init.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /*
  2. * (c) Copyright 2002-2010, Ralink Technology, Inc.
  3. * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
  4. * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2
  8. * as published by the Free Software Foundation
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include "mt7601u.h"
  16. #include "eeprom.h"
  17. #include "trace.h"
  18. #include "mcu.h"
  19. #include "initvals.h"
  20. static void
  21. mt7601u_set_wlan_state(struct mt7601u_dev *dev, u32 val, bool enable)
  22. {
  23. int i;
  24. /* Note: we don't turn off WLAN_CLK because that makes the device
  25. * not respond properly on the probe path.
  26. * In case anyone (PSM?) wants to use this function we can
  27. * bring the clock stuff back and fixup the probe path.
  28. */
  29. if (enable)
  30. val |= (MT_WLAN_FUN_CTRL_WLAN_EN |
  31. MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
  32. else
  33. val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN);
  34. mt7601u_wr(dev, MT_WLAN_FUN_CTRL, val);
  35. udelay(20);
  36. if (enable) {
  37. set_bit(MT7601U_STATE_WLAN_RUNNING, &dev->state);
  38. } else {
  39. clear_bit(MT7601U_STATE_WLAN_RUNNING, &dev->state);
  40. return;
  41. }
  42. for (i = 200; i; i--) {
  43. val = mt7601u_rr(dev, MT_CMB_CTRL);
  44. if (val & MT_CMB_CTRL_XTAL_RDY && val & MT_CMB_CTRL_PLL_LD)
  45. break;
  46. udelay(20);
  47. }
  48. /* Note: vendor driver tries to disable/enable wlan here and retry
  49. * but the code which does it is so buggy it must have never
  50. * triggered, so don't bother.
  51. */
  52. if (!i)
  53. dev_err(dev->dev, "Error: PLL and XTAL check failed!\n");
  54. }
  55. static void mt7601u_chip_onoff(struct mt7601u_dev *dev, bool enable, bool reset)
  56. {
  57. u32 val;
  58. mutex_lock(&dev->hw_atomic_mutex);
  59. val = mt7601u_rr(dev, MT_WLAN_FUN_CTRL);
  60. if (reset) {
  61. val |= MT_WLAN_FUN_CTRL_GPIO_OUT_EN;
  62. val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL;
  63. if (val & MT_WLAN_FUN_CTRL_WLAN_EN) {
  64. val |= (MT_WLAN_FUN_CTRL_WLAN_RESET |
  65. MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
  66. mt7601u_wr(dev, MT_WLAN_FUN_CTRL, val);
  67. udelay(20);
  68. val &= ~(MT_WLAN_FUN_CTRL_WLAN_RESET |
  69. MT_WLAN_FUN_CTRL_WLAN_RESET_RF);
  70. }
  71. }
  72. mt7601u_wr(dev, MT_WLAN_FUN_CTRL, val);
  73. udelay(20);
  74. mt7601u_set_wlan_state(dev, val, enable);
  75. mutex_unlock(&dev->hw_atomic_mutex);
  76. }
  77. static void mt7601u_reset_csr_bbp(struct mt7601u_dev *dev)
  78. {
  79. mt7601u_wr(dev, MT_MAC_SYS_CTRL, (MT_MAC_SYS_CTRL_RESET_CSR |
  80. MT_MAC_SYS_CTRL_RESET_BBP));
  81. mt7601u_wr(dev, MT_USB_DMA_CFG, 0);
  82. msleep(1);
  83. mt7601u_wr(dev, MT_MAC_SYS_CTRL, 0);
  84. }
  85. static void mt7601u_init_usb_dma(struct mt7601u_dev *dev)
  86. {
  87. u32 val;
  88. val = FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, MT_USB_AGGR_TIMEOUT) |
  89. FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_LMT,
  90. MT_USB_AGGR_SIZE_LIMIT) |
  91. MT_USB_DMA_CFG_RX_BULK_EN |
  92. MT_USB_DMA_CFG_TX_BULK_EN;
  93. if (dev->in_max_packet == 512)
  94. val |= MT_USB_DMA_CFG_RX_BULK_AGG_EN;
  95. mt7601u_wr(dev, MT_USB_DMA_CFG, val);
  96. val |= MT_USB_DMA_CFG_UDMA_RX_WL_DROP;
  97. mt7601u_wr(dev, MT_USB_DMA_CFG, val);
  98. val &= ~MT_USB_DMA_CFG_UDMA_RX_WL_DROP;
  99. mt7601u_wr(dev, MT_USB_DMA_CFG, val);
  100. }
  101. static int mt7601u_init_bbp(struct mt7601u_dev *dev)
  102. {
  103. int ret;
  104. ret = mt7601u_wait_bbp_ready(dev);
  105. if (ret)
  106. return ret;
  107. ret = mt7601u_write_reg_pairs(dev, MT_MCU_MEMMAP_BBP, bbp_common_vals,
  108. ARRAY_SIZE(bbp_common_vals));
  109. if (ret)
  110. return ret;
  111. return mt7601u_write_reg_pairs(dev, MT_MCU_MEMMAP_BBP, bbp_chip_vals,
  112. ARRAY_SIZE(bbp_chip_vals));
  113. }
  114. static void
  115. mt76_init_beacon_offsets(struct mt7601u_dev *dev)
  116. {
  117. u16 base = MT_BEACON_BASE;
  118. u32 regs[4] = {};
  119. int i;
  120. for (i = 0; i < 16; i++) {
  121. u16 addr = dev->beacon_offsets[i];
  122. regs[i / 4] |= ((addr - base) / 64) << (8 * (i % 4));
  123. }
  124. for (i = 0; i < 4; i++)
  125. mt7601u_wr(dev, MT_BCN_OFFSET(i), regs[i]);
  126. }
  127. static int mt7601u_write_mac_initvals(struct mt7601u_dev *dev)
  128. {
  129. int ret;
  130. ret = mt7601u_write_reg_pairs(dev, MT_MCU_MEMMAP_WLAN, mac_common_vals,
  131. ARRAY_SIZE(mac_common_vals));
  132. if (ret)
  133. return ret;
  134. ret = mt7601u_write_reg_pairs(dev, MT_MCU_MEMMAP_WLAN,
  135. mac_chip_vals, ARRAY_SIZE(mac_chip_vals));
  136. if (ret)
  137. return ret;
  138. mt76_init_beacon_offsets(dev);
  139. mt7601u_wr(dev, MT_AUX_CLK_CFG, 0);
  140. return 0;
  141. }
  142. static int mt7601u_init_wcid_mem(struct mt7601u_dev *dev)
  143. {
  144. u32 *vals;
  145. int i, ret;
  146. vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
  147. if (!vals)
  148. return -ENOMEM;
  149. for (i = 0; i < N_WCIDS; i++) {
  150. vals[i * 2] = 0xffffffff;
  151. vals[i * 2 + 1] = 0x00ffffff;
  152. }
  153. ret = mt7601u_burst_write_regs(dev, MT_WCID_ADDR_BASE,
  154. vals, N_WCIDS * 2);
  155. kfree(vals);
  156. return ret;
  157. }
  158. static int mt7601u_init_key_mem(struct mt7601u_dev *dev)
  159. {
  160. u32 vals[4] = {};
  161. return mt7601u_burst_write_regs(dev, MT_SKEY_MODE_BASE_0,
  162. vals, ARRAY_SIZE(vals));
  163. }
  164. static int mt7601u_init_wcid_attr_mem(struct mt7601u_dev *dev)
  165. {
  166. u32 *vals;
  167. int i, ret;
  168. vals = kmalloc(sizeof(*vals) * N_WCIDS * 2, GFP_KERNEL);
  169. if (!vals)
  170. return -ENOMEM;
  171. for (i = 0; i < N_WCIDS * 2; i++)
  172. vals[i] = 1;
  173. ret = mt7601u_burst_write_regs(dev, MT_WCID_ATTR_BASE,
  174. vals, N_WCIDS * 2);
  175. kfree(vals);
  176. return ret;
  177. }
  178. static void mt7601u_reset_counters(struct mt7601u_dev *dev)
  179. {
  180. mt7601u_rr(dev, MT_RX_STA_CNT0);
  181. mt7601u_rr(dev, MT_RX_STA_CNT1);
  182. mt7601u_rr(dev, MT_RX_STA_CNT2);
  183. mt7601u_rr(dev, MT_TX_STA_CNT0);
  184. mt7601u_rr(dev, MT_TX_STA_CNT1);
  185. mt7601u_rr(dev, MT_TX_STA_CNT2);
  186. }
  187. int mt7601u_mac_start(struct mt7601u_dev *dev)
  188. {
  189. mt7601u_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
  190. if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
  191. MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 200000))
  192. return -ETIMEDOUT;
  193. dev->rxfilter = MT_RX_FILTR_CFG_CRC_ERR |
  194. MT_RX_FILTR_CFG_PHY_ERR | MT_RX_FILTR_CFG_PROMISC |
  195. MT_RX_FILTR_CFG_VER_ERR | MT_RX_FILTR_CFG_DUP |
  196. MT_RX_FILTR_CFG_CFACK | MT_RX_FILTR_CFG_CFEND |
  197. MT_RX_FILTR_CFG_ACK | MT_RX_FILTR_CFG_CTS |
  198. MT_RX_FILTR_CFG_RTS | MT_RX_FILTR_CFG_PSPOLL |
  199. MT_RX_FILTR_CFG_BA | MT_RX_FILTR_CFG_CTRL_RSV;
  200. mt7601u_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter);
  201. mt7601u_wr(dev, MT_MAC_SYS_CTRL,
  202. MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX);
  203. if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
  204. MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 50))
  205. return -ETIMEDOUT;
  206. return 0;
  207. }
  208. static void mt7601u_mac_stop_hw(struct mt7601u_dev *dev)
  209. {
  210. int i, ok;
  211. if (test_bit(MT7601U_STATE_REMOVED, &dev->state))
  212. return;
  213. mt76_clear(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_TIMER_EN |
  214. MT_BEACON_TIME_CFG_SYNC_MODE | MT_BEACON_TIME_CFG_TBTT_EN |
  215. MT_BEACON_TIME_CFG_BEACON_TX);
  216. if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_TX_BUSY, 0, 1000))
  217. dev_warn(dev->dev, "Warning: TX DMA did not stop!\n");
  218. /* Page count on TxQ */
  219. i = 200;
  220. while (i-- && ((mt76_rr(dev, 0x0438) & 0xffffffff) ||
  221. (mt76_rr(dev, 0x0a30) & 0x000000ff) ||
  222. (mt76_rr(dev, 0x0a34) & 0x00ff00ff)))
  223. msleep(10);
  224. if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX, 0, 1000))
  225. dev_warn(dev->dev, "Warning: MAC TX did not stop!\n");
  226. mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX |
  227. MT_MAC_SYS_CTRL_ENABLE_TX);
  228. /* Page count on RxQ */
  229. ok = 0;
  230. i = 200;
  231. while (i--) {
  232. if (!(mt76_rr(dev, MT_RXQ_STA) & 0x00ff0000) &&
  233. !mt76_rr(dev, 0x0a30) &&
  234. !mt76_rr(dev, 0x0a34)) {
  235. if (ok++ > 5)
  236. break;
  237. continue;
  238. }
  239. msleep(1);
  240. }
  241. if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 1000))
  242. dev_warn(dev->dev, "Warning: MAC RX did not stop!\n");
  243. if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_RX_BUSY, 0, 1000))
  244. dev_warn(dev->dev, "Warning: RX DMA did not stop!\n");
  245. }
  246. void mt7601u_mac_stop(struct mt7601u_dev *dev)
  247. {
  248. mt7601u_mac_stop_hw(dev);
  249. flush_delayed_work(&dev->stat_work);
  250. cancel_delayed_work_sync(&dev->stat_work);
  251. }
  252. static void mt7601u_stop_hardware(struct mt7601u_dev *dev)
  253. {
  254. mt7601u_chip_onoff(dev, false, false);
  255. }
  256. int mt7601u_init_hardware(struct mt7601u_dev *dev)
  257. {
  258. static const u16 beacon_offsets[16] = {
  259. /* 512 byte per beacon */
  260. 0xc000, 0xc200, 0xc400, 0xc600,
  261. 0xc800, 0xca00, 0xcc00, 0xce00,
  262. 0xd000, 0xd200, 0xd400, 0xd600,
  263. 0xd800, 0xda00, 0xdc00, 0xde00
  264. };
  265. int ret;
  266. dev->beacon_offsets = beacon_offsets;
  267. mt7601u_chip_onoff(dev, true, false);
  268. ret = mt7601u_wait_asic_ready(dev);
  269. if (ret)
  270. goto err;
  271. ret = mt7601u_mcu_init(dev);
  272. if (ret)
  273. goto err;
  274. if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG,
  275. MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
  276. MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100)) {
  277. ret = -EIO;
  278. goto err;
  279. }
  280. /* Wait for ASIC ready after FW load. */
  281. ret = mt7601u_wait_asic_ready(dev);
  282. if (ret)
  283. goto err;
  284. mt7601u_reset_csr_bbp(dev);
  285. mt7601u_init_usb_dma(dev);
  286. ret = mt7601u_mcu_cmd_init(dev);
  287. if (ret)
  288. goto err;
  289. ret = mt7601u_dma_init(dev);
  290. if (ret)
  291. goto err_mcu;
  292. ret = mt7601u_write_mac_initvals(dev);
  293. if (ret)
  294. goto err_rx;
  295. if (!mt76_poll_msec(dev, MT_MAC_STATUS,
  296. MT_MAC_STATUS_TX | MT_MAC_STATUS_RX, 0, 100)) {
  297. ret = -EIO;
  298. goto err_rx;
  299. }
  300. ret = mt7601u_init_bbp(dev);
  301. if (ret)
  302. goto err_rx;
  303. ret = mt7601u_init_wcid_mem(dev);
  304. if (ret)
  305. goto err_rx;
  306. ret = mt7601u_init_key_mem(dev);
  307. if (ret)
  308. goto err_rx;
  309. ret = mt7601u_init_wcid_attr_mem(dev);
  310. if (ret)
  311. goto err_rx;
  312. mt76_clear(dev, MT_BEACON_TIME_CFG, (MT_BEACON_TIME_CFG_TIMER_EN |
  313. MT_BEACON_TIME_CFG_SYNC_MODE |
  314. MT_BEACON_TIME_CFG_TBTT_EN |
  315. MT_BEACON_TIME_CFG_BEACON_TX));
  316. mt7601u_reset_counters(dev);
  317. mt7601u_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e);
  318. mt7601u_wr(dev, MT_TXOP_CTRL_CFG,
  319. FIELD_PREP(MT_TXOP_TRUN_EN, 0x3f) |
  320. FIELD_PREP(MT_TXOP_EXT_CCA_DLY, 0x58));
  321. ret = mt7601u_eeprom_init(dev);
  322. if (ret)
  323. goto err_rx;
  324. ret = mt7601u_phy_init(dev);
  325. if (ret)
  326. goto err_rx;
  327. mt7601u_set_rx_path(dev, 0);
  328. mt7601u_set_tx_dac(dev, 0);
  329. mt7601u_mac_set_ctrlch(dev, false);
  330. mt7601u_bbp_set_ctrlch(dev, false);
  331. mt7601u_bbp_set_bw(dev, MT_BW_20);
  332. return 0;
  333. err_rx:
  334. mt7601u_dma_cleanup(dev);
  335. err_mcu:
  336. mt7601u_mcu_cmd_deinit(dev);
  337. err:
  338. mt7601u_chip_onoff(dev, false, false);
  339. return ret;
  340. }
  341. void mt7601u_cleanup(struct mt7601u_dev *dev)
  342. {
  343. if (!test_and_clear_bit(MT7601U_STATE_INITIALIZED, &dev->state))
  344. return;
  345. mt7601u_stop_hardware(dev);
  346. mt7601u_dma_cleanup(dev);
  347. mt7601u_mcu_cmd_deinit(dev);
  348. }
  349. struct mt7601u_dev *mt7601u_alloc_device(struct device *pdev)
  350. {
  351. struct ieee80211_hw *hw;
  352. struct mt7601u_dev *dev;
  353. hw = ieee80211_alloc_hw(sizeof(*dev), &mt7601u_ops);
  354. if (!hw)
  355. return NULL;
  356. dev = hw->priv;
  357. dev->dev = pdev;
  358. dev->hw = hw;
  359. mutex_init(&dev->vendor_req_mutex);
  360. mutex_init(&dev->reg_atomic_mutex);
  361. mutex_init(&dev->hw_atomic_mutex);
  362. mutex_init(&dev->mutex);
  363. spin_lock_init(&dev->tx_lock);
  364. spin_lock_init(&dev->rx_lock);
  365. spin_lock_init(&dev->lock);
  366. spin_lock_init(&dev->mac_lock);
  367. spin_lock_init(&dev->con_mon_lock);
  368. atomic_set(&dev->avg_ampdu_len, 1);
  369. skb_queue_head_init(&dev->tx_skb_done);
  370. dev->stat_wq = alloc_workqueue("mt7601u", WQ_UNBOUND, 0);
  371. if (!dev->stat_wq) {
  372. ieee80211_free_hw(hw);
  373. return NULL;
  374. }
  375. return dev;
  376. }
  377. #define CHAN2G(_idx, _freq) { \
  378. .band = NL80211_BAND_2GHZ, \
  379. .center_freq = (_freq), \
  380. .hw_value = (_idx), \
  381. .max_power = 30, \
  382. }
  383. static const struct ieee80211_channel mt76_channels_2ghz[] = {
  384. CHAN2G(1, 2412),
  385. CHAN2G(2, 2417),
  386. CHAN2G(3, 2422),
  387. CHAN2G(4, 2427),
  388. CHAN2G(5, 2432),
  389. CHAN2G(6, 2437),
  390. CHAN2G(7, 2442),
  391. CHAN2G(8, 2447),
  392. CHAN2G(9, 2452),
  393. CHAN2G(10, 2457),
  394. CHAN2G(11, 2462),
  395. CHAN2G(12, 2467),
  396. CHAN2G(13, 2472),
  397. CHAN2G(14, 2484),
  398. };
  399. #define CCK_RATE(_idx, _rate) { \
  400. .bitrate = _rate, \
  401. .flags = IEEE80211_RATE_SHORT_PREAMBLE, \
  402. .hw_value = (MT_PHY_TYPE_CCK << 8) | _idx, \
  403. .hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx), \
  404. }
  405. #define OFDM_RATE(_idx, _rate) { \
  406. .bitrate = _rate, \
  407. .hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx, \
  408. .hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx, \
  409. }
  410. static struct ieee80211_rate mt76_rates[] = {
  411. CCK_RATE(0, 10),
  412. CCK_RATE(1, 20),
  413. CCK_RATE(2, 55),
  414. CCK_RATE(3, 110),
  415. OFDM_RATE(0, 60),
  416. OFDM_RATE(1, 90),
  417. OFDM_RATE(2, 120),
  418. OFDM_RATE(3, 180),
  419. OFDM_RATE(4, 240),
  420. OFDM_RATE(5, 360),
  421. OFDM_RATE(6, 480),
  422. OFDM_RATE(7, 540),
  423. };
  424. static int
  425. mt76_init_sband(struct mt7601u_dev *dev, struct ieee80211_supported_band *sband,
  426. const struct ieee80211_channel *chan, int n_chan,
  427. struct ieee80211_rate *rates, int n_rates)
  428. {
  429. struct ieee80211_sta_ht_cap *ht_cap;
  430. void *chanlist;
  431. int size;
  432. size = n_chan * sizeof(*chan);
  433. chanlist = devm_kmemdup(dev->dev, chan, size, GFP_KERNEL);
  434. if (!chanlist)
  435. return -ENOMEM;
  436. sband->channels = chanlist;
  437. sband->n_channels = n_chan;
  438. sband->bitrates = rates;
  439. sband->n_bitrates = n_rates;
  440. ht_cap = &sband->ht_cap;
  441. ht_cap->ht_supported = true;
  442. ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  443. IEEE80211_HT_CAP_GRN_FLD |
  444. IEEE80211_HT_CAP_SGI_20 |
  445. IEEE80211_HT_CAP_SGI_40 |
  446. (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
  447. ht_cap->mcs.rx_mask[0] = 0xff;
  448. ht_cap->mcs.rx_mask[4] = 0x1;
  449. ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  450. ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
  451. ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
  452. dev->chandef.chan = &sband->channels[0];
  453. return 0;
  454. }
  455. static int
  456. mt76_init_sband_2g(struct mt7601u_dev *dev)
  457. {
  458. dev->sband_2g = devm_kzalloc(dev->dev, sizeof(*dev->sband_2g),
  459. GFP_KERNEL);
  460. dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = dev->sband_2g;
  461. WARN_ON(dev->ee->reg.start - 1 + dev->ee->reg.num >
  462. ARRAY_SIZE(mt76_channels_2ghz));
  463. return mt76_init_sband(dev, dev->sband_2g,
  464. &mt76_channels_2ghz[dev->ee->reg.start - 1],
  465. dev->ee->reg.num,
  466. mt76_rates, ARRAY_SIZE(mt76_rates));
  467. }
  468. int mt7601u_register_device(struct mt7601u_dev *dev)
  469. {
  470. struct ieee80211_hw *hw = dev->hw;
  471. struct wiphy *wiphy = hw->wiphy;
  472. int ret;
  473. /* Reserve WCID 0 for mcast - thanks to this APs WCID will go to
  474. * entry no. 1 like it does in the vendor driver.
  475. */
  476. dev->wcid_mask[0] |= 1;
  477. /* init fake wcid for monitor interfaces */
  478. dev->mon_wcid = devm_kmalloc(dev->dev, sizeof(*dev->mon_wcid),
  479. GFP_KERNEL);
  480. if (!dev->mon_wcid)
  481. return -ENOMEM;
  482. dev->mon_wcid->idx = 0xff;
  483. dev->mon_wcid->hw_key_idx = -1;
  484. SET_IEEE80211_DEV(hw, dev->dev);
  485. hw->queues = 4;
  486. ieee80211_hw_set(hw, SIGNAL_DBM);
  487. ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
  488. ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
  489. ieee80211_hw_set(hw, AMPDU_AGGREGATION);
  490. ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
  491. hw->max_rates = 1;
  492. hw->max_report_rates = 7;
  493. hw->max_rate_tries = 1;
  494. hw->sta_data_size = sizeof(struct mt76_sta);
  495. hw->vif_data_size = sizeof(struct mt76_vif);
  496. SET_IEEE80211_PERM_ADDR(hw, dev->macaddr);
  497. wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
  498. wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
  499. ret = mt76_init_sband_2g(dev);
  500. if (ret)
  501. return ret;
  502. INIT_DELAYED_WORK(&dev->mac_work, mt7601u_mac_work);
  503. INIT_DELAYED_WORK(&dev->stat_work, mt7601u_tx_stat);
  504. ret = ieee80211_register_hw(hw);
  505. if (ret)
  506. return ret;
  507. mt7601u_init_debugfs(dev);
  508. return 0;
  509. }