axp288_fuel_gauge.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /*
  2. * axp288_fuel_gauge.c - Xpower AXP288 PMIC Fuel Gauge Driver
  3. *
  4. * Copyright (C) 2014 Intel Corporation
  5. *
  6. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; version 2 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * General Public License for more details.
  16. *
  17. */
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/device.h>
  21. #include <linux/regmap.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/workqueue.h>
  25. #include <linux/mfd/axp20x.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/power_supply.h>
  28. #include <linux/iio/consumer.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/seq_file.h>
  31. #define CHRG_STAT_BAT_SAFE_MODE (1 << 3)
  32. #define CHRG_STAT_BAT_VALID (1 << 4)
  33. #define CHRG_STAT_BAT_PRESENT (1 << 5)
  34. #define CHRG_STAT_CHARGING (1 << 6)
  35. #define CHRG_STAT_PMIC_OTP (1 << 7)
  36. #define CHRG_CCCV_CC_MASK 0xf /* 4 bits */
  37. #define CHRG_CCCV_CC_BIT_POS 0
  38. #define CHRG_CCCV_CC_OFFSET 200 /* 200mA */
  39. #define CHRG_CCCV_CC_LSB_RES 200 /* 200mA */
  40. #define CHRG_CCCV_ITERM_20P (1 << 4) /* 20% of CC */
  41. #define CHRG_CCCV_CV_MASK 0x60 /* 2 bits */
  42. #define CHRG_CCCV_CV_BIT_POS 5
  43. #define CHRG_CCCV_CV_4100MV 0x0 /* 4.10V */
  44. #define CHRG_CCCV_CV_4150MV 0x1 /* 4.15V */
  45. #define CHRG_CCCV_CV_4200MV 0x2 /* 4.20V */
  46. #define CHRG_CCCV_CV_4350MV 0x3 /* 4.35V */
  47. #define CHRG_CCCV_CHG_EN (1 << 7)
  48. #define CV_4100 4100 /* 4100mV */
  49. #define CV_4150 4150 /* 4150mV */
  50. #define CV_4200 4200 /* 4200mV */
  51. #define CV_4350 4350 /* 4350mV */
  52. #define TEMP_IRQ_CFG_QWBTU (1 << 0)
  53. #define TEMP_IRQ_CFG_WBTU (1 << 1)
  54. #define TEMP_IRQ_CFG_QWBTO (1 << 2)
  55. #define TEMP_IRQ_CFG_WBTO (1 << 3)
  56. #define TEMP_IRQ_CFG_MASK 0xf
  57. #define FG_IRQ_CFG_LOWBATT_WL2 (1 << 0)
  58. #define FG_IRQ_CFG_LOWBATT_WL1 (1 << 1)
  59. #define FG_IRQ_CFG_LOWBATT_MASK 0x3
  60. #define LOWBAT_IRQ_STAT_LOWBATT_WL2 (1 << 0)
  61. #define LOWBAT_IRQ_STAT_LOWBATT_WL1 (1 << 1)
  62. #define FG_CNTL_OCV_ADJ_STAT (1 << 2)
  63. #define FG_CNTL_OCV_ADJ_EN (1 << 3)
  64. #define FG_CNTL_CAP_ADJ_STAT (1 << 4)
  65. #define FG_CNTL_CAP_ADJ_EN (1 << 5)
  66. #define FG_CNTL_CC_EN (1 << 6)
  67. #define FG_CNTL_GAUGE_EN (1 << 7)
  68. #define FG_REP_CAP_VALID (1 << 7)
  69. #define FG_REP_CAP_VAL_MASK 0x7F
  70. #define FG_DES_CAP1_VALID (1 << 7)
  71. #define FG_DES_CAP1_VAL_MASK 0x7F
  72. #define FG_DES_CAP0_VAL_MASK 0xFF
  73. #define FG_DES_CAP_RES_LSB 1456 /* 1.456mAhr */
  74. #define FG_CC_MTR1_VALID (1 << 7)
  75. #define FG_CC_MTR1_VAL_MASK 0x7F
  76. #define FG_CC_MTR0_VAL_MASK 0xFF
  77. #define FG_DES_CC_RES_LSB 1456 /* 1.456mAhr */
  78. #define FG_OCV_CAP_VALID (1 << 7)
  79. #define FG_OCV_CAP_VAL_MASK 0x7F
  80. #define FG_CC_CAP_VALID (1 << 7)
  81. #define FG_CC_CAP_VAL_MASK 0x7F
  82. #define FG_LOW_CAP_THR1_MASK 0xf0 /* 5% tp 20% */
  83. #define FG_LOW_CAP_THR1_VAL 0xa0 /* 15 perc */
  84. #define FG_LOW_CAP_THR2_MASK 0x0f /* 0% to 15% */
  85. #define FG_LOW_CAP_WARN_THR 14 /* 14 perc */
  86. #define FG_LOW_CAP_CRIT_THR 4 /* 4 perc */
  87. #define FG_LOW_CAP_SHDN_THR 0 /* 0 perc */
  88. #define STATUS_MON_DELAY_JIFFIES (HZ * 60) /*60 sec */
  89. #define NR_RETRY_CNT 3
  90. #define DEV_NAME "axp288_fuel_gauge"
  91. /* 1.1mV per LSB expressed in uV */
  92. #define VOLTAGE_FROM_ADC(a) ((a * 11) / 10)
  93. /* properties converted to tenths of degrees, uV, uA, uW */
  94. #define PROP_TEMP(a) ((a) * 10)
  95. #define UNPROP_TEMP(a) ((a) / 10)
  96. #define PROP_VOLT(a) ((a) * 1000)
  97. #define PROP_CURR(a) ((a) * 1000)
  98. #define AXP288_FG_INTR_NUM 6
  99. enum {
  100. QWBTU_IRQ = 0,
  101. WBTU_IRQ,
  102. QWBTO_IRQ,
  103. WBTO_IRQ,
  104. WL2_IRQ,
  105. WL1_IRQ,
  106. };
  107. struct axp288_fg_info {
  108. struct platform_device *pdev;
  109. struct axp20x_fg_pdata *pdata;
  110. struct regmap *regmap;
  111. struct regmap_irq_chip_data *regmap_irqc;
  112. int irq[AXP288_FG_INTR_NUM];
  113. struct power_supply *bat;
  114. struct mutex lock;
  115. int status;
  116. struct delayed_work status_monitor;
  117. struct dentry *debug_file;
  118. };
  119. static enum power_supply_property fuel_gauge_props[] = {
  120. POWER_SUPPLY_PROP_STATUS,
  121. POWER_SUPPLY_PROP_PRESENT,
  122. POWER_SUPPLY_PROP_HEALTH,
  123. POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
  124. POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
  125. POWER_SUPPLY_PROP_VOLTAGE_NOW,
  126. POWER_SUPPLY_PROP_VOLTAGE_OCV,
  127. POWER_SUPPLY_PROP_CURRENT_NOW,
  128. POWER_SUPPLY_PROP_CAPACITY,
  129. POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN,
  130. POWER_SUPPLY_PROP_TEMP,
  131. POWER_SUPPLY_PROP_TEMP_MAX,
  132. POWER_SUPPLY_PROP_TEMP_MIN,
  133. POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
  134. POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
  135. POWER_SUPPLY_PROP_TECHNOLOGY,
  136. POWER_SUPPLY_PROP_CHARGE_FULL,
  137. POWER_SUPPLY_PROP_CHARGE_NOW,
  138. POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
  139. POWER_SUPPLY_PROP_MODEL_NAME,
  140. };
  141. static int fuel_gauge_reg_readb(struct axp288_fg_info *info, int reg)
  142. {
  143. int ret, i;
  144. unsigned int val;
  145. for (i = 0; i < NR_RETRY_CNT; i++) {
  146. ret = regmap_read(info->regmap, reg, &val);
  147. if (ret == -EBUSY)
  148. continue;
  149. else
  150. break;
  151. }
  152. if (ret < 0)
  153. dev_err(&info->pdev->dev, "axp288 reg read err:%d\n", ret);
  154. return val;
  155. }
  156. static int fuel_gauge_reg_writeb(struct axp288_fg_info *info, int reg, u8 val)
  157. {
  158. int ret;
  159. ret = regmap_write(info->regmap, reg, (unsigned int)val);
  160. if (ret < 0)
  161. dev_err(&info->pdev->dev, "axp288 reg write err:%d\n", ret);
  162. return ret;
  163. }
  164. static int pmic_read_adc_val(const char *name, int *raw_val,
  165. struct axp288_fg_info *info)
  166. {
  167. int ret, val = 0;
  168. struct iio_channel *indio_chan;
  169. indio_chan = iio_channel_get(NULL, name);
  170. if (IS_ERR_OR_NULL(indio_chan)) {
  171. ret = PTR_ERR(indio_chan);
  172. goto exit;
  173. }
  174. ret = iio_read_channel_raw(indio_chan, &val);
  175. if (ret < 0) {
  176. dev_err(&info->pdev->dev,
  177. "IIO channel read error: %x, %x\n", ret, val);
  178. goto err_exit;
  179. }
  180. dev_dbg(&info->pdev->dev, "adc raw val=%x\n", val);
  181. *raw_val = val;
  182. err_exit:
  183. iio_channel_release(indio_chan);
  184. exit:
  185. return ret;
  186. }
  187. #ifdef CONFIG_DEBUG_FS
  188. static int fuel_gauge_debug_show(struct seq_file *s, void *data)
  189. {
  190. struct axp288_fg_info *info = s->private;
  191. int raw_val, ret;
  192. seq_printf(s, " PWR_STATUS[%02x] : %02x\n",
  193. AXP20X_PWR_INPUT_STATUS,
  194. fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS));
  195. seq_printf(s, "PWR_OP_MODE[%02x] : %02x\n",
  196. AXP20X_PWR_OP_MODE,
  197. fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE));
  198. seq_printf(s, " CHRG_CTRL1[%02x] : %02x\n",
  199. AXP20X_CHRG_CTRL1,
  200. fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1));
  201. seq_printf(s, " VLTF[%02x] : %02x\n",
  202. AXP20X_V_LTF_DISCHRG,
  203. fuel_gauge_reg_readb(info, AXP20X_V_LTF_DISCHRG));
  204. seq_printf(s, " VHTF[%02x] : %02x\n",
  205. AXP20X_V_HTF_DISCHRG,
  206. fuel_gauge_reg_readb(info, AXP20X_V_HTF_DISCHRG));
  207. seq_printf(s, " CC_CTRL[%02x] : %02x\n",
  208. AXP20X_CC_CTRL,
  209. fuel_gauge_reg_readb(info, AXP20X_CC_CTRL));
  210. seq_printf(s, "BATTERY CAP[%02x] : %02x\n",
  211. AXP20X_FG_RES,
  212. fuel_gauge_reg_readb(info, AXP20X_FG_RES));
  213. seq_printf(s, " FG_RDC1[%02x] : %02x\n",
  214. AXP288_FG_RDC1_REG,
  215. fuel_gauge_reg_readb(info, AXP288_FG_RDC1_REG));
  216. seq_printf(s, " FG_RDC0[%02x] : %02x\n",
  217. AXP288_FG_RDC0_REG,
  218. fuel_gauge_reg_readb(info, AXP288_FG_RDC0_REG));
  219. seq_printf(s, " FG_OCVH[%02x] : %02x\n",
  220. AXP288_FG_OCVH_REG,
  221. fuel_gauge_reg_readb(info, AXP288_FG_OCVH_REG));
  222. seq_printf(s, " FG_OCVL[%02x] : %02x\n",
  223. AXP288_FG_OCVL_REG,
  224. fuel_gauge_reg_readb(info, AXP288_FG_OCVL_REG));
  225. seq_printf(s, "FG_DES_CAP1[%02x] : %02x\n",
  226. AXP288_FG_DES_CAP1_REG,
  227. fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG));
  228. seq_printf(s, "FG_DES_CAP0[%02x] : %02x\n",
  229. AXP288_FG_DES_CAP0_REG,
  230. fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP0_REG));
  231. seq_printf(s, " FG_CC_MTR1[%02x] : %02x\n",
  232. AXP288_FG_CC_MTR1_REG,
  233. fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR1_REG));
  234. seq_printf(s, " FG_CC_MTR0[%02x] : %02x\n",
  235. AXP288_FG_CC_MTR0_REG,
  236. fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR0_REG));
  237. seq_printf(s, " FG_OCV_CAP[%02x] : %02x\n",
  238. AXP288_FG_OCV_CAP_REG,
  239. fuel_gauge_reg_readb(info, AXP288_FG_OCV_CAP_REG));
  240. seq_printf(s, " FG_CC_CAP[%02x] : %02x\n",
  241. AXP288_FG_CC_CAP_REG,
  242. fuel_gauge_reg_readb(info, AXP288_FG_CC_CAP_REG));
  243. seq_printf(s, " FG_LOW_CAP[%02x] : %02x\n",
  244. AXP288_FG_LOW_CAP_REG,
  245. fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG));
  246. seq_printf(s, "TUNING_CTL0[%02x] : %02x\n",
  247. AXP288_FG_TUNE0,
  248. fuel_gauge_reg_readb(info, AXP288_FG_TUNE0));
  249. seq_printf(s, "TUNING_CTL1[%02x] : %02x\n",
  250. AXP288_FG_TUNE1,
  251. fuel_gauge_reg_readb(info, AXP288_FG_TUNE1));
  252. seq_printf(s, "TUNING_CTL2[%02x] : %02x\n",
  253. AXP288_FG_TUNE2,
  254. fuel_gauge_reg_readb(info, AXP288_FG_TUNE2));
  255. seq_printf(s, "TUNING_CTL3[%02x] : %02x\n",
  256. AXP288_FG_TUNE3,
  257. fuel_gauge_reg_readb(info, AXP288_FG_TUNE3));
  258. seq_printf(s, "TUNING_CTL4[%02x] : %02x\n",
  259. AXP288_FG_TUNE4,
  260. fuel_gauge_reg_readb(info, AXP288_FG_TUNE4));
  261. seq_printf(s, "TUNING_CTL5[%02x] : %02x\n",
  262. AXP288_FG_TUNE5,
  263. fuel_gauge_reg_readb(info, AXP288_FG_TUNE5));
  264. ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info);
  265. if (ret >= 0)
  266. seq_printf(s, "axp288-batttemp : %d\n", raw_val);
  267. ret = pmic_read_adc_val("axp288-pmic-temp", &raw_val, info);
  268. if (ret >= 0)
  269. seq_printf(s, "axp288-pmictemp : %d\n", raw_val);
  270. ret = pmic_read_adc_val("axp288-system-temp", &raw_val, info);
  271. if (ret >= 0)
  272. seq_printf(s, "axp288-systtemp : %d\n", raw_val);
  273. ret = pmic_read_adc_val("axp288-chrg-curr", &raw_val, info);
  274. if (ret >= 0)
  275. seq_printf(s, "axp288-chrgcurr : %d\n", raw_val);
  276. ret = pmic_read_adc_val("axp288-chrg-d-curr", &raw_val, info);
  277. if (ret >= 0)
  278. seq_printf(s, "axp288-dchrgcur : %d\n", raw_val);
  279. ret = pmic_read_adc_val("axp288-batt-volt", &raw_val, info);
  280. if (ret >= 0)
  281. seq_printf(s, "axp288-battvolt : %d\n", raw_val);
  282. return 0;
  283. }
  284. static int debug_open(struct inode *inode, struct file *file)
  285. {
  286. return single_open(file, fuel_gauge_debug_show, inode->i_private);
  287. }
  288. static const struct file_operations fg_debug_fops = {
  289. .open = debug_open,
  290. .read = seq_read,
  291. .llseek = seq_lseek,
  292. .release = single_release,
  293. };
  294. static void fuel_gauge_create_debugfs(struct axp288_fg_info *info)
  295. {
  296. info->debug_file = debugfs_create_file("fuelgauge", 0666, NULL,
  297. info, &fg_debug_fops);
  298. }
  299. static void fuel_gauge_remove_debugfs(struct axp288_fg_info *info)
  300. {
  301. debugfs_remove(info->debug_file);
  302. }
  303. #else
  304. static inline void fuel_gauge_create_debugfs(struct axp288_fg_info *info)
  305. {
  306. }
  307. static inline void fuel_gauge_remove_debugfs(struct axp288_fg_info *info)
  308. {
  309. }
  310. #endif
  311. static void fuel_gauge_get_status(struct axp288_fg_info *info)
  312. {
  313. int pwr_stat, ret;
  314. int charge, discharge;
  315. pwr_stat = fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS);
  316. if (pwr_stat < 0) {
  317. dev_err(&info->pdev->dev,
  318. "PWR STAT read failed:%d\n", pwr_stat);
  319. return;
  320. }
  321. ret = pmic_read_adc_val("axp288-chrg-curr", &charge, info);
  322. if (ret < 0) {
  323. dev_err(&info->pdev->dev,
  324. "ADC charge current read failed:%d\n", ret);
  325. return;
  326. }
  327. ret = pmic_read_adc_val("axp288-chrg-d-curr", &discharge, info);
  328. if (ret < 0) {
  329. dev_err(&info->pdev->dev,
  330. "ADC discharge current read failed:%d\n", ret);
  331. return;
  332. }
  333. if (charge > 0)
  334. info->status = POWER_SUPPLY_STATUS_CHARGING;
  335. else if (discharge > 0)
  336. info->status = POWER_SUPPLY_STATUS_DISCHARGING;
  337. else {
  338. if (pwr_stat & CHRG_STAT_BAT_PRESENT)
  339. info->status = POWER_SUPPLY_STATUS_FULL;
  340. else
  341. info->status = POWER_SUPPLY_STATUS_NOT_CHARGING;
  342. }
  343. }
  344. static int fuel_gauge_get_vbatt(struct axp288_fg_info *info, int *vbatt)
  345. {
  346. int ret = 0, raw_val;
  347. ret = pmic_read_adc_val("axp288-batt-volt", &raw_val, info);
  348. if (ret < 0)
  349. goto vbatt_read_fail;
  350. *vbatt = VOLTAGE_FROM_ADC(raw_val);
  351. vbatt_read_fail:
  352. return ret;
  353. }
  354. static int fuel_gauge_get_current(struct axp288_fg_info *info, int *cur)
  355. {
  356. int ret, value = 0;
  357. int charge, discharge;
  358. ret = pmic_read_adc_val("axp288-chrg-curr", &charge, info);
  359. if (ret < 0)
  360. goto current_read_fail;
  361. ret = pmic_read_adc_val("axp288-chrg-d-curr", &discharge, info);
  362. if (ret < 0)
  363. goto current_read_fail;
  364. if (charge > 0)
  365. value = charge;
  366. else if (discharge > 0)
  367. value = -1 * discharge;
  368. *cur = value;
  369. current_read_fail:
  370. return ret;
  371. }
  372. static int temp_to_adc(struct axp288_fg_info *info, int tval)
  373. {
  374. int rntc = 0, i, ret, adc_val;
  375. int rmin, rmax, tmin, tmax;
  376. int tcsz = info->pdata->tcsz;
  377. /* get the Rntc resitance value for this temp */
  378. if (tval > info->pdata->thermistor_curve[0][1]) {
  379. rntc = info->pdata->thermistor_curve[0][0];
  380. } else if (tval <= info->pdata->thermistor_curve[tcsz-1][1]) {
  381. rntc = info->pdata->thermistor_curve[tcsz-1][0];
  382. } else {
  383. for (i = 1; i < tcsz; i++) {
  384. if (tval > info->pdata->thermistor_curve[i][1]) {
  385. rmin = info->pdata->thermistor_curve[i-1][0];
  386. rmax = info->pdata->thermistor_curve[i][0];
  387. tmin = info->pdata->thermistor_curve[i-1][1];
  388. tmax = info->pdata->thermistor_curve[i][1];
  389. rntc = rmin + ((rmax - rmin) *
  390. (tval - tmin) / (tmax - tmin));
  391. break;
  392. }
  393. }
  394. }
  395. /* we need the current to calculate the proper adc voltage */
  396. ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE);
  397. if (ret < 0) {
  398. dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
  399. ret = 0x30;
  400. }
  401. /*
  402. * temperature is proportional to NTS thermistor resistance
  403. * ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA
  404. * [12-bit ADC VAL] = R_NTC(Ω) * current / 800
  405. */
  406. adc_val = rntc * (20 + (20 * ((ret >> 4) & 0x3))) / 800;
  407. return adc_val;
  408. }
  409. static int adc_to_temp(struct axp288_fg_info *info, int adc_val)
  410. {
  411. int ret, r, i, tval = 0;
  412. int rmin, rmax, tmin, tmax;
  413. int tcsz = info->pdata->tcsz;
  414. ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE);
  415. if (ret < 0) {
  416. dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
  417. ret = 0x30;
  418. }
  419. /*
  420. * temperature is proportional to NTS thermistor resistance
  421. * ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA
  422. * R_NTC(Ω) = [12-bit ADC VAL] * 800 / current
  423. */
  424. r = adc_val * 800 / (20 + (20 * ((ret >> 4) & 0x3)));
  425. if (r < info->pdata->thermistor_curve[0][0]) {
  426. tval = info->pdata->thermistor_curve[0][1];
  427. } else if (r >= info->pdata->thermistor_curve[tcsz-1][0]) {
  428. tval = info->pdata->thermistor_curve[tcsz-1][1];
  429. } else {
  430. for (i = 1; i < tcsz; i++) {
  431. if (r < info->pdata->thermistor_curve[i][0]) {
  432. rmin = info->pdata->thermistor_curve[i-1][0];
  433. rmax = info->pdata->thermistor_curve[i][0];
  434. tmin = info->pdata->thermistor_curve[i-1][1];
  435. tmax = info->pdata->thermistor_curve[i][1];
  436. tval = tmin + ((tmax - tmin) *
  437. (r - rmin) / (rmax - rmin));
  438. break;
  439. }
  440. }
  441. }
  442. return tval;
  443. }
  444. static int fuel_gauge_get_btemp(struct axp288_fg_info *info, int *btemp)
  445. {
  446. int ret, raw_val = 0;
  447. ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info);
  448. if (ret < 0)
  449. goto temp_read_fail;
  450. *btemp = adc_to_temp(info, raw_val);
  451. temp_read_fail:
  452. return ret;
  453. }
  454. static int fuel_gauge_get_vocv(struct axp288_fg_info *info, int *vocv)
  455. {
  456. int ret, value;
  457. /* 12-bit data value, upper 8 in OCVH, lower 4 in OCVL */
  458. ret = fuel_gauge_reg_readb(info, AXP288_FG_OCVH_REG);
  459. if (ret < 0)
  460. goto vocv_read_fail;
  461. value = ret << 4;
  462. ret = fuel_gauge_reg_readb(info, AXP288_FG_OCVL_REG);
  463. if (ret < 0)
  464. goto vocv_read_fail;
  465. value |= (ret & 0xf);
  466. *vocv = VOLTAGE_FROM_ADC(value);
  467. vocv_read_fail:
  468. return ret;
  469. }
  470. static int fuel_gauge_battery_health(struct axp288_fg_info *info)
  471. {
  472. int temp, vocv;
  473. int ret, health = POWER_SUPPLY_HEALTH_UNKNOWN;
  474. ret = fuel_gauge_get_btemp(info, &temp);
  475. if (ret < 0)
  476. goto health_read_fail;
  477. ret = fuel_gauge_get_vocv(info, &vocv);
  478. if (ret < 0)
  479. goto health_read_fail;
  480. if (vocv > info->pdata->max_volt)
  481. health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
  482. else if (temp > info->pdata->max_temp)
  483. health = POWER_SUPPLY_HEALTH_OVERHEAT;
  484. else if (temp < info->pdata->min_temp)
  485. health = POWER_SUPPLY_HEALTH_COLD;
  486. else if (vocv < info->pdata->min_volt)
  487. health = POWER_SUPPLY_HEALTH_DEAD;
  488. else
  489. health = POWER_SUPPLY_HEALTH_GOOD;
  490. health_read_fail:
  491. return health;
  492. }
  493. static int fuel_gauge_set_high_btemp_alert(struct axp288_fg_info *info)
  494. {
  495. int ret, adc_val;
  496. /* program temperature threshold as 1/16 ADC value */
  497. adc_val = temp_to_adc(info, info->pdata->max_temp);
  498. ret = fuel_gauge_reg_writeb(info, AXP20X_V_HTF_DISCHRG, adc_val >> 4);
  499. return ret;
  500. }
  501. static int fuel_gauge_set_low_btemp_alert(struct axp288_fg_info *info)
  502. {
  503. int ret, adc_val;
  504. /* program temperature threshold as 1/16 ADC value */
  505. adc_val = temp_to_adc(info, info->pdata->min_temp);
  506. ret = fuel_gauge_reg_writeb(info, AXP20X_V_LTF_DISCHRG, adc_val >> 4);
  507. return ret;
  508. }
  509. static int fuel_gauge_get_property(struct power_supply *ps,
  510. enum power_supply_property prop,
  511. union power_supply_propval *val)
  512. {
  513. struct axp288_fg_info *info = power_supply_get_drvdata(ps);
  514. int ret = 0, value;
  515. mutex_lock(&info->lock);
  516. switch (prop) {
  517. case POWER_SUPPLY_PROP_STATUS:
  518. fuel_gauge_get_status(info);
  519. val->intval = info->status;
  520. break;
  521. case POWER_SUPPLY_PROP_HEALTH:
  522. val->intval = fuel_gauge_battery_health(info);
  523. break;
  524. case POWER_SUPPLY_PROP_VOLTAGE_NOW:
  525. ret = fuel_gauge_get_vbatt(info, &value);
  526. if (ret < 0)
  527. goto fuel_gauge_read_err;
  528. val->intval = PROP_VOLT(value);
  529. break;
  530. case POWER_SUPPLY_PROP_VOLTAGE_OCV:
  531. ret = fuel_gauge_get_vocv(info, &value);
  532. if (ret < 0)
  533. goto fuel_gauge_read_err;
  534. val->intval = PROP_VOLT(value);
  535. break;
  536. case POWER_SUPPLY_PROP_CURRENT_NOW:
  537. ret = fuel_gauge_get_current(info, &value);
  538. if (ret < 0)
  539. goto fuel_gauge_read_err;
  540. val->intval = PROP_CURR(value);
  541. break;
  542. case POWER_SUPPLY_PROP_PRESENT:
  543. ret = fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE);
  544. if (ret < 0)
  545. goto fuel_gauge_read_err;
  546. if (ret & CHRG_STAT_BAT_PRESENT)
  547. val->intval = 1;
  548. else
  549. val->intval = 0;
  550. break;
  551. case POWER_SUPPLY_PROP_CAPACITY:
  552. ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES);
  553. if (ret < 0)
  554. goto fuel_gauge_read_err;
  555. if (!(ret & FG_REP_CAP_VALID))
  556. dev_err(&info->pdev->dev,
  557. "capacity measurement not valid\n");
  558. val->intval = (ret & FG_REP_CAP_VAL_MASK);
  559. break;
  560. case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
  561. ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG);
  562. if (ret < 0)
  563. goto fuel_gauge_read_err;
  564. val->intval = (ret & 0x0f);
  565. break;
  566. case POWER_SUPPLY_PROP_TEMP:
  567. ret = fuel_gauge_get_btemp(info, &value);
  568. if (ret < 0)
  569. goto fuel_gauge_read_err;
  570. val->intval = PROP_TEMP(value);
  571. break;
  572. case POWER_SUPPLY_PROP_TEMP_MAX:
  573. case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
  574. val->intval = PROP_TEMP(info->pdata->max_temp);
  575. break;
  576. case POWER_SUPPLY_PROP_TEMP_MIN:
  577. case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
  578. val->intval = PROP_TEMP(info->pdata->min_temp);
  579. break;
  580. case POWER_SUPPLY_PROP_TECHNOLOGY:
  581. val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
  582. break;
  583. case POWER_SUPPLY_PROP_CHARGE_NOW:
  584. ret = fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR1_REG);
  585. if (ret < 0)
  586. goto fuel_gauge_read_err;
  587. value = (ret & FG_CC_MTR1_VAL_MASK) << 8;
  588. ret = fuel_gauge_reg_readb(info, AXP288_FG_CC_MTR0_REG);
  589. if (ret < 0)
  590. goto fuel_gauge_read_err;
  591. value |= (ret & FG_CC_MTR0_VAL_MASK);
  592. val->intval = value * FG_DES_CAP_RES_LSB;
  593. break;
  594. case POWER_SUPPLY_PROP_CHARGE_FULL:
  595. ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG);
  596. if (ret < 0)
  597. goto fuel_gauge_read_err;
  598. value = (ret & FG_DES_CAP1_VAL_MASK) << 8;
  599. ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP0_REG);
  600. if (ret < 0)
  601. goto fuel_gauge_read_err;
  602. value |= (ret & FG_DES_CAP0_VAL_MASK);
  603. val->intval = value * FG_DES_CAP_RES_LSB;
  604. break;
  605. case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
  606. val->intval = PROP_CURR(info->pdata->design_cap);
  607. break;
  608. case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
  609. val->intval = PROP_VOLT(info->pdata->max_volt);
  610. break;
  611. case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
  612. val->intval = PROP_VOLT(info->pdata->min_volt);
  613. break;
  614. case POWER_SUPPLY_PROP_MODEL_NAME:
  615. val->strval = info->pdata->battid;
  616. break;
  617. default:
  618. mutex_unlock(&info->lock);
  619. return -EINVAL;
  620. }
  621. mutex_unlock(&info->lock);
  622. return 0;
  623. fuel_gauge_read_err:
  624. mutex_unlock(&info->lock);
  625. return ret;
  626. }
  627. static int fuel_gauge_set_property(struct power_supply *ps,
  628. enum power_supply_property prop,
  629. const union power_supply_propval *val)
  630. {
  631. struct axp288_fg_info *info = power_supply_get_drvdata(ps);
  632. int ret = 0;
  633. mutex_lock(&info->lock);
  634. switch (prop) {
  635. case POWER_SUPPLY_PROP_STATUS:
  636. info->status = val->intval;
  637. break;
  638. case POWER_SUPPLY_PROP_TEMP_MIN:
  639. case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
  640. if ((val->intval < PD_DEF_MIN_TEMP) ||
  641. (val->intval > PD_DEF_MAX_TEMP)) {
  642. ret = -EINVAL;
  643. break;
  644. }
  645. info->pdata->min_temp = UNPROP_TEMP(val->intval);
  646. ret = fuel_gauge_set_low_btemp_alert(info);
  647. if (ret < 0)
  648. dev_err(&info->pdev->dev,
  649. "temp alert min set fail:%d\n", ret);
  650. break;
  651. case POWER_SUPPLY_PROP_TEMP_MAX:
  652. case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
  653. if ((val->intval < PD_DEF_MIN_TEMP) ||
  654. (val->intval > PD_DEF_MAX_TEMP)) {
  655. ret = -EINVAL;
  656. break;
  657. }
  658. info->pdata->max_temp = UNPROP_TEMP(val->intval);
  659. ret = fuel_gauge_set_high_btemp_alert(info);
  660. if (ret < 0)
  661. dev_err(&info->pdev->dev,
  662. "temp alert max set fail:%d\n", ret);
  663. break;
  664. case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
  665. if ((val->intval < 0) || (val->intval > 15)) {
  666. ret = -EINVAL;
  667. break;
  668. }
  669. ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG);
  670. if (ret < 0)
  671. break;
  672. ret &= 0xf0;
  673. ret |= (val->intval & 0xf);
  674. ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, ret);
  675. break;
  676. default:
  677. ret = -EINVAL;
  678. break;
  679. }
  680. mutex_unlock(&info->lock);
  681. return ret;
  682. }
  683. static int fuel_gauge_property_is_writeable(struct power_supply *psy,
  684. enum power_supply_property psp)
  685. {
  686. int ret;
  687. switch (psp) {
  688. case POWER_SUPPLY_PROP_STATUS:
  689. case POWER_SUPPLY_PROP_TEMP_MIN:
  690. case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
  691. case POWER_SUPPLY_PROP_TEMP_MAX:
  692. case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
  693. case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
  694. ret = 1;
  695. break;
  696. default:
  697. ret = 0;
  698. }
  699. return ret;
  700. }
  701. static void fuel_gauge_status_monitor(struct work_struct *work)
  702. {
  703. struct axp288_fg_info *info = container_of(work,
  704. struct axp288_fg_info, status_monitor.work);
  705. fuel_gauge_get_status(info);
  706. power_supply_changed(info->bat);
  707. schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES);
  708. }
  709. static irqreturn_t fuel_gauge_thread_handler(int irq, void *dev)
  710. {
  711. struct axp288_fg_info *info = dev;
  712. int i;
  713. for (i = 0; i < AXP288_FG_INTR_NUM; i++) {
  714. if (info->irq[i] == irq)
  715. break;
  716. }
  717. if (i >= AXP288_FG_INTR_NUM) {
  718. dev_warn(&info->pdev->dev, "spurious interrupt!!\n");
  719. return IRQ_NONE;
  720. }
  721. switch (i) {
  722. case QWBTU_IRQ:
  723. dev_info(&info->pdev->dev,
  724. "Quit Battery under temperature in work mode IRQ (QWBTU)\n");
  725. break;
  726. case WBTU_IRQ:
  727. dev_info(&info->pdev->dev,
  728. "Battery under temperature in work mode IRQ (WBTU)\n");
  729. break;
  730. case QWBTO_IRQ:
  731. dev_info(&info->pdev->dev,
  732. "Quit Battery over temperature in work mode IRQ (QWBTO)\n");
  733. break;
  734. case WBTO_IRQ:
  735. dev_info(&info->pdev->dev,
  736. "Battery over temperature in work mode IRQ (WBTO)\n");
  737. break;
  738. case WL2_IRQ:
  739. dev_info(&info->pdev->dev, "Low Batt Warning(2) INTR\n");
  740. break;
  741. case WL1_IRQ:
  742. dev_info(&info->pdev->dev, "Low Batt Warning(1) INTR\n");
  743. break;
  744. default:
  745. dev_warn(&info->pdev->dev, "Spurious Interrupt!!!\n");
  746. }
  747. power_supply_changed(info->bat);
  748. return IRQ_HANDLED;
  749. }
  750. static void fuel_gauge_external_power_changed(struct power_supply *psy)
  751. {
  752. struct axp288_fg_info *info = power_supply_get_drvdata(psy);
  753. power_supply_changed(info->bat);
  754. }
  755. static const struct power_supply_desc fuel_gauge_desc = {
  756. .name = DEV_NAME,
  757. .type = POWER_SUPPLY_TYPE_BATTERY,
  758. .properties = fuel_gauge_props,
  759. .num_properties = ARRAY_SIZE(fuel_gauge_props),
  760. .get_property = fuel_gauge_get_property,
  761. .set_property = fuel_gauge_set_property,
  762. .property_is_writeable = fuel_gauge_property_is_writeable,
  763. .external_power_changed = fuel_gauge_external_power_changed,
  764. };
  765. static int fuel_gauge_set_lowbatt_thresholds(struct axp288_fg_info *info)
  766. {
  767. int ret;
  768. u8 reg_val;
  769. ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES);
  770. if (ret < 0) {
  771. dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
  772. return ret;
  773. }
  774. ret = (ret & FG_REP_CAP_VAL_MASK);
  775. if (ret > FG_LOW_CAP_WARN_THR)
  776. reg_val = FG_LOW_CAP_WARN_THR;
  777. else if (ret > FG_LOW_CAP_CRIT_THR)
  778. reg_val = FG_LOW_CAP_CRIT_THR;
  779. else
  780. reg_val = FG_LOW_CAP_SHDN_THR;
  781. reg_val |= FG_LOW_CAP_THR1_VAL;
  782. ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, reg_val);
  783. if (ret < 0)
  784. dev_err(&info->pdev->dev, "%s:write err:%d\n", __func__, ret);
  785. return ret;
  786. }
  787. static int fuel_gauge_program_vbatt_full(struct axp288_fg_info *info)
  788. {
  789. int ret;
  790. u8 val;
  791. ret = fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1);
  792. if (ret < 0)
  793. goto fg_prog_ocv_fail;
  794. else
  795. val = (ret & ~CHRG_CCCV_CV_MASK);
  796. switch (info->pdata->max_volt) {
  797. case CV_4100:
  798. val |= (CHRG_CCCV_CV_4100MV << CHRG_CCCV_CV_BIT_POS);
  799. break;
  800. case CV_4150:
  801. val |= (CHRG_CCCV_CV_4150MV << CHRG_CCCV_CV_BIT_POS);
  802. break;
  803. case CV_4200:
  804. val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS);
  805. break;
  806. case CV_4350:
  807. val |= (CHRG_CCCV_CV_4350MV << CHRG_CCCV_CV_BIT_POS);
  808. break;
  809. default:
  810. val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS);
  811. break;
  812. }
  813. ret = fuel_gauge_reg_writeb(info, AXP20X_CHRG_CTRL1, val);
  814. fg_prog_ocv_fail:
  815. return ret;
  816. }
  817. static int fuel_gauge_program_design_cap(struct axp288_fg_info *info)
  818. {
  819. int ret;
  820. ret = fuel_gauge_reg_writeb(info,
  821. AXP288_FG_DES_CAP1_REG, info->pdata->cap1);
  822. if (ret < 0)
  823. goto fg_prog_descap_fail;
  824. ret = fuel_gauge_reg_writeb(info,
  825. AXP288_FG_DES_CAP0_REG, info->pdata->cap0);
  826. fg_prog_descap_fail:
  827. return ret;
  828. }
  829. static int fuel_gauge_program_ocv_curve(struct axp288_fg_info *info)
  830. {
  831. int ret = 0, i;
  832. for (i = 0; i < OCV_CURVE_SIZE; i++) {
  833. ret = fuel_gauge_reg_writeb(info,
  834. AXP288_FG_OCV_CURVE_REG + i, info->pdata->ocv_curve[i]);
  835. if (ret < 0)
  836. goto fg_prog_ocv_fail;
  837. }
  838. fg_prog_ocv_fail:
  839. return ret;
  840. }
  841. static int fuel_gauge_program_rdc_vals(struct axp288_fg_info *info)
  842. {
  843. int ret;
  844. ret = fuel_gauge_reg_writeb(info,
  845. AXP288_FG_RDC1_REG, info->pdata->rdc1);
  846. if (ret < 0)
  847. goto fg_prog_ocv_fail;
  848. ret = fuel_gauge_reg_writeb(info,
  849. AXP288_FG_RDC0_REG, info->pdata->rdc0);
  850. fg_prog_ocv_fail:
  851. return ret;
  852. }
  853. static void fuel_gauge_init_config_regs(struct axp288_fg_info *info)
  854. {
  855. int ret;
  856. /*
  857. * check if the config data is already
  858. * programmed and if so just return.
  859. */
  860. ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG);
  861. if (ret < 0) {
  862. dev_warn(&info->pdev->dev, "CAP1 reg read err!!\n");
  863. } else if (!(ret & FG_DES_CAP1_VALID)) {
  864. dev_info(&info->pdev->dev, "FG data needs to be initialized\n");
  865. } else {
  866. dev_info(&info->pdev->dev, "FG data is already initialized\n");
  867. return;
  868. }
  869. ret = fuel_gauge_program_vbatt_full(info);
  870. if (ret < 0)
  871. dev_err(&info->pdev->dev, "set vbatt full fail:%d\n", ret);
  872. ret = fuel_gauge_program_design_cap(info);
  873. if (ret < 0)
  874. dev_err(&info->pdev->dev, "set design cap fail:%d\n", ret);
  875. ret = fuel_gauge_program_rdc_vals(info);
  876. if (ret < 0)
  877. dev_err(&info->pdev->dev, "set rdc fail:%d\n", ret);
  878. ret = fuel_gauge_program_ocv_curve(info);
  879. if (ret < 0)
  880. dev_err(&info->pdev->dev, "set ocv curve fail:%d\n", ret);
  881. ret = fuel_gauge_set_lowbatt_thresholds(info);
  882. if (ret < 0)
  883. dev_err(&info->pdev->dev, "lowbatt thr set fail:%d\n", ret);
  884. ret = fuel_gauge_reg_writeb(info, AXP20X_CC_CTRL, 0xef);
  885. if (ret < 0)
  886. dev_err(&info->pdev->dev, "gauge cntl set fail:%d\n", ret);
  887. }
  888. static void fuel_gauge_init_irq(struct axp288_fg_info *info)
  889. {
  890. int ret, i, pirq;
  891. for (i = 0; i < AXP288_FG_INTR_NUM; i++) {
  892. pirq = platform_get_irq(info->pdev, i);
  893. info->irq[i] = regmap_irq_get_virq(info->regmap_irqc, pirq);
  894. if (info->irq[i] < 0) {
  895. dev_warn(&info->pdev->dev,
  896. "regmap_irq get virq failed for IRQ %d: %d\n",
  897. pirq, info->irq[i]);
  898. info->irq[i] = -1;
  899. goto intr_failed;
  900. }
  901. ret = request_threaded_irq(info->irq[i],
  902. NULL, fuel_gauge_thread_handler,
  903. IRQF_ONESHOT, DEV_NAME, info);
  904. if (ret) {
  905. dev_warn(&info->pdev->dev,
  906. "request irq failed for IRQ %d: %d\n",
  907. pirq, info->irq[i]);
  908. info->irq[i] = -1;
  909. goto intr_failed;
  910. } else {
  911. dev_info(&info->pdev->dev, "HW IRQ %d -> VIRQ %d\n",
  912. pirq, info->irq[i]);
  913. }
  914. }
  915. return;
  916. intr_failed:
  917. for (; i > 0; i--) {
  918. free_irq(info->irq[i - 1], info);
  919. info->irq[i - 1] = -1;
  920. }
  921. }
  922. static void fuel_gauge_init_hw_regs(struct axp288_fg_info *info)
  923. {
  924. int ret;
  925. unsigned int val;
  926. ret = fuel_gauge_set_high_btemp_alert(info);
  927. if (ret < 0)
  928. dev_err(&info->pdev->dev, "high batt temp set fail:%d\n", ret);
  929. ret = fuel_gauge_set_low_btemp_alert(info);
  930. if (ret < 0)
  931. dev_err(&info->pdev->dev, "low batt temp set fail:%d\n", ret);
  932. /* enable interrupts */
  933. val = fuel_gauge_reg_readb(info, AXP20X_IRQ3_EN);
  934. val |= TEMP_IRQ_CFG_MASK;
  935. fuel_gauge_reg_writeb(info, AXP20X_IRQ3_EN, val);
  936. val = fuel_gauge_reg_readb(info, AXP20X_IRQ4_EN);
  937. val |= FG_IRQ_CFG_LOWBATT_MASK;
  938. val = fuel_gauge_reg_writeb(info, AXP20X_IRQ4_EN, val);
  939. }
  940. static int axp288_fuel_gauge_probe(struct platform_device *pdev)
  941. {
  942. int ret = 0;
  943. struct axp288_fg_info *info;
  944. struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent);
  945. struct power_supply_config psy_cfg = {};
  946. info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
  947. if (!info)
  948. return -ENOMEM;
  949. info->pdev = pdev;
  950. info->regmap = axp20x->regmap;
  951. info->regmap_irqc = axp20x->regmap_irqc;
  952. info->status = POWER_SUPPLY_STATUS_UNKNOWN;
  953. info->pdata = pdev->dev.platform_data;
  954. if (!info->pdata)
  955. return -ENODEV;
  956. platform_set_drvdata(pdev, info);
  957. mutex_init(&info->lock);
  958. INIT_DELAYED_WORK(&info->status_monitor, fuel_gauge_status_monitor);
  959. psy_cfg.drv_data = info;
  960. info->bat = power_supply_register(&pdev->dev, &fuel_gauge_desc, &psy_cfg);
  961. if (IS_ERR(info->bat)) {
  962. ret = PTR_ERR(info->bat);
  963. dev_err(&pdev->dev, "failed to register battery: %d\n", ret);
  964. return ret;
  965. }
  966. fuel_gauge_create_debugfs(info);
  967. fuel_gauge_init_config_regs(info);
  968. fuel_gauge_init_irq(info);
  969. fuel_gauge_init_hw_regs(info);
  970. schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES);
  971. return ret;
  972. }
  973. static const struct platform_device_id axp288_fg_id_table[] = {
  974. { .name = DEV_NAME },
  975. {},
  976. };
  977. MODULE_DEVICE_TABLE(platform, axp288_fg_id_table);
  978. static int axp288_fuel_gauge_remove(struct platform_device *pdev)
  979. {
  980. struct axp288_fg_info *info = platform_get_drvdata(pdev);
  981. int i;
  982. cancel_delayed_work_sync(&info->status_monitor);
  983. power_supply_unregister(info->bat);
  984. fuel_gauge_remove_debugfs(info);
  985. for (i = 0; i < AXP288_FG_INTR_NUM; i++)
  986. if (info->irq[i] >= 0)
  987. free_irq(info->irq[i], info);
  988. return 0;
  989. }
  990. static struct platform_driver axp288_fuel_gauge_driver = {
  991. .probe = axp288_fuel_gauge_probe,
  992. .remove = axp288_fuel_gauge_remove,
  993. .id_table = axp288_fg_id_table,
  994. .driver = {
  995. .name = DEV_NAME,
  996. },
  997. };
  998. module_platform_driver(axp288_fuel_gauge_driver);
  999. MODULE_AUTHOR("Ramakrishna Pallala <ramakrishna.pallala@intel.com>");
  1000. MODULE_AUTHOR("Todd Brandt <todd.e.brandt@linux.intel.com>");
  1001. MODULE_DESCRIPTION("Xpower AXP288 Fuel Gauge Driver");
  1002. MODULE_LICENSE("GPL");