pci.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/blk-mq-pci.h>
  19. #include <linux/cpu.h>
  20. #include <linux/delay.h>
  21. #include <linux/errno.h>
  22. #include <linux/fs.h>
  23. #include <linux/genhd.h>
  24. #include <linux/hdreg.h>
  25. #include <linux/idr.h>
  26. #include <linux/init.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/io.h>
  29. #include <linux/kdev_t.h>
  30. #include <linux/kernel.h>
  31. #include <linux/mm.h>
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <linux/mutex.h>
  35. #include <linux/pci.h>
  36. #include <linux/poison.h>
  37. #include <linux/ptrace.h>
  38. #include <linux/sched.h>
  39. #include <linux/slab.h>
  40. #include <linux/t10-pi.h>
  41. #include <linux/timer.h>
  42. #include <linux/types.h>
  43. #include <linux/io-64-nonatomic-lo-hi.h>
  44. #include <asm/unaligned.h>
  45. #include "nvme.h"
  46. #define NVME_Q_DEPTH 1024
  47. #define NVME_AQ_DEPTH 256
  48. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  49. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  50. /*
  51. * We handle AEN commands ourselves and don't even let the
  52. * block layer know about them.
  53. */
  54. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
  55. static int use_threaded_interrupts;
  56. module_param(use_threaded_interrupts, int, 0);
  57. static bool use_cmb_sqes = true;
  58. module_param(use_cmb_sqes, bool, 0644);
  59. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  60. static struct workqueue_struct *nvme_workq;
  61. struct nvme_dev;
  62. struct nvme_queue;
  63. static int nvme_reset(struct nvme_dev *dev);
  64. static void nvme_process_cq(struct nvme_queue *nvmeq);
  65. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  66. /*
  67. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  68. */
  69. struct nvme_dev {
  70. struct nvme_queue **queues;
  71. struct blk_mq_tag_set tagset;
  72. struct blk_mq_tag_set admin_tagset;
  73. u32 __iomem *dbs;
  74. struct device *dev;
  75. struct dma_pool *prp_page_pool;
  76. struct dma_pool *prp_small_pool;
  77. unsigned queue_count;
  78. unsigned online_queues;
  79. unsigned max_qid;
  80. int q_depth;
  81. u32 db_stride;
  82. void __iomem *bar;
  83. struct work_struct reset_work;
  84. struct work_struct remove_work;
  85. struct timer_list watchdog_timer;
  86. struct mutex shutdown_lock;
  87. bool subsystem;
  88. void __iomem *cmb;
  89. dma_addr_t cmb_dma_addr;
  90. u64 cmb_size;
  91. u32 cmbsz;
  92. u32 cmbloc;
  93. struct nvme_ctrl ctrl;
  94. struct completion ioq_wait;
  95. };
  96. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  97. {
  98. return container_of(ctrl, struct nvme_dev, ctrl);
  99. }
  100. /*
  101. * An NVM Express queue. Each device has at least two (one for admin
  102. * commands and one for I/O commands).
  103. */
  104. struct nvme_queue {
  105. struct device *q_dmadev;
  106. struct nvme_dev *dev;
  107. char irqname[24]; /* nvme4294967295-65535\0 */
  108. spinlock_t q_lock;
  109. struct nvme_command *sq_cmds;
  110. struct nvme_command __iomem *sq_cmds_io;
  111. volatile struct nvme_completion *cqes;
  112. struct blk_mq_tags **tags;
  113. dma_addr_t sq_dma_addr;
  114. dma_addr_t cq_dma_addr;
  115. u32 __iomem *q_db;
  116. u16 q_depth;
  117. s16 cq_vector;
  118. u16 sq_tail;
  119. u16 cq_head;
  120. u16 qid;
  121. u8 cq_phase;
  122. u8 cqe_seen;
  123. };
  124. /*
  125. * The nvme_iod describes the data in an I/O, including the list of PRP
  126. * entries. You can't see it in this data structure because C doesn't let
  127. * me express that. Use nvme_init_iod to ensure there's enough space
  128. * allocated to store the PRP list.
  129. */
  130. struct nvme_iod {
  131. struct nvme_request req;
  132. struct nvme_queue *nvmeq;
  133. int aborted;
  134. int npages; /* In the PRP list. 0 means small pool in use */
  135. int nents; /* Used in scatterlist */
  136. int length; /* Of data, in bytes */
  137. dma_addr_t first_dma;
  138. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  139. struct scatterlist *sg;
  140. struct scatterlist inline_sg[0];
  141. };
  142. /*
  143. * Check we didin't inadvertently grow the command struct
  144. */
  145. static inline void _nvme_check_size(void)
  146. {
  147. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  148. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  149. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  150. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  151. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  152. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  153. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  154. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  155. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  156. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  157. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  158. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  159. }
  160. /*
  161. * Max size of iod being embedded in the request payload
  162. */
  163. #define NVME_INT_PAGES 2
  164. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  165. /*
  166. * Will slightly overestimate the number of pages needed. This is OK
  167. * as it only leads to a small amount of wasted memory for the lifetime of
  168. * the I/O.
  169. */
  170. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  171. {
  172. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  173. dev->ctrl.page_size);
  174. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  175. }
  176. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  177. unsigned int size, unsigned int nseg)
  178. {
  179. return sizeof(__le64 *) * nvme_npages(size, dev) +
  180. sizeof(struct scatterlist) * nseg;
  181. }
  182. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  183. {
  184. return sizeof(struct nvme_iod) +
  185. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  186. }
  187. static int nvmeq_irq(struct nvme_queue *nvmeq)
  188. {
  189. return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
  190. }
  191. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  192. unsigned int hctx_idx)
  193. {
  194. struct nvme_dev *dev = data;
  195. struct nvme_queue *nvmeq = dev->queues[0];
  196. WARN_ON(hctx_idx != 0);
  197. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  198. WARN_ON(nvmeq->tags);
  199. hctx->driver_data = nvmeq;
  200. nvmeq->tags = &dev->admin_tagset.tags[0];
  201. return 0;
  202. }
  203. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  204. {
  205. struct nvme_queue *nvmeq = hctx->driver_data;
  206. nvmeq->tags = NULL;
  207. }
  208. static int nvme_admin_init_request(void *data, struct request *req,
  209. unsigned int hctx_idx, unsigned int rq_idx,
  210. unsigned int numa_node)
  211. {
  212. struct nvme_dev *dev = data;
  213. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  214. struct nvme_queue *nvmeq = dev->queues[0];
  215. BUG_ON(!nvmeq);
  216. iod->nvmeq = nvmeq;
  217. return 0;
  218. }
  219. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  220. unsigned int hctx_idx)
  221. {
  222. struct nvme_dev *dev = data;
  223. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  224. if (!nvmeq->tags)
  225. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  226. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  227. hctx->driver_data = nvmeq;
  228. return 0;
  229. }
  230. static int nvme_init_request(void *data, struct request *req,
  231. unsigned int hctx_idx, unsigned int rq_idx,
  232. unsigned int numa_node)
  233. {
  234. struct nvme_dev *dev = data;
  235. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  236. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  237. BUG_ON(!nvmeq);
  238. iod->nvmeq = nvmeq;
  239. return 0;
  240. }
  241. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  242. {
  243. struct nvme_dev *dev = set->driver_data;
  244. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
  245. }
  246. /**
  247. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  248. * @nvmeq: The queue to use
  249. * @cmd: The command to send
  250. *
  251. * Safe to use from interrupt context
  252. */
  253. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  254. struct nvme_command *cmd)
  255. {
  256. u16 tail = nvmeq->sq_tail;
  257. if (nvmeq->sq_cmds_io)
  258. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  259. else
  260. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  261. if (++tail == nvmeq->q_depth)
  262. tail = 0;
  263. writel(tail, nvmeq->q_db);
  264. nvmeq->sq_tail = tail;
  265. }
  266. static __le64 **iod_list(struct request *req)
  267. {
  268. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  269. return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
  270. }
  271. static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  272. {
  273. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  274. int nseg = blk_rq_nr_phys_segments(rq);
  275. unsigned int size = blk_rq_payload_bytes(rq);
  276. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  277. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  278. if (!iod->sg)
  279. return BLK_MQ_RQ_QUEUE_BUSY;
  280. } else {
  281. iod->sg = iod->inline_sg;
  282. }
  283. iod->aborted = 0;
  284. iod->npages = -1;
  285. iod->nents = 0;
  286. iod->length = size;
  287. if (!(rq->rq_flags & RQF_DONTPREP)) {
  288. rq->retries = 0;
  289. rq->rq_flags |= RQF_DONTPREP;
  290. }
  291. return BLK_MQ_RQ_QUEUE_OK;
  292. }
  293. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  294. {
  295. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  296. const int last_prp = dev->ctrl.page_size / 8 - 1;
  297. int i;
  298. __le64 **list = iod_list(req);
  299. dma_addr_t prp_dma = iod->first_dma;
  300. if (iod->npages == 0)
  301. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  302. for (i = 0; i < iod->npages; i++) {
  303. __le64 *prp_list = list[i];
  304. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  305. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  306. prp_dma = next_prp_dma;
  307. }
  308. if (iod->sg != iod->inline_sg)
  309. kfree(iod->sg);
  310. }
  311. #ifdef CONFIG_BLK_DEV_INTEGRITY
  312. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  313. {
  314. if (be32_to_cpu(pi->ref_tag) == v)
  315. pi->ref_tag = cpu_to_be32(p);
  316. }
  317. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  318. {
  319. if (be32_to_cpu(pi->ref_tag) == p)
  320. pi->ref_tag = cpu_to_be32(v);
  321. }
  322. /**
  323. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  324. *
  325. * The virtual start sector is the one that was originally submitted by the
  326. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  327. * start sector may be different. Remap protection information to match the
  328. * physical LBA on writes, and back to the original seed on reads.
  329. *
  330. * Type 0 and 3 do not have a ref tag, so no remapping required.
  331. */
  332. static void nvme_dif_remap(struct request *req,
  333. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  334. {
  335. struct nvme_ns *ns = req->rq_disk->private_data;
  336. struct bio_integrity_payload *bip;
  337. struct t10_pi_tuple *pi;
  338. void *p, *pmap;
  339. u32 i, nlb, ts, phys, virt;
  340. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  341. return;
  342. bip = bio_integrity(req->bio);
  343. if (!bip)
  344. return;
  345. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  346. p = pmap;
  347. virt = bip_get_seed(bip);
  348. phys = nvme_block_nr(ns, blk_rq_pos(req));
  349. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  350. ts = ns->disk->queue->integrity.tuple_size;
  351. for (i = 0; i < nlb; i++, virt++, phys++) {
  352. pi = (struct t10_pi_tuple *)p;
  353. dif_swap(phys, virt, pi);
  354. p += ts;
  355. }
  356. kunmap_atomic(pmap);
  357. }
  358. #else /* CONFIG_BLK_DEV_INTEGRITY */
  359. static void nvme_dif_remap(struct request *req,
  360. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  361. {
  362. }
  363. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  364. {
  365. }
  366. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  367. {
  368. }
  369. #endif
  370. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
  371. {
  372. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  373. struct dma_pool *pool;
  374. int length = blk_rq_payload_bytes(req);
  375. struct scatterlist *sg = iod->sg;
  376. int dma_len = sg_dma_len(sg);
  377. u64 dma_addr = sg_dma_address(sg);
  378. u32 page_size = dev->ctrl.page_size;
  379. int offset = dma_addr & (page_size - 1);
  380. __le64 *prp_list;
  381. __le64 **list = iod_list(req);
  382. dma_addr_t prp_dma;
  383. int nprps, i;
  384. length -= (page_size - offset);
  385. if (length <= 0)
  386. return true;
  387. dma_len -= (page_size - offset);
  388. if (dma_len) {
  389. dma_addr += (page_size - offset);
  390. } else {
  391. sg = sg_next(sg);
  392. dma_addr = sg_dma_address(sg);
  393. dma_len = sg_dma_len(sg);
  394. }
  395. if (length <= page_size) {
  396. iod->first_dma = dma_addr;
  397. return true;
  398. }
  399. nprps = DIV_ROUND_UP(length, page_size);
  400. if (nprps <= (256 / 8)) {
  401. pool = dev->prp_small_pool;
  402. iod->npages = 0;
  403. } else {
  404. pool = dev->prp_page_pool;
  405. iod->npages = 1;
  406. }
  407. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  408. if (!prp_list) {
  409. iod->first_dma = dma_addr;
  410. iod->npages = -1;
  411. return false;
  412. }
  413. list[0] = prp_list;
  414. iod->first_dma = prp_dma;
  415. i = 0;
  416. for (;;) {
  417. if (i == page_size >> 3) {
  418. __le64 *old_prp_list = prp_list;
  419. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  420. if (!prp_list)
  421. return false;
  422. list[iod->npages++] = prp_list;
  423. prp_list[0] = old_prp_list[i - 1];
  424. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  425. i = 1;
  426. }
  427. prp_list[i++] = cpu_to_le64(dma_addr);
  428. dma_len -= page_size;
  429. dma_addr += page_size;
  430. length -= page_size;
  431. if (length <= 0)
  432. break;
  433. if (dma_len > 0)
  434. continue;
  435. BUG_ON(dma_len < 0);
  436. sg = sg_next(sg);
  437. dma_addr = sg_dma_address(sg);
  438. dma_len = sg_dma_len(sg);
  439. }
  440. return true;
  441. }
  442. static int nvme_map_data(struct nvme_dev *dev, struct request *req,
  443. struct nvme_command *cmnd)
  444. {
  445. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  446. struct request_queue *q = req->q;
  447. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  448. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  449. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  450. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  451. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  452. if (!iod->nents)
  453. goto out;
  454. ret = BLK_MQ_RQ_QUEUE_BUSY;
  455. if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  456. DMA_ATTR_NO_WARN))
  457. goto out;
  458. if (!nvme_setup_prps(dev, req))
  459. goto out_unmap;
  460. ret = BLK_MQ_RQ_QUEUE_ERROR;
  461. if (blk_integrity_rq(req)) {
  462. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  463. goto out_unmap;
  464. sg_init_table(&iod->meta_sg, 1);
  465. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  466. goto out_unmap;
  467. if (rq_data_dir(req))
  468. nvme_dif_remap(req, nvme_dif_prep);
  469. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  470. goto out_unmap;
  471. }
  472. cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  473. cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
  474. if (blk_integrity_rq(req))
  475. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  476. return BLK_MQ_RQ_QUEUE_OK;
  477. out_unmap:
  478. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  479. out:
  480. return ret;
  481. }
  482. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  483. {
  484. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  485. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  486. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  487. if (iod->nents) {
  488. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  489. if (blk_integrity_rq(req)) {
  490. if (!rq_data_dir(req))
  491. nvme_dif_remap(req, nvme_dif_complete);
  492. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  493. }
  494. }
  495. nvme_cleanup_cmd(req);
  496. nvme_free_iod(dev, req);
  497. }
  498. /*
  499. * NOTE: ns is NULL when called on the admin queue.
  500. */
  501. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  502. const struct blk_mq_queue_data *bd)
  503. {
  504. struct nvme_ns *ns = hctx->queue->queuedata;
  505. struct nvme_queue *nvmeq = hctx->driver_data;
  506. struct nvme_dev *dev = nvmeq->dev;
  507. struct request *req = bd->rq;
  508. struct nvme_command cmnd;
  509. int ret = BLK_MQ_RQ_QUEUE_OK;
  510. /*
  511. * If formated with metadata, require the block layer provide a buffer
  512. * unless this namespace is formated such that the metadata can be
  513. * stripped/generated by the controller with PRACT=1.
  514. */
  515. if (ns && ns->ms && !blk_integrity_rq(req)) {
  516. if (!(ns->pi_type && ns->ms == 8) &&
  517. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  518. blk_mq_end_request(req, -EFAULT);
  519. return BLK_MQ_RQ_QUEUE_OK;
  520. }
  521. }
  522. ret = nvme_setup_cmd(ns, req, &cmnd);
  523. if (ret != BLK_MQ_RQ_QUEUE_OK)
  524. return ret;
  525. ret = nvme_init_iod(req, dev);
  526. if (ret != BLK_MQ_RQ_QUEUE_OK)
  527. goto out_free_cmd;
  528. if (blk_rq_nr_phys_segments(req))
  529. ret = nvme_map_data(dev, req, &cmnd);
  530. if (ret != BLK_MQ_RQ_QUEUE_OK)
  531. goto out_cleanup_iod;
  532. blk_mq_start_request(req);
  533. spin_lock_irq(&nvmeq->q_lock);
  534. if (unlikely(nvmeq->cq_vector < 0)) {
  535. if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
  536. ret = BLK_MQ_RQ_QUEUE_BUSY;
  537. else
  538. ret = BLK_MQ_RQ_QUEUE_ERROR;
  539. spin_unlock_irq(&nvmeq->q_lock);
  540. goto out_cleanup_iod;
  541. }
  542. __nvme_submit_cmd(nvmeq, &cmnd);
  543. nvme_process_cq(nvmeq);
  544. spin_unlock_irq(&nvmeq->q_lock);
  545. return BLK_MQ_RQ_QUEUE_OK;
  546. out_cleanup_iod:
  547. nvme_free_iod(dev, req);
  548. out_free_cmd:
  549. nvme_cleanup_cmd(req);
  550. return ret;
  551. }
  552. static void nvme_complete_rq(struct request *req)
  553. {
  554. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  555. struct nvme_dev *dev = iod->nvmeq->dev;
  556. int error = 0;
  557. nvme_unmap_data(dev, req);
  558. if (unlikely(req->errors)) {
  559. if (nvme_req_needs_retry(req, req->errors)) {
  560. req->retries++;
  561. nvme_requeue_req(req);
  562. return;
  563. }
  564. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  565. error = req->errors;
  566. else
  567. error = nvme_error_status(req->errors);
  568. }
  569. if (unlikely(iod->aborted)) {
  570. dev_warn(dev->ctrl.device,
  571. "completing aborted command with status: %04x\n",
  572. req->errors);
  573. }
  574. blk_mq_end_request(req, error);
  575. }
  576. /* We read the CQE phase first to check if the rest of the entry is valid */
  577. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  578. u16 phase)
  579. {
  580. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  581. }
  582. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  583. {
  584. u16 head, phase;
  585. head = nvmeq->cq_head;
  586. phase = nvmeq->cq_phase;
  587. while (nvme_cqe_valid(nvmeq, head, phase)) {
  588. struct nvme_completion cqe = nvmeq->cqes[head];
  589. struct request *req;
  590. if (++head == nvmeq->q_depth) {
  591. head = 0;
  592. phase = !phase;
  593. }
  594. if (tag && *tag == cqe.command_id)
  595. *tag = -1;
  596. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  597. dev_warn(nvmeq->dev->ctrl.device,
  598. "invalid id %d completed on queue %d\n",
  599. cqe.command_id, le16_to_cpu(cqe.sq_id));
  600. continue;
  601. }
  602. /*
  603. * AEN requests are special as they don't time out and can
  604. * survive any kind of queue freeze and often don't respond to
  605. * aborts. We don't even bother to allocate a struct request
  606. * for them but rather special case them here.
  607. */
  608. if (unlikely(nvmeq->qid == 0 &&
  609. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  610. nvme_complete_async_event(&nvmeq->dev->ctrl,
  611. cqe.status, &cqe.result);
  612. continue;
  613. }
  614. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  615. nvme_req(req)->result = cqe.result;
  616. blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
  617. }
  618. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  619. return;
  620. if (likely(nvmeq->cq_vector >= 0))
  621. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  622. nvmeq->cq_head = head;
  623. nvmeq->cq_phase = phase;
  624. nvmeq->cqe_seen = 1;
  625. }
  626. static void nvme_process_cq(struct nvme_queue *nvmeq)
  627. {
  628. __nvme_process_cq(nvmeq, NULL);
  629. }
  630. static irqreturn_t nvme_irq(int irq, void *data)
  631. {
  632. irqreturn_t result;
  633. struct nvme_queue *nvmeq = data;
  634. spin_lock(&nvmeq->q_lock);
  635. nvme_process_cq(nvmeq);
  636. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  637. nvmeq->cqe_seen = 0;
  638. spin_unlock(&nvmeq->q_lock);
  639. return result;
  640. }
  641. static irqreturn_t nvme_irq_check(int irq, void *data)
  642. {
  643. struct nvme_queue *nvmeq = data;
  644. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  645. return IRQ_WAKE_THREAD;
  646. return IRQ_NONE;
  647. }
  648. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  649. {
  650. struct nvme_queue *nvmeq = hctx->driver_data;
  651. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  652. spin_lock_irq(&nvmeq->q_lock);
  653. __nvme_process_cq(nvmeq, &tag);
  654. spin_unlock_irq(&nvmeq->q_lock);
  655. if (tag == -1)
  656. return 1;
  657. }
  658. return 0;
  659. }
  660. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
  661. {
  662. struct nvme_dev *dev = to_nvme_dev(ctrl);
  663. struct nvme_queue *nvmeq = dev->queues[0];
  664. struct nvme_command c;
  665. memset(&c, 0, sizeof(c));
  666. c.common.opcode = nvme_admin_async_event;
  667. c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
  668. spin_lock_irq(&nvmeq->q_lock);
  669. __nvme_submit_cmd(nvmeq, &c);
  670. spin_unlock_irq(&nvmeq->q_lock);
  671. }
  672. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  673. {
  674. struct nvme_command c;
  675. memset(&c, 0, sizeof(c));
  676. c.delete_queue.opcode = opcode;
  677. c.delete_queue.qid = cpu_to_le16(id);
  678. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  679. }
  680. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  681. struct nvme_queue *nvmeq)
  682. {
  683. struct nvme_command c;
  684. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  685. /*
  686. * Note: we (ab)use the fact the the prp fields survive if no data
  687. * is attached to the request.
  688. */
  689. memset(&c, 0, sizeof(c));
  690. c.create_cq.opcode = nvme_admin_create_cq;
  691. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  692. c.create_cq.cqid = cpu_to_le16(qid);
  693. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  694. c.create_cq.cq_flags = cpu_to_le16(flags);
  695. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  696. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  697. }
  698. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  699. struct nvme_queue *nvmeq)
  700. {
  701. struct nvme_command c;
  702. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  703. /*
  704. * Note: we (ab)use the fact the the prp fields survive if no data
  705. * is attached to the request.
  706. */
  707. memset(&c, 0, sizeof(c));
  708. c.create_sq.opcode = nvme_admin_create_sq;
  709. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  710. c.create_sq.sqid = cpu_to_le16(qid);
  711. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  712. c.create_sq.sq_flags = cpu_to_le16(flags);
  713. c.create_sq.cqid = cpu_to_le16(qid);
  714. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  715. }
  716. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  717. {
  718. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  719. }
  720. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  721. {
  722. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  723. }
  724. static void abort_endio(struct request *req, int error)
  725. {
  726. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  727. struct nvme_queue *nvmeq = iod->nvmeq;
  728. u16 status = req->errors;
  729. dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
  730. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  731. blk_mq_free_request(req);
  732. }
  733. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  734. {
  735. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  736. struct nvme_queue *nvmeq = iod->nvmeq;
  737. struct nvme_dev *dev = nvmeq->dev;
  738. struct request *abort_req;
  739. struct nvme_command cmd;
  740. /*
  741. * Shutdown immediately if controller times out while starting. The
  742. * reset work will see the pci device disabled when it gets the forced
  743. * cancellation error. All outstanding requests are completed on
  744. * shutdown, so we return BLK_EH_HANDLED.
  745. */
  746. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  747. dev_warn(dev->ctrl.device,
  748. "I/O %d QID %d timeout, disable controller\n",
  749. req->tag, nvmeq->qid);
  750. nvme_dev_disable(dev, false);
  751. req->errors = NVME_SC_CANCELLED;
  752. return BLK_EH_HANDLED;
  753. }
  754. /*
  755. * Shutdown the controller immediately and schedule a reset if the
  756. * command was already aborted once before and still hasn't been
  757. * returned to the driver, or if this is the admin queue.
  758. */
  759. if (!nvmeq->qid || iod->aborted) {
  760. dev_warn(dev->ctrl.device,
  761. "I/O %d QID %d timeout, reset controller\n",
  762. req->tag, nvmeq->qid);
  763. nvme_dev_disable(dev, false);
  764. nvme_reset(dev);
  765. /*
  766. * Mark the request as handled, since the inline shutdown
  767. * forces all outstanding requests to complete.
  768. */
  769. req->errors = NVME_SC_CANCELLED;
  770. return BLK_EH_HANDLED;
  771. }
  772. iod->aborted = 1;
  773. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  774. atomic_inc(&dev->ctrl.abort_limit);
  775. return BLK_EH_RESET_TIMER;
  776. }
  777. memset(&cmd, 0, sizeof(cmd));
  778. cmd.abort.opcode = nvme_admin_abort_cmd;
  779. cmd.abort.cid = req->tag;
  780. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  781. dev_warn(nvmeq->dev->ctrl.device,
  782. "I/O %d QID %d timeout, aborting\n",
  783. req->tag, nvmeq->qid);
  784. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  785. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  786. if (IS_ERR(abort_req)) {
  787. atomic_inc(&dev->ctrl.abort_limit);
  788. return BLK_EH_RESET_TIMER;
  789. }
  790. abort_req->timeout = ADMIN_TIMEOUT;
  791. abort_req->end_io_data = NULL;
  792. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  793. /*
  794. * The aborted req will be completed on receiving the abort req.
  795. * We enable the timer again. If hit twice, it'll cause a device reset,
  796. * as the device then is in a faulty state.
  797. */
  798. return BLK_EH_RESET_TIMER;
  799. }
  800. static void nvme_free_queue(struct nvme_queue *nvmeq)
  801. {
  802. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  803. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  804. if (nvmeq->sq_cmds)
  805. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  806. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  807. kfree(nvmeq);
  808. }
  809. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  810. {
  811. int i;
  812. for (i = dev->queue_count - 1; i >= lowest; i--) {
  813. struct nvme_queue *nvmeq = dev->queues[i];
  814. dev->queue_count--;
  815. dev->queues[i] = NULL;
  816. nvme_free_queue(nvmeq);
  817. }
  818. }
  819. /**
  820. * nvme_suspend_queue - put queue into suspended state
  821. * @nvmeq - queue to suspend
  822. */
  823. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  824. {
  825. int vector;
  826. spin_lock_irq(&nvmeq->q_lock);
  827. if (nvmeq->cq_vector == -1) {
  828. spin_unlock_irq(&nvmeq->q_lock);
  829. return 1;
  830. }
  831. vector = nvmeq_irq(nvmeq);
  832. nvmeq->dev->online_queues--;
  833. nvmeq->cq_vector = -1;
  834. spin_unlock_irq(&nvmeq->q_lock);
  835. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  836. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  837. free_irq(vector, nvmeq);
  838. return 0;
  839. }
  840. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  841. {
  842. struct nvme_queue *nvmeq = dev->queues[0];
  843. if (!nvmeq)
  844. return;
  845. if (nvme_suspend_queue(nvmeq))
  846. return;
  847. if (shutdown)
  848. nvme_shutdown_ctrl(&dev->ctrl);
  849. else
  850. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  851. dev->bar + NVME_REG_CAP));
  852. spin_lock_irq(&nvmeq->q_lock);
  853. nvme_process_cq(nvmeq);
  854. spin_unlock_irq(&nvmeq->q_lock);
  855. }
  856. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  857. int entry_size)
  858. {
  859. int q_depth = dev->q_depth;
  860. unsigned q_size_aligned = roundup(q_depth * entry_size,
  861. dev->ctrl.page_size);
  862. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  863. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  864. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  865. q_depth = div_u64(mem_per_q, entry_size);
  866. /*
  867. * Ensure the reduced q_depth is above some threshold where it
  868. * would be better to map queues in system memory with the
  869. * original depth
  870. */
  871. if (q_depth < 64)
  872. return -ENOMEM;
  873. }
  874. return q_depth;
  875. }
  876. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  877. int qid, int depth)
  878. {
  879. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  880. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  881. dev->ctrl.page_size);
  882. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  883. nvmeq->sq_cmds_io = dev->cmb + offset;
  884. } else {
  885. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  886. &nvmeq->sq_dma_addr, GFP_KERNEL);
  887. if (!nvmeq->sq_cmds)
  888. return -ENOMEM;
  889. }
  890. return 0;
  891. }
  892. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  893. int depth)
  894. {
  895. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  896. if (!nvmeq)
  897. return NULL;
  898. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  899. &nvmeq->cq_dma_addr, GFP_KERNEL);
  900. if (!nvmeq->cqes)
  901. goto free_nvmeq;
  902. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  903. goto free_cqdma;
  904. nvmeq->q_dmadev = dev->dev;
  905. nvmeq->dev = dev;
  906. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  907. dev->ctrl.instance, qid);
  908. spin_lock_init(&nvmeq->q_lock);
  909. nvmeq->cq_head = 0;
  910. nvmeq->cq_phase = 1;
  911. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  912. nvmeq->q_depth = depth;
  913. nvmeq->qid = qid;
  914. nvmeq->cq_vector = -1;
  915. dev->queues[qid] = nvmeq;
  916. dev->queue_count++;
  917. return nvmeq;
  918. free_cqdma:
  919. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  920. nvmeq->cq_dma_addr);
  921. free_nvmeq:
  922. kfree(nvmeq);
  923. return NULL;
  924. }
  925. static int queue_request_irq(struct nvme_queue *nvmeq)
  926. {
  927. if (use_threaded_interrupts)
  928. return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
  929. nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
  930. else
  931. return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
  932. nvmeq->irqname, nvmeq);
  933. }
  934. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  935. {
  936. struct nvme_dev *dev = nvmeq->dev;
  937. spin_lock_irq(&nvmeq->q_lock);
  938. nvmeq->sq_tail = 0;
  939. nvmeq->cq_head = 0;
  940. nvmeq->cq_phase = 1;
  941. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  942. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  943. dev->online_queues++;
  944. spin_unlock_irq(&nvmeq->q_lock);
  945. }
  946. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  947. {
  948. struct nvme_dev *dev = nvmeq->dev;
  949. int result;
  950. nvmeq->cq_vector = qid - 1;
  951. result = adapter_alloc_cq(dev, qid, nvmeq);
  952. if (result < 0)
  953. return result;
  954. result = adapter_alloc_sq(dev, qid, nvmeq);
  955. if (result < 0)
  956. goto release_cq;
  957. result = queue_request_irq(nvmeq);
  958. if (result < 0)
  959. goto release_sq;
  960. nvme_init_queue(nvmeq, qid);
  961. return result;
  962. release_sq:
  963. adapter_delete_sq(dev, qid);
  964. release_cq:
  965. adapter_delete_cq(dev, qid);
  966. return result;
  967. }
  968. static struct blk_mq_ops nvme_mq_admin_ops = {
  969. .queue_rq = nvme_queue_rq,
  970. .complete = nvme_complete_rq,
  971. .init_hctx = nvme_admin_init_hctx,
  972. .exit_hctx = nvme_admin_exit_hctx,
  973. .init_request = nvme_admin_init_request,
  974. .timeout = nvme_timeout,
  975. };
  976. static struct blk_mq_ops nvme_mq_ops = {
  977. .queue_rq = nvme_queue_rq,
  978. .complete = nvme_complete_rq,
  979. .init_hctx = nvme_init_hctx,
  980. .init_request = nvme_init_request,
  981. .map_queues = nvme_pci_map_queues,
  982. .timeout = nvme_timeout,
  983. .poll = nvme_poll,
  984. };
  985. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  986. {
  987. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  988. /*
  989. * If the controller was reset during removal, it's possible
  990. * user requests may be waiting on a stopped queue. Start the
  991. * queue to flush these to completion.
  992. */
  993. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  994. blk_cleanup_queue(dev->ctrl.admin_q);
  995. blk_mq_free_tag_set(&dev->admin_tagset);
  996. }
  997. }
  998. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  999. {
  1000. if (!dev->ctrl.admin_q) {
  1001. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1002. dev->admin_tagset.nr_hw_queues = 1;
  1003. /*
  1004. * Subtract one to leave an empty queue entry for 'Full Queue'
  1005. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1006. */
  1007. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1008. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1009. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1010. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1011. dev->admin_tagset.driver_data = dev;
  1012. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1013. return -ENOMEM;
  1014. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1015. if (IS_ERR(dev->ctrl.admin_q)) {
  1016. blk_mq_free_tag_set(&dev->admin_tagset);
  1017. return -ENOMEM;
  1018. }
  1019. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1020. nvme_dev_remove_admin(dev);
  1021. dev->ctrl.admin_q = NULL;
  1022. return -ENODEV;
  1023. }
  1024. } else
  1025. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1026. return 0;
  1027. }
  1028. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1029. {
  1030. int result;
  1031. u32 aqa;
  1032. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1033. struct nvme_queue *nvmeq;
  1034. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1035. NVME_CAP_NSSRC(cap) : 0;
  1036. if (dev->subsystem &&
  1037. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1038. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1039. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1040. if (result < 0)
  1041. return result;
  1042. nvmeq = dev->queues[0];
  1043. if (!nvmeq) {
  1044. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1045. if (!nvmeq)
  1046. return -ENOMEM;
  1047. }
  1048. aqa = nvmeq->q_depth - 1;
  1049. aqa |= aqa << 16;
  1050. writel(aqa, dev->bar + NVME_REG_AQA);
  1051. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1052. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1053. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1054. if (result)
  1055. return result;
  1056. nvmeq->cq_vector = 0;
  1057. result = queue_request_irq(nvmeq);
  1058. if (result) {
  1059. nvmeq->cq_vector = -1;
  1060. return result;
  1061. }
  1062. return result;
  1063. }
  1064. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  1065. {
  1066. /* If true, indicates loss of adapter communication, possibly by a
  1067. * NVMe Subsystem reset.
  1068. */
  1069. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  1070. /* If there is a reset ongoing, we shouldn't reset again. */
  1071. if (work_busy(&dev->reset_work))
  1072. return false;
  1073. /* We shouldn't reset unless the controller is on fatal error state
  1074. * _or_ if we lost the communication with it.
  1075. */
  1076. if (!(csts & NVME_CSTS_CFS) && !nssro)
  1077. return false;
  1078. /* If PCI error recovery process is happening, we cannot reset or
  1079. * the recovery mechanism will surely fail.
  1080. */
  1081. if (pci_channel_offline(to_pci_dev(dev->dev)))
  1082. return false;
  1083. return true;
  1084. }
  1085. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  1086. {
  1087. /* Read a config register to help see what died. */
  1088. u16 pci_status;
  1089. int result;
  1090. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  1091. &pci_status);
  1092. if (result == PCIBIOS_SUCCESSFUL)
  1093. dev_warn(dev->dev,
  1094. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  1095. csts, pci_status);
  1096. else
  1097. dev_warn(dev->dev,
  1098. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  1099. csts, result);
  1100. }
  1101. static void nvme_watchdog_timer(unsigned long data)
  1102. {
  1103. struct nvme_dev *dev = (struct nvme_dev *)data;
  1104. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1105. /* Skip controllers under certain specific conditions. */
  1106. if (nvme_should_reset(dev, csts)) {
  1107. if (!nvme_reset(dev))
  1108. nvme_warn_reset(dev, csts);
  1109. return;
  1110. }
  1111. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1112. }
  1113. static int nvme_create_io_queues(struct nvme_dev *dev)
  1114. {
  1115. unsigned i, max;
  1116. int ret = 0;
  1117. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1118. if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
  1119. ret = -ENOMEM;
  1120. break;
  1121. }
  1122. }
  1123. max = min(dev->max_qid, dev->queue_count - 1);
  1124. for (i = dev->online_queues; i <= max; i++) {
  1125. ret = nvme_create_queue(dev->queues[i], i);
  1126. if (ret)
  1127. break;
  1128. }
  1129. /*
  1130. * Ignore failing Create SQ/CQ commands, we can continue with less
  1131. * than the desired aount of queues, and even a controller without
  1132. * I/O queues an still be used to issue admin commands. This might
  1133. * be useful to upgrade a buggy firmware for example.
  1134. */
  1135. return ret >= 0 ? 0 : ret;
  1136. }
  1137. static ssize_t nvme_cmb_show(struct device *dev,
  1138. struct device_attribute *attr,
  1139. char *buf)
  1140. {
  1141. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1142. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1143. ndev->cmbloc, ndev->cmbsz);
  1144. }
  1145. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1146. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1147. {
  1148. u64 szu, size, offset;
  1149. resource_size_t bar_size;
  1150. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1151. void __iomem *cmb;
  1152. dma_addr_t dma_addr;
  1153. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1154. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1155. return NULL;
  1156. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1157. if (!use_cmb_sqes)
  1158. return NULL;
  1159. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1160. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1161. offset = szu * NVME_CMB_OFST(dev->cmbloc);
  1162. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
  1163. if (offset > bar_size)
  1164. return NULL;
  1165. /*
  1166. * Controllers may support a CMB size larger than their BAR,
  1167. * for example, due to being behind a bridge. Reduce the CMB to
  1168. * the reported size of the BAR
  1169. */
  1170. if (size > bar_size - offset)
  1171. size = bar_size - offset;
  1172. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
  1173. cmb = ioremap_wc(dma_addr, size);
  1174. if (!cmb)
  1175. return NULL;
  1176. dev->cmb_dma_addr = dma_addr;
  1177. dev->cmb_size = size;
  1178. return cmb;
  1179. }
  1180. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1181. {
  1182. if (dev->cmb) {
  1183. iounmap(dev->cmb);
  1184. dev->cmb = NULL;
  1185. }
  1186. }
  1187. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1188. {
  1189. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1190. }
  1191. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1192. {
  1193. struct nvme_queue *adminq = dev->queues[0];
  1194. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1195. int result, nr_io_queues, size;
  1196. nr_io_queues = num_online_cpus();
  1197. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1198. if (result < 0)
  1199. return result;
  1200. if (nr_io_queues == 0)
  1201. return 0;
  1202. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1203. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1204. sizeof(struct nvme_command));
  1205. if (result > 0)
  1206. dev->q_depth = result;
  1207. else
  1208. nvme_release_cmb(dev);
  1209. }
  1210. size = db_bar_size(dev, nr_io_queues);
  1211. if (size > 8192) {
  1212. iounmap(dev->bar);
  1213. do {
  1214. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1215. if (dev->bar)
  1216. break;
  1217. if (!--nr_io_queues)
  1218. return -ENOMEM;
  1219. size = db_bar_size(dev, nr_io_queues);
  1220. } while (1);
  1221. dev->dbs = dev->bar + 4096;
  1222. adminq->q_db = dev->dbs;
  1223. }
  1224. /* Deregister the admin queue's interrupt */
  1225. free_irq(pci_irq_vector(pdev, 0), adminq);
  1226. /*
  1227. * If we enable msix early due to not intx, disable it again before
  1228. * setting up the full range we need.
  1229. */
  1230. pci_free_irq_vectors(pdev);
  1231. nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
  1232. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
  1233. if (nr_io_queues <= 0)
  1234. return -EIO;
  1235. dev->max_qid = nr_io_queues;
  1236. /*
  1237. * Should investigate if there's a performance win from allocating
  1238. * more queues than interrupt vectors; it might allow the submission
  1239. * path to scale better, even if the receive path is limited by the
  1240. * number of interrupts.
  1241. */
  1242. result = queue_request_irq(adminq);
  1243. if (result) {
  1244. adminq->cq_vector = -1;
  1245. return result;
  1246. }
  1247. return nvme_create_io_queues(dev);
  1248. }
  1249. static void nvme_del_queue_end(struct request *req, int error)
  1250. {
  1251. struct nvme_queue *nvmeq = req->end_io_data;
  1252. blk_mq_free_request(req);
  1253. complete(&nvmeq->dev->ioq_wait);
  1254. }
  1255. static void nvme_del_cq_end(struct request *req, int error)
  1256. {
  1257. struct nvme_queue *nvmeq = req->end_io_data;
  1258. if (!error) {
  1259. unsigned long flags;
  1260. /*
  1261. * We might be called with the AQ q_lock held
  1262. * and the I/O queue q_lock should always
  1263. * nest inside the AQ one.
  1264. */
  1265. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1266. SINGLE_DEPTH_NESTING);
  1267. nvme_process_cq(nvmeq);
  1268. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1269. }
  1270. nvme_del_queue_end(req, error);
  1271. }
  1272. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1273. {
  1274. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1275. struct request *req;
  1276. struct nvme_command cmd;
  1277. memset(&cmd, 0, sizeof(cmd));
  1278. cmd.delete_queue.opcode = opcode;
  1279. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1280. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1281. if (IS_ERR(req))
  1282. return PTR_ERR(req);
  1283. req->timeout = ADMIN_TIMEOUT;
  1284. req->end_io_data = nvmeq;
  1285. blk_execute_rq_nowait(q, NULL, req, false,
  1286. opcode == nvme_admin_delete_cq ?
  1287. nvme_del_cq_end : nvme_del_queue_end);
  1288. return 0;
  1289. }
  1290. static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
  1291. {
  1292. int pass;
  1293. unsigned long timeout;
  1294. u8 opcode = nvme_admin_delete_sq;
  1295. for (pass = 0; pass < 2; pass++) {
  1296. int sent = 0, i = queues;
  1297. reinit_completion(&dev->ioq_wait);
  1298. retry:
  1299. timeout = ADMIN_TIMEOUT;
  1300. for (; i > 0; i--, sent++)
  1301. if (nvme_delete_queue(dev->queues[i], opcode))
  1302. break;
  1303. while (sent--) {
  1304. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1305. if (timeout == 0)
  1306. return;
  1307. if (i)
  1308. goto retry;
  1309. }
  1310. opcode = nvme_admin_delete_cq;
  1311. }
  1312. }
  1313. /*
  1314. * Return: error value if an error occurred setting up the queues or calling
  1315. * Identify Device. 0 if these succeeded, even if adding some of the
  1316. * namespaces failed. At the moment, these failures are silent. TBD which
  1317. * failures should be reported.
  1318. */
  1319. static int nvme_dev_add(struct nvme_dev *dev)
  1320. {
  1321. if (!dev->ctrl.tagset) {
  1322. dev->tagset.ops = &nvme_mq_ops;
  1323. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1324. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1325. dev->tagset.numa_node = dev_to_node(dev->dev);
  1326. dev->tagset.queue_depth =
  1327. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1328. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1329. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1330. dev->tagset.driver_data = dev;
  1331. if (blk_mq_alloc_tag_set(&dev->tagset))
  1332. return 0;
  1333. dev->ctrl.tagset = &dev->tagset;
  1334. } else {
  1335. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1336. /* Free previously allocated queues that are no longer usable */
  1337. nvme_free_queues(dev, dev->online_queues);
  1338. }
  1339. return 0;
  1340. }
  1341. static int nvme_pci_enable(struct nvme_dev *dev)
  1342. {
  1343. u64 cap;
  1344. int result = -ENOMEM;
  1345. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1346. if (pci_enable_device_mem(pdev))
  1347. return result;
  1348. pci_set_master(pdev);
  1349. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1350. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1351. goto disable;
  1352. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1353. result = -ENODEV;
  1354. goto disable;
  1355. }
  1356. /*
  1357. * Some devices and/or platforms don't advertise or work with INTx
  1358. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1359. * adjust this later.
  1360. */
  1361. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1362. if (result < 0)
  1363. return result;
  1364. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1365. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1366. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1367. dev->dbs = dev->bar + 4096;
  1368. /*
  1369. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1370. * some MacBook7,1 to avoid controller resets and data loss.
  1371. */
  1372. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1373. dev->q_depth = 2;
  1374. dev_warn(dev->dev, "detected Apple NVMe controller, set "
  1375. "queue depth=%u to work around controller resets\n",
  1376. dev->q_depth);
  1377. }
  1378. /*
  1379. * CMBs can currently only exist on >=1.2 PCIe devices. We only
  1380. * populate sysfs if a CMB is implemented. Note that we add the
  1381. * CMB attribute to the nvme_ctrl kobj which removes the need to remove
  1382. * it on exit. Since nvme_dev_attrs_group has no name we can pass
  1383. * NULL as final argument to sysfs_add_file_to_group.
  1384. */
  1385. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
  1386. dev->cmb = nvme_map_cmb(dev);
  1387. if (dev->cmbsz) {
  1388. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1389. &dev_attr_cmb.attr, NULL))
  1390. dev_warn(dev->dev,
  1391. "failed to add sysfs attribute for CMB\n");
  1392. }
  1393. }
  1394. pci_enable_pcie_error_reporting(pdev);
  1395. pci_save_state(pdev);
  1396. return 0;
  1397. disable:
  1398. pci_disable_device(pdev);
  1399. return result;
  1400. }
  1401. static void nvme_dev_unmap(struct nvme_dev *dev)
  1402. {
  1403. if (dev->bar)
  1404. iounmap(dev->bar);
  1405. pci_release_mem_regions(to_pci_dev(dev->dev));
  1406. }
  1407. static void nvme_pci_disable(struct nvme_dev *dev)
  1408. {
  1409. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1410. pci_free_irq_vectors(pdev);
  1411. if (pci_is_enabled(pdev)) {
  1412. pci_disable_pcie_error_reporting(pdev);
  1413. pci_disable_device(pdev);
  1414. }
  1415. }
  1416. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1417. {
  1418. int i, queues;
  1419. u32 csts = -1;
  1420. del_timer_sync(&dev->watchdog_timer);
  1421. mutex_lock(&dev->shutdown_lock);
  1422. if (pci_is_enabled(to_pci_dev(dev->dev))) {
  1423. nvme_stop_queues(&dev->ctrl);
  1424. csts = readl(dev->bar + NVME_REG_CSTS);
  1425. }
  1426. queues = dev->online_queues - 1;
  1427. for (i = dev->queue_count - 1; i > 0; i--)
  1428. nvme_suspend_queue(dev->queues[i]);
  1429. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1430. /* A device might become IO incapable very soon during
  1431. * probe, before the admin queue is configured. Thus,
  1432. * queue_count can be 0 here.
  1433. */
  1434. if (dev->queue_count)
  1435. nvme_suspend_queue(dev->queues[0]);
  1436. } else {
  1437. nvme_disable_io_queues(dev, queues);
  1438. nvme_disable_admin_queue(dev, shutdown);
  1439. }
  1440. nvme_pci_disable(dev);
  1441. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1442. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1443. mutex_unlock(&dev->shutdown_lock);
  1444. }
  1445. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1446. {
  1447. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1448. PAGE_SIZE, PAGE_SIZE, 0);
  1449. if (!dev->prp_page_pool)
  1450. return -ENOMEM;
  1451. /* Optimisation for I/Os between 4k and 128k */
  1452. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1453. 256, 256, 0);
  1454. if (!dev->prp_small_pool) {
  1455. dma_pool_destroy(dev->prp_page_pool);
  1456. return -ENOMEM;
  1457. }
  1458. return 0;
  1459. }
  1460. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1461. {
  1462. dma_pool_destroy(dev->prp_page_pool);
  1463. dma_pool_destroy(dev->prp_small_pool);
  1464. }
  1465. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1466. {
  1467. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1468. put_device(dev->dev);
  1469. if (dev->tagset.tags)
  1470. blk_mq_free_tag_set(&dev->tagset);
  1471. if (dev->ctrl.admin_q)
  1472. blk_put_queue(dev->ctrl.admin_q);
  1473. kfree(dev->queues);
  1474. kfree(dev);
  1475. }
  1476. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1477. {
  1478. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1479. kref_get(&dev->ctrl.kref);
  1480. nvme_dev_disable(dev, false);
  1481. if (!schedule_work(&dev->remove_work))
  1482. nvme_put_ctrl(&dev->ctrl);
  1483. }
  1484. static void nvme_reset_work(struct work_struct *work)
  1485. {
  1486. struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
  1487. int result = -ENODEV;
  1488. if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
  1489. goto out;
  1490. /*
  1491. * If we're called to reset a live controller first shut it down before
  1492. * moving on.
  1493. */
  1494. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1495. nvme_dev_disable(dev, false);
  1496. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
  1497. goto out;
  1498. result = nvme_pci_enable(dev);
  1499. if (result)
  1500. goto out;
  1501. result = nvme_configure_admin_queue(dev);
  1502. if (result)
  1503. goto out;
  1504. nvme_init_queue(dev->queues[0], 0);
  1505. result = nvme_alloc_admin_tags(dev);
  1506. if (result)
  1507. goto out;
  1508. result = nvme_init_identify(&dev->ctrl);
  1509. if (result)
  1510. goto out;
  1511. result = nvme_setup_io_queues(dev);
  1512. if (result)
  1513. goto out;
  1514. /*
  1515. * A controller that can not execute IO typically requires user
  1516. * intervention to correct. For such degraded controllers, the driver
  1517. * should not submit commands the user did not request, so skip
  1518. * registering for asynchronous event notification on this condition.
  1519. */
  1520. if (dev->online_queues > 1)
  1521. nvme_queue_async_events(&dev->ctrl);
  1522. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1523. /*
  1524. * Keep the controller around but remove all namespaces if we don't have
  1525. * any working I/O queue.
  1526. */
  1527. if (dev->online_queues < 2) {
  1528. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1529. nvme_kill_queues(&dev->ctrl);
  1530. nvme_remove_namespaces(&dev->ctrl);
  1531. } else {
  1532. nvme_start_queues(&dev->ctrl);
  1533. nvme_dev_add(dev);
  1534. }
  1535. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
  1536. dev_warn(dev->ctrl.device, "failed to mark controller live\n");
  1537. goto out;
  1538. }
  1539. if (dev->online_queues > 1)
  1540. nvme_queue_scan(&dev->ctrl);
  1541. return;
  1542. out:
  1543. nvme_remove_dead_ctrl(dev, result);
  1544. }
  1545. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1546. {
  1547. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1548. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1549. nvme_kill_queues(&dev->ctrl);
  1550. if (pci_get_drvdata(pdev))
  1551. device_release_driver(&pdev->dev);
  1552. nvme_put_ctrl(&dev->ctrl);
  1553. }
  1554. static int nvme_reset(struct nvme_dev *dev)
  1555. {
  1556. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1557. return -ENODEV;
  1558. if (work_busy(&dev->reset_work))
  1559. return -ENODEV;
  1560. if (!queue_work(nvme_workq, &dev->reset_work))
  1561. return -EBUSY;
  1562. return 0;
  1563. }
  1564. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1565. {
  1566. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1567. return 0;
  1568. }
  1569. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1570. {
  1571. writel(val, to_nvme_dev(ctrl)->bar + off);
  1572. return 0;
  1573. }
  1574. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1575. {
  1576. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1577. return 0;
  1578. }
  1579. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1580. {
  1581. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1582. int ret = nvme_reset(dev);
  1583. if (!ret)
  1584. flush_work(&dev->reset_work);
  1585. return ret;
  1586. }
  1587. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1588. .name = "pcie",
  1589. .module = THIS_MODULE,
  1590. .reg_read32 = nvme_pci_reg_read32,
  1591. .reg_write32 = nvme_pci_reg_write32,
  1592. .reg_read64 = nvme_pci_reg_read64,
  1593. .reset_ctrl = nvme_pci_reset_ctrl,
  1594. .free_ctrl = nvme_pci_free_ctrl,
  1595. .submit_async_event = nvme_pci_submit_async_event,
  1596. };
  1597. static int nvme_dev_map(struct nvme_dev *dev)
  1598. {
  1599. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1600. if (pci_request_mem_regions(pdev, "nvme"))
  1601. return -ENODEV;
  1602. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1603. if (!dev->bar)
  1604. goto release;
  1605. return 0;
  1606. release:
  1607. pci_release_mem_regions(pdev);
  1608. return -ENODEV;
  1609. }
  1610. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1611. {
  1612. int node, result = -ENOMEM;
  1613. struct nvme_dev *dev;
  1614. node = dev_to_node(&pdev->dev);
  1615. if (node == NUMA_NO_NODE)
  1616. set_dev_node(&pdev->dev, first_memory_node);
  1617. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1618. if (!dev)
  1619. return -ENOMEM;
  1620. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1621. GFP_KERNEL, node);
  1622. if (!dev->queues)
  1623. goto free;
  1624. dev->dev = get_device(&pdev->dev);
  1625. pci_set_drvdata(pdev, dev);
  1626. result = nvme_dev_map(dev);
  1627. if (result)
  1628. goto free;
  1629. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1630. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1631. setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
  1632. (unsigned long)dev);
  1633. mutex_init(&dev->shutdown_lock);
  1634. init_completion(&dev->ioq_wait);
  1635. result = nvme_setup_prp_pools(dev);
  1636. if (result)
  1637. goto put_pci;
  1638. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1639. id->driver_data);
  1640. if (result)
  1641. goto release_pools;
  1642. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1643. queue_work(nvme_workq, &dev->reset_work);
  1644. return 0;
  1645. release_pools:
  1646. nvme_release_prp_pools(dev);
  1647. put_pci:
  1648. put_device(dev->dev);
  1649. nvme_dev_unmap(dev);
  1650. free:
  1651. kfree(dev->queues);
  1652. kfree(dev);
  1653. return result;
  1654. }
  1655. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1656. {
  1657. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1658. if (prepare)
  1659. nvme_dev_disable(dev, false);
  1660. else
  1661. nvme_reset(dev);
  1662. }
  1663. static void nvme_shutdown(struct pci_dev *pdev)
  1664. {
  1665. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1666. nvme_dev_disable(dev, true);
  1667. }
  1668. /*
  1669. * The driver's remove may be called on a device in a partially initialized
  1670. * state. This function must not have any dependencies on the device state in
  1671. * order to proceed.
  1672. */
  1673. static void nvme_remove(struct pci_dev *pdev)
  1674. {
  1675. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1676. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  1677. pci_set_drvdata(pdev, NULL);
  1678. if (!pci_device_is_present(pdev))
  1679. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  1680. flush_work(&dev->reset_work);
  1681. nvme_uninit_ctrl(&dev->ctrl);
  1682. nvme_dev_disable(dev, true);
  1683. nvme_dev_remove_admin(dev);
  1684. nvme_free_queues(dev, 0);
  1685. nvme_release_cmb(dev);
  1686. nvme_release_prp_pools(dev);
  1687. nvme_dev_unmap(dev);
  1688. nvme_put_ctrl(&dev->ctrl);
  1689. }
  1690. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  1691. {
  1692. int ret = 0;
  1693. if (numvfs == 0) {
  1694. if (pci_vfs_assigned(pdev)) {
  1695. dev_warn(&pdev->dev,
  1696. "Cannot disable SR-IOV VFs while assigned\n");
  1697. return -EPERM;
  1698. }
  1699. pci_disable_sriov(pdev);
  1700. return 0;
  1701. }
  1702. ret = pci_enable_sriov(pdev, numvfs);
  1703. return ret ? ret : numvfs;
  1704. }
  1705. #ifdef CONFIG_PM_SLEEP
  1706. static int nvme_suspend(struct device *dev)
  1707. {
  1708. struct pci_dev *pdev = to_pci_dev(dev);
  1709. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1710. nvme_dev_disable(ndev, true);
  1711. return 0;
  1712. }
  1713. static int nvme_resume(struct device *dev)
  1714. {
  1715. struct pci_dev *pdev = to_pci_dev(dev);
  1716. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1717. nvme_reset(ndev);
  1718. return 0;
  1719. }
  1720. #endif
  1721. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1722. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1723. pci_channel_state_t state)
  1724. {
  1725. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1726. /*
  1727. * A frozen channel requires a reset. When detected, this method will
  1728. * shutdown the controller to quiesce. The controller will be restarted
  1729. * after the slot reset through driver's slot_reset callback.
  1730. */
  1731. switch (state) {
  1732. case pci_channel_io_normal:
  1733. return PCI_ERS_RESULT_CAN_RECOVER;
  1734. case pci_channel_io_frozen:
  1735. dev_warn(dev->ctrl.device,
  1736. "frozen state error detected, reset controller\n");
  1737. nvme_dev_disable(dev, false);
  1738. return PCI_ERS_RESULT_NEED_RESET;
  1739. case pci_channel_io_perm_failure:
  1740. dev_warn(dev->ctrl.device,
  1741. "failure state error detected, request disconnect\n");
  1742. return PCI_ERS_RESULT_DISCONNECT;
  1743. }
  1744. return PCI_ERS_RESULT_NEED_RESET;
  1745. }
  1746. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  1747. {
  1748. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1749. dev_info(dev->ctrl.device, "restart after slot reset\n");
  1750. pci_restore_state(pdev);
  1751. nvme_reset(dev);
  1752. return PCI_ERS_RESULT_RECOVERED;
  1753. }
  1754. static void nvme_error_resume(struct pci_dev *pdev)
  1755. {
  1756. pci_cleanup_aer_uncorrect_error_status(pdev);
  1757. }
  1758. static const struct pci_error_handlers nvme_err_handler = {
  1759. .error_detected = nvme_error_detected,
  1760. .slot_reset = nvme_slot_reset,
  1761. .resume = nvme_error_resume,
  1762. .reset_notify = nvme_reset_notify,
  1763. };
  1764. static const struct pci_device_id nvme_id_table[] = {
  1765. { PCI_VDEVICE(INTEL, 0x0953),
  1766. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1767. NVME_QUIRK_DISCARD_ZEROES, },
  1768. { PCI_VDEVICE(INTEL, 0x0a53),
  1769. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1770. NVME_QUIRK_DISCARD_ZEROES, },
  1771. { PCI_VDEVICE(INTEL, 0x0a54),
  1772. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1773. NVME_QUIRK_DISCARD_ZEROES, },
  1774. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  1775. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  1776. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  1777. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  1778. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  1779. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  1780. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1781. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  1782. { 0, }
  1783. };
  1784. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1785. static struct pci_driver nvme_driver = {
  1786. .name = "nvme",
  1787. .id_table = nvme_id_table,
  1788. .probe = nvme_probe,
  1789. .remove = nvme_remove,
  1790. .shutdown = nvme_shutdown,
  1791. .driver = {
  1792. .pm = &nvme_dev_pm_ops,
  1793. },
  1794. .sriov_configure = nvme_pci_sriov_configure,
  1795. .err_handler = &nvme_err_handler,
  1796. };
  1797. static int __init nvme_init(void)
  1798. {
  1799. int result;
  1800. nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
  1801. if (!nvme_workq)
  1802. return -ENOMEM;
  1803. result = pci_register_driver(&nvme_driver);
  1804. if (result)
  1805. destroy_workqueue(nvme_workq);
  1806. return result;
  1807. }
  1808. static void __exit nvme_exit(void)
  1809. {
  1810. pci_unregister_driver(&nvme_driver);
  1811. destroy_workqueue(nvme_workq);
  1812. _nvme_check_size();
  1813. }
  1814. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1815. MODULE_LICENSE("GPL");
  1816. MODULE_VERSION("1.0");
  1817. module_init(nvme_init);
  1818. module_exit(nvme_exit);