access.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891
  1. #include <linux/delay.h>
  2. #include <linux/pci.h>
  3. #include <linux/module.h>
  4. #include <linux/sched.h>
  5. #include <linux/slab.h>
  6. #include <linux/ioport.h>
  7. #include <linux/wait.h>
  8. #include "pci.h"
  9. /*
  10. * This interrupt-safe spinlock protects all accesses to PCI
  11. * configuration space.
  12. */
  13. DEFINE_RAW_SPINLOCK(pci_lock);
  14. /*
  15. * Wrappers for all PCI configuration access functions. They just check
  16. * alignment, do locking and call the low-level functions pointed to
  17. * by pci_dev->ops.
  18. */
  19. #define PCI_byte_BAD 0
  20. #define PCI_word_BAD (pos & 1)
  21. #define PCI_dword_BAD (pos & 3)
  22. #define PCI_OP_READ(size, type, len) \
  23. int pci_bus_read_config_##size \
  24. (struct pci_bus *bus, unsigned int devfn, int pos, type *value) \
  25. { \
  26. int res; \
  27. unsigned long flags; \
  28. u32 data = 0; \
  29. if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
  30. raw_spin_lock_irqsave(&pci_lock, flags); \
  31. res = bus->ops->read(bus, devfn, pos, len, &data); \
  32. *value = (type)data; \
  33. raw_spin_unlock_irqrestore(&pci_lock, flags); \
  34. return res; \
  35. }
  36. #define PCI_OP_WRITE(size, type, len) \
  37. int pci_bus_write_config_##size \
  38. (struct pci_bus *bus, unsigned int devfn, int pos, type value) \
  39. { \
  40. int res; \
  41. unsigned long flags; \
  42. if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
  43. raw_spin_lock_irqsave(&pci_lock, flags); \
  44. res = bus->ops->write(bus, devfn, pos, len, value); \
  45. raw_spin_unlock_irqrestore(&pci_lock, flags); \
  46. return res; \
  47. }
  48. PCI_OP_READ(byte, u8, 1)
  49. PCI_OP_READ(word, u16, 2)
  50. PCI_OP_READ(dword, u32, 4)
  51. PCI_OP_WRITE(byte, u8, 1)
  52. PCI_OP_WRITE(word, u16, 2)
  53. PCI_OP_WRITE(dword, u32, 4)
  54. EXPORT_SYMBOL(pci_bus_read_config_byte);
  55. EXPORT_SYMBOL(pci_bus_read_config_word);
  56. EXPORT_SYMBOL(pci_bus_read_config_dword);
  57. EXPORT_SYMBOL(pci_bus_write_config_byte);
  58. EXPORT_SYMBOL(pci_bus_write_config_word);
  59. EXPORT_SYMBOL(pci_bus_write_config_dword);
  60. int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
  61. int where, int size, u32 *val)
  62. {
  63. void __iomem *addr;
  64. addr = bus->ops->map_bus(bus, devfn, where);
  65. if (!addr) {
  66. *val = ~0;
  67. return PCIBIOS_DEVICE_NOT_FOUND;
  68. }
  69. if (size == 1)
  70. *val = readb(addr);
  71. else if (size == 2)
  72. *val = readw(addr);
  73. else
  74. *val = readl(addr);
  75. return PCIBIOS_SUCCESSFUL;
  76. }
  77. EXPORT_SYMBOL_GPL(pci_generic_config_read);
  78. int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
  79. int where, int size, u32 val)
  80. {
  81. void __iomem *addr;
  82. addr = bus->ops->map_bus(bus, devfn, where);
  83. if (!addr)
  84. return PCIBIOS_DEVICE_NOT_FOUND;
  85. if (size == 1)
  86. writeb(val, addr);
  87. else if (size == 2)
  88. writew(val, addr);
  89. else
  90. writel(val, addr);
  91. return PCIBIOS_SUCCESSFUL;
  92. }
  93. EXPORT_SYMBOL_GPL(pci_generic_config_write);
  94. int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
  95. int where, int size, u32 *val)
  96. {
  97. void __iomem *addr;
  98. addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
  99. if (!addr) {
  100. *val = ~0;
  101. return PCIBIOS_DEVICE_NOT_FOUND;
  102. }
  103. *val = readl(addr);
  104. if (size <= 2)
  105. *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
  106. return PCIBIOS_SUCCESSFUL;
  107. }
  108. EXPORT_SYMBOL_GPL(pci_generic_config_read32);
  109. int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
  110. int where, int size, u32 val)
  111. {
  112. void __iomem *addr;
  113. u32 mask, tmp;
  114. addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
  115. if (!addr)
  116. return PCIBIOS_DEVICE_NOT_FOUND;
  117. if (size == 4) {
  118. writel(val, addr);
  119. return PCIBIOS_SUCCESSFUL;
  120. }
  121. /*
  122. * In general, hardware that supports only 32-bit writes on PCI is
  123. * not spec-compliant. For example, software may perform a 16-bit
  124. * write. If the hardware only supports 32-bit accesses, we must
  125. * do a 32-bit read, merge in the 16 bits we intend to write,
  126. * followed by a 32-bit write. If the 16 bits we *don't* intend to
  127. * write happen to have any RW1C (write-one-to-clear) bits set, we
  128. * just inadvertently cleared something we shouldn't have.
  129. */
  130. dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n",
  131. size, pci_domain_nr(bus), bus->number,
  132. PCI_SLOT(devfn), PCI_FUNC(devfn), where);
  133. mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
  134. tmp = readl(addr) & mask;
  135. tmp |= val << ((where & 0x3) * 8);
  136. writel(tmp, addr);
  137. return PCIBIOS_SUCCESSFUL;
  138. }
  139. EXPORT_SYMBOL_GPL(pci_generic_config_write32);
  140. /**
  141. * pci_bus_set_ops - Set raw operations of pci bus
  142. * @bus: pci bus struct
  143. * @ops: new raw operations
  144. *
  145. * Return previous raw operations
  146. */
  147. struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
  148. {
  149. struct pci_ops *old_ops;
  150. unsigned long flags;
  151. raw_spin_lock_irqsave(&pci_lock, flags);
  152. old_ops = bus->ops;
  153. bus->ops = ops;
  154. raw_spin_unlock_irqrestore(&pci_lock, flags);
  155. return old_ops;
  156. }
  157. EXPORT_SYMBOL(pci_bus_set_ops);
  158. /*
  159. * The following routines are to prevent the user from accessing PCI config
  160. * space when it's unsafe to do so. Some devices require this during BIST and
  161. * we're required to prevent it during D-state transitions.
  162. *
  163. * We have a bit per device to indicate it's blocked and a global wait queue
  164. * for callers to sleep on until devices are unblocked.
  165. */
  166. static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
  167. static noinline void pci_wait_cfg(struct pci_dev *dev)
  168. {
  169. DECLARE_WAITQUEUE(wait, current);
  170. __add_wait_queue(&pci_cfg_wait, &wait);
  171. do {
  172. set_current_state(TASK_UNINTERRUPTIBLE);
  173. raw_spin_unlock_irq(&pci_lock);
  174. schedule();
  175. raw_spin_lock_irq(&pci_lock);
  176. } while (dev->block_cfg_access);
  177. __remove_wait_queue(&pci_cfg_wait, &wait);
  178. }
  179. /* Returns 0 on success, negative values indicate error. */
  180. #define PCI_USER_READ_CONFIG(size, type) \
  181. int pci_user_read_config_##size \
  182. (struct pci_dev *dev, int pos, type *val) \
  183. { \
  184. int ret = PCIBIOS_SUCCESSFUL; \
  185. u32 data = -1; \
  186. if (PCI_##size##_BAD) \
  187. return -EINVAL; \
  188. raw_spin_lock_irq(&pci_lock); \
  189. if (unlikely(dev->block_cfg_access)) \
  190. pci_wait_cfg(dev); \
  191. ret = dev->bus->ops->read(dev->bus, dev->devfn, \
  192. pos, sizeof(type), &data); \
  193. raw_spin_unlock_irq(&pci_lock); \
  194. *val = (type)data; \
  195. return pcibios_err_to_errno(ret); \
  196. } \
  197. EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
  198. /* Returns 0 on success, negative values indicate error. */
  199. #define PCI_USER_WRITE_CONFIG(size, type) \
  200. int pci_user_write_config_##size \
  201. (struct pci_dev *dev, int pos, type val) \
  202. { \
  203. int ret = PCIBIOS_SUCCESSFUL; \
  204. if (PCI_##size##_BAD) \
  205. return -EINVAL; \
  206. raw_spin_lock_irq(&pci_lock); \
  207. if (unlikely(dev->block_cfg_access)) \
  208. pci_wait_cfg(dev); \
  209. ret = dev->bus->ops->write(dev->bus, dev->devfn, \
  210. pos, sizeof(type), val); \
  211. raw_spin_unlock_irq(&pci_lock); \
  212. return pcibios_err_to_errno(ret); \
  213. } \
  214. EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
  215. PCI_USER_READ_CONFIG(byte, u8)
  216. PCI_USER_READ_CONFIG(word, u16)
  217. PCI_USER_READ_CONFIG(dword, u32)
  218. PCI_USER_WRITE_CONFIG(byte, u8)
  219. PCI_USER_WRITE_CONFIG(word, u16)
  220. PCI_USER_WRITE_CONFIG(dword, u32)
  221. /* VPD access through PCI 2.2+ VPD capability */
  222. /**
  223. * pci_read_vpd - Read one entry from Vital Product Data
  224. * @dev: pci device struct
  225. * @pos: offset in vpd space
  226. * @count: number of bytes to read
  227. * @buf: pointer to where to store result
  228. */
  229. ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
  230. {
  231. if (!dev->vpd || !dev->vpd->ops)
  232. return -ENODEV;
  233. return dev->vpd->ops->read(dev, pos, count, buf);
  234. }
  235. EXPORT_SYMBOL(pci_read_vpd);
  236. /**
  237. * pci_write_vpd - Write entry to Vital Product Data
  238. * @dev: pci device struct
  239. * @pos: offset in vpd space
  240. * @count: number of bytes to write
  241. * @buf: buffer containing write data
  242. */
  243. ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
  244. {
  245. if (!dev->vpd || !dev->vpd->ops)
  246. return -ENODEV;
  247. return dev->vpd->ops->write(dev, pos, count, buf);
  248. }
  249. EXPORT_SYMBOL(pci_write_vpd);
  250. /**
  251. * pci_set_vpd_size - Set size of Vital Product Data space
  252. * @dev: pci device struct
  253. * @len: size of vpd space
  254. */
  255. int pci_set_vpd_size(struct pci_dev *dev, size_t len)
  256. {
  257. if (!dev->vpd || !dev->vpd->ops)
  258. return -ENODEV;
  259. return dev->vpd->ops->set_size(dev, len);
  260. }
  261. EXPORT_SYMBOL(pci_set_vpd_size);
  262. #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
  263. /**
  264. * pci_vpd_size - determine actual size of Vital Product Data
  265. * @dev: pci device struct
  266. * @old_size: current assumed size, also maximum allowed size
  267. */
  268. static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
  269. {
  270. size_t off = 0;
  271. unsigned char header[1+2]; /* 1 byte tag, 2 bytes length */
  272. while (off < old_size &&
  273. pci_read_vpd(dev, off, 1, header) == 1) {
  274. unsigned char tag;
  275. if (header[0] & PCI_VPD_LRDT) {
  276. /* Large Resource Data Type Tag */
  277. tag = pci_vpd_lrdt_tag(header);
  278. /* Only read length from known tag items */
  279. if ((tag == PCI_VPD_LTIN_ID_STRING) ||
  280. (tag == PCI_VPD_LTIN_RO_DATA) ||
  281. (tag == PCI_VPD_LTIN_RW_DATA)) {
  282. if (pci_read_vpd(dev, off+1, 2,
  283. &header[1]) != 2) {
  284. dev_warn(&dev->dev,
  285. "invalid large VPD tag %02x size at offset %zu",
  286. tag, off + 1);
  287. return 0;
  288. }
  289. off += PCI_VPD_LRDT_TAG_SIZE +
  290. pci_vpd_lrdt_size(header);
  291. }
  292. } else {
  293. /* Short Resource Data Type Tag */
  294. off += PCI_VPD_SRDT_TAG_SIZE +
  295. pci_vpd_srdt_size(header);
  296. tag = pci_vpd_srdt_tag(header);
  297. }
  298. if (tag == PCI_VPD_STIN_END) /* End tag descriptor */
  299. return off;
  300. if ((tag != PCI_VPD_LTIN_ID_STRING) &&
  301. (tag != PCI_VPD_LTIN_RO_DATA) &&
  302. (tag != PCI_VPD_LTIN_RW_DATA)) {
  303. dev_warn(&dev->dev,
  304. "invalid %s VPD tag %02x at offset %zu",
  305. (header[0] & PCI_VPD_LRDT) ? "large" : "short",
  306. tag, off);
  307. return 0;
  308. }
  309. }
  310. return 0;
  311. }
  312. /*
  313. * Wait for last operation to complete.
  314. * This code has to spin since there is no other notification from the PCI
  315. * hardware. Since the VPD is often implemented by serial attachment to an
  316. * EEPROM, it may take many milliseconds to complete.
  317. *
  318. * Returns 0 on success, negative values indicate error.
  319. */
  320. static int pci_vpd_wait(struct pci_dev *dev)
  321. {
  322. struct pci_vpd *vpd = dev->vpd;
  323. unsigned long timeout = jiffies + msecs_to_jiffies(50);
  324. unsigned long max_sleep = 16;
  325. u16 status;
  326. int ret;
  327. if (!vpd->busy)
  328. return 0;
  329. while (time_before(jiffies, timeout)) {
  330. ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
  331. &status);
  332. if (ret < 0)
  333. return ret;
  334. if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
  335. vpd->busy = 0;
  336. return 0;
  337. }
  338. if (fatal_signal_pending(current))
  339. return -EINTR;
  340. usleep_range(10, max_sleep);
  341. if (max_sleep < 1024)
  342. max_sleep *= 2;
  343. }
  344. dev_warn(&dev->dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n");
  345. return -ETIMEDOUT;
  346. }
  347. static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
  348. void *arg)
  349. {
  350. struct pci_vpd *vpd = dev->vpd;
  351. int ret;
  352. loff_t end = pos + count;
  353. u8 *buf = arg;
  354. if (pos < 0)
  355. return -EINVAL;
  356. if (!vpd->valid) {
  357. vpd->valid = 1;
  358. vpd->len = pci_vpd_size(dev, vpd->len);
  359. }
  360. if (vpd->len == 0)
  361. return -EIO;
  362. if (pos > vpd->len)
  363. return 0;
  364. if (end > vpd->len) {
  365. end = vpd->len;
  366. count = end - pos;
  367. }
  368. if (mutex_lock_killable(&vpd->lock))
  369. return -EINTR;
  370. ret = pci_vpd_wait(dev);
  371. if (ret < 0)
  372. goto out;
  373. while (pos < end) {
  374. u32 val;
  375. unsigned int i, skip;
  376. ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
  377. pos & ~3);
  378. if (ret < 0)
  379. break;
  380. vpd->busy = 1;
  381. vpd->flag = PCI_VPD_ADDR_F;
  382. ret = pci_vpd_wait(dev);
  383. if (ret < 0)
  384. break;
  385. ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
  386. if (ret < 0)
  387. break;
  388. skip = pos & 3;
  389. for (i = 0; i < sizeof(u32); i++) {
  390. if (i >= skip) {
  391. *buf++ = val;
  392. if (++pos == end)
  393. break;
  394. }
  395. val >>= 8;
  396. }
  397. }
  398. out:
  399. mutex_unlock(&vpd->lock);
  400. return ret ? ret : count;
  401. }
  402. static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
  403. const void *arg)
  404. {
  405. struct pci_vpd *vpd = dev->vpd;
  406. const u8 *buf = arg;
  407. loff_t end = pos + count;
  408. int ret = 0;
  409. if (pos < 0 || (pos & 3) || (count & 3))
  410. return -EINVAL;
  411. if (!vpd->valid) {
  412. vpd->valid = 1;
  413. vpd->len = pci_vpd_size(dev, vpd->len);
  414. }
  415. if (vpd->len == 0)
  416. return -EIO;
  417. if (end > vpd->len)
  418. return -EINVAL;
  419. if (mutex_lock_killable(&vpd->lock))
  420. return -EINTR;
  421. ret = pci_vpd_wait(dev);
  422. if (ret < 0)
  423. goto out;
  424. while (pos < end) {
  425. u32 val;
  426. val = *buf++;
  427. val |= *buf++ << 8;
  428. val |= *buf++ << 16;
  429. val |= *buf++ << 24;
  430. ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
  431. if (ret < 0)
  432. break;
  433. ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
  434. pos | PCI_VPD_ADDR_F);
  435. if (ret < 0)
  436. break;
  437. vpd->busy = 1;
  438. vpd->flag = 0;
  439. ret = pci_vpd_wait(dev);
  440. if (ret < 0)
  441. break;
  442. pos += sizeof(u32);
  443. }
  444. out:
  445. mutex_unlock(&vpd->lock);
  446. return ret ? ret : count;
  447. }
  448. static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
  449. {
  450. struct pci_vpd *vpd = dev->vpd;
  451. if (len == 0 || len > PCI_VPD_MAX_SIZE)
  452. return -EIO;
  453. vpd->valid = 1;
  454. vpd->len = len;
  455. return 0;
  456. }
  457. static const struct pci_vpd_ops pci_vpd_ops = {
  458. .read = pci_vpd_read,
  459. .write = pci_vpd_write,
  460. .set_size = pci_vpd_set_size,
  461. };
  462. static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
  463. void *arg)
  464. {
  465. struct pci_dev *tdev = pci_get_slot(dev->bus,
  466. PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
  467. ssize_t ret;
  468. if (!tdev)
  469. return -ENODEV;
  470. ret = pci_read_vpd(tdev, pos, count, arg);
  471. pci_dev_put(tdev);
  472. return ret;
  473. }
  474. static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
  475. const void *arg)
  476. {
  477. struct pci_dev *tdev = pci_get_slot(dev->bus,
  478. PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
  479. ssize_t ret;
  480. if (!tdev)
  481. return -ENODEV;
  482. ret = pci_write_vpd(tdev, pos, count, arg);
  483. pci_dev_put(tdev);
  484. return ret;
  485. }
  486. static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
  487. {
  488. struct pci_dev *tdev = pci_get_slot(dev->bus,
  489. PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
  490. int ret;
  491. if (!tdev)
  492. return -ENODEV;
  493. ret = pci_set_vpd_size(tdev, len);
  494. pci_dev_put(tdev);
  495. return ret;
  496. }
  497. static const struct pci_vpd_ops pci_vpd_f0_ops = {
  498. .read = pci_vpd_f0_read,
  499. .write = pci_vpd_f0_write,
  500. .set_size = pci_vpd_f0_set_size,
  501. };
  502. int pci_vpd_init(struct pci_dev *dev)
  503. {
  504. struct pci_vpd *vpd;
  505. u8 cap;
  506. cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
  507. if (!cap)
  508. return -ENODEV;
  509. vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
  510. if (!vpd)
  511. return -ENOMEM;
  512. vpd->len = PCI_VPD_MAX_SIZE;
  513. if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
  514. vpd->ops = &pci_vpd_f0_ops;
  515. else
  516. vpd->ops = &pci_vpd_ops;
  517. mutex_init(&vpd->lock);
  518. vpd->cap = cap;
  519. vpd->busy = 0;
  520. vpd->valid = 0;
  521. dev->vpd = vpd;
  522. return 0;
  523. }
  524. void pci_vpd_release(struct pci_dev *dev)
  525. {
  526. kfree(dev->vpd);
  527. }
  528. /**
  529. * pci_cfg_access_lock - Lock PCI config reads/writes
  530. * @dev: pci device struct
  531. *
  532. * When access is locked, any userspace reads or writes to config
  533. * space and concurrent lock requests will sleep until access is
  534. * allowed via pci_cfg_access_unlocked again.
  535. */
  536. void pci_cfg_access_lock(struct pci_dev *dev)
  537. {
  538. might_sleep();
  539. raw_spin_lock_irq(&pci_lock);
  540. if (dev->block_cfg_access)
  541. pci_wait_cfg(dev);
  542. dev->block_cfg_access = 1;
  543. raw_spin_unlock_irq(&pci_lock);
  544. }
  545. EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
  546. /**
  547. * pci_cfg_access_trylock - try to lock PCI config reads/writes
  548. * @dev: pci device struct
  549. *
  550. * Same as pci_cfg_access_lock, but will return 0 if access is
  551. * already locked, 1 otherwise. This function can be used from
  552. * atomic contexts.
  553. */
  554. bool pci_cfg_access_trylock(struct pci_dev *dev)
  555. {
  556. unsigned long flags;
  557. bool locked = true;
  558. raw_spin_lock_irqsave(&pci_lock, flags);
  559. if (dev->block_cfg_access)
  560. locked = false;
  561. else
  562. dev->block_cfg_access = 1;
  563. raw_spin_unlock_irqrestore(&pci_lock, flags);
  564. return locked;
  565. }
  566. EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
  567. /**
  568. * pci_cfg_access_unlock - Unlock PCI config reads/writes
  569. * @dev: pci device struct
  570. *
  571. * This function allows PCI config accesses to resume.
  572. */
  573. void pci_cfg_access_unlock(struct pci_dev *dev)
  574. {
  575. unsigned long flags;
  576. raw_spin_lock_irqsave(&pci_lock, flags);
  577. /* This indicates a problem in the caller, but we don't need
  578. * to kill them, unlike a double-block above. */
  579. WARN_ON(!dev->block_cfg_access);
  580. dev->block_cfg_access = 0;
  581. wake_up_all(&pci_cfg_wait);
  582. raw_spin_unlock_irqrestore(&pci_lock, flags);
  583. }
  584. EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
  585. static inline int pcie_cap_version(const struct pci_dev *dev)
  586. {
  587. return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
  588. }
  589. static bool pcie_downstream_port(const struct pci_dev *dev)
  590. {
  591. int type = pci_pcie_type(dev);
  592. return type == PCI_EXP_TYPE_ROOT_PORT ||
  593. type == PCI_EXP_TYPE_DOWNSTREAM;
  594. }
  595. bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
  596. {
  597. int type = pci_pcie_type(dev);
  598. return type == PCI_EXP_TYPE_ENDPOINT ||
  599. type == PCI_EXP_TYPE_LEG_END ||
  600. type == PCI_EXP_TYPE_ROOT_PORT ||
  601. type == PCI_EXP_TYPE_UPSTREAM ||
  602. type == PCI_EXP_TYPE_DOWNSTREAM ||
  603. type == PCI_EXP_TYPE_PCI_BRIDGE ||
  604. type == PCI_EXP_TYPE_PCIE_BRIDGE;
  605. }
  606. static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
  607. {
  608. return pcie_downstream_port(dev) &&
  609. pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
  610. }
  611. static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
  612. {
  613. int type = pci_pcie_type(dev);
  614. return type == PCI_EXP_TYPE_ROOT_PORT ||
  615. type == PCI_EXP_TYPE_RC_EC;
  616. }
  617. static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
  618. {
  619. if (!pci_is_pcie(dev))
  620. return false;
  621. switch (pos) {
  622. case PCI_EXP_FLAGS:
  623. return true;
  624. case PCI_EXP_DEVCAP:
  625. case PCI_EXP_DEVCTL:
  626. case PCI_EXP_DEVSTA:
  627. return true;
  628. case PCI_EXP_LNKCAP:
  629. case PCI_EXP_LNKCTL:
  630. case PCI_EXP_LNKSTA:
  631. return pcie_cap_has_lnkctl(dev);
  632. case PCI_EXP_SLTCAP:
  633. case PCI_EXP_SLTCTL:
  634. case PCI_EXP_SLTSTA:
  635. return pcie_cap_has_sltctl(dev);
  636. case PCI_EXP_RTCTL:
  637. case PCI_EXP_RTCAP:
  638. case PCI_EXP_RTSTA:
  639. return pcie_cap_has_rtctl(dev);
  640. case PCI_EXP_DEVCAP2:
  641. case PCI_EXP_DEVCTL2:
  642. case PCI_EXP_LNKCAP2:
  643. case PCI_EXP_LNKCTL2:
  644. case PCI_EXP_LNKSTA2:
  645. return pcie_cap_version(dev) > 1;
  646. default:
  647. return false;
  648. }
  649. }
  650. /*
  651. * Note that these accessor functions are only for the "PCI Express
  652. * Capability" (see PCIe spec r3.0, sec 7.8). They do not apply to the
  653. * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
  654. */
  655. int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
  656. {
  657. int ret;
  658. *val = 0;
  659. if (pos & 1)
  660. return -EINVAL;
  661. if (pcie_capability_reg_implemented(dev, pos)) {
  662. ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
  663. /*
  664. * Reset *val to 0 if pci_read_config_word() fails, it may
  665. * have been written as 0xFFFF if hardware error happens
  666. * during pci_read_config_word().
  667. */
  668. if (ret)
  669. *val = 0;
  670. return ret;
  671. }
  672. /*
  673. * For Functions that do not implement the Slot Capabilities,
  674. * Slot Status, and Slot Control registers, these spaces must
  675. * be hardwired to 0b, with the exception of the Presence Detect
  676. * State bit in the Slot Status register of Downstream Ports,
  677. * which must be hardwired to 1b. (PCIe Base Spec 3.0, sec 7.8)
  678. */
  679. if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
  680. pos == PCI_EXP_SLTSTA)
  681. *val = PCI_EXP_SLTSTA_PDS;
  682. return 0;
  683. }
  684. EXPORT_SYMBOL(pcie_capability_read_word);
  685. int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
  686. {
  687. int ret;
  688. *val = 0;
  689. if (pos & 3)
  690. return -EINVAL;
  691. if (pcie_capability_reg_implemented(dev, pos)) {
  692. ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
  693. /*
  694. * Reset *val to 0 if pci_read_config_dword() fails, it may
  695. * have been written as 0xFFFFFFFF if hardware error happens
  696. * during pci_read_config_dword().
  697. */
  698. if (ret)
  699. *val = 0;
  700. return ret;
  701. }
  702. if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
  703. pos == PCI_EXP_SLTSTA)
  704. *val = PCI_EXP_SLTSTA_PDS;
  705. return 0;
  706. }
  707. EXPORT_SYMBOL(pcie_capability_read_dword);
  708. int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
  709. {
  710. if (pos & 1)
  711. return -EINVAL;
  712. if (!pcie_capability_reg_implemented(dev, pos))
  713. return 0;
  714. return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
  715. }
  716. EXPORT_SYMBOL(pcie_capability_write_word);
  717. int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
  718. {
  719. if (pos & 3)
  720. return -EINVAL;
  721. if (!pcie_capability_reg_implemented(dev, pos))
  722. return 0;
  723. return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
  724. }
  725. EXPORT_SYMBOL(pcie_capability_write_dword);
  726. int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
  727. u16 clear, u16 set)
  728. {
  729. int ret;
  730. u16 val;
  731. ret = pcie_capability_read_word(dev, pos, &val);
  732. if (!ret) {
  733. val &= ~clear;
  734. val |= set;
  735. ret = pcie_capability_write_word(dev, pos, val);
  736. }
  737. return ret;
  738. }
  739. EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
  740. int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
  741. u32 clear, u32 set)
  742. {
  743. int ret;
  744. u32 val;
  745. ret = pcie_capability_read_dword(dev, pos, &val);
  746. if (!ret) {
  747. val &= ~clear;
  748. val |= set;
  749. ret = pcie_capability_write_dword(dev, pos, val);
  750. }
  751. return ret;
  752. }
  753. EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);