lightnvm.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. /*
  2. * nvme-lightnvm.c - LightNVM NVMe device
  3. *
  4. * Copyright (C) 2014-2015 IT University of Copenhagen
  5. * Initial release: Matias Bjorling <mb@lightnvm.io>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License version
  9. * 2 as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; see the file COPYING. If not, write to
  18. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
  19. * USA.
  20. *
  21. */
  22. #include "nvme.h"
  23. #include <linux/nvme.h>
  24. #include <linux/bitops.h>
  25. #include <linux/lightnvm.h>
  26. #include <linux/vmalloc.h>
  27. enum nvme_nvm_admin_opcode {
  28. nvme_nvm_admin_identity = 0xe2,
  29. nvme_nvm_admin_get_l2p_tbl = 0xea,
  30. nvme_nvm_admin_get_bb_tbl = 0xf2,
  31. nvme_nvm_admin_set_bb_tbl = 0xf1,
  32. };
  33. struct nvme_nvm_hb_rw {
  34. __u8 opcode;
  35. __u8 flags;
  36. __u16 command_id;
  37. __le32 nsid;
  38. __u64 rsvd2;
  39. __le64 metadata;
  40. __le64 prp1;
  41. __le64 prp2;
  42. __le64 spba;
  43. __le16 length;
  44. __le16 control;
  45. __le32 dsmgmt;
  46. __le64 slba;
  47. };
  48. struct nvme_nvm_ph_rw {
  49. __u8 opcode;
  50. __u8 flags;
  51. __u16 command_id;
  52. __le32 nsid;
  53. __u64 rsvd2;
  54. __le64 metadata;
  55. __le64 prp1;
  56. __le64 prp2;
  57. __le64 spba;
  58. __le16 length;
  59. __le16 control;
  60. __le32 dsmgmt;
  61. __le64 resv;
  62. };
  63. struct nvme_nvm_identity {
  64. __u8 opcode;
  65. __u8 flags;
  66. __u16 command_id;
  67. __le32 nsid;
  68. __u64 rsvd[2];
  69. __le64 prp1;
  70. __le64 prp2;
  71. __le32 chnl_off;
  72. __u32 rsvd11[5];
  73. };
  74. struct nvme_nvm_l2ptbl {
  75. __u8 opcode;
  76. __u8 flags;
  77. __u16 command_id;
  78. __le32 nsid;
  79. __le32 cdw2[4];
  80. __le64 prp1;
  81. __le64 prp2;
  82. __le64 slba;
  83. __le32 nlb;
  84. __le16 cdw14[6];
  85. };
  86. struct nvme_nvm_getbbtbl {
  87. __u8 opcode;
  88. __u8 flags;
  89. __u16 command_id;
  90. __le32 nsid;
  91. __u64 rsvd[2];
  92. __le64 prp1;
  93. __le64 prp2;
  94. __le64 spba;
  95. __u32 rsvd4[4];
  96. };
  97. struct nvme_nvm_setbbtbl {
  98. __u8 opcode;
  99. __u8 flags;
  100. __u16 command_id;
  101. __le32 nsid;
  102. __le64 rsvd[2];
  103. __le64 prp1;
  104. __le64 prp2;
  105. __le64 spba;
  106. __le16 nlb;
  107. __u8 value;
  108. __u8 rsvd3;
  109. __u32 rsvd4[3];
  110. };
  111. struct nvme_nvm_erase_blk {
  112. __u8 opcode;
  113. __u8 flags;
  114. __u16 command_id;
  115. __le32 nsid;
  116. __u64 rsvd[2];
  117. __le64 prp1;
  118. __le64 prp2;
  119. __le64 spba;
  120. __le16 length;
  121. __le16 control;
  122. __le32 dsmgmt;
  123. __le64 resv;
  124. };
  125. struct nvme_nvm_command {
  126. union {
  127. struct nvme_common_command common;
  128. struct nvme_nvm_identity identity;
  129. struct nvme_nvm_hb_rw hb_rw;
  130. struct nvme_nvm_ph_rw ph_rw;
  131. struct nvme_nvm_l2ptbl l2p;
  132. struct nvme_nvm_getbbtbl get_bb;
  133. struct nvme_nvm_setbbtbl set_bb;
  134. struct nvme_nvm_erase_blk erase;
  135. };
  136. };
  137. #define NVME_NVM_LP_MLC_PAIRS 886
  138. struct nvme_nvm_lp_mlc {
  139. __le16 num_pairs;
  140. __u8 pairs[NVME_NVM_LP_MLC_PAIRS];
  141. };
  142. struct nvme_nvm_lp_tbl {
  143. __u8 id[8];
  144. struct nvme_nvm_lp_mlc mlc;
  145. };
  146. struct nvme_nvm_id_group {
  147. __u8 mtype;
  148. __u8 fmtype;
  149. __le16 res16;
  150. __u8 num_ch;
  151. __u8 num_lun;
  152. __u8 num_pln;
  153. __u8 rsvd1;
  154. __le16 num_blk;
  155. __le16 num_pg;
  156. __le16 fpg_sz;
  157. __le16 csecs;
  158. __le16 sos;
  159. __le16 rsvd2;
  160. __le32 trdt;
  161. __le32 trdm;
  162. __le32 tprt;
  163. __le32 tprm;
  164. __le32 tbet;
  165. __le32 tbem;
  166. __le32 mpos;
  167. __le32 mccap;
  168. __le16 cpar;
  169. __u8 reserved[10];
  170. struct nvme_nvm_lp_tbl lptbl;
  171. } __packed;
  172. struct nvme_nvm_addr_format {
  173. __u8 ch_offset;
  174. __u8 ch_len;
  175. __u8 lun_offset;
  176. __u8 lun_len;
  177. __u8 pln_offset;
  178. __u8 pln_len;
  179. __u8 blk_offset;
  180. __u8 blk_len;
  181. __u8 pg_offset;
  182. __u8 pg_len;
  183. __u8 sect_offset;
  184. __u8 sect_len;
  185. __u8 res[4];
  186. } __packed;
  187. struct nvme_nvm_id {
  188. __u8 ver_id;
  189. __u8 vmnt;
  190. __u8 cgrps;
  191. __u8 res;
  192. __le32 cap;
  193. __le32 dom;
  194. struct nvme_nvm_addr_format ppaf;
  195. __u8 resv[228];
  196. struct nvme_nvm_id_group groups[4];
  197. } __packed;
  198. struct nvme_nvm_bb_tbl {
  199. __u8 tblid[4];
  200. __le16 verid;
  201. __le16 revid;
  202. __le32 rvsd1;
  203. __le32 tblks;
  204. __le32 tfact;
  205. __le32 tgrown;
  206. __le32 tdresv;
  207. __le32 thresv;
  208. __le32 rsvd2[8];
  209. __u8 blk[0];
  210. };
  211. /*
  212. * Check we didn't inadvertently grow the command struct
  213. */
  214. static inline void _nvme_nvm_check_size(void)
  215. {
  216. BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64);
  217. BUILD_BUG_ON(sizeof(struct nvme_nvm_hb_rw) != 64);
  218. BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64);
  219. BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64);
  220. BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64);
  221. BUILD_BUG_ON(sizeof(struct nvme_nvm_l2ptbl) != 64);
  222. BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64);
  223. BUILD_BUG_ON(sizeof(struct nvme_nvm_id_group) != 960);
  224. BUILD_BUG_ON(sizeof(struct nvme_nvm_addr_format) != 128);
  225. BUILD_BUG_ON(sizeof(struct nvme_nvm_id) != 4096);
  226. BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 512);
  227. }
  228. static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id)
  229. {
  230. struct nvme_nvm_id_group *src;
  231. struct nvm_id_group *dst;
  232. int i, end;
  233. end = min_t(u32, 4, nvm_id->cgrps);
  234. for (i = 0; i < end; i++) {
  235. src = &nvme_nvm_id->groups[i];
  236. dst = &nvm_id->groups[i];
  237. dst->mtype = src->mtype;
  238. dst->fmtype = src->fmtype;
  239. dst->num_ch = src->num_ch;
  240. dst->num_lun = src->num_lun;
  241. dst->num_pln = src->num_pln;
  242. dst->num_pg = le16_to_cpu(src->num_pg);
  243. dst->num_blk = le16_to_cpu(src->num_blk);
  244. dst->fpg_sz = le16_to_cpu(src->fpg_sz);
  245. dst->csecs = le16_to_cpu(src->csecs);
  246. dst->sos = le16_to_cpu(src->sos);
  247. dst->trdt = le32_to_cpu(src->trdt);
  248. dst->trdm = le32_to_cpu(src->trdm);
  249. dst->tprt = le32_to_cpu(src->tprt);
  250. dst->tprm = le32_to_cpu(src->tprm);
  251. dst->tbet = le32_to_cpu(src->tbet);
  252. dst->tbem = le32_to_cpu(src->tbem);
  253. dst->mpos = le32_to_cpu(src->mpos);
  254. dst->mccap = le32_to_cpu(src->mccap);
  255. dst->cpar = le16_to_cpu(src->cpar);
  256. if (dst->fmtype == NVM_ID_FMTYPE_MLC) {
  257. memcpy(dst->lptbl.id, src->lptbl.id, 8);
  258. dst->lptbl.mlc.num_pairs =
  259. le16_to_cpu(src->lptbl.mlc.num_pairs);
  260. if (dst->lptbl.mlc.num_pairs > NVME_NVM_LP_MLC_PAIRS) {
  261. pr_err("nvm: number of MLC pairs not supported\n");
  262. return -EINVAL;
  263. }
  264. memcpy(dst->lptbl.mlc.pairs, src->lptbl.mlc.pairs,
  265. dst->lptbl.mlc.num_pairs);
  266. }
  267. }
  268. return 0;
  269. }
  270. static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id)
  271. {
  272. struct nvme_ns *ns = nvmdev->q->queuedata;
  273. struct nvme_nvm_id *nvme_nvm_id;
  274. struct nvme_nvm_command c = {};
  275. int ret;
  276. c.identity.opcode = nvme_nvm_admin_identity;
  277. c.identity.nsid = cpu_to_le32(ns->ns_id);
  278. c.identity.chnl_off = 0;
  279. nvme_nvm_id = kmalloc(sizeof(struct nvme_nvm_id), GFP_KERNEL);
  280. if (!nvme_nvm_id)
  281. return -ENOMEM;
  282. ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
  283. nvme_nvm_id, sizeof(struct nvme_nvm_id));
  284. if (ret) {
  285. ret = -EIO;
  286. goto out;
  287. }
  288. nvm_id->ver_id = nvme_nvm_id->ver_id;
  289. nvm_id->vmnt = nvme_nvm_id->vmnt;
  290. nvm_id->cgrps = nvme_nvm_id->cgrps;
  291. nvm_id->cap = le32_to_cpu(nvme_nvm_id->cap);
  292. nvm_id->dom = le32_to_cpu(nvme_nvm_id->dom);
  293. memcpy(&nvm_id->ppaf, &nvme_nvm_id->ppaf,
  294. sizeof(struct nvme_nvm_addr_format));
  295. ret = init_grps(nvm_id, nvme_nvm_id);
  296. out:
  297. kfree(nvme_nvm_id);
  298. return ret;
  299. }
  300. static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb,
  301. nvm_l2p_update_fn *update_l2p, void *priv)
  302. {
  303. struct nvme_ns *ns = nvmdev->q->queuedata;
  304. struct nvme_nvm_command c = {};
  305. u32 len = queue_max_hw_sectors(ns->ctrl->admin_q) << 9;
  306. u32 nlb_pr_rq = len / sizeof(u64);
  307. u64 cmd_slba = slba;
  308. void *entries;
  309. int ret = 0;
  310. c.l2p.opcode = nvme_nvm_admin_get_l2p_tbl;
  311. c.l2p.nsid = cpu_to_le32(ns->ns_id);
  312. entries = kmalloc(len, GFP_KERNEL);
  313. if (!entries)
  314. return -ENOMEM;
  315. while (nlb) {
  316. u32 cmd_nlb = min(nlb_pr_rq, nlb);
  317. u64 elba = slba + cmd_nlb;
  318. c.l2p.slba = cpu_to_le64(cmd_slba);
  319. c.l2p.nlb = cpu_to_le32(cmd_nlb);
  320. ret = nvme_submit_sync_cmd(ns->ctrl->admin_q,
  321. (struct nvme_command *)&c, entries, len);
  322. if (ret) {
  323. dev_err(ns->ctrl->device,
  324. "L2P table transfer failed (%d)\n", ret);
  325. ret = -EIO;
  326. goto out;
  327. }
  328. if (unlikely(elba > nvmdev->total_secs)) {
  329. pr_err("nvm: L2P data from device is out of bounds!\n");
  330. return -EINVAL;
  331. }
  332. /* Transform physical address to target address space */
  333. nvmdev->mt->part_to_tgt(nvmdev, entries, cmd_nlb);
  334. if (update_l2p(cmd_slba, cmd_nlb, entries, priv)) {
  335. ret = -EINTR;
  336. goto out;
  337. }
  338. cmd_slba += cmd_nlb;
  339. nlb -= cmd_nlb;
  340. }
  341. out:
  342. kfree(entries);
  343. return ret;
  344. }
  345. static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
  346. u8 *blks)
  347. {
  348. struct request_queue *q = nvmdev->q;
  349. struct nvm_geo *geo = &nvmdev->geo;
  350. struct nvme_ns *ns = q->queuedata;
  351. struct nvme_ctrl *ctrl = ns->ctrl;
  352. struct nvme_nvm_command c = {};
  353. struct nvme_nvm_bb_tbl *bb_tbl;
  354. int nr_blks = geo->blks_per_lun * geo->plane_mode;
  355. int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks;
  356. int ret = 0;
  357. c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl;
  358. c.get_bb.nsid = cpu_to_le32(ns->ns_id);
  359. c.get_bb.spba = cpu_to_le64(ppa.ppa);
  360. bb_tbl = kzalloc(tblsz, GFP_KERNEL);
  361. if (!bb_tbl)
  362. return -ENOMEM;
  363. ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c,
  364. bb_tbl, tblsz);
  365. if (ret) {
  366. dev_err(ctrl->device, "get bad block table failed (%d)\n", ret);
  367. ret = -EIO;
  368. goto out;
  369. }
  370. if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' ||
  371. bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') {
  372. dev_err(ctrl->device, "bbt format mismatch\n");
  373. ret = -EINVAL;
  374. goto out;
  375. }
  376. if (le16_to_cpu(bb_tbl->verid) != 1) {
  377. ret = -EINVAL;
  378. dev_err(ctrl->device, "bbt version not supported\n");
  379. goto out;
  380. }
  381. if (le32_to_cpu(bb_tbl->tblks) != nr_blks) {
  382. ret = -EINVAL;
  383. dev_err(ctrl->device,
  384. "bbt unsuspected blocks returned (%u!=%u)",
  385. le32_to_cpu(bb_tbl->tblks), nr_blks);
  386. goto out;
  387. }
  388. memcpy(blks, bb_tbl->blk, geo->blks_per_lun * geo->plane_mode);
  389. out:
  390. kfree(bb_tbl);
  391. return ret;
  392. }
  393. static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas,
  394. int nr_ppas, int type)
  395. {
  396. struct nvme_ns *ns = nvmdev->q->queuedata;
  397. struct nvme_nvm_command c = {};
  398. int ret = 0;
  399. c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl;
  400. c.set_bb.nsid = cpu_to_le32(ns->ns_id);
  401. c.set_bb.spba = cpu_to_le64(ppas->ppa);
  402. c.set_bb.nlb = cpu_to_le16(nr_ppas - 1);
  403. c.set_bb.value = type;
  404. ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
  405. NULL, 0);
  406. if (ret)
  407. dev_err(ns->ctrl->device, "set bad block table failed (%d)\n",
  408. ret);
  409. return ret;
  410. }
  411. static inline void nvme_nvm_rqtocmd(struct request *rq, struct nvm_rq *rqd,
  412. struct nvme_ns *ns, struct nvme_nvm_command *c)
  413. {
  414. c->ph_rw.opcode = rqd->opcode;
  415. c->ph_rw.nsid = cpu_to_le32(ns->ns_id);
  416. c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa);
  417. c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list);
  418. c->ph_rw.control = cpu_to_le16(rqd->flags);
  419. c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1);
  420. if (rqd->opcode == NVM_OP_HBWRITE || rqd->opcode == NVM_OP_HBREAD)
  421. c->hb_rw.slba = cpu_to_le64(nvme_block_nr(ns,
  422. rqd->bio->bi_iter.bi_sector));
  423. }
  424. static void nvme_nvm_end_io(struct request *rq, int error)
  425. {
  426. struct nvm_rq *rqd = rq->end_io_data;
  427. rqd->ppa_status = nvme_req(rq)->result.u64;
  428. nvm_end_io(rqd, error);
  429. kfree(nvme_req(rq)->cmd);
  430. blk_mq_free_request(rq);
  431. }
  432. static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd)
  433. {
  434. struct request_queue *q = dev->q;
  435. struct nvme_ns *ns = q->queuedata;
  436. struct request *rq;
  437. struct bio *bio = rqd->bio;
  438. struct nvme_nvm_command *cmd;
  439. cmd = kzalloc(sizeof(struct nvme_nvm_command), GFP_KERNEL);
  440. if (!cmd)
  441. return -ENOMEM;
  442. rq = nvme_alloc_request(q, (struct nvme_command *)cmd, 0, NVME_QID_ANY);
  443. if (IS_ERR(rq)) {
  444. kfree(cmd);
  445. return -ENOMEM;
  446. }
  447. rq->cmd_flags &= ~REQ_FAILFAST_DRIVER;
  448. rq->ioprio = bio_prio(bio);
  449. if (bio_has_data(bio))
  450. rq->nr_phys_segments = bio_phys_segments(q, bio);
  451. rq->__data_len = bio->bi_iter.bi_size;
  452. rq->bio = rq->biotail = bio;
  453. nvme_nvm_rqtocmd(rq, rqd, ns, cmd);
  454. rq->end_io_data = rqd;
  455. blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io);
  456. return 0;
  457. }
  458. static int nvme_nvm_erase_block(struct nvm_dev *dev, struct nvm_rq *rqd)
  459. {
  460. struct request_queue *q = dev->q;
  461. struct nvme_ns *ns = q->queuedata;
  462. struct nvme_nvm_command c = {};
  463. c.erase.opcode = NVM_OP_ERASE;
  464. c.erase.nsid = cpu_to_le32(ns->ns_id);
  465. c.erase.spba = cpu_to_le64(rqd->ppa_addr.ppa);
  466. c.erase.length = cpu_to_le16(rqd->nr_ppas - 1);
  467. c.erase.control = cpu_to_le16(rqd->flags);
  468. return nvme_submit_sync_cmd(q, (struct nvme_command *)&c, NULL, 0);
  469. }
  470. static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name)
  471. {
  472. struct nvme_ns *ns = nvmdev->q->queuedata;
  473. return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0);
  474. }
  475. static void nvme_nvm_destroy_dma_pool(void *pool)
  476. {
  477. struct dma_pool *dma_pool = pool;
  478. dma_pool_destroy(dma_pool);
  479. }
  480. static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool,
  481. gfp_t mem_flags, dma_addr_t *dma_handler)
  482. {
  483. return dma_pool_alloc(pool, mem_flags, dma_handler);
  484. }
  485. static void nvme_nvm_dev_dma_free(void *pool, void *addr,
  486. dma_addr_t dma_handler)
  487. {
  488. dma_pool_free(pool, addr, dma_handler);
  489. }
  490. static struct nvm_dev_ops nvme_nvm_dev_ops = {
  491. .identity = nvme_nvm_identity,
  492. .get_l2p_tbl = nvme_nvm_get_l2p_tbl,
  493. .get_bb_tbl = nvme_nvm_get_bb_tbl,
  494. .set_bb_tbl = nvme_nvm_set_bb_tbl,
  495. .submit_io = nvme_nvm_submit_io,
  496. .erase_block = nvme_nvm_erase_block,
  497. .create_dma_pool = nvme_nvm_create_dma_pool,
  498. .destroy_dma_pool = nvme_nvm_destroy_dma_pool,
  499. .dev_dma_alloc = nvme_nvm_dev_dma_alloc,
  500. .dev_dma_free = nvme_nvm_dev_dma_free,
  501. .max_phys_sect = 64,
  502. };
  503. int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node)
  504. {
  505. struct request_queue *q = ns->queue;
  506. struct nvm_dev *dev;
  507. dev = nvm_alloc_dev(node);
  508. if (!dev)
  509. return -ENOMEM;
  510. dev->q = q;
  511. memcpy(dev->name, disk_name, DISK_NAME_LEN);
  512. dev->ops = &nvme_nvm_dev_ops;
  513. dev->private_data = ns;
  514. ns->ndev = dev;
  515. return nvm_register(dev);
  516. }
  517. void nvme_nvm_unregister(struct nvme_ns *ns)
  518. {
  519. nvm_unregister(ns->ndev);
  520. }
  521. static ssize_t nvm_dev_attr_show(struct device *dev,
  522. struct device_attribute *dattr, char *page)
  523. {
  524. struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
  525. struct nvm_dev *ndev = ns->ndev;
  526. struct nvm_id *id;
  527. struct nvm_id_group *grp;
  528. struct attribute *attr;
  529. if (!ndev)
  530. return 0;
  531. id = &ndev->identity;
  532. grp = &id->groups[0];
  533. attr = &dattr->attr;
  534. if (strcmp(attr->name, "version") == 0) {
  535. return scnprintf(page, PAGE_SIZE, "%u\n", id->ver_id);
  536. } else if (strcmp(attr->name, "vendor_opcode") == 0) {
  537. return scnprintf(page, PAGE_SIZE, "%u\n", id->vmnt);
  538. } else if (strcmp(attr->name, "capabilities") == 0) {
  539. return scnprintf(page, PAGE_SIZE, "%u\n", id->cap);
  540. } else if (strcmp(attr->name, "device_mode") == 0) {
  541. return scnprintf(page, PAGE_SIZE, "%u\n", id->dom);
  542. } else if (strcmp(attr->name, "media_manager") == 0) {
  543. if (!ndev->mt)
  544. return scnprintf(page, PAGE_SIZE, "%s\n", "none");
  545. return scnprintf(page, PAGE_SIZE, "%s\n", ndev->mt->name);
  546. } else if (strcmp(attr->name, "ppa_format") == 0) {
  547. return scnprintf(page, PAGE_SIZE,
  548. "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  549. id->ppaf.ch_offset, id->ppaf.ch_len,
  550. id->ppaf.lun_offset, id->ppaf.lun_len,
  551. id->ppaf.pln_offset, id->ppaf.pln_len,
  552. id->ppaf.blk_offset, id->ppaf.blk_len,
  553. id->ppaf.pg_offset, id->ppaf.pg_len,
  554. id->ppaf.sect_offset, id->ppaf.sect_len);
  555. } else if (strcmp(attr->name, "media_type") == 0) { /* u8 */
  556. return scnprintf(page, PAGE_SIZE, "%u\n", grp->mtype);
  557. } else if (strcmp(attr->name, "flash_media_type") == 0) {
  558. return scnprintf(page, PAGE_SIZE, "%u\n", grp->fmtype);
  559. } else if (strcmp(attr->name, "num_channels") == 0) {
  560. return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_ch);
  561. } else if (strcmp(attr->name, "num_luns") == 0) {
  562. return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_lun);
  563. } else if (strcmp(attr->name, "num_planes") == 0) {
  564. return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_pln);
  565. } else if (strcmp(attr->name, "num_blocks") == 0) { /* u16 */
  566. return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_blk);
  567. } else if (strcmp(attr->name, "num_pages") == 0) {
  568. return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_pg);
  569. } else if (strcmp(attr->name, "page_size") == 0) {
  570. return scnprintf(page, PAGE_SIZE, "%u\n", grp->fpg_sz);
  571. } else if (strcmp(attr->name, "hw_sector_size") == 0) {
  572. return scnprintf(page, PAGE_SIZE, "%u\n", grp->csecs);
  573. } else if (strcmp(attr->name, "oob_sector_size") == 0) {/* u32 */
  574. return scnprintf(page, PAGE_SIZE, "%u\n", grp->sos);
  575. } else if (strcmp(attr->name, "read_typ") == 0) {
  576. return scnprintf(page, PAGE_SIZE, "%u\n", grp->trdt);
  577. } else if (strcmp(attr->name, "read_max") == 0) {
  578. return scnprintf(page, PAGE_SIZE, "%u\n", grp->trdm);
  579. } else if (strcmp(attr->name, "prog_typ") == 0) {
  580. return scnprintf(page, PAGE_SIZE, "%u\n", grp->tprt);
  581. } else if (strcmp(attr->name, "prog_max") == 0) {
  582. return scnprintf(page, PAGE_SIZE, "%u\n", grp->tprm);
  583. } else if (strcmp(attr->name, "erase_typ") == 0) {
  584. return scnprintf(page, PAGE_SIZE, "%u\n", grp->tbet);
  585. } else if (strcmp(attr->name, "erase_max") == 0) {
  586. return scnprintf(page, PAGE_SIZE, "%u\n", grp->tbem);
  587. } else if (strcmp(attr->name, "multiplane_modes") == 0) {
  588. return scnprintf(page, PAGE_SIZE, "0x%08x\n", grp->mpos);
  589. } else if (strcmp(attr->name, "media_capabilities") == 0) {
  590. return scnprintf(page, PAGE_SIZE, "0x%08x\n", grp->mccap);
  591. } else if (strcmp(attr->name, "max_phys_secs") == 0) {
  592. return scnprintf(page, PAGE_SIZE, "%u\n",
  593. ndev->ops->max_phys_sect);
  594. } else {
  595. return scnprintf(page,
  596. PAGE_SIZE,
  597. "Unhandled attr(%s) in `nvm_dev_attr_show`\n",
  598. attr->name);
  599. }
  600. }
  601. #define NVM_DEV_ATTR_RO(_name) \
  602. DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show, NULL)
  603. static NVM_DEV_ATTR_RO(version);
  604. static NVM_DEV_ATTR_RO(vendor_opcode);
  605. static NVM_DEV_ATTR_RO(capabilities);
  606. static NVM_DEV_ATTR_RO(device_mode);
  607. static NVM_DEV_ATTR_RO(ppa_format);
  608. static NVM_DEV_ATTR_RO(media_manager);
  609. static NVM_DEV_ATTR_RO(media_type);
  610. static NVM_DEV_ATTR_RO(flash_media_type);
  611. static NVM_DEV_ATTR_RO(num_channels);
  612. static NVM_DEV_ATTR_RO(num_luns);
  613. static NVM_DEV_ATTR_RO(num_planes);
  614. static NVM_DEV_ATTR_RO(num_blocks);
  615. static NVM_DEV_ATTR_RO(num_pages);
  616. static NVM_DEV_ATTR_RO(page_size);
  617. static NVM_DEV_ATTR_RO(hw_sector_size);
  618. static NVM_DEV_ATTR_RO(oob_sector_size);
  619. static NVM_DEV_ATTR_RO(read_typ);
  620. static NVM_DEV_ATTR_RO(read_max);
  621. static NVM_DEV_ATTR_RO(prog_typ);
  622. static NVM_DEV_ATTR_RO(prog_max);
  623. static NVM_DEV_ATTR_RO(erase_typ);
  624. static NVM_DEV_ATTR_RO(erase_max);
  625. static NVM_DEV_ATTR_RO(multiplane_modes);
  626. static NVM_DEV_ATTR_RO(media_capabilities);
  627. static NVM_DEV_ATTR_RO(max_phys_secs);
  628. static struct attribute *nvm_dev_attrs[] = {
  629. &dev_attr_version.attr,
  630. &dev_attr_vendor_opcode.attr,
  631. &dev_attr_capabilities.attr,
  632. &dev_attr_device_mode.attr,
  633. &dev_attr_media_manager.attr,
  634. &dev_attr_ppa_format.attr,
  635. &dev_attr_media_type.attr,
  636. &dev_attr_flash_media_type.attr,
  637. &dev_attr_num_channels.attr,
  638. &dev_attr_num_luns.attr,
  639. &dev_attr_num_planes.attr,
  640. &dev_attr_num_blocks.attr,
  641. &dev_attr_num_pages.attr,
  642. &dev_attr_page_size.attr,
  643. &dev_attr_hw_sector_size.attr,
  644. &dev_attr_oob_sector_size.attr,
  645. &dev_attr_read_typ.attr,
  646. &dev_attr_read_max.attr,
  647. &dev_attr_prog_typ.attr,
  648. &dev_attr_prog_max.attr,
  649. &dev_attr_erase_typ.attr,
  650. &dev_attr_erase_max.attr,
  651. &dev_attr_multiplane_modes.attr,
  652. &dev_attr_media_capabilities.attr,
  653. &dev_attr_max_phys_secs.attr,
  654. NULL,
  655. };
  656. static const struct attribute_group nvm_dev_attr_group = {
  657. .name = "lightnvm",
  658. .attrs = nvm_dev_attrs,
  659. };
  660. int nvme_nvm_register_sysfs(struct nvme_ns *ns)
  661. {
  662. return sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
  663. &nvm_dev_attr_group);
  664. }
  665. void nvme_nvm_unregister_sysfs(struct nvme_ns *ns)
  666. {
  667. sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
  668. &nvm_dev_attr_group);
  669. }
  670. /* move to shared place when used in multiple places. */
  671. #define PCI_VENDOR_ID_CNEX 0x1d1d
  672. #define PCI_DEVICE_ID_CNEX_WL 0x2807
  673. #define PCI_DEVICE_ID_CNEX_QEMU 0x1f1f
  674. int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
  675. {
  676. struct nvme_ctrl *ctrl = ns->ctrl;
  677. /* XXX: this is poking into PCI structures from generic code! */
  678. struct pci_dev *pdev = to_pci_dev(ctrl->dev);
  679. /* QEMU NVMe simulator - PCI ID + Vendor specific bit */
  680. if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
  681. pdev->device == PCI_DEVICE_ID_CNEX_QEMU &&
  682. id->vs[0] == 0x1)
  683. return 1;
  684. /* CNEX Labs - PCI ID + Vendor specific bit */
  685. if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
  686. pdev->device == PCI_DEVICE_ID_CNEX_WL &&
  687. id->vs[0] == 0x1)
  688. return 1;
  689. return 0;
  690. }