htt_tx.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. lockdep_assert_held(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  169. return ret;
  170. }
  171. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  172. {
  173. struct ath10k *ar = htt->ar;
  174. lockdep_assert_held(&htt->tx_lock);
  175. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  176. idr_remove(&htt->pending_tx, msdu_id);
  177. }
  178. static void ath10k_htt_tx_free_cont_txbuf(struct ath10k_htt *htt)
  179. {
  180. struct ath10k *ar = htt->ar;
  181. size_t size;
  182. if (!htt->txbuf.vaddr)
  183. return;
  184. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  185. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr, htt->txbuf.paddr);
  186. }
  187. static int ath10k_htt_tx_alloc_cont_txbuf(struct ath10k_htt *htt)
  188. {
  189. struct ath10k *ar = htt->ar;
  190. size_t size;
  191. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  192. htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size, &htt->txbuf.paddr,
  193. GFP_KERNEL);
  194. if (!htt->txbuf.vaddr)
  195. return -ENOMEM;
  196. return 0;
  197. }
  198. static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
  199. {
  200. size_t size;
  201. if (!htt->frag_desc.vaddr)
  202. return;
  203. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  204. dma_free_coherent(htt->ar->dev,
  205. size,
  206. htt->frag_desc.vaddr,
  207. htt->frag_desc.paddr);
  208. }
  209. static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
  210. {
  211. struct ath10k *ar = htt->ar;
  212. size_t size;
  213. if (!ar->hw_params.continuous_frag_desc)
  214. return 0;
  215. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  216. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  217. &htt->frag_desc.paddr,
  218. GFP_KERNEL);
  219. if (!htt->frag_desc.vaddr)
  220. return -ENOMEM;
  221. return 0;
  222. }
  223. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  224. {
  225. struct ath10k *ar = htt->ar;
  226. size_t size;
  227. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  228. ar->running_fw->fw_file.fw_features))
  229. return;
  230. size = sizeof(*htt->tx_q_state.vaddr);
  231. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  232. kfree(htt->tx_q_state.vaddr);
  233. }
  234. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  235. {
  236. struct ath10k *ar = htt->ar;
  237. size_t size;
  238. int ret;
  239. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  240. ar->running_fw->fw_file.fw_features))
  241. return 0;
  242. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  243. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  244. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  245. size = sizeof(*htt->tx_q_state.vaddr);
  246. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  247. if (!htt->tx_q_state.vaddr)
  248. return -ENOMEM;
  249. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  250. size, DMA_TO_DEVICE);
  251. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  252. if (ret) {
  253. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  254. kfree(htt->tx_q_state.vaddr);
  255. return -EIO;
  256. }
  257. return 0;
  258. }
  259. static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
  260. {
  261. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  262. kfifo_free(&htt->txdone_fifo);
  263. }
  264. static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
  265. {
  266. int ret;
  267. size_t size;
  268. size = roundup_pow_of_two(htt->max_num_pending_tx);
  269. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  270. return ret;
  271. }
  272. static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt)
  273. {
  274. struct ath10k *ar = htt->ar;
  275. int ret;
  276. ret = ath10k_htt_tx_alloc_cont_txbuf(htt);
  277. if (ret) {
  278. ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
  279. return ret;
  280. }
  281. ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
  282. if (ret) {
  283. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  284. goto free_txbuf;
  285. }
  286. ret = ath10k_htt_tx_alloc_txq(htt);
  287. if (ret) {
  288. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  289. goto free_frag_desc;
  290. }
  291. ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
  292. if (ret) {
  293. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  294. goto free_txq;
  295. }
  296. return 0;
  297. free_txq:
  298. ath10k_htt_tx_free_txq(htt);
  299. free_frag_desc:
  300. ath10k_htt_tx_free_cont_frag_desc(htt);
  301. free_txbuf:
  302. ath10k_htt_tx_free_cont_txbuf(htt);
  303. return ret;
  304. }
  305. int ath10k_htt_tx_start(struct ath10k_htt *htt)
  306. {
  307. struct ath10k *ar = htt->ar;
  308. int ret;
  309. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  310. htt->max_num_pending_tx);
  311. spin_lock_init(&htt->tx_lock);
  312. idr_init(&htt->pending_tx);
  313. if (htt->tx_mem_allocated)
  314. return 0;
  315. ret = ath10k_htt_tx_alloc_buf(htt);
  316. if (ret)
  317. goto free_idr_pending_tx;
  318. htt->tx_mem_allocated = true;
  319. return 0;
  320. free_idr_pending_tx:
  321. idr_destroy(&htt->pending_tx);
  322. return ret;
  323. }
  324. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  325. {
  326. struct ath10k *ar = ctx;
  327. struct ath10k_htt *htt = &ar->htt;
  328. struct htt_tx_done tx_done = {0};
  329. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  330. tx_done.msdu_id = msdu_id;
  331. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  332. ath10k_txrx_tx_unref(htt, &tx_done);
  333. return 0;
  334. }
  335. void ath10k_htt_tx_destroy(struct ath10k_htt *htt)
  336. {
  337. if (!htt->tx_mem_allocated)
  338. return;
  339. ath10k_htt_tx_free_cont_txbuf(htt);
  340. ath10k_htt_tx_free_txq(htt);
  341. ath10k_htt_tx_free_cont_frag_desc(htt);
  342. ath10k_htt_tx_free_txdone_fifo(htt);
  343. htt->tx_mem_allocated = false;
  344. }
  345. void ath10k_htt_tx_stop(struct ath10k_htt *htt)
  346. {
  347. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  348. idr_destroy(&htt->pending_tx);
  349. }
  350. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  351. {
  352. ath10k_htt_tx_stop(htt);
  353. ath10k_htt_tx_destroy(htt);
  354. }
  355. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  356. {
  357. dev_kfree_skb_any(skb);
  358. }
  359. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  360. {
  361. dev_kfree_skb_any(skb);
  362. }
  363. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  364. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  365. {
  366. struct ath10k *ar = htt->ar;
  367. struct sk_buff *skb;
  368. struct htt_cmd *cmd;
  369. int len = 0;
  370. int ret;
  371. len += sizeof(cmd->hdr);
  372. len += sizeof(cmd->ver_req);
  373. skb = ath10k_htc_alloc_skb(ar, len);
  374. if (!skb)
  375. return -ENOMEM;
  376. skb_put(skb, len);
  377. cmd = (struct htt_cmd *)skb->data;
  378. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  379. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  380. if (ret) {
  381. dev_kfree_skb_any(skb);
  382. return ret;
  383. }
  384. return 0;
  385. }
  386. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  387. {
  388. struct ath10k *ar = htt->ar;
  389. struct htt_stats_req *req;
  390. struct sk_buff *skb;
  391. struct htt_cmd *cmd;
  392. int len = 0, ret;
  393. len += sizeof(cmd->hdr);
  394. len += sizeof(cmd->stats_req);
  395. skb = ath10k_htc_alloc_skb(ar, len);
  396. if (!skb)
  397. return -ENOMEM;
  398. skb_put(skb, len);
  399. cmd = (struct htt_cmd *)skb->data;
  400. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  401. req = &cmd->stats_req;
  402. memset(req, 0, sizeof(*req));
  403. /* currently we support only max 8 bit masks so no need to worry
  404. * about endian support */
  405. req->upload_types[0] = mask;
  406. req->reset_types[0] = mask;
  407. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  408. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  409. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  410. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  411. if (ret) {
  412. ath10k_warn(ar, "failed to send htt type stats request: %d",
  413. ret);
  414. dev_kfree_skb_any(skb);
  415. return ret;
  416. }
  417. return 0;
  418. }
  419. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  420. {
  421. struct ath10k *ar = htt->ar;
  422. struct sk_buff *skb;
  423. struct htt_cmd *cmd;
  424. struct htt_frag_desc_bank_cfg *cfg;
  425. int ret, size;
  426. u8 info;
  427. if (!ar->hw_params.continuous_frag_desc)
  428. return 0;
  429. if (!htt->frag_desc.paddr) {
  430. ath10k_warn(ar, "invalid frag desc memory\n");
  431. return -EINVAL;
  432. }
  433. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  434. skb = ath10k_htc_alloc_skb(ar, size);
  435. if (!skb)
  436. return -ENOMEM;
  437. skb_put(skb, size);
  438. cmd = (struct htt_cmd *)skb->data;
  439. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  440. info = 0;
  441. info |= SM(htt->tx_q_state.type,
  442. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  443. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  444. ar->running_fw->fw_file.fw_features))
  445. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  446. cfg = &cmd->frag_desc_bank_cfg;
  447. cfg->info = info;
  448. cfg->num_banks = 1;
  449. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  450. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  451. cfg->bank_id[0].bank_min_id = 0;
  452. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  453. 1);
  454. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  455. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  456. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  457. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  458. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  459. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  460. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  461. if (ret) {
  462. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  463. ret);
  464. dev_kfree_skb_any(skb);
  465. return ret;
  466. }
  467. return 0;
  468. }
  469. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  470. {
  471. struct ath10k *ar = htt->ar;
  472. struct sk_buff *skb;
  473. struct htt_cmd *cmd;
  474. struct htt_rx_ring_setup_ring *ring;
  475. const int num_rx_ring = 1;
  476. u16 flags;
  477. u32 fw_idx;
  478. int len;
  479. int ret;
  480. /*
  481. * the HW expects the buffer to be an integral number of 4-byte
  482. * "words"
  483. */
  484. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  485. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  486. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  487. + (sizeof(*ring) * num_rx_ring);
  488. skb = ath10k_htc_alloc_skb(ar, len);
  489. if (!skb)
  490. return -ENOMEM;
  491. skb_put(skb, len);
  492. cmd = (struct htt_cmd *)skb->data;
  493. ring = &cmd->rx_setup.rings[0];
  494. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  495. cmd->rx_setup.hdr.num_rings = 1;
  496. /* FIXME: do we need all of this? */
  497. flags = 0;
  498. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  499. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  500. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  501. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  502. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  503. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  504. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  505. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  506. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  507. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  508. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  509. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  510. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  511. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  512. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  513. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  514. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  515. ring->fw_idx_shadow_reg_paddr =
  516. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  517. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  518. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  519. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  520. ring->flags = __cpu_to_le16(flags);
  521. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  522. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  523. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  524. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  525. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  526. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  527. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  528. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  529. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  530. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  531. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  532. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  533. #undef desc_offset
  534. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  535. if (ret) {
  536. dev_kfree_skb_any(skb);
  537. return ret;
  538. }
  539. return 0;
  540. }
  541. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  542. u8 max_subfrms_ampdu,
  543. u8 max_subfrms_amsdu)
  544. {
  545. struct ath10k *ar = htt->ar;
  546. struct htt_aggr_conf *aggr_conf;
  547. struct sk_buff *skb;
  548. struct htt_cmd *cmd;
  549. int len;
  550. int ret;
  551. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  552. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  553. return -EINVAL;
  554. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  555. return -EINVAL;
  556. len = sizeof(cmd->hdr);
  557. len += sizeof(cmd->aggr_conf);
  558. skb = ath10k_htc_alloc_skb(ar, len);
  559. if (!skb)
  560. return -ENOMEM;
  561. skb_put(skb, len);
  562. cmd = (struct htt_cmd *)skb->data;
  563. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  564. aggr_conf = &cmd->aggr_conf;
  565. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  566. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  567. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  568. aggr_conf->max_num_amsdu_subframes,
  569. aggr_conf->max_num_ampdu_subframes);
  570. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  571. if (ret) {
  572. dev_kfree_skb_any(skb);
  573. return ret;
  574. }
  575. return 0;
  576. }
  577. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  578. __le32 token,
  579. __le16 fetch_seq_num,
  580. struct htt_tx_fetch_record *records,
  581. size_t num_records)
  582. {
  583. struct sk_buff *skb;
  584. struct htt_cmd *cmd;
  585. const u16 resp_id = 0;
  586. int len = 0;
  587. int ret;
  588. /* Response IDs are echo-ed back only for host driver convienence
  589. * purposes. They aren't used for anything in the driver yet so use 0.
  590. */
  591. len += sizeof(cmd->hdr);
  592. len += sizeof(cmd->tx_fetch_resp);
  593. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  594. skb = ath10k_htc_alloc_skb(ar, len);
  595. if (!skb)
  596. return -ENOMEM;
  597. skb_put(skb, len);
  598. cmd = (struct htt_cmd *)skb->data;
  599. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  600. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  601. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  602. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  603. cmd->tx_fetch_resp.token = token;
  604. memcpy(cmd->tx_fetch_resp.records, records,
  605. sizeof(records[0]) * num_records);
  606. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  607. if (ret) {
  608. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  609. goto err_free_skb;
  610. }
  611. return 0;
  612. err_free_skb:
  613. dev_kfree_skb_any(skb);
  614. return ret;
  615. }
  616. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  617. {
  618. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  619. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  620. struct ath10k_vif *arvif;
  621. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  622. return ar->scan.vdev_id;
  623. } else if (cb->vif) {
  624. arvif = (void *)cb->vif->drv_priv;
  625. return arvif->vdev_id;
  626. } else if (ar->monitor_started) {
  627. return ar->monitor_vdev_id;
  628. } else {
  629. return 0;
  630. }
  631. }
  632. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  633. {
  634. struct ieee80211_hdr *hdr = (void *)skb->data;
  635. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  636. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  637. return HTT_DATA_TX_EXT_TID_MGMT;
  638. else if (cb->flags & ATH10K_SKB_F_QOS)
  639. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  640. else
  641. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  642. }
  643. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  644. {
  645. struct ath10k *ar = htt->ar;
  646. struct device *dev = ar->dev;
  647. struct sk_buff *txdesc = NULL;
  648. struct htt_cmd *cmd;
  649. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  650. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  651. int len = 0;
  652. int msdu_id = -1;
  653. int res;
  654. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  655. len += sizeof(cmd->hdr);
  656. len += sizeof(cmd->mgmt_tx);
  657. spin_lock_bh(&htt->tx_lock);
  658. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  659. spin_unlock_bh(&htt->tx_lock);
  660. if (res < 0)
  661. goto err;
  662. msdu_id = res;
  663. if ((ieee80211_is_action(hdr->frame_control) ||
  664. ieee80211_is_deauth(hdr->frame_control) ||
  665. ieee80211_is_disassoc(hdr->frame_control)) &&
  666. ieee80211_has_protected(hdr->frame_control)) {
  667. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  668. }
  669. txdesc = ath10k_htc_alloc_skb(ar, len);
  670. if (!txdesc) {
  671. res = -ENOMEM;
  672. goto err_free_msdu_id;
  673. }
  674. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  675. DMA_TO_DEVICE);
  676. res = dma_mapping_error(dev, skb_cb->paddr);
  677. if (res) {
  678. res = -EIO;
  679. goto err_free_txdesc;
  680. }
  681. skb_put(txdesc, len);
  682. cmd = (struct htt_cmd *)txdesc->data;
  683. memset(cmd, 0, len);
  684. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  685. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  686. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  687. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  688. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  689. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  690. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  691. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  692. if (res)
  693. goto err_unmap_msdu;
  694. return 0;
  695. err_unmap_msdu:
  696. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  697. err_free_txdesc:
  698. dev_kfree_skb_any(txdesc);
  699. err_free_msdu_id:
  700. spin_lock_bh(&htt->tx_lock);
  701. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  702. spin_unlock_bh(&htt->tx_lock);
  703. err:
  704. return res;
  705. }
  706. int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
  707. struct sk_buff *msdu)
  708. {
  709. struct ath10k *ar = htt->ar;
  710. struct device *dev = ar->dev;
  711. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  712. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  713. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  714. struct ath10k_hif_sg_item sg_items[2];
  715. struct ath10k_htt_txbuf *txbuf;
  716. struct htt_data_tx_desc_frag *frags;
  717. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  718. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  719. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  720. int prefetch_len;
  721. int res;
  722. u8 flags0 = 0;
  723. u16 msdu_id, flags1 = 0;
  724. u16 freq = 0;
  725. u32 frags_paddr = 0;
  726. u32 txbuf_paddr;
  727. struct htt_msdu_ext_desc *ext_desc = NULL;
  728. spin_lock_bh(&htt->tx_lock);
  729. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  730. spin_unlock_bh(&htt->tx_lock);
  731. if (res < 0)
  732. goto err;
  733. msdu_id = res;
  734. prefetch_len = min(htt->prefetch_len, msdu->len);
  735. prefetch_len = roundup(prefetch_len, 4);
  736. txbuf = &htt->txbuf.vaddr[msdu_id];
  737. txbuf_paddr = htt->txbuf.paddr +
  738. (sizeof(struct ath10k_htt_txbuf) * msdu_id);
  739. if ((ieee80211_is_action(hdr->frame_control) ||
  740. ieee80211_is_deauth(hdr->frame_control) ||
  741. ieee80211_is_disassoc(hdr->frame_control)) &&
  742. ieee80211_has_protected(hdr->frame_control)) {
  743. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  744. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  745. txmode == ATH10K_HW_TXRX_RAW &&
  746. ieee80211_has_protected(hdr->frame_control)) {
  747. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  748. }
  749. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  750. DMA_TO_DEVICE);
  751. res = dma_mapping_error(dev, skb_cb->paddr);
  752. if (res) {
  753. res = -EIO;
  754. goto err_free_msdu_id;
  755. }
  756. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  757. freq = ar->scan.roc_freq;
  758. switch (txmode) {
  759. case ATH10K_HW_TXRX_RAW:
  760. case ATH10K_HW_TXRX_NATIVE_WIFI:
  761. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  762. /* pass through */
  763. case ATH10K_HW_TXRX_ETHERNET:
  764. if (ar->hw_params.continuous_frag_desc) {
  765. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  766. sizeof(struct htt_msdu_ext_desc));
  767. frags = (struct htt_data_tx_desc_frag *)
  768. &htt->frag_desc.vaddr[msdu_id].frags;
  769. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  770. frags[0].tword_addr.paddr_lo =
  771. __cpu_to_le32(skb_cb->paddr);
  772. frags[0].tword_addr.paddr_hi = 0;
  773. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  774. frags_paddr = htt->frag_desc.paddr +
  775. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  776. } else {
  777. frags = txbuf->frags;
  778. frags[0].dword_addr.paddr =
  779. __cpu_to_le32(skb_cb->paddr);
  780. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  781. frags[1].dword_addr.paddr = 0;
  782. frags[1].dword_addr.len = 0;
  783. frags_paddr = txbuf_paddr;
  784. }
  785. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  786. break;
  787. case ATH10K_HW_TXRX_MGMT:
  788. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  789. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  790. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  791. frags_paddr = skb_cb->paddr;
  792. break;
  793. }
  794. /* Normally all commands go through HTC which manages tx credits for
  795. * each endpoint and notifies when tx is completed.
  796. *
  797. * HTT endpoint is creditless so there's no need to care about HTC
  798. * flags. In that case it is trivial to fill the HTC header here.
  799. *
  800. * MSDU transmission is considered completed upon HTT event. This
  801. * implies no relevant resources can be freed until after the event is
  802. * received. That's why HTC tx completion handler itself is ignored by
  803. * setting NULL to transfer_context for all sg items.
  804. *
  805. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  806. * as it's a waste of resources. By bypassing HTC it is possible to
  807. * avoid extra memory allocations, compress data structures and thus
  808. * improve performance. */
  809. txbuf->htc_hdr.eid = htt->eid;
  810. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  811. sizeof(txbuf->cmd_tx) +
  812. prefetch_len);
  813. txbuf->htc_hdr.flags = 0;
  814. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  815. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  816. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  817. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  818. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  819. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  820. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  821. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  822. if (ar->hw_params.continuous_frag_desc)
  823. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  824. }
  825. /* Prevent firmware from sending up tx inspection requests. There's
  826. * nothing ath10k can do with frames requested for inspection so force
  827. * it to simply rely a regular tx completion with discard status.
  828. */
  829. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  830. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  831. txbuf->cmd_tx.flags0 = flags0;
  832. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  833. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  834. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  835. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  836. if (ath10k_mac_tx_frm_has_freq(ar)) {
  837. txbuf->cmd_tx.offchan_tx.peerid =
  838. __cpu_to_le16(HTT_INVALID_PEERID);
  839. txbuf->cmd_tx.offchan_tx.freq =
  840. __cpu_to_le16(freq);
  841. } else {
  842. txbuf->cmd_tx.peerid =
  843. __cpu_to_le32(HTT_INVALID_PEERID);
  844. }
  845. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  846. ath10k_dbg(ar, ATH10K_DBG_HTT,
  847. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  848. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  849. (u32)skb_cb->paddr, vdev_id, tid, freq);
  850. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  851. msdu->data, msdu->len);
  852. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  853. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  854. sg_items[0].transfer_id = 0;
  855. sg_items[0].transfer_context = NULL;
  856. sg_items[0].vaddr = &txbuf->htc_hdr;
  857. sg_items[0].paddr = txbuf_paddr +
  858. sizeof(txbuf->frags);
  859. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  860. sizeof(txbuf->cmd_hdr) +
  861. sizeof(txbuf->cmd_tx);
  862. sg_items[1].transfer_id = 0;
  863. sg_items[1].transfer_context = NULL;
  864. sg_items[1].vaddr = msdu->data;
  865. sg_items[1].paddr = skb_cb->paddr;
  866. sg_items[1].len = prefetch_len;
  867. res = ath10k_hif_tx_sg(htt->ar,
  868. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  869. sg_items, ARRAY_SIZE(sg_items));
  870. if (res)
  871. goto err_unmap_msdu;
  872. return 0;
  873. err_unmap_msdu:
  874. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  875. err_free_msdu_id:
  876. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  877. err:
  878. return res;
  879. }