hw.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called LICENSE.
  16. *
  17. * Contact Information:
  18. * wlanfae <wlanfae@realtek.com>
  19. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  20. * Hsinchu 300, Taiwan.
  21. *
  22. * Larry Finger <Larry.Finger@lwfinger.net>
  23. *
  24. *****************************************************************************/
  25. #include "../wifi.h"
  26. #include "../efuse.h"
  27. #include "../base.h"
  28. #include "../regd.h"
  29. #include "../cam.h"
  30. #include "../ps.h"
  31. #include "../pci.h"
  32. #include "reg.h"
  33. #include "def.h"
  34. #include "phy.h"
  35. #include "../rtl8192c/dm_common.h"
  36. #include "../rtl8192c/fw_common.h"
  37. #include "../rtl8192c/phy_common.h"
  38. #include "dm.h"
  39. #include "led.h"
  40. #include "hw.h"
  41. #define LLT_CONFIG 5
  42. static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  43. u8 set_bits, u8 clear_bits)
  44. {
  45. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  46. struct rtl_priv *rtlpriv = rtl_priv(hw);
  47. rtlpci->reg_bcn_ctrl_val |= set_bits;
  48. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  49. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val);
  50. }
  51. static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw)
  52. {
  53. struct rtl_priv *rtlpriv = rtl_priv(hw);
  54. u8 tmp1byte;
  55. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  56. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  57. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  58. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  59. tmp1byte &= ~(BIT(0));
  60. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  61. }
  62. static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw)
  63. {
  64. struct rtl_priv *rtlpriv = rtl_priv(hw);
  65. u8 tmp1byte;
  66. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  67. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  68. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  69. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  70. tmp1byte |= BIT(0);
  71. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  72. }
  73. static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw)
  74. {
  75. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1));
  76. }
  77. static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw)
  78. {
  79. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0);
  80. }
  81. void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  85. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  86. switch (variable) {
  87. case HW_VAR_RCR:
  88. *((u32 *) (val)) = rtlpci->receive_config;
  89. break;
  90. case HW_VAR_RF_STATE:
  91. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  92. break;
  93. case HW_VAR_FWLPS_RF_ON:{
  94. enum rf_pwrstate rfState;
  95. u32 val_rcr;
  96. rtlpriv->cfg->ops->get_hw_reg(hw,
  97. HW_VAR_RF_STATE,
  98. (u8 *) (&rfState));
  99. if (rfState == ERFOFF) {
  100. *((bool *) (val)) = true;
  101. } else {
  102. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  103. val_rcr &= 0x00070000;
  104. if (val_rcr)
  105. *((bool *) (val)) = false;
  106. else
  107. *((bool *) (val)) = true;
  108. }
  109. break;
  110. }
  111. case HW_VAR_FW_PSMODE_STATUS:
  112. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  113. break;
  114. case HW_VAR_CORRECT_TSF:{
  115. u64 tsf;
  116. u32 *ptsf_low = (u32 *)&tsf;
  117. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  118. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  119. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  120. *((u64 *) (val)) = tsf;
  121. break;
  122. }
  123. case HAL_DEF_WOWLAN:
  124. break;
  125. default:
  126. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  127. "switch case %#x not processed\n", variable);
  128. break;
  129. }
  130. }
  131. void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  132. {
  133. struct rtl_priv *rtlpriv = rtl_priv(hw);
  134. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  135. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  136. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  137. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  138. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  139. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  140. u8 idx;
  141. switch (variable) {
  142. case HW_VAR_ETHER_ADDR:{
  143. for (idx = 0; idx < ETH_ALEN; idx++) {
  144. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  145. val[idx]);
  146. }
  147. break;
  148. }
  149. case HW_VAR_BASIC_RATE:{
  150. u16 rate_cfg = ((u16 *) val)[0];
  151. u8 rate_index = 0;
  152. rate_cfg &= 0x15f;
  153. rate_cfg |= 0x01;
  154. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  155. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  156. (rate_cfg >> 8) & 0xff);
  157. while (rate_cfg > 0x1) {
  158. rate_cfg = (rate_cfg >> 1);
  159. rate_index++;
  160. }
  161. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  162. rate_index);
  163. break;
  164. }
  165. case HW_VAR_BSSID:{
  166. for (idx = 0; idx < ETH_ALEN; idx++) {
  167. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  168. val[idx]);
  169. }
  170. break;
  171. }
  172. case HW_VAR_SIFS:{
  173. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  174. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  175. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  176. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  177. if (!mac->ht_enable)
  178. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  179. 0x0e0e);
  180. else
  181. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  182. *((u16 *) val));
  183. break;
  184. }
  185. case HW_VAR_SLOT_TIME:{
  186. u8 e_aci;
  187. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  188. "HW_VAR_SLOT_TIME %x\n", val[0]);
  189. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  190. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  191. rtlpriv->cfg->ops->set_hw_reg(hw,
  192. HW_VAR_AC_PARAM,
  193. &e_aci);
  194. }
  195. break;
  196. }
  197. case HW_VAR_ACK_PREAMBLE:{
  198. u8 reg_tmp;
  199. u8 short_preamble = (bool)*val;
  200. reg_tmp = (mac->cur_40_prime_sc) << 5;
  201. if (short_preamble)
  202. reg_tmp |= 0x80;
  203. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  204. break;
  205. }
  206. case HW_VAR_AMPDU_MIN_SPACE:{
  207. u8 min_spacing_to_set;
  208. u8 sec_min_space;
  209. min_spacing_to_set = *val;
  210. if (min_spacing_to_set <= 7) {
  211. sec_min_space = 0;
  212. if (min_spacing_to_set < sec_min_space)
  213. min_spacing_to_set = sec_min_space;
  214. mac->min_space_cfg = ((mac->min_space_cfg &
  215. 0xf8) |
  216. min_spacing_to_set);
  217. *val = min_spacing_to_set;
  218. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  219. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  220. mac->min_space_cfg);
  221. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  222. mac->min_space_cfg);
  223. }
  224. break;
  225. }
  226. case HW_VAR_SHORTGI_DENSITY:{
  227. u8 density_to_set;
  228. density_to_set = *val;
  229. mac->min_space_cfg |= (density_to_set << 3);
  230. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  231. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  232. mac->min_space_cfg);
  233. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  234. mac->min_space_cfg);
  235. break;
  236. }
  237. case HW_VAR_AMPDU_FACTOR:{
  238. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  239. u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
  240. u8 factor_toset;
  241. u8 *p_regtoset = NULL;
  242. u8 index = 0;
  243. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  244. (rtlpcipriv->bt_coexist.bt_coexist_type ==
  245. BT_CSR_BC4))
  246. p_regtoset = regtoset_bt;
  247. else
  248. p_regtoset = regtoset_normal;
  249. factor_toset = *(val);
  250. if (factor_toset <= 3) {
  251. factor_toset = (1 << (factor_toset + 2));
  252. if (factor_toset > 0xf)
  253. factor_toset = 0xf;
  254. for (index = 0; index < 4; index++) {
  255. if ((p_regtoset[index] & 0xf0) >
  256. (factor_toset << 4))
  257. p_regtoset[index] =
  258. (p_regtoset[index] & 0x0f) |
  259. (factor_toset << 4);
  260. if ((p_regtoset[index] & 0x0f) >
  261. factor_toset)
  262. p_regtoset[index] =
  263. (p_regtoset[index] & 0xf0) |
  264. (factor_toset);
  265. rtl_write_byte(rtlpriv,
  266. (REG_AGGLEN_LMT + index),
  267. p_regtoset[index]);
  268. }
  269. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  270. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  271. factor_toset);
  272. }
  273. break;
  274. }
  275. case HW_VAR_AC_PARAM:{
  276. u8 e_aci = *(val);
  277. rtl92c_dm_init_edca_turbo(hw);
  278. if (rtlpci->acm_method != EACMWAY2_SW)
  279. rtlpriv->cfg->ops->set_hw_reg(hw,
  280. HW_VAR_ACM_CTRL,
  281. (&e_aci));
  282. break;
  283. }
  284. case HW_VAR_ACM_CTRL:{
  285. u8 e_aci = *(val);
  286. union aci_aifsn *p_aci_aifsn =
  287. (union aci_aifsn *)(&(mac->ac[0].aifs));
  288. u8 acm = p_aci_aifsn->f.acm;
  289. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  290. acm_ctrl =
  291. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  292. if (acm) {
  293. switch (e_aci) {
  294. case AC0_BE:
  295. acm_ctrl |= AcmHw_BeqEn;
  296. break;
  297. case AC2_VI:
  298. acm_ctrl |= AcmHw_ViqEn;
  299. break;
  300. case AC3_VO:
  301. acm_ctrl |= AcmHw_VoqEn;
  302. break;
  303. default:
  304. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  305. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  306. acm);
  307. break;
  308. }
  309. } else {
  310. switch (e_aci) {
  311. case AC0_BE:
  312. acm_ctrl &= (~AcmHw_BeqEn);
  313. break;
  314. case AC2_VI:
  315. acm_ctrl &= (~AcmHw_ViqEn);
  316. break;
  317. case AC3_VO:
  318. acm_ctrl &= (~AcmHw_VoqEn);
  319. break;
  320. default:
  321. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  322. "switch case %#x not processed\n",
  323. e_aci);
  324. break;
  325. }
  326. }
  327. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  328. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  329. acm_ctrl);
  330. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  331. break;
  332. }
  333. case HW_VAR_RCR:{
  334. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  335. rtlpci->receive_config = ((u32 *) (val))[0];
  336. break;
  337. }
  338. case HW_VAR_RETRY_LIMIT:{
  339. u8 retry_limit = val[0];
  340. rtl_write_word(rtlpriv, REG_RL,
  341. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  342. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  343. break;
  344. }
  345. case HW_VAR_DUAL_TSF_RST:
  346. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  347. break;
  348. case HW_VAR_EFUSE_BYTES:
  349. rtlefuse->efuse_usedbytes = *((u16 *) val);
  350. break;
  351. case HW_VAR_EFUSE_USAGE:
  352. rtlefuse->efuse_usedpercentage = *val;
  353. break;
  354. case HW_VAR_IO_CMD:
  355. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  356. break;
  357. case HW_VAR_WPA_CONFIG:
  358. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  359. break;
  360. case HW_VAR_SET_RPWM:{
  361. u8 rpwm_val;
  362. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  363. udelay(1);
  364. if (rpwm_val & BIT(7)) {
  365. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  366. } else {
  367. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  368. *val | BIT(7));
  369. }
  370. break;
  371. }
  372. case HW_VAR_H2C_FW_PWRMODE:{
  373. u8 psmode = *val;
  374. if ((psmode != FW_PS_ACTIVE_MODE) &&
  375. (!IS_92C_SERIAL(rtlhal->version))) {
  376. rtl92c_dm_rf_saving(hw, true);
  377. }
  378. rtl92c_set_fw_pwrmode_cmd(hw, *val);
  379. break;
  380. }
  381. case HW_VAR_FW_PSMODE_STATUS:
  382. ppsc->fw_current_inpsmode = *((bool *) val);
  383. break;
  384. case HW_VAR_H2C_FW_JOINBSSRPT:{
  385. u8 mstatus = *val;
  386. u8 tmp_regcr, tmp_reg422;
  387. bool recover = false;
  388. if (mstatus == RT_MEDIA_CONNECT) {
  389. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
  390. NULL);
  391. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  392. rtl_write_byte(rtlpriv, REG_CR + 1,
  393. (tmp_regcr | BIT(0)));
  394. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  395. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  396. tmp_reg422 =
  397. rtl_read_byte(rtlpriv,
  398. REG_FWHW_TXQ_CTRL + 2);
  399. if (tmp_reg422 & BIT(6))
  400. recover = true;
  401. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  402. tmp_reg422 & (~BIT(6)));
  403. rtl92c_set_fw_rsvdpagepkt(hw, NULL);
  404. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  405. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  406. if (recover) {
  407. rtl_write_byte(rtlpriv,
  408. REG_FWHW_TXQ_CTRL + 2,
  409. tmp_reg422);
  410. }
  411. rtl_write_byte(rtlpriv, REG_CR + 1,
  412. (tmp_regcr & ~(BIT(0))));
  413. }
  414. rtl92c_set_fw_joinbss_report_cmd(hw, *val);
  415. break;
  416. }
  417. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  418. rtl92c_set_p2p_ps_offload_cmd(hw, *val);
  419. break;
  420. case HW_VAR_AID:{
  421. u16 u2btmp;
  422. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  423. u2btmp &= 0xC000;
  424. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  425. mac->assoc_id));
  426. break;
  427. }
  428. case HW_VAR_CORRECT_TSF:{
  429. u8 btype_ibss = val[0];
  430. if (btype_ibss)
  431. _rtl92ce_stop_tx_beacon(hw);
  432. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  433. rtl_write_dword(rtlpriv, REG_TSFTR,
  434. (u32) (mac->tsf & 0xffffffff));
  435. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  436. (u32) ((mac->tsf >> 32) & 0xffffffff));
  437. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  438. if (btype_ibss)
  439. _rtl92ce_resume_tx_beacon(hw);
  440. break;
  441. }
  442. case HW_VAR_FW_LPS_ACTION: {
  443. bool enter_fwlps = *((bool *)val);
  444. u8 rpwm_val, fw_pwrmode;
  445. bool fw_current_inps;
  446. if (enter_fwlps) {
  447. rpwm_val = 0x02; /* RF off */
  448. fw_current_inps = true;
  449. rtlpriv->cfg->ops->set_hw_reg(hw,
  450. HW_VAR_FW_PSMODE_STATUS,
  451. (u8 *)(&fw_current_inps));
  452. rtlpriv->cfg->ops->set_hw_reg(hw,
  453. HW_VAR_H2C_FW_PWRMODE,
  454. &ppsc->fwctrl_psmode);
  455. rtlpriv->cfg->ops->set_hw_reg(hw,
  456. HW_VAR_SET_RPWM,
  457. &rpwm_val);
  458. } else {
  459. rpwm_val = 0x0C; /* RF on */
  460. fw_pwrmode = FW_PS_ACTIVE_MODE;
  461. fw_current_inps = false;
  462. rtlpriv->cfg->ops->set_hw_reg(hw,
  463. HW_VAR_SET_RPWM,
  464. &rpwm_val);
  465. rtlpriv->cfg->ops->set_hw_reg(hw,
  466. HW_VAR_H2C_FW_PWRMODE,
  467. &fw_pwrmode);
  468. rtlpriv->cfg->ops->set_hw_reg(hw,
  469. HW_VAR_FW_PSMODE_STATUS,
  470. (u8 *)(&fw_current_inps));
  471. }
  472. break; }
  473. case HW_VAR_KEEP_ALIVE: {
  474. u8 array[2];
  475. array[0] = 0xff;
  476. array[1] = *((u8 *)val);
  477. rtl92c_fill_h2c_cmd(hw, H2C_92C_KEEP_ALIVE_CTRL, 2, array);
  478. break; }
  479. default:
  480. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  481. "switch case %d not processed\n", variable);
  482. break;
  483. }
  484. }
  485. static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  486. {
  487. struct rtl_priv *rtlpriv = rtl_priv(hw);
  488. bool status = true;
  489. long count = 0;
  490. u32 value = _LLT_INIT_ADDR(address) |
  491. _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
  492. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  493. do {
  494. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  495. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  496. break;
  497. if (count > POLLING_LLT_THRESHOLD) {
  498. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  499. "Failed to polling write LLT done at address %d!\n",
  500. address);
  501. status = false;
  502. break;
  503. }
  504. } while (++count);
  505. return status;
  506. }
  507. static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw)
  508. {
  509. struct rtl_priv *rtlpriv = rtl_priv(hw);
  510. unsigned short i;
  511. u8 txpktbuf_bndy;
  512. u8 maxPage;
  513. bool status;
  514. #if LLT_CONFIG == 1
  515. maxPage = 255;
  516. txpktbuf_bndy = 252;
  517. #elif LLT_CONFIG == 2
  518. maxPage = 127;
  519. txpktbuf_bndy = 124;
  520. #elif LLT_CONFIG == 3
  521. maxPage = 255;
  522. txpktbuf_bndy = 174;
  523. #elif LLT_CONFIG == 4
  524. maxPage = 255;
  525. txpktbuf_bndy = 246;
  526. #elif LLT_CONFIG == 5
  527. maxPage = 255;
  528. txpktbuf_bndy = 246;
  529. #endif
  530. #if LLT_CONFIG == 1
  531. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
  532. rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
  533. #elif LLT_CONFIG == 2
  534. rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
  535. #elif LLT_CONFIG == 3
  536. rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
  537. #elif LLT_CONFIG == 4
  538. rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
  539. #elif LLT_CONFIG == 5
  540. rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
  541. rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29);
  542. #endif
  543. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
  544. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  545. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  546. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  547. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  548. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  549. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  550. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  551. status = _rtl92ce_llt_write(hw, i, i + 1);
  552. if (true != status)
  553. return status;
  554. }
  555. status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  556. if (true != status)
  557. return status;
  558. for (i = txpktbuf_bndy; i < maxPage; i++) {
  559. status = _rtl92ce_llt_write(hw, i, (i + 1));
  560. if (true != status)
  561. return status;
  562. }
  563. status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy);
  564. if (true != status)
  565. return status;
  566. return true;
  567. }
  568. static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw)
  569. {
  570. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  571. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  572. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  573. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  574. if (rtlpci->up_first_time)
  575. return;
  576. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  577. rtl92ce_sw_led_on(hw, pLed0);
  578. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  579. rtl92ce_sw_led_on(hw, pLed0);
  580. else
  581. rtl92ce_sw_led_off(hw, pLed0);
  582. }
  583. static bool _rtl92ce_init_mac(struct ieee80211_hw *hw)
  584. {
  585. struct rtl_priv *rtlpriv = rtl_priv(hw);
  586. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  587. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  588. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  589. unsigned char bytetmp;
  590. unsigned short wordtmp;
  591. u16 retry;
  592. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  593. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  594. u32 value32;
  595. value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO);
  596. value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK);
  597. rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32);
  598. }
  599. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  600. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
  601. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  602. u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  603. u4b_tmp &= (~0x00024800);
  604. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  605. }
  606. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
  607. udelay(2);
  608. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  609. udelay(2);
  610. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  611. udelay(2);
  612. retry = 0;
  613. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  614. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  615. while ((bytetmp & BIT(0)) && retry < 1000) {
  616. retry++;
  617. udelay(50);
  618. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  619. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  620. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  621. udelay(50);
  622. }
  623. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
  624. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
  625. udelay(2);
  626. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  627. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd;
  628. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp);
  629. }
  630. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  631. if (!_rtl92ce_llt_table_init(hw))
  632. return false;
  633. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  634. rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
  635. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
  636. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  637. wordtmp &= 0xf;
  638. wordtmp |= 0xF771;
  639. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  640. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  641. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  642. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  643. rtl_write_byte(rtlpriv, 0x4d0, 0x0);
  644. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  645. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  646. DMA_BIT_MASK(32));
  647. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  648. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  649. DMA_BIT_MASK(32));
  650. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  651. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  652. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  653. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  654. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  655. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  656. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  657. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  658. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  659. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  660. DMA_BIT_MASK(32));
  661. rtl_write_dword(rtlpriv, REG_RX_DESA,
  662. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  663. DMA_BIT_MASK(32));
  664. if (IS_92C_SERIAL(rtlhal->version))
  665. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77);
  666. else
  667. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22);
  668. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  669. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  670. rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
  671. do {
  672. retry++;
  673. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  674. } while ((retry < 200) && (bytetmp & BIT(7)));
  675. _rtl92ce_gen_refresh_led_state(hw);
  676. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  677. return true;
  678. }
  679. static void _rtl92ce_hw_configure(struct ieee80211_hw *hw)
  680. {
  681. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  682. struct rtl_priv *rtlpriv = rtl_priv(hw);
  683. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  684. u8 reg_bw_opmode;
  685. u32 reg_prsr;
  686. reg_bw_opmode = BW_OPMODE_20MHZ;
  687. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  688. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
  689. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  690. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  691. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  692. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
  693. rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
  694. rtl_write_word(rtlpriv, REG_RL, 0x0707);
  695. rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
  696. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  697. rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
  698. rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
  699. rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
  700. rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
  701. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  702. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  703. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
  704. else
  705. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
  706. rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
  707. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
  708. rtlpci->reg_bcn_ctrl_val = 0x1f;
  709. rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
  710. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  711. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  712. rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
  713. rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
  714. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  715. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) {
  716. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  717. rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
  718. } else {
  719. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  720. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  721. }
  722. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  723. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  724. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
  725. else
  726. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
  727. rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
  728. rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
  729. rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
  730. rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
  731. rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
  732. rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
  733. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
  734. }
  735. static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw)
  736. {
  737. struct rtl_priv *rtlpriv = rtl_priv(hw);
  738. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  739. rtl_write_byte(rtlpriv, 0x34b, 0x93);
  740. rtl_write_word(rtlpriv, 0x350, 0x870c);
  741. rtl_write_byte(rtlpriv, 0x352, 0x1);
  742. if (ppsc->support_backdoor)
  743. rtl_write_byte(rtlpriv, 0x349, 0x1b);
  744. else
  745. rtl_write_byte(rtlpriv, 0x349, 0x03);
  746. rtl_write_word(rtlpriv, 0x350, 0x2718);
  747. rtl_write_byte(rtlpriv, 0x352, 0x1);
  748. }
  749. void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw)
  750. {
  751. struct rtl_priv *rtlpriv = rtl_priv(hw);
  752. u8 sec_reg_value;
  753. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  754. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  755. rtlpriv->sec.pairwise_enc_algorithm,
  756. rtlpriv->sec.group_enc_algorithm);
  757. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  758. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  759. "not open hw encryption\n");
  760. return;
  761. }
  762. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  763. if (rtlpriv->sec.use_defaultkey) {
  764. sec_reg_value |= SCR_TxUseDK;
  765. sec_reg_value |= SCR_RxUseDK;
  766. }
  767. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  768. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  769. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  770. "The SECR-value %x\n", sec_reg_value);
  771. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  772. }
  773. int rtl92ce_hw_init(struct ieee80211_hw *hw)
  774. {
  775. struct rtl_priv *rtlpriv = rtl_priv(hw);
  776. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  777. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  778. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  779. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  780. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  781. bool rtstatus = true;
  782. bool is92c;
  783. int err;
  784. u8 tmp_u1b;
  785. unsigned long flags;
  786. rtlpci->being_init_adapter = true;
  787. /* Since this function can take a very long time (up to 350 ms)
  788. * and can be called with irqs disabled, reenable the irqs
  789. * to let the other devices continue being serviced.
  790. *
  791. * It is safe doing so since our own interrupts will only be enabled
  792. * in a subsequent step.
  793. */
  794. local_save_flags(flags);
  795. local_irq_enable();
  796. rtlhal->fw_ready = false;
  797. rtlpriv->intf_ops->disable_aspm(hw);
  798. rtstatus = _rtl92ce_init_mac(hw);
  799. if (!rtstatus) {
  800. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  801. err = 1;
  802. goto exit;
  803. }
  804. err = rtl92c_download_fw(hw);
  805. if (err) {
  806. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  807. "Failed to download FW. Init HW without FW now..\n");
  808. err = 1;
  809. goto exit;
  810. }
  811. rtlhal->fw_ready = true;
  812. rtlhal->last_hmeboxnum = 0;
  813. rtl92c_phy_mac_config(hw);
  814. /* because last function modify RCR, so we update
  815. * rcr var here, or TP will unstable for receive_config
  816. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  817. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
  818. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  819. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  820. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  821. rtl92c_phy_bb_config(hw);
  822. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  823. rtl92c_phy_rf_config(hw);
  824. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  825. !IS_92C_SERIAL(rtlhal->version)) {
  826. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  827. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  828. } else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) {
  829. rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
  830. rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
  831. rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
  832. rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
  833. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
  834. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
  835. }
  836. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  837. RF_CHNLBW, RFREG_OFFSET_MASK);
  838. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  839. RF_CHNLBW, RFREG_OFFSET_MASK);
  840. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  841. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  842. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
  843. _rtl92ce_hw_configure(hw);
  844. rtl_cam_reset_all_entry(hw);
  845. rtl92ce_enable_hw_security_config(hw);
  846. ppsc->rfpwr_state = ERFON;
  847. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  848. _rtl92ce_enable_aspm_back_door(hw);
  849. rtlpriv->intf_ops->enable_aspm(hw);
  850. rtl8192ce_bt_hw_init(hw);
  851. if (ppsc->rfpwr_state == ERFON) {
  852. rtl92c_phy_set_rfpath_switch(hw, 1);
  853. if (rtlphy->iqk_initialized) {
  854. rtl92c_phy_iq_calibrate(hw, true);
  855. } else {
  856. rtl92c_phy_iq_calibrate(hw, false);
  857. rtlphy->iqk_initialized = true;
  858. }
  859. rtl92c_dm_check_txpower_tracking(hw);
  860. rtl92c_phy_lc_calibrate(hw);
  861. }
  862. is92c = IS_92C_SERIAL(rtlhal->version);
  863. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  864. if (!(tmp_u1b & BIT(0))) {
  865. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  866. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
  867. }
  868. if (!(tmp_u1b & BIT(1)) && is92c) {
  869. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
  870. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n");
  871. }
  872. if (!(tmp_u1b & BIT(4))) {
  873. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  874. tmp_u1b &= 0x0F;
  875. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  876. udelay(10);
  877. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  878. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
  879. }
  880. rtl92c_dm_init(hw);
  881. exit:
  882. local_irq_restore(flags);
  883. rtlpci->being_init_adapter = false;
  884. return err;
  885. }
  886. static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw)
  887. {
  888. struct rtl_priv *rtlpriv = rtl_priv(hw);
  889. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  890. enum version_8192c version = VERSION_UNKNOWN;
  891. u32 value32;
  892. const char *versionid;
  893. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  894. if (value32 & TRP_VAUX_EN) {
  895. version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C :
  896. VERSION_A_CHIP_88C;
  897. } else {
  898. version = (enum version_8192c) (CHIP_VER_B |
  899. ((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) |
  900. ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
  901. if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 &
  902. CHIP_VER_RTL_MASK)) {
  903. version = (enum version_8192c)(version |
  904. ((((value32 & CHIP_VER_RTL_MASK) == BIT(12))
  905. ? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) |
  906. CHIP_VENDOR_UMC));
  907. }
  908. if (IS_92C_SERIAL(version)) {
  909. value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
  910. version = (enum version_8192c)(version |
  911. ((CHIP_BONDING_IDENTIFIER(value32)
  912. == CHIP_BONDING_92C_1T2R) ?
  913. RF_TYPE_1T2R : 0));
  914. }
  915. }
  916. switch (version) {
  917. case VERSION_B_CHIP_92C:
  918. versionid = "B_CHIP_92C";
  919. break;
  920. case VERSION_B_CHIP_88C:
  921. versionid = "B_CHIP_88C";
  922. break;
  923. case VERSION_A_CHIP_92C:
  924. versionid = "A_CHIP_92C";
  925. break;
  926. case VERSION_A_CHIP_88C:
  927. versionid = "A_CHIP_88C";
  928. break;
  929. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
  930. versionid = "A_CUT_92C_1T2R";
  931. break;
  932. case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
  933. versionid = "A_CUT_92C";
  934. break;
  935. case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
  936. versionid = "A_CUT_88C";
  937. break;
  938. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
  939. versionid = "B_CUT_92C_1T2R";
  940. break;
  941. case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
  942. versionid = "B_CUT_92C";
  943. break;
  944. case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
  945. versionid = "B_CUT_88C";
  946. break;
  947. default:
  948. versionid = "Unknown. Bug?";
  949. break;
  950. }
  951. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  952. "Chip Version ID: %s\n", versionid);
  953. switch (version & 0x3) {
  954. case CHIP_88C:
  955. rtlphy->rf_type = RF_1T1R;
  956. break;
  957. case CHIP_92C:
  958. rtlphy->rf_type = RF_2T2R;
  959. break;
  960. case CHIP_92C_1T2R:
  961. rtlphy->rf_type = RF_1T2R;
  962. break;
  963. default:
  964. rtlphy->rf_type = RF_1T1R;
  965. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  966. "ERROR RF_Type is set!!\n");
  967. break;
  968. }
  969. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
  970. rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
  971. return version;
  972. }
  973. static int _rtl92ce_set_media_status(struct ieee80211_hw *hw,
  974. enum nl80211_iftype type)
  975. {
  976. struct rtl_priv *rtlpriv = rtl_priv(hw);
  977. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  978. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  979. u8 mode = MSR_NOLINK;
  980. bt_msr &= 0xfc;
  981. switch (type) {
  982. case NL80211_IFTYPE_UNSPECIFIED:
  983. mode = MSR_NOLINK;
  984. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  985. "Set Network type to NO LINK!\n");
  986. break;
  987. case NL80211_IFTYPE_ADHOC:
  988. mode = MSR_ADHOC;
  989. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  990. "Set Network type to Ad Hoc!\n");
  991. break;
  992. case NL80211_IFTYPE_STATION:
  993. mode = MSR_INFRA;
  994. ledaction = LED_CTL_LINK;
  995. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  996. "Set Network type to STA!\n");
  997. break;
  998. case NL80211_IFTYPE_AP:
  999. mode = MSR_AP;
  1000. ledaction = LED_CTL_LINK;
  1001. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1002. "Set Network type to AP!\n");
  1003. break;
  1004. case NL80211_IFTYPE_MESH_POINT:
  1005. mode = MSR_ADHOC;
  1006. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1007. "Set Network type to Mesh Point!\n");
  1008. break;
  1009. default:
  1010. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1011. "Network type %d not supported!\n", type);
  1012. return 1;
  1013. }
  1014. /* MSR_INFRA == Link in infrastructure network;
  1015. * MSR_ADHOC == Link in ad hoc network;
  1016. * Therefore, check link state is necessary.
  1017. *
  1018. * MSR_AP == AP mode; link state does not matter here.
  1019. */
  1020. if (mode != MSR_AP &&
  1021. rtlpriv->mac80211.link_state < MAC80211_LINKED) {
  1022. mode = MSR_NOLINK;
  1023. ledaction = LED_CTL_NO_LINK;
  1024. }
  1025. if (mode == MSR_NOLINK || mode == MSR_INFRA) {
  1026. _rtl92ce_stop_tx_beacon(hw);
  1027. _rtl92ce_enable_bcn_sub_func(hw);
  1028. } else if (mode == MSR_ADHOC || mode == MSR_AP) {
  1029. _rtl92ce_resume_tx_beacon(hw);
  1030. _rtl92ce_disable_bcn_sub_func(hw);
  1031. } else {
  1032. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1033. "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
  1034. mode);
  1035. }
  1036. rtl_write_byte(rtlpriv, MSR, bt_msr | mode);
  1037. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1038. if (mode == MSR_AP)
  1039. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1040. else
  1041. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1042. return 0;
  1043. }
  1044. void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1045. {
  1046. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1047. u32 reg_rcr;
  1048. if (rtlpriv->psc.rfpwr_state != ERFON)
  1049. return;
  1050. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  1051. if (check_bssid) {
  1052. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1053. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1054. (u8 *) (&reg_rcr));
  1055. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1056. } else if (!check_bssid) {
  1057. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1058. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1059. rtlpriv->cfg->ops->set_hw_reg(hw,
  1060. HW_VAR_RCR, (u8 *) (&reg_rcr));
  1061. }
  1062. }
  1063. int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1064. {
  1065. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1066. if (_rtl92ce_set_media_status(hw, type))
  1067. return -EOPNOTSUPP;
  1068. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1069. if (type != NL80211_IFTYPE_AP &&
  1070. type != NL80211_IFTYPE_MESH_POINT)
  1071. rtl92ce_set_check_bssid(hw, true);
  1072. } else {
  1073. rtl92ce_set_check_bssid(hw, false);
  1074. }
  1075. return 0;
  1076. }
  1077. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1078. void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci)
  1079. {
  1080. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1081. rtl92c_dm_init_edca_turbo(hw);
  1082. switch (aci) {
  1083. case AC1_BK:
  1084. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1085. break;
  1086. case AC0_BE:
  1087. /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
  1088. break;
  1089. case AC2_VI:
  1090. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1091. break;
  1092. case AC3_VO:
  1093. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1094. break;
  1095. default:
  1096. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1097. break;
  1098. }
  1099. }
  1100. void rtl92ce_enable_interrupt(struct ieee80211_hw *hw)
  1101. {
  1102. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1103. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1104. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1105. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1106. rtlpci->irq_enabled = true;
  1107. }
  1108. void rtl92ce_disable_interrupt(struct ieee80211_hw *hw)
  1109. {
  1110. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1111. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1112. rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
  1113. rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
  1114. rtlpci->irq_enabled = false;
  1115. }
  1116. static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw)
  1117. {
  1118. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1119. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1120. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1121. u8 u1b_tmp;
  1122. u32 u4b_tmp;
  1123. rtlpriv->intf_ops->enable_aspm(hw);
  1124. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1125. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  1126. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1127. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  1128. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1129. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
  1130. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7))
  1131. rtl92c_firmware_selfreset(hw);
  1132. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
  1133. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1134. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
  1135. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
  1136. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1137. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  1138. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) {
  1139. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 |
  1140. (u1b_tmp << 8));
  1141. } else {
  1142. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 |
  1143. (u1b_tmp << 8));
  1144. }
  1145. rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
  1146. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1147. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1148. if (!IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version))
  1149. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1150. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1151. u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  1152. u4b_tmp |= 0x03824800;
  1153. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  1154. } else {
  1155. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
  1156. }
  1157. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1158. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
  1159. }
  1160. void rtl92ce_card_disable(struct ieee80211_hw *hw)
  1161. {
  1162. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1163. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1164. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1165. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1166. enum nl80211_iftype opmode;
  1167. mac->link_state = MAC80211_NOLINK;
  1168. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1169. _rtl92ce_set_media_status(hw, opmode);
  1170. if (rtlpci->driver_is_goingto_unload ||
  1171. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1172. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1173. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1174. _rtl92ce_poweroff_adapter(hw);
  1175. /* after power off we should do iqk again */
  1176. rtlpriv->phy.iqk_initialized = false;
  1177. }
  1178. void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw,
  1179. u32 *p_inta, u32 *p_intb)
  1180. {
  1181. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1182. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1183. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1184. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1185. /*
  1186. * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1187. * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1188. */
  1189. }
  1190. void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw)
  1191. {
  1192. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1193. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1194. u16 bcn_interval, atim_window;
  1195. bcn_interval = mac->beacon_interval;
  1196. atim_window = 2; /*FIX MERGE */
  1197. rtl92ce_disable_interrupt(hw);
  1198. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1199. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1200. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1201. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1202. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1203. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1204. rtl92ce_enable_interrupt(hw);
  1205. }
  1206. void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw)
  1207. {
  1208. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1209. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1210. u16 bcn_interval = mac->beacon_interval;
  1211. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1212. "beacon_interval:%d\n", bcn_interval);
  1213. rtl92ce_disable_interrupt(hw);
  1214. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1215. rtl92ce_enable_interrupt(hw);
  1216. }
  1217. void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw,
  1218. u32 add_msr, u32 rm_msr)
  1219. {
  1220. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1221. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1222. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1223. add_msr, rm_msr);
  1224. if (add_msr)
  1225. rtlpci->irq_mask[0] |= add_msr;
  1226. if (rm_msr)
  1227. rtlpci->irq_mask[0] &= (~rm_msr);
  1228. rtl92ce_disable_interrupt(hw);
  1229. rtl92ce_enable_interrupt(hw);
  1230. }
  1231. static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1232. bool autoload_fail,
  1233. u8 *hwinfo)
  1234. {
  1235. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1236. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1237. u8 rf_path, index, tempval;
  1238. u16 i;
  1239. for (rf_path = 0; rf_path < 2; rf_path++) {
  1240. for (i = 0; i < 3; i++) {
  1241. if (!autoload_fail) {
  1242. rtlefuse->
  1243. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1244. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  1245. rtlefuse->
  1246. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1247. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  1248. i];
  1249. } else {
  1250. rtlefuse->
  1251. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1252. EEPROM_DEFAULT_TXPOWERLEVEL;
  1253. rtlefuse->
  1254. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1255. EEPROM_DEFAULT_TXPOWERLEVEL;
  1256. }
  1257. }
  1258. }
  1259. for (i = 0; i < 3; i++) {
  1260. if (!autoload_fail)
  1261. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  1262. else
  1263. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  1264. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
  1265. (tempval & 0xf);
  1266. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
  1267. ((tempval & 0xf0) >> 4);
  1268. }
  1269. for (rf_path = 0; rf_path < 2; rf_path++)
  1270. for (i = 0; i < 3; i++)
  1271. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1272. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1273. rf_path, i,
  1274. rtlefuse->
  1275. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  1276. for (rf_path = 0; rf_path < 2; rf_path++)
  1277. for (i = 0; i < 3; i++)
  1278. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1279. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1280. rf_path, i,
  1281. rtlefuse->
  1282. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  1283. for (rf_path = 0; rf_path < 2; rf_path++)
  1284. for (i = 0; i < 3; i++)
  1285. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1286. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1287. rf_path, i,
  1288. rtlefuse->
  1289. eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
  1290. for (rf_path = 0; rf_path < 2; rf_path++) {
  1291. for (i = 0; i < 14; i++) {
  1292. index = rtl92c_get_chnl_group((u8)i);
  1293. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1294. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  1295. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1296. rtlefuse->
  1297. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  1298. if ((rtlefuse->
  1299. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  1300. rtlefuse->
  1301. eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
  1302. > 0) {
  1303. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1304. rtlefuse->
  1305. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  1306. [index] -
  1307. rtlefuse->
  1308. eprom_chnl_txpwr_ht40_2sdf[rf_path]
  1309. [index];
  1310. } else {
  1311. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  1312. }
  1313. }
  1314. for (i = 0; i < 14; i++) {
  1315. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1316. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1317. rf_path, i,
  1318. rtlefuse->txpwrlevel_cck[rf_path][i],
  1319. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1320. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1321. }
  1322. }
  1323. for (i = 0; i < 3; i++) {
  1324. if (!autoload_fail) {
  1325. rtlefuse->eeprom_pwrlimit_ht40[i] =
  1326. hwinfo[EEPROM_TXPWR_GROUP + i];
  1327. rtlefuse->eeprom_pwrlimit_ht20[i] =
  1328. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  1329. } else {
  1330. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  1331. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  1332. }
  1333. }
  1334. for (rf_path = 0; rf_path < 2; rf_path++) {
  1335. for (i = 0; i < 14; i++) {
  1336. index = rtl92c_get_chnl_group((u8)i);
  1337. if (rf_path == RF90_PATH_A) {
  1338. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1339. (rtlefuse->eeprom_pwrlimit_ht20[index]
  1340. & 0xf);
  1341. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1342. (rtlefuse->eeprom_pwrlimit_ht40[index]
  1343. & 0xf);
  1344. } else if (rf_path == RF90_PATH_B) {
  1345. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1346. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  1347. & 0xf0) >> 4);
  1348. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1349. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  1350. & 0xf0) >> 4);
  1351. }
  1352. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1353. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1354. rf_path, i,
  1355. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1356. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1357. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1358. rf_path, i,
  1359. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1360. }
  1361. }
  1362. for (i = 0; i < 14; i++) {
  1363. index = rtl92c_get_chnl_group((u8)i);
  1364. if (!autoload_fail)
  1365. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  1366. else
  1367. tempval = EEPROM_DEFAULT_HT20_DIFF;
  1368. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1369. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1370. ((tempval >> 4) & 0xF);
  1371. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  1372. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  1373. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  1374. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  1375. index = rtl92c_get_chnl_group((u8)i);
  1376. if (!autoload_fail)
  1377. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  1378. else
  1379. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  1380. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  1381. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1382. ((tempval >> 4) & 0xF);
  1383. }
  1384. rtlefuse->legacy_ht_txpowerdiff =
  1385. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  1386. for (i = 0; i < 14; i++)
  1387. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1388. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1389. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1390. for (i = 0; i < 14; i++)
  1391. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1392. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1393. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1394. for (i = 0; i < 14; i++)
  1395. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1396. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1397. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1398. for (i = 0; i < 14; i++)
  1399. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1400. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1401. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1402. if (!autoload_fail)
  1403. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  1404. else
  1405. rtlefuse->eeprom_regulatory = 0;
  1406. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1407. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1408. if (!autoload_fail) {
  1409. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  1410. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  1411. } else {
  1412. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  1413. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  1414. }
  1415. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1416. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1417. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1418. if (!autoload_fail)
  1419. tempval = hwinfo[EEPROM_THERMAL_METER];
  1420. else
  1421. tempval = EEPROM_DEFAULT_THERMALMETER;
  1422. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  1423. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  1424. rtlefuse->apk_thermalmeterignore = true;
  1425. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1426. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1427. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1428. }
  1429. static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw)
  1430. {
  1431. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1432. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1433. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1434. int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
  1435. EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR,
  1436. EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
  1437. COUNTRY_CODE_WORLD_WIDE_13};
  1438. u8 *hwinfo;
  1439. hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
  1440. if (!hwinfo)
  1441. return;
  1442. if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
  1443. goto exit;
  1444. _rtl92ce_read_txpower_info_from_hwpg(hw,
  1445. rtlefuse->autoload_failflag,
  1446. hwinfo);
  1447. rtl8192ce_read_bt_coexist_info_from_hwpg(hw,
  1448. rtlefuse->autoload_failflag,
  1449. hwinfo);
  1450. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1451. switch (rtlefuse->eeprom_oemid) {
  1452. case EEPROM_CID_DEFAULT:
  1453. if (rtlefuse->eeprom_did == 0x8176) {
  1454. if ((rtlefuse->eeprom_svid == 0x103C &&
  1455. rtlefuse->eeprom_smid == 0x1629))
  1456. rtlhal->oem_id = RT_CID_819X_HP;
  1457. else
  1458. rtlhal->oem_id = RT_CID_DEFAULT;
  1459. } else {
  1460. rtlhal->oem_id = RT_CID_DEFAULT;
  1461. }
  1462. break;
  1463. case EEPROM_CID_TOSHIBA:
  1464. rtlhal->oem_id = RT_CID_TOSHIBA;
  1465. break;
  1466. case EEPROM_CID_QMI:
  1467. rtlhal->oem_id = RT_CID_819X_QMI;
  1468. break;
  1469. case EEPROM_CID_WHQL:
  1470. default:
  1471. rtlhal->oem_id = RT_CID_DEFAULT;
  1472. break;
  1473. }
  1474. }
  1475. exit:
  1476. kfree(hwinfo);
  1477. }
  1478. static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw)
  1479. {
  1480. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1481. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1482. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1483. switch (rtlhal->oem_id) {
  1484. case RT_CID_819X_HP:
  1485. pcipriv->ledctl.led_opendrain = true;
  1486. break;
  1487. case RT_CID_819X_LENOVO:
  1488. case RT_CID_DEFAULT:
  1489. case RT_CID_TOSHIBA:
  1490. case RT_CID_CCX:
  1491. case RT_CID_819X_ACER:
  1492. case RT_CID_WHQL:
  1493. default:
  1494. break;
  1495. }
  1496. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1497. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1498. }
  1499. void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw)
  1500. {
  1501. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1502. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1503. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1504. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1505. u8 tmp_u1b;
  1506. rtlhal->version = _rtl92ce_read_chip_version(hw);
  1507. if (get_rf_type(rtlphy) == RF_1T1R)
  1508. rtlpriv->dm.rfpath_rxenable[0] = true;
  1509. else
  1510. rtlpriv->dm.rfpath_rxenable[0] =
  1511. rtlpriv->dm.rfpath_rxenable[1] = true;
  1512. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1513. rtlhal->version);
  1514. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1515. if (tmp_u1b & BIT(4)) {
  1516. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1517. rtlefuse->epromtype = EEPROM_93C46;
  1518. } else {
  1519. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1520. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1521. }
  1522. if (tmp_u1b & BIT(5)) {
  1523. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1524. rtlefuse->autoload_failflag = false;
  1525. _rtl92ce_read_adapter_info(hw);
  1526. } else {
  1527. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1528. }
  1529. _rtl92ce_hal_customized_behavior(hw);
  1530. }
  1531. static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw,
  1532. struct ieee80211_sta *sta)
  1533. {
  1534. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1535. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1536. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1537. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1538. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1539. u32 ratr_value;
  1540. u8 ratr_index = 0;
  1541. u8 nmode = mac->ht_enable;
  1542. u16 shortgi_rate;
  1543. u32 tmp_ratr_value;
  1544. u8 curtxbw_40mhz = mac->bw_40;
  1545. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1546. 1 : 0;
  1547. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1548. 1 : 0;
  1549. enum wireless_mode wirelessmode = mac->mode;
  1550. u32 ratr_mask;
  1551. if (rtlhal->current_bandtype == BAND_ON_5G)
  1552. ratr_value = sta->supp_rates[1] << 4;
  1553. else
  1554. ratr_value = sta->supp_rates[0];
  1555. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1556. ratr_value = 0xfff;
  1557. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1558. sta->ht_cap.mcs.rx_mask[0] << 12);
  1559. switch (wirelessmode) {
  1560. case WIRELESS_MODE_B:
  1561. if (ratr_value & 0x0000000c)
  1562. ratr_value &= 0x0000000d;
  1563. else
  1564. ratr_value &= 0x0000000f;
  1565. break;
  1566. case WIRELESS_MODE_G:
  1567. ratr_value &= 0x00000FF5;
  1568. break;
  1569. case WIRELESS_MODE_N_24G:
  1570. case WIRELESS_MODE_N_5G:
  1571. nmode = 1;
  1572. if (get_rf_type(rtlphy) == RF_1T2R ||
  1573. get_rf_type(rtlphy) == RF_1T1R)
  1574. ratr_mask = 0x000ff005;
  1575. else
  1576. ratr_mask = 0x0f0ff005;
  1577. ratr_value &= ratr_mask;
  1578. break;
  1579. default:
  1580. if (rtlphy->rf_type == RF_1T2R)
  1581. ratr_value &= 0x000ff0ff;
  1582. else
  1583. ratr_value &= 0x0f0ff0ff;
  1584. break;
  1585. }
  1586. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1587. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1588. (rtlpcipriv->bt_coexist.bt_cur_state) &&
  1589. (rtlpcipriv->bt_coexist.bt_ant_isolation) &&
  1590. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ||
  1591. (rtlpcipriv->bt_coexist.bt_service == BT_BUSY)))
  1592. ratr_value &= 0x0fffcfc0;
  1593. else
  1594. ratr_value &= 0x0FFFFFFF;
  1595. if (nmode && ((curtxbw_40mhz &&
  1596. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1597. curshortgi_20mhz))) {
  1598. ratr_value |= 0x10000000;
  1599. tmp_ratr_value = (ratr_value >> 12);
  1600. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1601. if ((1 << shortgi_rate) & tmp_ratr_value)
  1602. break;
  1603. }
  1604. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1605. (shortgi_rate << 4) | (shortgi_rate);
  1606. }
  1607. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1608. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1609. rtl_read_dword(rtlpriv, REG_ARFR0));
  1610. }
  1611. static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw,
  1612. struct ieee80211_sta *sta, u8 rssi_level)
  1613. {
  1614. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1615. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1616. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1617. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1618. struct rtl_sta_info *sta_entry = NULL;
  1619. u32 ratr_bitmap;
  1620. u8 ratr_index;
  1621. u8 curtxbw_40mhz = (sta->ht_cap.cap &
  1622. IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
  1623. u8 curshortgi_40mhz = (sta->ht_cap.cap &
  1624. IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
  1625. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1626. 1 : 0;
  1627. enum wireless_mode wirelessmode = 0;
  1628. bool shortgi = false;
  1629. u8 rate_mask[5];
  1630. u8 macid = 0;
  1631. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1632. wirelessmode = sta_entry->wireless_mode;
  1633. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1634. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1635. curtxbw_40mhz = mac->bw_40;
  1636. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1637. mac->opmode == NL80211_IFTYPE_ADHOC)
  1638. macid = sta->aid + 1;
  1639. if (rtlhal->current_bandtype == BAND_ON_5G)
  1640. ratr_bitmap = sta->supp_rates[1] << 4;
  1641. else
  1642. ratr_bitmap = sta->supp_rates[0];
  1643. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1644. ratr_bitmap = 0xfff;
  1645. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1646. sta->ht_cap.mcs.rx_mask[0] << 12);
  1647. switch (wirelessmode) {
  1648. case WIRELESS_MODE_B:
  1649. ratr_index = RATR_INX_WIRELESS_B;
  1650. if (ratr_bitmap & 0x0000000c)
  1651. ratr_bitmap &= 0x0000000d;
  1652. else
  1653. ratr_bitmap &= 0x0000000f;
  1654. break;
  1655. case WIRELESS_MODE_G:
  1656. ratr_index = RATR_INX_WIRELESS_GB;
  1657. if (rssi_level == 1)
  1658. ratr_bitmap &= 0x00000f00;
  1659. else if (rssi_level == 2)
  1660. ratr_bitmap &= 0x00000ff0;
  1661. else
  1662. ratr_bitmap &= 0x00000ff5;
  1663. break;
  1664. case WIRELESS_MODE_A:
  1665. ratr_index = RATR_INX_WIRELESS_A;
  1666. ratr_bitmap &= 0x00000ff0;
  1667. break;
  1668. case WIRELESS_MODE_N_24G:
  1669. case WIRELESS_MODE_N_5G:
  1670. ratr_index = RATR_INX_WIRELESS_NGB;
  1671. if (rtlphy->rf_type == RF_1T2R ||
  1672. rtlphy->rf_type == RF_1T1R) {
  1673. if (curtxbw_40mhz) {
  1674. if (rssi_level == 1)
  1675. ratr_bitmap &= 0x000f0000;
  1676. else if (rssi_level == 2)
  1677. ratr_bitmap &= 0x000ff000;
  1678. else
  1679. ratr_bitmap &= 0x000ff015;
  1680. } else {
  1681. if (rssi_level == 1)
  1682. ratr_bitmap &= 0x000f0000;
  1683. else if (rssi_level == 2)
  1684. ratr_bitmap &= 0x000ff000;
  1685. else
  1686. ratr_bitmap &= 0x000ff005;
  1687. }
  1688. } else {
  1689. if (curtxbw_40mhz) {
  1690. if (rssi_level == 1)
  1691. ratr_bitmap &= 0x0f0f0000;
  1692. else if (rssi_level == 2)
  1693. ratr_bitmap &= 0x0f0ff000;
  1694. else
  1695. ratr_bitmap &= 0x0f0ff015;
  1696. } else {
  1697. if (rssi_level == 1)
  1698. ratr_bitmap &= 0x0f0f0000;
  1699. else if (rssi_level == 2)
  1700. ratr_bitmap &= 0x0f0ff000;
  1701. else
  1702. ratr_bitmap &= 0x0f0ff005;
  1703. }
  1704. }
  1705. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1706. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1707. if (macid == 0)
  1708. shortgi = true;
  1709. else if (macid == 1)
  1710. shortgi = false;
  1711. }
  1712. break;
  1713. default:
  1714. ratr_index = RATR_INX_WIRELESS_NGB;
  1715. if (rtlphy->rf_type == RF_1T2R)
  1716. ratr_bitmap &= 0x000ff0ff;
  1717. else
  1718. ratr_bitmap &= 0x0f0ff0ff;
  1719. break;
  1720. }
  1721. sta_entry->ratr_index = ratr_index;
  1722. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1723. "ratr_bitmap :%x\n", ratr_bitmap);
  1724. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1725. (ratr_index << 28);
  1726. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1727. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1728. "Rate_index:%x, ratr_val:%x, %5phC\n",
  1729. ratr_index, ratr_bitmap, rate_mask);
  1730. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  1731. }
  1732. void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1733. struct ieee80211_sta *sta, u8 rssi_level)
  1734. {
  1735. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1736. if (rtlpriv->dm.useramask)
  1737. rtl92ce_update_hal_rate_mask(hw, sta, rssi_level);
  1738. else
  1739. rtl92ce_update_hal_rate_table(hw, sta);
  1740. }
  1741. void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw)
  1742. {
  1743. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1744. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1745. u16 sifs_timer;
  1746. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1747. &mac->slot_time);
  1748. if (!mac->ht_enable)
  1749. sifs_timer = 0x0a0a;
  1750. else
  1751. sifs_timer = 0x1010;
  1752. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1753. }
  1754. bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1755. {
  1756. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1757. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1758. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1759. enum rf_pwrstate e_rfpowerstate_toset;
  1760. u8 u1tmp;
  1761. bool actuallyset = false;
  1762. unsigned long flag;
  1763. if (rtlpci->being_init_adapter)
  1764. return false;
  1765. if (ppsc->swrf_processing)
  1766. return false;
  1767. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1768. if (ppsc->rfchange_inprogress) {
  1769. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1770. return false;
  1771. } else {
  1772. ppsc->rfchange_inprogress = true;
  1773. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1774. }
  1775. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
  1776. REG_MAC_PINMUX_CFG)&~(BIT(3)));
  1777. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1778. e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
  1779. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  1780. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1781. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1782. e_rfpowerstate_toset = ERFON;
  1783. ppsc->hwradiooff = false;
  1784. actuallyset = true;
  1785. } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
  1786. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1787. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1788. e_rfpowerstate_toset = ERFOFF;
  1789. ppsc->hwradiooff = true;
  1790. actuallyset = true;
  1791. }
  1792. if (actuallyset) {
  1793. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1794. ppsc->rfchange_inprogress = false;
  1795. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1796. } else {
  1797. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1798. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1799. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1800. ppsc->rfchange_inprogress = false;
  1801. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1802. }
  1803. *valid = 1;
  1804. return !ppsc->hwradiooff;
  1805. }
  1806. void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index,
  1807. u8 *p_macaddr, bool is_group, u8 enc_algo,
  1808. bool is_wepkey, bool clear_all)
  1809. {
  1810. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1811. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1812. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1813. u8 *macaddr = p_macaddr;
  1814. u32 entry_id = 0;
  1815. bool is_pairwise = false;
  1816. static u8 cam_const_addr[4][6] = {
  1817. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1818. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1819. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1820. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1821. };
  1822. static u8 cam_const_broad[] = {
  1823. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1824. };
  1825. if (clear_all) {
  1826. u8 idx = 0;
  1827. u8 cam_offset = 0;
  1828. u8 clear_number = 5;
  1829. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1830. for (idx = 0; idx < clear_number; idx++) {
  1831. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1832. rtl_cam_empty_entry(hw, cam_offset + idx);
  1833. if (idx < 5) {
  1834. memset(rtlpriv->sec.key_buf[idx], 0,
  1835. MAX_KEY_LEN);
  1836. rtlpriv->sec.key_len[idx] = 0;
  1837. }
  1838. }
  1839. } else {
  1840. switch (enc_algo) {
  1841. case WEP40_ENCRYPTION:
  1842. enc_algo = CAM_WEP40;
  1843. break;
  1844. case WEP104_ENCRYPTION:
  1845. enc_algo = CAM_WEP104;
  1846. break;
  1847. case TKIP_ENCRYPTION:
  1848. enc_algo = CAM_TKIP;
  1849. break;
  1850. case AESCCMP_ENCRYPTION:
  1851. enc_algo = CAM_AES;
  1852. break;
  1853. default:
  1854. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1855. "switch case %#x not processed\n", enc_algo);
  1856. enc_algo = CAM_TKIP;
  1857. break;
  1858. }
  1859. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  1860. macaddr = cam_const_addr[key_index];
  1861. entry_id = key_index;
  1862. } else {
  1863. if (is_group) {
  1864. macaddr = cam_const_broad;
  1865. entry_id = key_index;
  1866. } else {
  1867. if (mac->opmode == NL80211_IFTYPE_AP ||
  1868. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  1869. entry_id = rtl_cam_get_free_entry(hw,
  1870. p_macaddr);
  1871. if (entry_id >= TOTAL_CAM_ENTRY) {
  1872. RT_TRACE(rtlpriv, COMP_SEC,
  1873. DBG_EMERG,
  1874. "Can not find free hw security cam entry\n");
  1875. return;
  1876. }
  1877. } else {
  1878. entry_id = CAM_PAIRWISE_KEY_POSITION;
  1879. }
  1880. key_index = PAIRWISE_KEYIDX;
  1881. is_pairwise = true;
  1882. }
  1883. }
  1884. if (rtlpriv->sec.key_len[key_index] == 0) {
  1885. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1886. "delete one entry, entry_id is %d\n",
  1887. entry_id);
  1888. if (mac->opmode == NL80211_IFTYPE_AP ||
  1889. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1890. rtl_cam_del_entry(hw, p_macaddr);
  1891. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  1892. } else {
  1893. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1894. "The insert KEY length is %d\n",
  1895. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  1896. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1897. "The insert KEY is %x %x\n",
  1898. rtlpriv->sec.key_buf[0][0],
  1899. rtlpriv->sec.key_buf[0][1]);
  1900. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1901. "add one entry\n");
  1902. if (is_pairwise) {
  1903. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  1904. "Pairwise Key content",
  1905. rtlpriv->sec.pairwise_key,
  1906. rtlpriv->sec.
  1907. key_len[PAIRWISE_KEYIDX]);
  1908. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1909. "set Pairwise key\n");
  1910. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1911. entry_id, enc_algo,
  1912. CAM_CONFIG_NO_USEDK,
  1913. rtlpriv->sec.
  1914. key_buf[key_index]);
  1915. } else {
  1916. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1917. "set group key\n");
  1918. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  1919. rtl_cam_add_one_entry(hw,
  1920. rtlefuse->dev_addr,
  1921. PAIRWISE_KEYIDX,
  1922. CAM_PAIRWISE_KEY_POSITION,
  1923. enc_algo,
  1924. CAM_CONFIG_NO_USEDK,
  1925. rtlpriv->sec.key_buf
  1926. [entry_id]);
  1927. }
  1928. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1929. entry_id, enc_algo,
  1930. CAM_CONFIG_NO_USEDK,
  1931. rtlpriv->sec.key_buf[entry_id]);
  1932. }
  1933. }
  1934. }
  1935. }
  1936. static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw)
  1937. {
  1938. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1939. rtlpcipriv->bt_coexist.bt_coexistence =
  1940. rtlpcipriv->bt_coexist.eeprom_bt_coexist;
  1941. rtlpcipriv->bt_coexist.bt_ant_num =
  1942. rtlpcipriv->bt_coexist.eeprom_bt_ant_num;
  1943. rtlpcipriv->bt_coexist.bt_coexist_type =
  1944. rtlpcipriv->bt_coexist.eeprom_bt_type;
  1945. if (rtlpcipriv->bt_coexist.reg_bt_iso == 2)
  1946. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1947. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol;
  1948. else
  1949. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1950. rtlpcipriv->bt_coexist.reg_bt_iso;
  1951. rtlpcipriv->bt_coexist.bt_radio_shared_type =
  1952. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared;
  1953. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1954. if (rtlpcipriv->bt_coexist.reg_bt_sco == 1)
  1955. rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION;
  1956. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2)
  1957. rtlpcipriv->bt_coexist.bt_service = BT_SCO;
  1958. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4)
  1959. rtlpcipriv->bt_coexist.bt_service = BT_BUSY;
  1960. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5)
  1961. rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY;
  1962. else
  1963. rtlpcipriv->bt_coexist.bt_service = BT_IDLE;
  1964. rtlpcipriv->bt_coexist.bt_edca_ul = 0;
  1965. rtlpcipriv->bt_coexist.bt_edca_dl = 0;
  1966. rtlpcipriv->bt_coexist.bt_rssi_state = 0xff;
  1967. }
  1968. }
  1969. void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  1970. bool auto_load_fail, u8 *hwinfo)
  1971. {
  1972. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1973. u8 val;
  1974. if (!auto_load_fail) {
  1975. rtlpcipriv->bt_coexist.eeprom_bt_coexist =
  1976. ((hwinfo[RF_OPTION1] & 0xe0) >> 5);
  1977. val = hwinfo[RF_OPTION4];
  1978. rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1);
  1979. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1);
  1980. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4);
  1981. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared =
  1982. ((val & 0x20) >> 5);
  1983. } else {
  1984. rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0;
  1985. rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE;
  1986. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2;
  1987. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0;
  1988. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
  1989. }
  1990. rtl8192ce_bt_var_init(hw);
  1991. }
  1992. void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw)
  1993. {
  1994. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1995. /* 0:Low, 1:High, 2:From Efuse. */
  1996. rtlpcipriv->bt_coexist.reg_bt_iso = 2;
  1997. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  1998. rtlpcipriv->bt_coexist.reg_bt_sco = 3;
  1999. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2000. rtlpcipriv->bt_coexist.reg_bt_sco = 0;
  2001. }
  2002. void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw)
  2003. {
  2004. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2005. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2006. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2007. u8 u1_tmp;
  2008. if (rtlpcipriv->bt_coexist.bt_coexistence &&
  2009. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  2010. rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) {
  2011. if (rtlpcipriv->bt_coexist.bt_ant_isolation)
  2012. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2013. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2014. BIT_OFFSET_LEN_MASK_32(0, 1);
  2015. u1_tmp = u1_tmp |
  2016. ((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ?
  2017. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2018. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ?
  2019. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2020. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2021. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2022. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2023. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2024. /* Config to 1T1R. */
  2025. if (rtlphy->rf_type == RF_1T1R) {
  2026. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2027. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2028. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2029. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2030. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2031. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2032. }
  2033. }
  2034. }
  2035. void rtl92ce_suspend(struct ieee80211_hw *hw)
  2036. {
  2037. }
  2038. void rtl92ce_resume(struct ieee80211_hw *hw)
  2039. {
  2040. }