd_dev->rd_page_count);
  166. return -EINVAL;
  167. }
  168. /* Don't need backing pages for NULLIO */
  169. if (rd_dev->rd_flags & RDF_NULLIO)
  170. return 0;
  171. total_sg_needed = rd_dev->rd_page_count;
  172. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  173. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  174. if (!sg_table) {
  175. pr_err("Unable to allocate memory for Ramdisk"
  176. " scatterlist tables\n");
  177. return -ENOMEM;
  178. }
  179. rd_dev->sg_table_array = sg_table;
  180. rd_dev->sg_table_count = sg_tables;
  181. rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0x00);
  182. if (rc)
  183. return rc;
  184. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
  185. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  186. rd_dev->rd_dev_id, rd_dev->rd_page_count,
  187. rd_dev->sg_table_count);
  188. return 0;
  189. }
  190. static void rd_release_prot_space(struct rd_dev *rd_dev)
  191. {
  192. u32 page_count;
  193. if (!rd_dev->sg_prot_array || !rd_dev->sg_prot_count)
  194. return;
  195. page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_prot_array,
  196. rd_dev->sg_prot_count);
  197. pr_debug("CORE_RD[%u] - Released protection space for Ramdisk"
  198. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  199. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  200. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  201. rd_dev->sg_prot_array = NULL;
  202. rd_dev->sg_prot_count = 0;
  203. }
  204. static int rd_build_prot_space(struct rd_dev *rd_dev, int prot_length, int block_size)
  205. {
  206. struct rd_dev_sg_table *sg_table;
  207. u32 total_sg_needed, sg_tables;
  208. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  209. sizeof(struct scatterlist));
  210. int rc;
  211. if (rd_dev->rd_flags & RDF_NULLIO)
  212. return 0;
  213. /*
  214. * prot_length=8byte dif data
  215. * tot sg needed = rd_page_count * (PGSZ/block_size) *
  216. * (prot_length/block_size) + pad
  217. * PGSZ canceled each other.
  218. */
  219. total_sg_needed = (rd_dev->rd_page_count * prot_length / block_size) + 1;
  220. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  221. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  222. if (!sg_table) {
  223. pr_err("Unable to allocate memory for Ramdisk protection"
  224. " scatterlist tables\n");
  225. return -ENOMEM;
  226. }
  227. rd_dev->sg_prot_array = sg_table;
  228. rd_dev->sg_prot_count = sg_tables;
  229. rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0xff);
  230. if (rc)
  231. return rc;
  232. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u prot space of"
  233. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  234. rd_dev->rd_dev_id, total_sg_needed, rd_dev->sg_prot_count);
  235. return 0;
  236. }
  237. static struct se_device *rd_alloc_device(struct se_hba *hba, const char *name)
  238. {
  239. struct rd_dev *rd_dev;
  240. struct rd_host *rd_host = hba->hba_ptr;
  241. rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
  242. if (!rd_dev) {
  243. pr_err("Unable to allocate memory for struct rd_dev\n");
  244. return NULL;
  245. }
  246. rd_dev->rd_host = rd_host;
  247. return &rd_dev->dev;
  248. }
  249. static int rd_configure_device(struct se_device *dev)
  250. {
  251. struct rd_dev *rd_dev = RD_DEV(dev);
  252. struct rd_host *rd_host = dev->se_hba->hba_ptr;
  253. int ret;
  254. if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
  255. pr_debug("Missing rd_pages= parameter\n");
  256. return -EINVAL;
  257. }
  258. ret = rd_build_device_space(rd_dev);
  259. if (ret < 0)
  260. goto fail;
  261. dev->dev_attrib.hw_block_size = RD_BLOCKSIZE;
  262. dev->dev_attrib.hw_max_sectors = UINT_MAX;
  263. dev->dev_attrib.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
  264. dev->dev_attrib.is_nonrot = 1;
  265. rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
  266. pr_debug("CORE_RD[%u] - Added TCM MEMCPY Ramdisk Device ID: %u of"
  267. " %u pages in %u tables, %lu total bytes\n",
  268. rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count,
  269. rd_dev->sg_table_count,
  270. (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
  271. return 0;
  272. fail:
  273. rd_release_device_space(rd_dev);
  274. return ret;
  275. }
  276. static void rd_dev_call_rcu(struct rcu_head *p)
  277. {
  278. struct se_device *dev = container_of(p, struct se_device, rcu_head);
  279. struct rd_dev *rd_dev = RD_DEV(dev);
  280. kfree(rd_dev);
  281. }
  282. static void rd_free_device(struct se_device *dev)
  283. {
  284. struct rd_dev *rd_dev = RD_DEV(dev);
  285. rd_release_device_space(rd_dev);
  286. call_rcu(&dev->rcu_head, rd_dev_call_rcu);
  287. }
  288. static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
  289. {
  290. struct rd_dev_sg_table *sg_table;
  291. u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  292. sizeof(struct scatterlist));
  293. i = page / sg_per_table;
  294. if (i < rd_dev->sg_table_count) {
  295. sg_table = &rd_dev->sg_table_array[i];
  296. if ((sg_table->page_start_offset <= page) &&
  297. (sg_table->page_end_offset >= page))
  298. return sg_table;
  299. }
  300. pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n",
  301. page);
  302. return NULL;
  303. }
  304. static struct rd_dev_sg_table *rd_get_prot_table(struct rd_dev *rd_dev, u32 page)
  305. {
  306. struct rd_dev_sg_table *sg_table;
  307. u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  308. sizeof(struct scatterlist));
  309. i = page / sg_per_table;
  310. if (i < rd_dev->sg_prot_count) {
  311. sg_table = &rd_dev->sg_prot_array[i];
  312. if ((sg_table->page_start_offset <= page) &&
  313. (sg_table->page_end_offset >= page))
  314. return sg_table;
  315. }
  316. pr_err("Unable to locate struct prot rd_dev_sg_table for page: %u\n",
  317. page);
  318. return NULL;
  319. }
  320. static sense_reason_t rd_do_prot_rw(struct se_cmd *cmd, bool is_read)
  321. {
  322. struct se_device *se_dev = cmd->se_dev;
  323. struct rd_dev *dev = RD_DEV(se_dev);
  324. struct rd_dev_sg_table *prot_table;
  325. struct scatterlist *prot_sg;
  326. u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size;
  327. u32 prot_offset, prot_page;
  328. u32 prot_npages __maybe_unused;
  329. u64 tmp;
  330. sense_reason_t rc = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  331. tmp = cmd->t_task_lba * se_dev->prot_length;
  332. prot_offset = do_div(tmp, PAGE_SIZE);
  333. prot_page = tmp;
  334. prot_table = rd_get_prot_table(dev, prot_page);
  335. if (!prot_table)
  336. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  337. prot_sg = &prot_table->sg_table[prot_page -
  338. prot_table->page_start_offset];
  339. if (is_read)
  340. rc = sbc_dif_verify(cmd, cmd->t_task_lba, sectors, 0,
  341. prot_sg, prot_offset);
  342. else
  343. rc = sbc_dif_verify(cmd, cmd->t_task_lba, sectors, 0,
  344. cmd->t_prot_sg, 0);
  345. if (!rc)
  346. sbc_dif_copy_prot(cmd, sectors, is_read, prot_sg, prot_offset);
  347. return rc;
  348. }
  349. static sense_reason_t
  350. rd_execute_rw(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_nents,
  351. enum dma_data_direction data_direction)
  352. {
  353. struct se_device *se_dev = cmd->se_dev;
  354. struct rd_dev *dev = RD_DEV(se_dev);
  355. struct rd_dev_sg_table *table;
  356. struct scatterlist *rd_sg;
  357. struct sg_mapping_iter m;
  358. u32 rd_offset;
  359. u32 rd_size;
  360. u32 rd_page;
  361. u32 src_len;
  362. u64 tmp;
  363. sense_reason_t rc;
  364. if (dev->rd_flags & RDF_NULLIO) {
  365. target_complete_cmd(cmd, SAM_STAT_GOOD);
  366. return 0;
  367. }
  368. tmp = cmd->t_task_lba * se_dev->dev_attrib.block_size;
  369. rd_offset = do_div(tmp, PAGE_SIZE);
  370. rd_page = tmp;
  371. rd_size = cmd->data_length;
  372. table = rd_get_sg_table(dev, rd_page);
  373. if (!table)
  374. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  375. rd_sg = &table->sg_table[rd_page - table->page_start_offset];
  376. pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n",
  377. dev->rd_dev_id,
  378. data_direction == DMA_FROM_DEVICE ? "Read" : "Write",
  379. cmd->t_task_lba, rd_size, rd_page, rd_offset);
  380. if (cmd->prot_type && se_dev->dev_attrib.pi_prot_type &&
  381. data_direction == DMA_TO_DEVICE) {
  382. rc = rd_do_prot_rw(cmd, false);
  383. if (rc)
  384. return rc;
  385. }
  386. src_len = PAGE_SIZE - rd_offset;
  387. sg_miter_start(&m, sgl, sgl_nents,
  388. data_direction == DMA_FROM_DEVICE ?
  389. SG_MITER_TO_SG : SG_MITER_FROM_SG);
  390. while (rd_size) {
  391. u32 len;
  392. void *rd_addr;
  393. sg_miter_next(&m);
  394. if (!(u32)m.length) {
  395. pr_debug("RD[%u]: invalid sgl %p len %zu\n",
  396. dev->rd_dev_id, m.addr, m.length);
  397. sg_miter_stop(&m);
  398. return TCM_INCORRECT_AMOUNT_OF_DATA;
  399. }
  400. len = min((u32)m.length, src_len);
  401. if (len > rd_size) {
  402. pr_debug("RD[%u]: size underrun page %d offset %d "
  403. "size %d\n", dev->rd_dev_id,
  404. rd_page, rd_offset, rd_size);
  405. len = rd_size;
  406. }
  407. m.consumed = len;
  408. rd_addr = sg_virt(rd_sg) + rd_offset;
  409. if (data_direction == DMA_FROM_DEVICE)
  410. memcpy(m.addr, rd_addr, len);
  411. else
  412. memcpy(rd_addr, m.addr, len);
  413. rd_size -= len;
  414. if (!rd_size)
  415. continue;
  416. src_len -= len;
  417. if (src_len) {
  418. rd_offset += len;
  419. continue;
  420. }
  421. /* rd page completed, next one please */
  422. rd_page++;
  423. rd_offset = 0;
  424. src_len = PAGE_SIZE;
  425. if (rd_page <= table->page_end_offset) {
  426. rd_sg++;
  427. continue;
  428. }
  429. table = rd_get_sg_table(dev, rd_page);
  430. if (!table) {
  431. sg_miter_stop(&m);
  432. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  433. }
  434. /* since we increment, the first sg entry is correct */
  435. rd_sg = table->sg_table;
  436. }
  437. sg_miter_stop(&m);
  438. if (cmd->prot_type && se_dev->dev_attrib.pi_prot_type &&
  439. data_direction == DMA_FROM_DEVICE) {
  440. rc = rd_do_prot_rw(cmd, true);
  441. if (rc)
  442. return rc;
  443. }
  444. target_complete_cmd(cmd, SAM_STAT_GOOD);
  445. return 0;
  446. }
  447. enum {
  448. Opt_rd_pages, Opt_rd_nullio, Opt_err
  449. };
  450. static match_table_t tokens = {
  451. {Opt_rd_pages, "rd_pages=%d"},
  452. {Opt_rd_nullio, "rd_nullio=%d"},
  453. {Opt_err, NULL}
  454. };
  455. static ssize_t rd_set_configfs_dev_params(struct se_device *dev,
  456. const char *page, ssize_t count)
  457. {
  458. struct rd_dev *rd_dev = RD_DEV(dev);
  459. char *orig, *ptr, *opts;
  460. substring_t args[MAX_OPT_ARGS];
  461. int ret = 0, arg, token;
  462. opts = kstrdup(page, GFP_KERNEL);
  463. if (!opts)
  464. return -ENOMEM;
  465. orig = opts;
  466. while ((ptr = strsep(&opts, ",\n")) != NULL) {
  467. if (!*ptr)
  468. continue;
  469. token = match_token(ptr, tokens, args);
  470. switch (token) {
  471. case Opt_rd_pages:
  472. match_int(args, &arg);
  473. rd_dev->rd_page_count = arg;
  474. pr_debug("RAMDISK: Referencing Page"
  475. " Count: %u\n", rd_dev->rd_page_count);
  476. rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
  477. break;
  478. case Opt_rd_nullio:
  479. match_int(args, &arg);
  480. if (arg != 1)
  481. break;
  482. pr_debug("RAMDISK: Setting NULLIO flag: %d\n", arg);
  483. rd_dev->rd_flags |= RDF_NULLIO;
  484. break;
  485. default:
  486. break;
  487. }
  488. }
  489. kfree(orig);
  490. return (!ret) ? count : ret;
  491. }
  492. static ssize_t rd_show_configfs_dev_params(struct se_device *dev, char *b)
  493. {
  494. struct rd_dev *rd_dev = RD_DEV(dev);
  495. ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: rd_mcp\n",
  496. rd_dev->rd_dev_id);
  497. bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu"
  498. " SG_table_count: %u nullio: %d\n", rd_dev->rd_page_count,
  499. PAGE_SIZE, rd_dev->sg_table_count,
  500. !!(rd_dev->rd_flags & RDF_NULLIO));
  501. return bl;
  502. }
  503. static sector_t rd_get_blocks(struct se_device *dev)
  504. {
  505. struct rd_dev *rd_dev = RD_DEV(dev);
  506. unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
  507. dev->dev_attrib.block_size) - 1;
  508. return blocks_long;
  509. }
  510. static int rd_init_prot(struct se_device *dev)
  511. {
  512. struct rd_dev *rd_dev = RD_DEV(dev);
  513. if (!dev->dev_attrib.pi_prot_type)
  514. return 0;
  515. return rd_build_prot_space(rd_dev, dev->prot_length,
  516. dev->dev_attrib.block_size);
  517. }
  518. static void rd_free_prot(struct se_device *dev)
  519. {
  520. struct rd_dev *rd_dev = RD_DEV(dev);
  521. rd_release_prot_space(rd_dev);
  522. }
  523. static struct sbc_ops rd_sbc_ops = {
  524. .execute_rw = rd_execute_rw,
  525. };
  526. static sense_reason_t
  527. rd_parse_cdb(struct se_cmd *cmd)
  528. {
  529. return sbc_parse_cdb(cmd, &rd_sbc_ops);
  530. }
  531. static const struct target_backend_ops rd_mcp_ops = {
  532. .name = "rd_mcp",
  533. .inquiry_prod = "RAMDISK-MCP",
  534. .inquiry_rev = RD_MCP_VERSION,
  535. .attach_hba = rd_attach_hba,
  536. .detach_hba = rd_detach_hba,
  537. .alloc_device = rd_alloc_device,
  538. .configure_device = rd_configure_device,
  539. .free_device = rd_free_device,
  540. .parse_cdb = rd_parse_cdb,
  541. .set_configfs_dev_params = rd_set_configfs_dev_params,
  542. .show_configfs_dev_params = rd_show_configfs_dev_params,
  543. .get_device_type = sbc_get_device_type,
  544. .get_blocks = rd_get_blocks,
  545. .init_prot = rd_init_prot,
  546. .free_prot = rd_free_prot,
  547. .tb_dev_attrib_attrs = sbc_attrib_attrs,
  548. };
  549. int __init rd_module_init(void)
  550. {
  551. return transport_backend_register(&rd_mcp_ops);
  552. }
  553. void rd_module_exit(void)
  554. {
  555. target_backend_unregister(&rd_mcp_ops);
  556. }