eeprom_9287.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  20. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  21. {
  22. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  23. }
  24. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  25. {
  26. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  27. }
  28. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  29. {
  30. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  31. u16 *eep_data;
  32. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  33. eep_data = (u16 *)eep;
  34. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  35. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
  36. return false;
  37. eep_data++;
  38. }
  39. return true;
  40. }
  41. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  42. {
  43. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  44. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  45. AR9287_HTC_EEP_START_LOC,
  46. SIZE_EEPROM_AR9287);
  47. return true;
  48. }
  49. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  50. {
  51. struct ath_common *common = ath9k_hw_common(ah);
  52. if (!ath9k_hw_use_flash(ah)) {
  53. ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
  54. }
  55. if (common->bus_ops->ath_bus_type == ATH_USB)
  56. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  57. else
  58. return __ath9k_hw_ar9287_fill_eeprom(ah);
  59. }
  60. #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
  61. static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
  62. struct modal_eep_ar9287_header *modal_hdr)
  63. {
  64. PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
  65. PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
  66. PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
  67. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  68. PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
  69. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  70. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  71. PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
  72. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  73. PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
  74. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  75. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  76. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  77. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  78. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  79. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  80. PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
  81. PR_EEP("xpdGain", modal_hdr->xpdGain);
  82. PR_EEP("External PD", modal_hdr->xpd);
  83. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  84. PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
  85. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  86. PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
  87. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  88. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  89. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  90. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  91. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  92. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  93. PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
  94. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  95. PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
  96. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  97. PR_EEP("AR92x7 Version", modal_hdr->version);
  98. PR_EEP("DriverBias1", modal_hdr->db1);
  99. PR_EEP("DriverBias2", modal_hdr->db1);
  100. PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
  101. PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
  102. PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
  103. PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
  104. return len;
  105. }
  106. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  107. u8 *buf, u32 len, u32 size)
  108. {
  109. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  110. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  111. if (!dump_base_hdr) {
  112. len += scnprintf(buf + len, size - len,
  113. "%20s :\n", "2GHz modal Header");
  114. len = ar9287_dump_modal_eeprom(buf, len, size,
  115. &eep->modalHeader);
  116. goto out;
  117. }
  118. PR_EEP("Major Version", pBase->version >> 12);
  119. PR_EEP("Minor Version", pBase->version & 0xFFF);
  120. PR_EEP("Checksum", pBase->checksum);
  121. PR_EEP("Length", pBase->length);
  122. PR_EEP("RegDomain1", pBase->regDmn[0]);
  123. PR_EEP("RegDomain2", pBase->regDmn[1]);
  124. PR_EEP("TX Mask", pBase->txMask);
  125. PR_EEP("RX Mask", pBase->rxMask);
  126. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  127. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  128. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  129. AR5416_OPFLAGS_N_2G_HT20));
  130. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  131. AR5416_OPFLAGS_N_2G_HT40));
  132. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  133. AR5416_OPFLAGS_N_5G_HT20));
  134. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  135. AR5416_OPFLAGS_N_5G_HT40));
  136. PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
  137. PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
  138. PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
  139. PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
  140. PR_EEP("Power Table Offset", pBase->pwrTableOffset);
  141. PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
  142. len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  143. pBase->macAddr);
  144. out:
  145. if (len > size)
  146. len = size;
  147. return len;
  148. }
  149. #else
  150. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  151. u8 *buf, u32 len, u32 size)
  152. {
  153. return 0;
  154. }
  155. #endif
  156. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  157. {
  158. u32 el, integer;
  159. u16 word;
  160. int i, err;
  161. bool need_swap;
  162. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  163. err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
  164. if (err)
  165. return err;
  166. if (need_swap)
  167. el = swab16(eep->baseEepHeader.length);
  168. else
  169. el = eep->baseEepHeader.length;
  170. el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
  171. if (!ath9k_hw_nvram_validate_checksum(ah, el))
  172. return -EINVAL;
  173. if (need_swap) {
  174. word = swab16(eep->baseEepHeader.length);
  175. eep->baseEepHeader.length = word;
  176. word = swab16(eep->baseEepHeader.checksum);
  177. eep->baseEepHeader.checksum = word;
  178. word = swab16(eep->baseEepHeader.version);
  179. eep->baseEepHeader.version = word;
  180. word = swab16(eep->baseEepHeader.regDmn[0]);
  181. eep->baseEepHeader.regDmn[0] = word;
  182. word = swab16(eep->baseEepHeader.regDmn[1]);
  183. eep->baseEepHeader.regDmn[1] = word;
  184. word = swab16(eep->baseEepHeader.rfSilent);
  185. eep->baseEepHeader.rfSilent = word;
  186. word = swab16(eep->baseEepHeader.blueToothOptions);
  187. eep->baseEepHeader.blueToothOptions = word;
  188. word = swab16(eep->baseEepHeader.deviceCap);
  189. eep->baseEepHeader.deviceCap = word;
  190. integer = swab32(eep->modalHeader.antCtrlCommon);
  191. eep->modalHeader.antCtrlCommon = integer;
  192. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  193. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  194. eep->modalHeader.antCtrlChain[i] = integer;
  195. }
  196. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  197. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  198. eep->modalHeader.spurChans[i].spurChan = word;
  199. }
  200. }
  201. if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
  202. AR5416_EEP_NO_BACK_VER))
  203. return -EINVAL;
  204. return 0;
  205. }
  206. #undef SIZE_EEPROM_AR9287
  207. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  208. enum eeprom_param param)
  209. {
  210. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  211. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  212. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  213. u16 ver_minor;
  214. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  215. switch (param) {
  216. case EEP_NFTHRESH_2:
  217. return pModal->noiseFloorThreshCh[0];
  218. case EEP_MAC_LSW:
  219. return get_unaligned_be16(pBase->macAddr);
  220. case EEP_MAC_MID:
  221. return get_unaligned_be16(pBase->macAddr + 2);
  222. case EEP_MAC_MSW:
  223. return get_unaligned_be16(pBase->macAddr + 4);
  224. case EEP_REG_0:
  225. return pBase->regDmn[0];
  226. case EEP_OP_CAP:
  227. return pBase->deviceCap;
  228. case EEP_OP_MODE:
  229. return pBase->opCapFlags;
  230. case EEP_RF_SILENT:
  231. return pBase->rfSilent;
  232. case EEP_MINOR_REV:
  233. return ver_minor;
  234. case EEP_TX_MASK:
  235. return pBase->txMask;
  236. case EEP_RX_MASK:
  237. return pBase->rxMask;
  238. case EEP_DEV_TYPE:
  239. return pBase->deviceType;
  240. case EEP_OL_PWRCTRL:
  241. return pBase->openLoopPwrCntl;
  242. case EEP_TEMPSENSE_SLOPE:
  243. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  244. return pBase->tempSensSlope;
  245. else
  246. return 0;
  247. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  248. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  249. return pBase->tempSensSlopePalOn;
  250. else
  251. return 0;
  252. case EEP_ANTENNA_GAIN_2G:
  253. return max_t(u8, pModal->antennaGainCh[0],
  254. pModal->antennaGainCh[1]);
  255. default:
  256. return 0;
  257. }
  258. }
  259. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  260. struct ath9k_channel *chan,
  261. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  262. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  263. {
  264. u16 idxL = 0, idxR = 0, numPiers;
  265. bool match;
  266. struct chan_centers centers;
  267. ath9k_hw_get_channel_centers(ah, chan, &centers);
  268. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  269. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  270. break;
  271. }
  272. match = ath9k_hw_get_lower_upper_index(
  273. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  274. pCalChans, numPiers, &idxL, &idxR);
  275. if (match) {
  276. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  277. } else {
  278. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  279. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  280. }
  281. }
  282. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  283. int32_t txPower, u16 chain)
  284. {
  285. u32 tmpVal;
  286. u32 a;
  287. /* Enable OLPC for chain 0 */
  288. tmpVal = REG_READ(ah, 0xa270);
  289. tmpVal = tmpVal & 0xFCFFFFFF;
  290. tmpVal = tmpVal | (0x3 << 24);
  291. REG_WRITE(ah, 0xa270, tmpVal);
  292. /* Enable OLPC for chain 1 */
  293. tmpVal = REG_READ(ah, 0xb270);
  294. tmpVal = tmpVal & 0xFCFFFFFF;
  295. tmpVal = tmpVal | (0x3 << 24);
  296. REG_WRITE(ah, 0xb270, tmpVal);
  297. /* Write the OLPC ref power for chain 0 */
  298. if (chain == 0) {
  299. tmpVal = REG_READ(ah, 0xa398);
  300. tmpVal = tmpVal & 0xff00ffff;
  301. a = (txPower)&0xff;
  302. tmpVal = tmpVal | (a << 16);
  303. REG_WRITE(ah, 0xa398, tmpVal);
  304. }
  305. /* Write the OLPC ref power for chain 1 */
  306. if (chain == 1) {
  307. tmpVal = REG_READ(ah, 0xb398);
  308. tmpVal = tmpVal & 0xff00ffff;
  309. a = (txPower)&0xff;
  310. tmpVal = tmpVal | (a << 16);
  311. REG_WRITE(ah, 0xb398, tmpVal);
  312. }
  313. }
  314. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  315. struct ath9k_channel *chan)
  316. {
  317. struct cal_data_per_freq_ar9287 *pRawDataset;
  318. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  319. u8 *pCalBChans = NULL;
  320. u16 pdGainOverlap_t2;
  321. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  322. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  323. u16 numPiers = 0, i, j;
  324. u16 numXpdGain, xpdMask;
  325. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  326. u32 reg32, regOffset, regChainOffset, regval;
  327. int16_t diff = 0;
  328. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  329. xpdMask = pEepData->modalHeader.xpdGain;
  330. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  331. AR9287_EEP_MINOR_VER_2)
  332. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  333. else
  334. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  335. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  336. if (IS_CHAN_2GHZ(chan)) {
  337. pCalBChans = pEepData->calFreqPier2G;
  338. numPiers = AR9287_NUM_2G_CAL_PIERS;
  339. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  340. pRawDatasetOpenLoop =
  341. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  342. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  343. }
  344. }
  345. numXpdGain = 0;
  346. /* Calculate the value of xpdgains from the xpdGain Mask */
  347. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  348. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  349. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  350. break;
  351. xpdGainValues[numXpdGain] =
  352. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  353. numXpdGain++;
  354. }
  355. }
  356. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  357. (numXpdGain - 1) & 0x3);
  358. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  359. xpdGainValues[0]);
  360. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  361. xpdGainValues[1]);
  362. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  363. xpdGainValues[2]);
  364. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  365. regChainOffset = i * 0x1000;
  366. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  367. pRawDatasetOpenLoop =
  368. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  369. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  370. int8_t txPower;
  371. ar9287_eeprom_get_tx_gain_index(ah, chan,
  372. pRawDatasetOpenLoop,
  373. pCalBChans, numPiers,
  374. &txPower);
  375. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  376. } else {
  377. pRawDataset =
  378. (struct cal_data_per_freq_ar9287 *)
  379. pEepData->calPierData2G[i];
  380. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  381. pRawDataset,
  382. pCalBChans, numPiers,
  383. pdGainOverlap_t2,
  384. gainBoundaries,
  385. pdadcValues,
  386. numXpdGain);
  387. }
  388. ENABLE_REGWRITE_BUFFER(ah);
  389. if (i == 0) {
  390. if (!ath9k_hw_ar9287_get_eeprom(ah,
  391. EEP_OL_PWRCTRL)) {
  392. regval = SM(pdGainOverlap_t2,
  393. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  394. | SM(gainBoundaries[0],
  395. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  396. | SM(gainBoundaries[1],
  397. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  398. | SM(gainBoundaries[2],
  399. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  400. | SM(gainBoundaries[3],
  401. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  402. REG_WRITE(ah,
  403. AR_PHY_TPCRG5 + regChainOffset,
  404. regval);
  405. }
  406. }
  407. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  408. pEepData->baseEepHeader.pwrTableOffset) {
  409. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  410. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  411. diff *= 2;
  412. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  413. pdadcValues[j] = pdadcValues[j+diff];
  414. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  415. j < AR5416_NUM_PDADC_VALUES; j++)
  416. pdadcValues[j] =
  417. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  418. }
  419. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  420. regOffset = AR_PHY_BASE +
  421. (672 << 2) + regChainOffset;
  422. for (j = 0; j < 32; j++) {
  423. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  424. REG_WRITE(ah, regOffset, reg32);
  425. regOffset += 4;
  426. }
  427. }
  428. REGWRITE_BUFFER_FLUSH(ah);
  429. }
  430. }
  431. }
  432. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  433. struct ath9k_channel *chan,
  434. int16_t *ratesArray,
  435. u16 cfgCtl,
  436. u16 antenna_reduction,
  437. u16 powerLimit)
  438. {
  439. #define CMP_CTL \
  440. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  441. pEepData->ctlIndex[i])
  442. #define CMP_NO_CTL \
  443. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  444. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  445. u16 twiceMaxEdgePower;
  446. int i;
  447. struct cal_ctl_data_ar9287 *rep;
  448. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  449. targetPowerCck = {0, {0, 0, 0, 0} };
  450. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  451. targetPowerCckExt = {0, {0, 0, 0, 0} };
  452. struct cal_target_power_ht targetPowerHt20,
  453. targetPowerHt40 = {0, {0, 0, 0, 0} };
  454. u16 scaledPower = 0, minCtlPower;
  455. static const u16 ctlModesFor11g[] = {
  456. CTL_11B, CTL_11G, CTL_2GHT20,
  457. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  458. };
  459. u16 numCtlModes = 0;
  460. const u16 *pCtlMode = NULL;
  461. u16 ctlMode, freq;
  462. struct chan_centers centers;
  463. int tx_chainmask;
  464. u16 twiceMinEdgePower;
  465. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  466. tx_chainmask = ah->txchainmask;
  467. ath9k_hw_get_channel_centers(ah, chan, &centers);
  468. scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
  469. antenna_reduction);
  470. /*
  471. * Get TX power from EEPROM.
  472. */
  473. if (IS_CHAN_2GHZ(chan)) {
  474. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  475. numCtlModes =
  476. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  477. pCtlMode = ctlModesFor11g;
  478. ath9k_hw_get_legacy_target_powers(ah, chan,
  479. pEepData->calTargetPowerCck,
  480. AR9287_NUM_2G_CCK_TARGET_POWERS,
  481. &targetPowerCck, 4, false);
  482. ath9k_hw_get_legacy_target_powers(ah, chan,
  483. pEepData->calTargetPower2G,
  484. AR9287_NUM_2G_20_TARGET_POWERS,
  485. &targetPowerOfdm, 4, false);
  486. ath9k_hw_get_target_powers(ah, chan,
  487. pEepData->calTargetPower2GHT20,
  488. AR9287_NUM_2G_20_TARGET_POWERS,
  489. &targetPowerHt20, 8, false);
  490. if (IS_CHAN_HT40(chan)) {
  491. /* All 2G CTLs */
  492. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  493. ath9k_hw_get_target_powers(ah, chan,
  494. pEepData->calTargetPower2GHT40,
  495. AR9287_NUM_2G_40_TARGET_POWERS,
  496. &targetPowerHt40, 8, true);
  497. ath9k_hw_get_legacy_target_powers(ah, chan,
  498. pEepData->calTargetPowerCck,
  499. AR9287_NUM_2G_CCK_TARGET_POWERS,
  500. &targetPowerCckExt, 4, true);
  501. ath9k_hw_get_legacy_target_powers(ah, chan,
  502. pEepData->calTargetPower2G,
  503. AR9287_NUM_2G_20_TARGET_POWERS,
  504. &targetPowerOfdmExt, 4, true);
  505. }
  506. }
  507. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  508. bool isHt40CtlMode =
  509. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  510. if (isHt40CtlMode)
  511. freq = centers.synth_center;
  512. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  513. freq = centers.ext_center;
  514. else
  515. freq = centers.ctl_center;
  516. twiceMaxEdgePower = MAX_RATE_POWER;
  517. /* Walk through the CTL indices stored in EEPROM */
  518. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  519. struct cal_ctl_edges *pRdEdgesPower;
  520. /*
  521. * Compare test group from regulatory channel list
  522. * with test mode from pCtlMode list
  523. */
  524. if (CMP_CTL || CMP_NO_CTL) {
  525. rep = &(pEepData->ctlData[i]);
  526. pRdEdgesPower =
  527. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  528. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  529. pRdEdgesPower,
  530. IS_CHAN_2GHZ(chan),
  531. AR5416_NUM_BAND_EDGES);
  532. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  533. twiceMaxEdgePower = min(twiceMaxEdgePower,
  534. twiceMinEdgePower);
  535. } else {
  536. twiceMaxEdgePower = twiceMinEdgePower;
  537. break;
  538. }
  539. }
  540. }
  541. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  542. /* Apply ctl mode to correct target power set */
  543. switch (pCtlMode[ctlMode]) {
  544. case CTL_11B:
  545. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  546. targetPowerCck.tPow2x[i] =
  547. (u8)min((u16)targetPowerCck.tPow2x[i],
  548. minCtlPower);
  549. }
  550. break;
  551. case CTL_11A:
  552. case CTL_11G:
  553. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  554. targetPowerOfdm.tPow2x[i] =
  555. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  556. minCtlPower);
  557. }
  558. break;
  559. case CTL_5GHT20:
  560. case CTL_2GHT20:
  561. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  562. targetPowerHt20.tPow2x[i] =
  563. (u8)min((u16)targetPowerHt20.tPow2x[i],
  564. minCtlPower);
  565. }
  566. break;
  567. case CTL_11B_EXT:
  568. targetPowerCckExt.tPow2x[0] =
  569. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  570. minCtlPower);
  571. break;
  572. case CTL_11A_EXT:
  573. case CTL_11G_EXT:
  574. targetPowerOfdmExt.tPow2x[0] =
  575. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  576. minCtlPower);
  577. break;
  578. case CTL_5GHT40:
  579. case CTL_2GHT40:
  580. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  581. targetPowerHt40.tPow2x[i] =
  582. (u8)min((u16)targetPowerHt40.tPow2x[i],
  583. minCtlPower);
  584. }
  585. break;
  586. default:
  587. break;
  588. }
  589. }
  590. /* Now set the rates array */
  591. ratesArray[rate6mb] =
  592. ratesArray[rate9mb] =
  593. ratesArray[rate12mb] =
  594. ratesArray[rate18mb] =
  595. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  596. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  597. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  598. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  599. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  600. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  601. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  602. if (IS_CHAN_2GHZ(chan)) {
  603. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  604. ratesArray[rate2s] =
  605. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  606. ratesArray[rate5_5s] =
  607. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  608. ratesArray[rate11s] =
  609. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  610. }
  611. if (IS_CHAN_HT40(chan)) {
  612. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  613. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  614. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  615. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  616. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  617. if (IS_CHAN_2GHZ(chan))
  618. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  619. }
  620. #undef CMP_CTL
  621. #undef CMP_NO_CTL
  622. }
  623. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  624. struct ath9k_channel *chan, u16 cfgCtl,
  625. u8 twiceAntennaReduction,
  626. u8 powerLimit, bool test)
  627. {
  628. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  629. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  630. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  631. int16_t ratesArray[Ar5416RateSize];
  632. u8 ht40PowerIncForPdadc = 2;
  633. int i;
  634. memset(ratesArray, 0, sizeof(ratesArray));
  635. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  636. AR9287_EEP_MINOR_VER_2)
  637. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  638. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  639. &ratesArray[0], cfgCtl,
  640. twiceAntennaReduction,
  641. powerLimit);
  642. ath9k_hw_set_ar9287_power_cal_table(ah, chan);
  643. regulatory->max_power_level = 0;
  644. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  645. if (ratesArray[i] > MAX_RATE_POWER)
  646. ratesArray[i] = MAX_RATE_POWER;
  647. if (ratesArray[i] > regulatory->max_power_level)
  648. regulatory->max_power_level = ratesArray[i];
  649. }
  650. ath9k_hw_update_regulatory_maxpower(ah);
  651. if (test)
  652. return;
  653. for (i = 0; i < Ar5416RateSize; i++)
  654. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  655. ENABLE_REGWRITE_BUFFER(ah);
  656. /* OFDM power per rate */
  657. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  658. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  659. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  660. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  661. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  662. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  663. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  664. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  665. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  666. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  667. /* CCK power per rate */
  668. if (IS_CHAN_2GHZ(chan)) {
  669. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  670. ATH9K_POW_SM(ratesArray[rate2s], 24)
  671. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  672. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  673. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  674. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  675. ATH9K_POW_SM(ratesArray[rate11s], 24)
  676. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  677. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  678. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  679. }
  680. /* HT20 power per rate */
  681. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  682. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  683. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  684. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  685. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  686. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  687. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  688. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  689. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  690. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  691. /* HT40 power per rate */
  692. if (IS_CHAN_HT40(chan)) {
  693. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  694. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  695. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  696. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  697. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  698. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  699. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  700. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  701. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  702. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  703. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  704. } else {
  705. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  706. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  707. ht40PowerIncForPdadc, 24)
  708. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  709. ht40PowerIncForPdadc, 16)
  710. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  711. ht40PowerIncForPdadc, 8)
  712. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  713. ht40PowerIncForPdadc, 0));
  714. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  715. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  716. ht40PowerIncForPdadc, 24)
  717. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  718. ht40PowerIncForPdadc, 16)
  719. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  720. ht40PowerIncForPdadc, 8)
  721. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  722. ht40PowerIncForPdadc, 0));
  723. }
  724. /* Dup/Ext power per rate */
  725. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  726. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  727. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  728. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  729. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  730. }
  731. /* TPC initializations */
  732. if (ah->tpc_enabled) {
  733. int ht40_delta;
  734. ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
  735. ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
  736. /* Enable TPC */
  737. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
  738. MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
  739. } else {
  740. /* Disable TPC */
  741. REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
  742. }
  743. REGWRITE_BUFFER_FLUSH(ah);
  744. }
  745. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  746. struct ath9k_channel *chan)
  747. {
  748. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  749. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  750. u32 regChainOffset, regval;
  751. u8 txRxAttenLocal;
  752. int i;
  753. pModal = &eep->modalHeader;
  754. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  755. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  756. regChainOffset = i * 0x1000;
  757. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  758. pModal->antCtrlChain[i]);
  759. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  760. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  761. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  762. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  763. SM(pModal->iqCalICh[i],
  764. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  765. SM(pModal->iqCalQCh[i],
  766. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  767. txRxAttenLocal = pModal->txRxAttenCh[i];
  768. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  769. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  770. pModal->bswMargin[i]);
  771. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  772. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  773. pModal->bswAtten[i]);
  774. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  775. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  776. txRxAttenLocal);
  777. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  778. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  779. pModal->rxTxMarginCh[i]);
  780. }
  781. if (IS_CHAN_HT40(chan))
  782. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  783. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  784. else
  785. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  786. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  787. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  788. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  789. REG_WRITE(ah, AR_PHY_RF_CTL4,
  790. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  791. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  792. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  793. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  794. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  795. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  796. REG_RMW_FIELD(ah, AR_PHY_CCA,
  797. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  798. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  799. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  800. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  801. regval &= ~(AR9287_AN_RF2G3_DB1 |
  802. AR9287_AN_RF2G3_DB2 |
  803. AR9287_AN_RF2G3_OB_CCK |
  804. AR9287_AN_RF2G3_OB_PSK |
  805. AR9287_AN_RF2G3_OB_QAM |
  806. AR9287_AN_RF2G3_OB_PAL_OFF);
  807. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  808. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  809. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  810. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  811. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  812. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  813. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  814. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  815. regval &= ~(AR9287_AN_RF2G3_DB1 |
  816. AR9287_AN_RF2G3_DB2 |
  817. AR9287_AN_RF2G3_OB_CCK |
  818. AR9287_AN_RF2G3_OB_PSK |
  819. AR9287_AN_RF2G3_OB_QAM |
  820. AR9287_AN_RF2G3_OB_PAL_OFF);
  821. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  822. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  823. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  824. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  825. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  826. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  827. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  828. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  829. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  830. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  831. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  832. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  833. AR9287_AN_TOP2_XPABIAS_LVL,
  834. AR9287_AN_TOP2_XPABIAS_LVL_S,
  835. pModal->xpaBiasLvl);
  836. }
  837. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  838. u16 i, bool is2GHz)
  839. {
  840. return ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
  841. }
  842. const struct eeprom_ops eep_ar9287_ops = {
  843. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  844. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  845. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  846. .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
  847. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  848. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  849. .set_board_values = ath9k_hw_ar9287_set_board_values,
  850. .set_txpower = ath9k_hw_ar9287_set_txpower,
  851. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  852. };