rt2500usb.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. Module: rt2500usb
  17. Abstract: rt2500usb device specific routines.
  18. Supported chipsets: RT2570.
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/slab.h>
  25. #include <linux/usb.h>
  26. #include "rt2x00.h"
  27. #include "rt2x00usb.h"
  28. #include "rt2500usb.h"
  29. /*
  30. * Allow hardware encryption to be disabled.
  31. */
  32. static bool modparam_nohwcrypt;
  33. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  34. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  35. /*
  36. * Register access.
  37. * All access to the CSR registers will go through the methods
  38. * rt2500usb_register_read and rt2500usb_register_write.
  39. * BBP and RF register require indirect register access,
  40. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  41. * These indirect registers work with busy bits,
  42. * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
  43. * the register while taking a REGISTER_BUSY_DELAY us delay
  44. * between each attampt. When the busy bit is still set at that time,
  45. * the access attempt is considered to have failed,
  46. * and we will print an error.
  47. * If the csr_mutex is already held then the _lock variants must
  48. * be used instead.
  49. */
  50. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  51. const unsigned int offset,
  52. u16 *value)
  53. {
  54. __le16 reg;
  55. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  56. USB_VENDOR_REQUEST_IN, offset,
  57. &reg, sizeof(reg));
  58. *value = le16_to_cpu(reg);
  59. }
  60. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  61. const unsigned int offset,
  62. u16 *value)
  63. {
  64. __le16 reg;
  65. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  66. USB_VENDOR_REQUEST_IN, offset,
  67. &reg, sizeof(reg), REGISTER_TIMEOUT);
  68. *value = le16_to_cpu(reg);
  69. }
  70. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  71. const unsigned int offset,
  72. void *value, const u16 length)
  73. {
  74. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  75. USB_VENDOR_REQUEST_IN, offset,
  76. value, length);
  77. }
  78. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  79. const unsigned int offset,
  80. u16 value)
  81. {
  82. __le16 reg = cpu_to_le16(value);
  83. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  84. USB_VENDOR_REQUEST_OUT, offset,
  85. &reg, sizeof(reg));
  86. }
  87. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  88. const unsigned int offset,
  89. u16 value)
  90. {
  91. __le16 reg = cpu_to_le16(value);
  92. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  93. USB_VENDOR_REQUEST_OUT, offset,
  94. &reg, sizeof(reg), REGISTER_TIMEOUT);
  95. }
  96. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  97. const unsigned int offset,
  98. void *value, const u16 length)
  99. {
  100. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  101. USB_VENDOR_REQUEST_OUT, offset,
  102. value, length);
  103. }
  104. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  105. const unsigned int offset,
  106. struct rt2x00_field16 field,
  107. u16 *reg)
  108. {
  109. unsigned int i;
  110. for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
  111. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  112. if (!rt2x00_get_field16(*reg, field))
  113. return 1;
  114. udelay(REGISTER_BUSY_DELAY);
  115. }
  116. rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
  117. offset, *reg);
  118. *reg = ~0;
  119. return 0;
  120. }
  121. #define WAIT_FOR_BBP(__dev, __reg) \
  122. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  123. #define WAIT_FOR_RF(__dev, __reg) \
  124. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  125. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  126. const unsigned int word, const u8 value)
  127. {
  128. u16 reg;
  129. mutex_lock(&rt2x00dev->csr_mutex);
  130. /*
  131. * Wait until the BBP becomes available, afterwards we
  132. * can safely write the new data into the register.
  133. */
  134. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  135. reg = 0;
  136. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  137. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  138. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  139. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  140. }
  141. mutex_unlock(&rt2x00dev->csr_mutex);
  142. }
  143. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  144. const unsigned int word, u8 *value)
  145. {
  146. u16 reg;
  147. mutex_lock(&rt2x00dev->csr_mutex);
  148. /*
  149. * Wait until the BBP becomes available, afterwards we
  150. * can safely write the read request into the register.
  151. * After the data has been written, we wait until hardware
  152. * returns the correct value, if at any time the register
  153. * doesn't become available in time, reg will be 0xffffffff
  154. * which means we return 0xff to the caller.
  155. */
  156. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  157. reg = 0;
  158. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  159. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  160. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  161. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  162. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  163. }
  164. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  165. mutex_unlock(&rt2x00dev->csr_mutex);
  166. }
  167. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  168. const unsigned int word, const u32 value)
  169. {
  170. u16 reg;
  171. mutex_lock(&rt2x00dev->csr_mutex);
  172. /*
  173. * Wait until the RF becomes available, afterwards we
  174. * can safely write the new data into the register.
  175. */
  176. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  177. reg = 0;
  178. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  179. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  180. reg = 0;
  181. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  182. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  183. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  184. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  185. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  186. rt2x00_rf_write(rt2x00dev, word, value);
  187. }
  188. mutex_unlock(&rt2x00dev->csr_mutex);
  189. }
  190. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  191. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  192. const unsigned int offset,
  193. u32 *value)
  194. {
  195. u16 tmp;
  196. rt2500usb_register_read(rt2x00dev, offset, &tmp);
  197. *value = tmp;
  198. }
  199. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  200. const unsigned int offset,
  201. u32 value)
  202. {
  203. rt2500usb_register_write(rt2x00dev, offset, value);
  204. }
  205. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  206. .owner = THIS_MODULE,
  207. .csr = {
  208. .read = _rt2500usb_register_read,
  209. .write = _rt2500usb_register_write,
  210. .flags = RT2X00DEBUGFS_OFFSET,
  211. .word_base = CSR_REG_BASE,
  212. .word_size = sizeof(u16),
  213. .word_count = CSR_REG_SIZE / sizeof(u16),
  214. },
  215. .eeprom = {
  216. .read = rt2x00_eeprom_read,
  217. .write = rt2x00_eeprom_write,
  218. .word_base = EEPROM_BASE,
  219. .word_size = sizeof(u16),
  220. .word_count = EEPROM_SIZE / sizeof(u16),
  221. },
  222. .bbp = {
  223. .read = rt2500usb_bbp_read,
  224. .write = rt2500usb_bbp_write,
  225. .word_base = BBP_BASE,
  226. .word_size = sizeof(u8),
  227. .word_count = BBP_SIZE / sizeof(u8),
  228. },
  229. .rf = {
  230. .read = rt2x00_rf_read,
  231. .write = rt2500usb_rf_write,
  232. .word_base = RF_BASE,
  233. .word_size = sizeof(u32),
  234. .word_count = RF_SIZE / sizeof(u32),
  235. },
  236. };
  237. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  238. static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  239. {
  240. u16 reg;
  241. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  242. return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
  243. }
  244. #ifdef CONFIG_RT2X00_LIB_LEDS
  245. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  246. enum led_brightness brightness)
  247. {
  248. struct rt2x00_led *led =
  249. container_of(led_cdev, struct rt2x00_led, led_dev);
  250. unsigned int enabled = brightness != LED_OFF;
  251. u16 reg;
  252. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  253. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  254. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  255. else if (led->type == LED_TYPE_ACTIVITY)
  256. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  257. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  258. }
  259. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  260. unsigned long *delay_on,
  261. unsigned long *delay_off)
  262. {
  263. struct rt2x00_led *led =
  264. container_of(led_cdev, struct rt2x00_led, led_dev);
  265. u16 reg;
  266. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  267. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  268. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  269. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  270. return 0;
  271. }
  272. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  273. struct rt2x00_led *led,
  274. enum led_type type)
  275. {
  276. led->rt2x00dev = rt2x00dev;
  277. led->type = type;
  278. led->led_dev.brightness_set = rt2500usb_brightness_set;
  279. led->led_dev.blink_set = rt2500usb_blink_set;
  280. led->flags = LED_INITIALIZED;
  281. }
  282. #endif /* CONFIG_RT2X00_LIB_LEDS */
  283. /*
  284. * Configuration handlers.
  285. */
  286. /*
  287. * rt2500usb does not differentiate between shared and pairwise
  288. * keys, so we should use the same function for both key types.
  289. */
  290. static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
  291. struct rt2x00lib_crypto *crypto,
  292. struct ieee80211_key_conf *key)
  293. {
  294. u32 mask;
  295. u16 reg;
  296. enum cipher curr_cipher;
  297. if (crypto->cmd == SET_KEY) {
  298. /*
  299. * Disallow to set WEP key other than with index 0,
  300. * it is known that not work at least on some hardware.
  301. * SW crypto will be used in that case.
  302. */
  303. if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
  304. key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
  305. key->keyidx != 0)
  306. return -EOPNOTSUPP;
  307. /*
  308. * Pairwise key will always be entry 0, but this
  309. * could collide with a shared key on the same
  310. * position...
  311. */
  312. mask = TXRX_CSR0_KEY_ID.bit_mask;
  313. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  314. curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
  315. reg &= mask;
  316. if (reg && reg == mask)
  317. return -ENOSPC;
  318. reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  319. key->hw_key_idx += reg ? ffz(reg) : 0;
  320. /*
  321. * Hardware requires that all keys use the same cipher
  322. * (e.g. TKIP-only, AES-only, but not TKIP+AES).
  323. * If this is not the first key, compare the cipher with the
  324. * first one and fall back to SW crypto if not the same.
  325. */
  326. if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
  327. return -EOPNOTSUPP;
  328. rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
  329. crypto->key, sizeof(crypto->key));
  330. /*
  331. * The driver does not support the IV/EIV generation
  332. * in hardware. However it demands the data to be provided
  333. * both separately as well as inside the frame.
  334. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
  335. * to ensure rt2x00lib will not strip the data from the
  336. * frame after the copy, now we must tell mac80211
  337. * to generate the IV/EIV data.
  338. */
  339. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  340. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  341. }
  342. /*
  343. * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
  344. * a particular key is valid.
  345. */
  346. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  347. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
  348. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  349. mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  350. if (crypto->cmd == SET_KEY)
  351. mask |= 1 << key->hw_key_idx;
  352. else if (crypto->cmd == DISABLE_KEY)
  353. mask &= ~(1 << key->hw_key_idx);
  354. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
  355. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  356. return 0;
  357. }
  358. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  359. const unsigned int filter_flags)
  360. {
  361. u16 reg;
  362. /*
  363. * Start configuration steps.
  364. * Note that the version error will always be dropped
  365. * and broadcast frames will always be accepted since
  366. * there is no filter for it at this time.
  367. */
  368. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  369. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  370. !(filter_flags & FIF_FCSFAIL));
  371. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  372. !(filter_flags & FIF_PLCPFAIL));
  373. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  374. !(filter_flags & FIF_CONTROL));
  375. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  376. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
  377. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  378. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
  379. !rt2x00dev->intf_ap_count);
  380. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  381. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  382. !(filter_flags & FIF_ALLMULTI));
  383. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  384. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  385. }
  386. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  387. struct rt2x00_intf *intf,
  388. struct rt2x00intf_conf *conf,
  389. const unsigned int flags)
  390. {
  391. unsigned int bcn_preload;
  392. u16 reg;
  393. if (flags & CONFIG_UPDATE_TYPE) {
  394. /*
  395. * Enable beacon config
  396. */
  397. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  398. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  399. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  400. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  401. 2 * (conf->type != NL80211_IFTYPE_STATION));
  402. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  403. /*
  404. * Enable synchronisation.
  405. */
  406. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  407. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  408. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  409. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  410. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  411. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  412. }
  413. if (flags & CONFIG_UPDATE_MAC)
  414. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  415. (3 * sizeof(__le16)));
  416. if (flags & CONFIG_UPDATE_BSSID)
  417. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  418. (3 * sizeof(__le16)));
  419. }
  420. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  421. struct rt2x00lib_erp *erp,
  422. u32 changed)
  423. {
  424. u16 reg;
  425. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  426. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  427. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  428. !!erp->short_preamble);
  429. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  430. }
  431. if (changed & BSS_CHANGED_BASIC_RATES)
  432. rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
  433. erp->basic_rates);
  434. if (changed & BSS_CHANGED_BEACON_INT) {
  435. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  436. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
  437. erp->beacon_int * 4);
  438. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  439. }
  440. if (changed & BSS_CHANGED_ERP_SLOT) {
  441. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  442. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  443. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  444. }
  445. }
  446. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  447. struct antenna_setup *ant)
  448. {
  449. u8 r2;
  450. u8 r14;
  451. u16 csr5;
  452. u16 csr6;
  453. /*
  454. * We should never come here because rt2x00lib is supposed
  455. * to catch this and send us the correct antenna explicitely.
  456. */
  457. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  458. ant->tx == ANTENNA_SW_DIVERSITY);
  459. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  460. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  461. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  462. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  463. /*
  464. * Configure the TX antenna.
  465. */
  466. switch (ant->tx) {
  467. case ANTENNA_HW_DIVERSITY:
  468. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  469. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  470. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  471. break;
  472. case ANTENNA_A:
  473. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  474. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  475. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  476. break;
  477. case ANTENNA_B:
  478. default:
  479. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  480. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  481. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  482. break;
  483. }
  484. /*
  485. * Configure the RX antenna.
  486. */
  487. switch (ant->rx) {
  488. case ANTENNA_HW_DIVERSITY:
  489. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  490. break;
  491. case ANTENNA_A:
  492. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  493. break;
  494. case ANTENNA_B:
  495. default:
  496. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  497. break;
  498. }
  499. /*
  500. * RT2525E and RT5222 need to flip TX I/Q
  501. */
  502. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  503. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  504. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  505. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  506. /*
  507. * RT2525E does not need RX I/Q Flip.
  508. */
  509. if (rt2x00_rf(rt2x00dev, RF2525E))
  510. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  511. } else {
  512. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  513. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  514. }
  515. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  516. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  517. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  518. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  519. }
  520. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  521. struct rf_channel *rf, const int txpower)
  522. {
  523. /*
  524. * Set TXpower.
  525. */
  526. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  527. /*
  528. * For RT2525E we should first set the channel to half band higher.
  529. */
  530. if (rt2x00_rf(rt2x00dev, RF2525E)) {
  531. static const u32 vals[] = {
  532. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  533. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  534. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  535. 0x00000902, 0x00000906
  536. };
  537. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  538. if (rf->rf4)
  539. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  540. }
  541. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  542. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  543. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  544. if (rf->rf4)
  545. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  546. }
  547. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  548. const int txpower)
  549. {
  550. u32 rf3;
  551. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  552. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  553. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  554. }
  555. static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
  556. struct rt2x00lib_conf *libconf)
  557. {
  558. enum dev_state state =
  559. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  560. STATE_SLEEP : STATE_AWAKE;
  561. u16 reg;
  562. if (state == STATE_SLEEP) {
  563. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  564. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
  565. rt2x00dev->beacon_int - 20);
  566. rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
  567. libconf->conf->listen_interval - 1);
  568. /* We must first disable autowake before it can be enabled */
  569. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  570. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  571. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
  572. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  573. } else {
  574. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  575. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  576. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  577. }
  578. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  579. }
  580. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  581. struct rt2x00lib_conf *libconf,
  582. const unsigned int flags)
  583. {
  584. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  585. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  586. libconf->conf->power_level);
  587. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  588. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  589. rt2500usb_config_txpower(rt2x00dev,
  590. libconf->conf->power_level);
  591. if (flags & IEEE80211_CONF_CHANGE_PS)
  592. rt2500usb_config_ps(rt2x00dev, libconf);
  593. }
  594. /*
  595. * Link tuning
  596. */
  597. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  598. struct link_qual *qual)
  599. {
  600. u16 reg;
  601. /*
  602. * Update FCS error count from register.
  603. */
  604. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  605. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  606. /*
  607. * Update False CCA count from register.
  608. */
  609. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  610. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  611. }
  612. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
  613. struct link_qual *qual)
  614. {
  615. u16 eeprom;
  616. u16 value;
  617. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  618. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  619. rt2500usb_bbp_write(rt2x00dev, 24, value);
  620. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  621. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  622. rt2500usb_bbp_write(rt2x00dev, 25, value);
  623. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  624. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  625. rt2500usb_bbp_write(rt2x00dev, 61, value);
  626. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  627. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  628. rt2500usb_bbp_write(rt2x00dev, 17, value);
  629. qual->vgc_level = value;
  630. }
  631. /*
  632. * Queue handlers.
  633. */
  634. static void rt2500usb_start_queue(struct data_queue *queue)
  635. {
  636. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  637. u16 reg;
  638. switch (queue->qid) {
  639. case QID_RX:
  640. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  641. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
  642. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  643. break;
  644. case QID_BEACON:
  645. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  646. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  647. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  648. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  649. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  650. break;
  651. default:
  652. break;
  653. }
  654. }
  655. static void rt2500usb_stop_queue(struct data_queue *queue)
  656. {
  657. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  658. u16 reg;
  659. switch (queue->qid) {
  660. case QID_RX:
  661. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  662. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  663. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  664. break;
  665. case QID_BEACON:
  666. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  667. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  668. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  669. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  670. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  671. break;
  672. default:
  673. break;
  674. }
  675. }
  676. /*
  677. * Initialization functions.
  678. */
  679. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  680. {
  681. u16 reg;
  682. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  683. USB_MODE_TEST, REGISTER_TIMEOUT);
  684. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  685. 0x00f0, REGISTER_TIMEOUT);
  686. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  687. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  688. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  689. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  690. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  691. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  692. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  693. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  694. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  695. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  696. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  697. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  698. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  699. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  700. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  701. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  702. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  703. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  704. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  705. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  706. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  707. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  708. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  709. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  710. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  711. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  712. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  713. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  714. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  715. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  716. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  717. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  718. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  719. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  720. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  721. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  722. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  723. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  724. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  725. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  726. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  727. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  728. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  729. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  730. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  731. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  732. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  733. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  734. return -EBUSY;
  735. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  736. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  737. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  738. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  739. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  740. if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
  741. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  742. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  743. } else {
  744. reg = 0;
  745. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  746. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  747. }
  748. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  749. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  750. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  751. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  752. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  753. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  754. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  755. rt2x00dev->rx->data_size);
  756. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  757. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  758. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
  759. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  760. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
  761. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  762. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  763. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  764. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  765. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  766. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  767. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  768. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  769. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  770. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  771. return 0;
  772. }
  773. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  774. {
  775. unsigned int i;
  776. u8 value;
  777. for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
  778. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  779. if ((value != 0xff) && (value != 0x00))
  780. return 0;
  781. udelay(REGISTER_BUSY_DELAY);
  782. }
  783. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  784. return -EACCES;
  785. }
  786. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  787. {
  788. unsigned int i;
  789. u16 eeprom;
  790. u8 value;
  791. u8 reg_id;
  792. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  793. return -EACCES;
  794. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  795. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  796. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  797. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  798. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  799. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  800. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  801. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  802. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  803. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  804. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  805. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  806. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  807. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  808. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  809. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  810. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  811. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  812. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  813. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  814. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  815. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  816. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  817. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  818. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  819. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  820. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  821. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  822. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  823. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  824. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  825. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  826. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  827. if (eeprom != 0xffff && eeprom != 0x0000) {
  828. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  829. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  830. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  831. }
  832. }
  833. return 0;
  834. }
  835. /*
  836. * Device state switch handlers.
  837. */
  838. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  839. {
  840. /*
  841. * Initialize all registers.
  842. */
  843. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  844. rt2500usb_init_bbp(rt2x00dev)))
  845. return -EIO;
  846. return 0;
  847. }
  848. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  849. {
  850. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  851. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  852. /*
  853. * Disable synchronisation.
  854. */
  855. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  856. rt2x00usb_disable_radio(rt2x00dev);
  857. }
  858. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  859. enum dev_state state)
  860. {
  861. u16 reg;
  862. u16 reg2;
  863. unsigned int i;
  864. char put_to_sleep;
  865. char bbp_state;
  866. char rf_state;
  867. put_to_sleep = (state != STATE_AWAKE);
  868. reg = 0;
  869. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  870. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  871. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  872. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  873. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  874. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  875. /*
  876. * Device is not guaranteed to be in the requested state yet.
  877. * We must wait until the register indicates that the
  878. * device has entered the correct state.
  879. */
  880. for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
  881. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  882. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  883. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  884. if (bbp_state == state && rf_state == state)
  885. return 0;
  886. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  887. msleep(30);
  888. }
  889. return -EBUSY;
  890. }
  891. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  892. enum dev_state state)
  893. {
  894. int retval = 0;
  895. switch (state) {
  896. case STATE_RADIO_ON:
  897. retval = rt2500usb_enable_radio(rt2x00dev);
  898. break;
  899. case STATE_RADIO_OFF:
  900. rt2500usb_disable_radio(rt2x00dev);
  901. break;
  902. case STATE_RADIO_IRQ_ON:
  903. case STATE_RADIO_IRQ_OFF:
  904. /* No support, but no error either */
  905. break;
  906. case STATE_DEEP_SLEEP:
  907. case STATE_SLEEP:
  908. case STATE_STANDBY:
  909. case STATE_AWAKE:
  910. retval = rt2500usb_set_state(rt2x00dev, state);
  911. break;
  912. default:
  913. retval = -ENOTSUPP;
  914. break;
  915. }
  916. if (unlikely(retval))
  917. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  918. state, retval);
  919. return retval;
  920. }
  921. /*
  922. * TX descriptor initialization
  923. */
  924. static void rt2500usb_write_tx_desc(struct queue_entry *entry,
  925. struct txentry_desc *txdesc)
  926. {
  927. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  928. __le32 *txd = (__le32 *) entry->skb->data;
  929. u32 word;
  930. /*
  931. * Start writing the descriptor words.
  932. */
  933. rt2x00_desc_read(txd, 0, &word);
  934. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  935. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  936. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  937. rt2x00_set_field32(&word, TXD_W0_ACK,
  938. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  939. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  940. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  941. rt2x00_set_field32(&word, TXD_W0_OFDM,
  942. (txdesc->rate_mode == RATE_MODE_OFDM));
  943. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  944. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  945. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  946. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  947. rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
  948. rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
  949. rt2x00_desc_write(txd, 0, word);
  950. rt2x00_desc_read(txd, 1, &word);
  951. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  952. rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
  953. rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
  954. rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
  955. rt2x00_desc_write(txd, 1, word);
  956. rt2x00_desc_read(txd, 2, &word);
  957. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
  958. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
  959. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
  960. txdesc->u.plcp.length_low);
  961. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
  962. txdesc->u.plcp.length_high);
  963. rt2x00_desc_write(txd, 2, word);
  964. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  965. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  966. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  967. }
  968. /*
  969. * Register descriptor details in skb frame descriptor.
  970. */
  971. skbdesc->flags |= SKBDESC_DESC_IN_SKB;
  972. skbdesc->desc = txd;
  973. skbdesc->desc_len = TXD_DESC_SIZE;
  974. }
  975. /*
  976. * TX data initialization
  977. */
  978. static void rt2500usb_beacondone(struct urb *urb);
  979. static void rt2500usb_write_beacon(struct queue_entry *entry,
  980. struct txentry_desc *txdesc)
  981. {
  982. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  983. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  984. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  985. int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
  986. int length;
  987. u16 reg, reg0;
  988. /*
  989. * Disable beaconing while we are reloading the beacon data,
  990. * otherwise we might be sending out invalid data.
  991. */
  992. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  993. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  994. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  995. /*
  996. * Add space for the descriptor in front of the skb.
  997. */
  998. skb_push(entry->skb, TXD_DESC_SIZE);
  999. memset(entry->skb->data, 0, TXD_DESC_SIZE);
  1000. /*
  1001. * Write the TX descriptor for the beacon.
  1002. */
  1003. rt2500usb_write_tx_desc(entry, txdesc);
  1004. /*
  1005. * Dump beacon to userspace through debugfs.
  1006. */
  1007. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  1008. /*
  1009. * USB devices cannot blindly pass the skb->len as the
  1010. * length of the data to usb_fill_bulk_urb. Pass the skb
  1011. * to the driver to determine what the length should be.
  1012. */
  1013. length = rt2x00dev->ops->lib->get_tx_data_len(entry);
  1014. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  1015. entry->skb->data, length, rt2500usb_beacondone,
  1016. entry);
  1017. /*
  1018. * Second we need to create the guardian byte.
  1019. * We only need a single byte, so lets recycle
  1020. * the 'flags' field we are not using for beacons.
  1021. */
  1022. bcn_priv->guardian_data = 0;
  1023. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  1024. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  1025. entry);
  1026. /*
  1027. * Send out the guardian byte.
  1028. */
  1029. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  1030. /*
  1031. * Enable beaconing again.
  1032. */
  1033. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  1034. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  1035. reg0 = reg;
  1036. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  1037. /*
  1038. * Beacon generation will fail initially.
  1039. * To prevent this we need to change the TXRX_CSR19
  1040. * register several times (reg0 is the same as reg
  1041. * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
  1042. * and 1 in reg).
  1043. */
  1044. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1045. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1046. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1047. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1048. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1049. }
  1050. static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
  1051. {
  1052. int length;
  1053. /*
  1054. * The length _must_ be a multiple of 2,
  1055. * but it must _not_ be a multiple of the USB packet size.
  1056. */
  1057. length = roundup(entry->skb->len, 2);
  1058. length += (2 * !(length % entry->queue->usb_maxpacket));
  1059. return length;
  1060. }
  1061. /*
  1062. * RX control handlers
  1063. */
  1064. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1065. struct rxdone_entry_desc *rxdesc)
  1066. {
  1067. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1068. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1069. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1070. __le32 *rxd =
  1071. (__le32 *)(entry->skb->data +
  1072. (entry_priv->urb->actual_length -
  1073. entry->queue->desc_size));
  1074. u32 word0;
  1075. u32 word1;
  1076. /*
  1077. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1078. * frame data in rt2x00usb.
  1079. */
  1080. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1081. rxd = (__le32 *)skbdesc->desc;
  1082. /*
  1083. * It is now safe to read the descriptor on all architectures.
  1084. */
  1085. rt2x00_desc_read(rxd, 0, &word0);
  1086. rt2x00_desc_read(rxd, 1, &word1);
  1087. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1088. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1089. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1090. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1091. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
  1092. if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
  1093. rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
  1094. if (rxdesc->cipher != CIPHER_NONE) {
  1095. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1096. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1097. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1098. /* ICV is located at the end of frame */
  1099. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1100. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1101. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1102. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1103. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1104. }
  1105. /*
  1106. * Obtain the status about this packet.
  1107. * When frame was received with an OFDM bitrate,
  1108. * the signal is the PLCP value. If it was received with
  1109. * a CCK bitrate the signal is the rate in 100kbit/s.
  1110. */
  1111. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1112. rxdesc->rssi =
  1113. rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
  1114. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1115. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1116. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1117. else
  1118. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1119. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1120. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1121. /*
  1122. * Adjust the skb memory window to the frame boundaries.
  1123. */
  1124. skb_trim(entry->skb, rxdesc->size);
  1125. }
  1126. /*
  1127. * Interrupt functions.
  1128. */
  1129. static void rt2500usb_beacondone(struct urb *urb)
  1130. {
  1131. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1132. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1133. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1134. return;
  1135. /*
  1136. * Check if this was the guardian beacon,
  1137. * if that was the case we need to send the real beacon now.
  1138. * Otherwise we should free the sk_buffer, the device
  1139. * should be doing the rest of the work now.
  1140. */
  1141. if (bcn_priv->guardian_urb == urb) {
  1142. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1143. } else if (bcn_priv->urb == urb) {
  1144. dev_kfree_skb(entry->skb);
  1145. entry->skb = NULL;
  1146. }
  1147. }
  1148. /*
  1149. * Device probe functions.
  1150. */
  1151. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1152. {
  1153. u16 word;
  1154. u8 *mac;
  1155. u8 bbp;
  1156. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1157. /*
  1158. * Start validation of the data that has been read.
  1159. */
  1160. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1161. rt2x00lib_set_mac_address(rt2x00dev, mac);
  1162. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1163. if (word == 0xffff) {
  1164. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1165. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1166. ANTENNA_SW_DIVERSITY);
  1167. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1168. ANTENNA_SW_DIVERSITY);
  1169. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1170. LED_MODE_DEFAULT);
  1171. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1172. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1173. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1174. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1175. rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
  1176. }
  1177. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1178. if (word == 0xffff) {
  1179. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1180. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1181. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1182. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1183. rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
  1184. }
  1185. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1186. if (word == 0xffff) {
  1187. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1188. DEFAULT_RSSI_OFFSET);
  1189. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1190. rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
  1191. word);
  1192. }
  1193. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1194. if (word == 0xffff) {
  1195. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1196. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1197. rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1198. }
  1199. /*
  1200. * Switch lower vgc bound to current BBP R17 value,
  1201. * lower the value a bit for better quality.
  1202. */
  1203. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1204. bbp -= 6;
  1205. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1206. if (word == 0xffff) {
  1207. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1208. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1209. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1210. rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1211. } else {
  1212. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1213. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1214. }
  1215. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1216. if (word == 0xffff) {
  1217. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1218. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1219. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1220. rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1221. }
  1222. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1223. if (word == 0xffff) {
  1224. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1225. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1226. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1227. rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1228. }
  1229. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1230. if (word == 0xffff) {
  1231. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1232. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1233. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1234. rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1235. }
  1236. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1237. if (word == 0xffff) {
  1238. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1239. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1240. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1241. rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1242. }
  1243. return 0;
  1244. }
  1245. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1246. {
  1247. u16 reg;
  1248. u16 value;
  1249. u16 eeprom;
  1250. /*
  1251. * Read EEPROM word for configuration.
  1252. */
  1253. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1254. /*
  1255. * Identify RF chipset.
  1256. */
  1257. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1258. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1259. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1260. if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
  1261. rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
  1262. return -ENODEV;
  1263. }
  1264. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1265. !rt2x00_rf(rt2x00dev, RF2523) &&
  1266. !rt2x00_rf(rt2x00dev, RF2524) &&
  1267. !rt2x00_rf(rt2x00dev, RF2525) &&
  1268. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1269. !rt2x00_rf(rt2x00dev, RF5222)) {
  1270. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  1271. return -ENODEV;
  1272. }
  1273. /*
  1274. * Identify default antenna configuration.
  1275. */
  1276. rt2x00dev->default_ant.tx =
  1277. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1278. rt2x00dev->default_ant.rx =
  1279. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1280. /*
  1281. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1282. * I am not 100% sure about this, but the legacy drivers do not
  1283. * indicate antenna swapping in software is required when
  1284. * diversity is enabled.
  1285. */
  1286. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1287. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1288. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1289. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1290. /*
  1291. * Store led mode, for correct led behaviour.
  1292. */
  1293. #ifdef CONFIG_RT2X00_LIB_LEDS
  1294. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1295. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1296. if (value == LED_MODE_TXRX_ACTIVITY ||
  1297. value == LED_MODE_DEFAULT ||
  1298. value == LED_MODE_ASUS)
  1299. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1300. LED_TYPE_ACTIVITY);
  1301. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1302. /*
  1303. * Detect if this device has an hardware controlled radio.
  1304. */
  1305. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1306. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1307. /*
  1308. * Read the RSSI <-> dBm offset information.
  1309. */
  1310. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1311. rt2x00dev->rssi_offset =
  1312. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1313. return 0;
  1314. }
  1315. /*
  1316. * RF value list for RF2522
  1317. * Supports: 2.4 GHz
  1318. */
  1319. static const struct rf_channel rf_vals_bg_2522[] = {
  1320. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1321. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1322. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1323. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1324. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1325. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1326. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1327. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1328. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1329. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1330. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1331. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1332. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1333. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1334. };
  1335. /*
  1336. * RF value list for RF2523
  1337. * Supports: 2.4 GHz
  1338. */
  1339. static const struct rf_channel rf_vals_bg_2523[] = {
  1340. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1341. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1342. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1343. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1344. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1345. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1346. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1347. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1348. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1349. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1350. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1351. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1352. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1353. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1354. };
  1355. /*
  1356. * RF value list for RF2524
  1357. * Supports: 2.4 GHz
  1358. */
  1359. static const struct rf_channel rf_vals_bg_2524[] = {
  1360. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1361. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1362. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1363. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1364. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1365. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1366. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1367. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1368. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1369. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1370. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1371. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1372. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1373. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1374. };
  1375. /*
  1376. * RF value list for RF2525
  1377. * Supports: 2.4 GHz
  1378. */
  1379. static const struct rf_channel rf_vals_bg_2525[] = {
  1380. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1381. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1382. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1383. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1384. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1385. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1386. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1387. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1388. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1389. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1390. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1391. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1392. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1393. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1394. };
  1395. /*
  1396. * RF value list for RF2525e
  1397. * Supports: 2.4 GHz
  1398. */
  1399. static const struct rf_channel rf_vals_bg_2525e[] = {
  1400. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1401. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1402. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1403. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1404. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1405. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1406. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1407. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1408. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1409. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1410. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1411. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1412. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1413. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1414. };
  1415. /*
  1416. * RF value list for RF5222
  1417. * Supports: 2.4 GHz & 5.2 GHz
  1418. */
  1419. static const struct rf_channel rf_vals_5222[] = {
  1420. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1421. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1422. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1423. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1424. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1425. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1426. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1427. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1428. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1429. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1430. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1431. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1432. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1433. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1434. /* 802.11 UNI / HyperLan 2 */
  1435. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1436. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1437. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1438. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1439. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1440. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1441. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1442. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1443. /* 802.11 HyperLan 2 */
  1444. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1445. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1446. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1447. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1448. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1449. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1450. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1451. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1452. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1453. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1454. /* 802.11 UNII */
  1455. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1456. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1457. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1458. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1459. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1460. };
  1461. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1462. {
  1463. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1464. struct channel_info *info;
  1465. char *tx_power;
  1466. unsigned int i;
  1467. /*
  1468. * Initialize all hw fields.
  1469. *
  1470. * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
  1471. * capable of sending the buffered frames out after the DTIM
  1472. * transmission using rt2x00lib_beacondone. This will send out
  1473. * multicast and broadcast traffic immediately instead of buffering it
  1474. * infinitly and thus dropping it after some time.
  1475. */
  1476. ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
  1477. ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
  1478. ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
  1479. ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
  1480. /*
  1481. * Disable powersaving as default.
  1482. */
  1483. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  1484. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1485. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1486. rt2x00_eeprom_addr(rt2x00dev,
  1487. EEPROM_MAC_ADDR_0));
  1488. /*
  1489. * Initialize hw_mode information.
  1490. */
  1491. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1492. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1493. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1494. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1495. spec->channels = rf_vals_bg_2522;
  1496. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1497. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1498. spec->channels = rf_vals_bg_2523;
  1499. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1500. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1501. spec->channels = rf_vals_bg_2524;
  1502. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1503. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1504. spec->channels = rf_vals_bg_2525;
  1505. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1506. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1507. spec->channels = rf_vals_bg_2525e;
  1508. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1509. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1510. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1511. spec->channels = rf_vals_5222;
  1512. }
  1513. /*
  1514. * Create channel information array
  1515. */
  1516. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1517. if (!info)
  1518. return -ENOMEM;
  1519. spec->channels_info = info;
  1520. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1521. for (i = 0; i < 14; i++) {
  1522. info[i].max_power = MAX_TXPOWER;
  1523. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1524. }
  1525. if (spec->num_channels > 14) {
  1526. for (i = 14; i < spec->num_channels; i++) {
  1527. info[i].max_power = MAX_TXPOWER;
  1528. info[i].default_power1 = DEFAULT_TXPOWER;
  1529. }
  1530. }
  1531. return 0;
  1532. }
  1533. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1534. {
  1535. int retval;
  1536. u16 reg;
  1537. /*
  1538. * Allocate eeprom data.
  1539. */
  1540. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1541. if (retval)
  1542. return retval;
  1543. retval = rt2500usb_init_eeprom(rt2x00dev);
  1544. if (retval)
  1545. return retval;
  1546. /*
  1547. * Enable rfkill polling by setting GPIO direction of the
  1548. * rfkill switch GPIO pin correctly.
  1549. */
  1550. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  1551. rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
  1552. rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
  1553. /*
  1554. * Initialize hw specifications.
  1555. */
  1556. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1557. if (retval)
  1558. return retval;
  1559. /*
  1560. * This device requires the atim queue
  1561. */
  1562. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1563. __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
  1564. if (!modparam_nohwcrypt) {
  1565. __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
  1566. __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
  1567. }
  1568. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1569. __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
  1570. /*
  1571. * Set the rssi offset.
  1572. */
  1573. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1574. return 0;
  1575. }
  1576. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1577. .tx = rt2x00mac_tx,
  1578. .start = rt2x00mac_start,
  1579. .stop = rt2x00mac_stop,
  1580. .add_interface = rt2x00mac_add_interface,
  1581. .remove_interface = rt2x00mac_remove_interface,
  1582. .config = rt2x00mac_config,
  1583. .configure_filter = rt2x00mac_configure_filter,
  1584. .set_tim = rt2x00mac_set_tim,
  1585. .set_key = rt2x00mac_set_key,
  1586. .sw_scan_start = rt2x00mac_sw_scan_start,
  1587. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1588. .get_stats = rt2x00mac_get_stats,
  1589. .bss_info_changed = rt2x00mac_bss_info_changed,
  1590. .conf_tx = rt2x00mac_conf_tx,
  1591. .rfkill_poll = rt2x00mac_rfkill_poll,
  1592. .flush = rt2x00mac_flush,
  1593. .set_antenna = rt2x00mac_set_antenna,
  1594. .get_antenna = rt2x00mac_get_antenna,
  1595. .get_ringparam = rt2x00mac_get_ringparam,
  1596. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1597. };
  1598. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1599. .probe_hw = rt2500usb_probe_hw,
  1600. .initialize = rt2x00usb_initialize,
  1601. .uninitialize = rt2x00usb_uninitialize,
  1602. .clear_entry = rt2x00usb_clear_entry,
  1603. .set_device_state = rt2500usb_set_device_state,
  1604. .rfkill_poll = rt2500usb_rfkill_poll,
  1605. .link_stats = rt2500usb_link_stats,
  1606. .reset_tuner = rt2500usb_reset_tuner,
  1607. .watchdog = rt2x00usb_watchdog,
  1608. .start_queue = rt2500usb_start_queue,
  1609. .kick_queue = rt2x00usb_kick_queue,
  1610. .stop_queue = rt2500usb_stop_queue,
  1611. .flush_queue = rt2x00usb_flush_queue,
  1612. .write_tx_desc = rt2500usb_write_tx_desc,
  1613. .write_beacon = rt2500usb_write_beacon,
  1614. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1615. .fill_rxdone = rt2500usb_fill_rxdone,
  1616. .config_shared_key = rt2500usb_config_key,
  1617. .config_pairwise_key = rt2500usb_config_key,
  1618. .config_filter = rt2500usb_config_filter,
  1619. .config_intf = rt2500usb_config_intf,
  1620. .config_erp = rt2500usb_config_erp,
  1621. .config_ant = rt2500usb_config_ant,
  1622. .config = rt2500usb_config,
  1623. };
  1624. static void rt2500usb_queue_init(struct data_queue *queue)
  1625. {
  1626. switch (queue->qid) {
  1627. case QID_RX:
  1628. queue->limit = 32;
  1629. queue->data_size = DATA_FRAME_SIZE;
  1630. queue->desc_size = RXD_DESC_SIZE;
  1631. queue->priv_size = sizeof(struct queue_entry_priv_usb);
  1632. break;
  1633. case QID_AC_VO:
  1634. case QID_AC_VI:
  1635. case QID_AC_BE:
  1636. case QID_AC_BK:
  1637. queue->limit = 32;
  1638. queue->data_size = DATA_FRAME_SIZE;
  1639. queue->desc_size = TXD_DESC_SIZE;
  1640. queue->priv_size = sizeof(struct queue_entry_priv_usb);
  1641. break;
  1642. case QID_BEACON:
  1643. queue->limit = 1;
  1644. queue->data_size = MGMT_FRAME_SIZE;
  1645. queue->desc_size = TXD_DESC_SIZE;
  1646. queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
  1647. break;
  1648. case QID_ATIM:
  1649. queue->limit = 8;
  1650. queue->data_size = DATA_FRAME_SIZE;
  1651. queue->desc_size = TXD_DESC_SIZE;
  1652. queue->priv_size = sizeof(struct queue_entry_priv_usb);
  1653. break;
  1654. default:
  1655. BUG();
  1656. break;
  1657. }
  1658. }
  1659. static const struct rt2x00_ops rt2500usb_ops = {
  1660. .name = KBUILD_MODNAME,
  1661. .max_ap_intf = 1,
  1662. .eeprom_size = EEPROM_SIZE,
  1663. .rf_size = RF_SIZE,
  1664. .tx_queues = NUM_TX_QUEUES,
  1665. .queue_init = rt2500usb_queue_init,
  1666. .lib = &rt2500usb_rt2x00_ops,
  1667. .hw = &rt2500usb_mac80211_ops,
  1668. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1669. .debugfs = &rt2500usb_rt2x00debug,
  1670. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1671. };
  1672. /*
  1673. * rt2500usb module information.
  1674. */
  1675. static struct usb_device_id rt2500usb_device_table[] = {
  1676. /* ASUS */
  1677. { USB_DEVICE(0x0b05, 0x1706) },
  1678. { USB_DEVICE(0x0b05, 0x1707) },
  1679. /* Belkin */
  1680. { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
  1681. { USB_DEVICE(0x050d, 0x7051) },
  1682. /* Cisco Systems */
  1683. { USB_DEVICE(0x13b1, 0x000d) },
  1684. { USB_DEVICE(0x13b1, 0x0011) },
  1685. { USB_DEVICE(0x13b1, 0x001a) },
  1686. /* Conceptronic */
  1687. { USB_DEVICE(0x14b2, 0x3c02) },
  1688. /* D-LINK */
  1689. { USB_DEVICE(0x2001, 0x3c00) },
  1690. /* Gigabyte */
  1691. { USB_DEVICE(0x1044, 0x8001) },
  1692. { USB_DEVICE(0x1044, 0x8007) },
  1693. /* Hercules */
  1694. { USB_DEVICE(0x06f8, 0xe000) },
  1695. /* Melco */
  1696. { USB_DEVICE(0x0411, 0x005e) },
  1697. { USB_DEVICE(0x0411, 0x0066) },
  1698. { USB_DEVICE(0x0411, 0x0067) },
  1699. { USB_DEVICE(0x0411, 0x008b) },
  1700. { USB_DEVICE(0x0411, 0x0097) },
  1701. /* MSI */
  1702. { USB_DEVICE(0x0db0, 0x6861) },
  1703. { USB_DEVICE(0x0db0, 0x6865) },
  1704. { USB_DEVICE(0x0db0, 0x6869) },
  1705. /* Ralink */
  1706. { USB_DEVICE(0x148f, 0x1706) },
  1707. { USB_DEVICE(0x148f, 0x2570) },
  1708. { USB_DEVICE(0x148f, 0x9020) },
  1709. /* Sagem */
  1710. { USB_DEVICE(0x079b, 0x004b) },
  1711. /* Siemens */
  1712. { USB_DEVICE(0x0681, 0x3c06) },
  1713. /* SMC */
  1714. { USB_DEVICE(0x0707, 0xee13) },
  1715. /* Spairon */
  1716. { USB_DEVICE(0x114b, 0x0110) },
  1717. /* SURECOM */
  1718. { USB_DEVICE(0x0769, 0x11f3) },
  1719. /* Trust */
  1720. { USB_DEVICE(0x0eb0, 0x9020) },
  1721. /* VTech */
  1722. { USB_DEVICE(0x0f88, 0x3012) },
  1723. /* Zinwell */
  1724. { USB_DEVICE(0x5a57, 0x0260) },
  1725. { 0, }
  1726. };
  1727. MODULE_AUTHOR(DRV_PROJECT);
  1728. MODULE_VERSION(DRV_VERSION);
  1729. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1730. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1731. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1732. MODULE_LICENSE("GPL");
  1733. static int rt2500usb_probe(struct usb_interface *usb_intf,
  1734. const struct usb_device_id *id)
  1735. {
  1736. return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
  1737. }
  1738. static struct usb_driver rt2500usb_driver = {
  1739. .name = KBUILD_MODNAME,
  1740. .id_table = rt2500usb_device_table,
  1741. .probe = rt2500usb_probe,
  1742. .disconnect = rt2x00usb_disconnect,
  1743. .suspend = rt2x00usb_suspend,
  1744. .resume = rt2x00usb_resume,
  1745. .reset_resume = rt2x00usb_resume,
  1746. .disable_hub_initiated_lpm = 1,
  1747. };
  1748. module_usb_driver(rt2500usb_driver);