ce.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "hif.h"
  18. #include "pci.h"
  19. #include "ce.h"
  20. #include "debug.h"
  21. /*
  22. * Support for Copy Engine hardware, which is mainly used for
  23. * communication between Host and Target over a PCIe interconnect.
  24. */
  25. /*
  26. * A single CopyEngine (CE) comprises two "rings":
  27. * a source ring
  28. * a destination ring
  29. *
  30. * Each ring consists of a number of descriptors which specify
  31. * an address, length, and meta-data.
  32. *
  33. * Typically, one side of the PCIe interconnect (Host or Target)
  34. * controls one ring and the other side controls the other ring.
  35. * The source side chooses when to initiate a transfer and it
  36. * chooses what to send (buffer address, length). The destination
  37. * side keeps a supply of "anonymous receive buffers" available and
  38. * it handles incoming data as it arrives (when the destination
  39. * receives an interrupt).
  40. *
  41. * The sender may send a simple buffer (address/length) or it may
  42. * send a small list of buffers. When a small list is sent, hardware
  43. * "gathers" these and they end up in a single destination buffer
  44. * with a single interrupt.
  45. *
  46. * There are several "contexts" managed by this layer -- more, it
  47. * may seem -- than should be needed. These are provided mainly for
  48. * maximum flexibility and especially to facilitate a simpler HIF
  49. * implementation. There are per-CopyEngine recv, send, and watermark
  50. * contexts. These are supplied by the caller when a recv, send,
  51. * or watermark handler is established and they are echoed back to
  52. * the caller when the respective callbacks are invoked. There is
  53. * also a per-transfer context supplied by the caller when a buffer
  54. * (or sendlist) is sent and when a buffer is enqueued for recv.
  55. * These per-transfer contexts are echoed back to the caller when
  56. * the buffer is sent/received.
  57. */
  58. static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
  59. u32 ce_ctrl_addr,
  60. unsigned int n)
  61. {
  62. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
  63. }
  64. static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
  65. u32 ce_ctrl_addr)
  66. {
  67. return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
  68. }
  69. static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
  70. u32 ce_ctrl_addr,
  71. unsigned int n)
  72. {
  73. ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
  74. }
  75. static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
  76. u32 ce_ctrl_addr)
  77. {
  78. return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
  79. }
  80. static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
  81. u32 ce_ctrl_addr)
  82. {
  83. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
  84. }
  85. static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
  86. u32 ce_ctrl_addr,
  87. unsigned int addr)
  88. {
  89. ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
  90. }
  91. static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
  92. u32 ce_ctrl_addr,
  93. unsigned int n)
  94. {
  95. ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
  96. }
  97. static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
  98. u32 ce_ctrl_addr,
  99. unsigned int n)
  100. {
  101. u32 ctrl1_addr = ath10k_pci_read32((ar),
  102. (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
  103. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  104. (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
  105. CE_CTRL1_DMAX_LENGTH_SET(n));
  106. }
  107. static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
  108. u32 ce_ctrl_addr,
  109. unsigned int n)
  110. {
  111. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  112. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  113. (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
  114. CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
  115. }
  116. static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
  117. u32 ce_ctrl_addr,
  118. unsigned int n)
  119. {
  120. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  121. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  122. (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
  123. CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
  124. }
  125. static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
  126. u32 ce_ctrl_addr)
  127. {
  128. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
  129. }
  130. static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
  131. u32 ce_ctrl_addr,
  132. u32 addr)
  133. {
  134. ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
  135. }
  136. static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
  137. u32 ce_ctrl_addr,
  138. unsigned int n)
  139. {
  140. ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
  141. }
  142. static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
  143. u32 ce_ctrl_addr,
  144. unsigned int n)
  145. {
  146. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  147. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  148. (addr & ~SRC_WATERMARK_HIGH_MASK) |
  149. SRC_WATERMARK_HIGH_SET(n));
  150. }
  151. static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
  152. u32 ce_ctrl_addr,
  153. unsigned int n)
  154. {
  155. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  156. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  157. (addr & ~SRC_WATERMARK_LOW_MASK) |
  158. SRC_WATERMARK_LOW_SET(n));
  159. }
  160. static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
  161. u32 ce_ctrl_addr,
  162. unsigned int n)
  163. {
  164. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  165. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  166. (addr & ~DST_WATERMARK_HIGH_MASK) |
  167. DST_WATERMARK_HIGH_SET(n));
  168. }
  169. static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
  170. u32 ce_ctrl_addr,
  171. unsigned int n)
  172. {
  173. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  174. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  175. (addr & ~DST_WATERMARK_LOW_MASK) |
  176. DST_WATERMARK_LOW_SET(n));
  177. }
  178. static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
  179. u32 ce_ctrl_addr)
  180. {
  181. u32 host_ie_addr = ath10k_pci_read32(ar,
  182. ce_ctrl_addr + HOST_IE_ADDRESS);
  183. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  184. host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
  185. }
  186. static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
  187. u32 ce_ctrl_addr)
  188. {
  189. u32 host_ie_addr = ath10k_pci_read32(ar,
  190. ce_ctrl_addr + HOST_IE_ADDRESS);
  191. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  192. host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
  193. }
  194. static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
  195. u32 ce_ctrl_addr)
  196. {
  197. u32 host_ie_addr = ath10k_pci_read32(ar,
  198. ce_ctrl_addr + HOST_IE_ADDRESS);
  199. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  200. host_ie_addr & ~CE_WATERMARK_MASK);
  201. }
  202. static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
  203. u32 ce_ctrl_addr)
  204. {
  205. u32 misc_ie_addr = ath10k_pci_read32(ar,
  206. ce_ctrl_addr + MISC_IE_ADDRESS);
  207. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  208. misc_ie_addr | CE_ERROR_MASK);
  209. }
  210. static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
  211. u32 ce_ctrl_addr)
  212. {
  213. u32 misc_ie_addr = ath10k_pci_read32(ar,
  214. ce_ctrl_addr + MISC_IE_ADDRESS);
  215. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  216. misc_ie_addr & ~CE_ERROR_MASK);
  217. }
  218. static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
  219. u32 ce_ctrl_addr,
  220. unsigned int mask)
  221. {
  222. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
  223. }
  224. /*
  225. * Guts of ath10k_ce_send, used by both ath10k_ce_send and
  226. * ath10k_ce_sendlist_send.
  227. * The caller takes responsibility for any needed locking.
  228. */
  229. int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
  230. void *per_transfer_context,
  231. u32 buffer,
  232. unsigned int nbytes,
  233. unsigned int transfer_id,
  234. unsigned int flags)
  235. {
  236. struct ath10k *ar = ce_state->ar;
  237. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  238. struct ce_desc *desc, sdesc;
  239. unsigned int nentries_mask = src_ring->nentries_mask;
  240. unsigned int sw_index = src_ring->sw_index;
  241. unsigned int write_index = src_ring->write_index;
  242. u32 ctrl_addr = ce_state->ctrl_addr;
  243. u32 desc_flags = 0;
  244. int ret = 0;
  245. if (nbytes > ce_state->src_sz_max)
  246. ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
  247. __func__, nbytes, ce_state->src_sz_max);
  248. if (unlikely(CE_RING_DELTA(nentries_mask,
  249. write_index, sw_index - 1) <= 0)) {
  250. ret = -ENOSR;
  251. goto exit;
  252. }
  253. desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
  254. write_index);
  255. desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
  256. if (flags & CE_SEND_FLAG_GATHER)
  257. desc_flags |= CE_DESC_FLAGS_GATHER;
  258. if (flags & CE_SEND_FLAG_BYTE_SWAP)
  259. desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
  260. sdesc.addr = __cpu_to_le32(buffer);
  261. sdesc.nbytes = __cpu_to_le16(nbytes);
  262. sdesc.flags = __cpu_to_le16(desc_flags);
  263. *desc = sdesc;
  264. src_ring->per_transfer_context[write_index] = per_transfer_context;
  265. /* Update Source Ring Write Index */
  266. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  267. /* WORKAROUND */
  268. if (!(flags & CE_SEND_FLAG_GATHER))
  269. ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
  270. src_ring->write_index = write_index;
  271. exit:
  272. return ret;
  273. }
  274. void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
  275. {
  276. struct ath10k *ar = pipe->ar;
  277. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  278. struct ath10k_ce_ring *src_ring = pipe->src_ring;
  279. u32 ctrl_addr = pipe->ctrl_addr;
  280. lockdep_assert_held(&ar_pci->ce_lock);
  281. /*
  282. * This function must be called only if there is an incomplete
  283. * scatter-gather transfer (before index register is updated)
  284. * that needs to be cleaned up.
  285. */
  286. if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
  287. return;
  288. if (WARN_ON_ONCE(src_ring->write_index ==
  289. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
  290. return;
  291. src_ring->write_index--;
  292. src_ring->write_index &= src_ring->nentries_mask;
  293. src_ring->per_transfer_context[src_ring->write_index] = NULL;
  294. }
  295. int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
  296. void *per_transfer_context,
  297. u32 buffer,
  298. unsigned int nbytes,
  299. unsigned int transfer_id,
  300. unsigned int flags)
  301. {
  302. struct ath10k *ar = ce_state->ar;
  303. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  304. int ret;
  305. spin_lock_bh(&ar_pci->ce_lock);
  306. ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
  307. buffer, nbytes, transfer_id, flags);
  308. spin_unlock_bh(&ar_pci->ce_lock);
  309. return ret;
  310. }
  311. int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
  312. {
  313. struct ath10k *ar = pipe->ar;
  314. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  315. int delta;
  316. spin_lock_bh(&ar_pci->ce_lock);
  317. delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
  318. pipe->src_ring->write_index,
  319. pipe->src_ring->sw_index - 1);
  320. spin_unlock_bh(&ar_pci->ce_lock);
  321. return delta;
  322. }
  323. int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
  324. {
  325. struct ath10k *ar = pipe->ar;
  326. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  327. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  328. unsigned int nentries_mask = dest_ring->nentries_mask;
  329. unsigned int write_index = dest_ring->write_index;
  330. unsigned int sw_index = dest_ring->sw_index;
  331. lockdep_assert_held(&ar_pci->ce_lock);
  332. return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
  333. }
  334. int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
  335. {
  336. struct ath10k *ar = pipe->ar;
  337. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  338. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  339. unsigned int nentries_mask = dest_ring->nentries_mask;
  340. unsigned int write_index = dest_ring->write_index;
  341. unsigned int sw_index = dest_ring->sw_index;
  342. struct ce_desc *base = dest_ring->base_addr_owner_space;
  343. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
  344. u32 ctrl_addr = pipe->ctrl_addr;
  345. lockdep_assert_held(&ar_pci->ce_lock);
  346. if ((pipe->id != 5) &&
  347. CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
  348. return -ENOSPC;
  349. desc->addr = __cpu_to_le32(paddr);
  350. desc->nbytes = 0;
  351. dest_ring->per_transfer_context[write_index] = ctx;
  352. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  353. ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
  354. dest_ring->write_index = write_index;
  355. return 0;
  356. }
  357. void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
  358. {
  359. struct ath10k *ar = pipe->ar;
  360. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  361. unsigned int nentries_mask = dest_ring->nentries_mask;
  362. unsigned int write_index = dest_ring->write_index;
  363. u32 ctrl_addr = pipe->ctrl_addr;
  364. u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
  365. /* Prevent CE ring stuck issue that will occur when ring is full.
  366. * Make sure that write index is 1 less than read index.
  367. */
  368. if ((cur_write_idx + nentries) == dest_ring->sw_index)
  369. nentries -= 1;
  370. write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
  371. ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
  372. dest_ring->write_index = write_index;
  373. }
  374. int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
  375. {
  376. struct ath10k *ar = pipe->ar;
  377. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  378. int ret;
  379. spin_lock_bh(&ar_pci->ce_lock);
  380. ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
  381. spin_unlock_bh(&ar_pci->ce_lock);
  382. return ret;
  383. }
  384. /*
  385. * Guts of ath10k_ce_completed_recv_next.
  386. * The caller takes responsibility for any necessary locking.
  387. */
  388. int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
  389. void **per_transfer_contextp,
  390. unsigned int *nbytesp)
  391. {
  392. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  393. unsigned int nentries_mask = dest_ring->nentries_mask;
  394. unsigned int sw_index = dest_ring->sw_index;
  395. struct ce_desc *base = dest_ring->base_addr_owner_space;
  396. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  397. struct ce_desc sdesc;
  398. u16 nbytes;
  399. /* Copy in one go for performance reasons */
  400. sdesc = *desc;
  401. nbytes = __le16_to_cpu(sdesc.nbytes);
  402. if (nbytes == 0) {
  403. /*
  404. * This closes a relatively unusual race where the Host
  405. * sees the updated DRRI before the update to the
  406. * corresponding descriptor has completed. We treat this
  407. * as a descriptor that is not yet done.
  408. */
  409. return -EIO;
  410. }
  411. desc->nbytes = 0;
  412. /* Return data from completed destination descriptor */
  413. *nbytesp = nbytes;
  414. if (per_transfer_contextp)
  415. *per_transfer_contextp =
  416. dest_ring->per_transfer_context[sw_index];
  417. /* Copy engine 5 (HTT Rx) will reuse the same transfer context.
  418. * So update transfer context all CEs except CE5.
  419. */
  420. if (ce_state->id != 5)
  421. dest_ring->per_transfer_context[sw_index] = NULL;
  422. /* Update sw_index */
  423. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  424. dest_ring->sw_index = sw_index;
  425. return 0;
  426. }
  427. int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
  428. void **per_transfer_contextp,
  429. unsigned int *nbytesp)
  430. {
  431. struct ath10k *ar = ce_state->ar;
  432. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  433. int ret;
  434. spin_lock_bh(&ar_pci->ce_lock);
  435. ret = ath10k_ce_completed_recv_next_nolock(ce_state,
  436. per_transfer_contextp,
  437. nbytesp);
  438. spin_unlock_bh(&ar_pci->ce_lock);
  439. return ret;
  440. }
  441. int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
  442. void **per_transfer_contextp,
  443. u32 *bufferp)
  444. {
  445. struct ath10k_ce_ring *dest_ring;
  446. unsigned int nentries_mask;
  447. unsigned int sw_index;
  448. unsigned int write_index;
  449. int ret;
  450. struct ath10k *ar;
  451. struct ath10k_pci *ar_pci;
  452. dest_ring = ce_state->dest_ring;
  453. if (!dest_ring)
  454. return -EIO;
  455. ar = ce_state->ar;
  456. ar_pci = ath10k_pci_priv(ar);
  457. spin_lock_bh(&ar_pci->ce_lock);
  458. nentries_mask = dest_ring->nentries_mask;
  459. sw_index = dest_ring->sw_index;
  460. write_index = dest_ring->write_index;
  461. if (write_index != sw_index) {
  462. struct ce_desc *base = dest_ring->base_addr_owner_space;
  463. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  464. /* Return data from completed destination descriptor */
  465. *bufferp = __le32_to_cpu(desc->addr);
  466. if (per_transfer_contextp)
  467. *per_transfer_contextp =
  468. dest_ring->per_transfer_context[sw_index];
  469. /* sanity */
  470. dest_ring->per_transfer_context[sw_index] = NULL;
  471. desc->nbytes = 0;
  472. /* Update sw_index */
  473. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  474. dest_ring->sw_index = sw_index;
  475. ret = 0;
  476. } else {
  477. ret = -EIO;
  478. }
  479. spin_unlock_bh(&ar_pci->ce_lock);
  480. return ret;
  481. }
  482. /*
  483. * Guts of ath10k_ce_completed_send_next.
  484. * The caller takes responsibility for any necessary locking.
  485. */
  486. int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
  487. void **per_transfer_contextp)
  488. {
  489. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  490. u32 ctrl_addr = ce_state->ctrl_addr;
  491. struct ath10k *ar = ce_state->ar;
  492. unsigned int nentries_mask = src_ring->nentries_mask;
  493. unsigned int sw_index = src_ring->sw_index;
  494. unsigned int read_index;
  495. if (src_ring->hw_index == sw_index) {
  496. /*
  497. * The SW completion index has caught up with the cached
  498. * version of the HW completion index.
  499. * Update the cached HW completion index to see whether
  500. * the SW has really caught up to the HW, or if the cached
  501. * value of the HW index has become stale.
  502. */
  503. read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  504. if (read_index == 0xffffffff)
  505. return -ENODEV;
  506. read_index &= nentries_mask;
  507. src_ring->hw_index = read_index;
  508. }
  509. read_index = src_ring->hw_index;
  510. if (read_index == sw_index)
  511. return -EIO;
  512. if (per_transfer_contextp)
  513. *per_transfer_contextp =
  514. src_ring->per_transfer_context[sw_index];
  515. /* sanity */
  516. src_ring->per_transfer_context[sw_index] = NULL;
  517. /* Update sw_index */
  518. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  519. src_ring->sw_index = sw_index;
  520. return 0;
  521. }
  522. /* NB: Modeled after ath10k_ce_completed_send_next */
  523. int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
  524. void **per_transfer_contextp,
  525. u32 *bufferp,
  526. unsigned int *nbytesp,
  527. unsigned int *transfer_idp)
  528. {
  529. struct ath10k_ce_ring *src_ring;
  530. unsigned int nentries_mask;
  531. unsigned int sw_index;
  532. unsigned int write_index;
  533. int ret;
  534. struct ath10k *ar;
  535. struct ath10k_pci *ar_pci;
  536. src_ring = ce_state->src_ring;
  537. if (!src_ring)
  538. return -EIO;
  539. ar = ce_state->ar;
  540. ar_pci = ath10k_pci_priv(ar);
  541. spin_lock_bh(&ar_pci->ce_lock);
  542. nentries_mask = src_ring->nentries_mask;
  543. sw_index = src_ring->sw_index;
  544. write_index = src_ring->write_index;
  545. if (write_index != sw_index) {
  546. struct ce_desc *base = src_ring->base_addr_owner_space;
  547. struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
  548. /* Return data from completed source descriptor */
  549. *bufferp = __le32_to_cpu(desc->addr);
  550. *nbytesp = __le16_to_cpu(desc->nbytes);
  551. *transfer_idp = MS(__le16_to_cpu(desc->flags),
  552. CE_DESC_FLAGS_META_DATA);
  553. if (per_transfer_contextp)
  554. *per_transfer_contextp =
  555. src_ring->per_transfer_context[sw_index];
  556. /* sanity */
  557. src_ring->per_transfer_context[sw_index] = NULL;
  558. /* Update sw_index */
  559. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  560. src_ring->sw_index = sw_index;
  561. ret = 0;
  562. } else {
  563. ret = -EIO;
  564. }
  565. spin_unlock_bh(&ar_pci->ce_lock);
  566. return ret;
  567. }
  568. int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
  569. void **per_transfer_contextp)
  570. {
  571. struct ath10k *ar = ce_state->ar;
  572. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  573. int ret;
  574. spin_lock_bh(&ar_pci->ce_lock);
  575. ret = ath10k_ce_completed_send_next_nolock(ce_state,
  576. per_transfer_contextp);
  577. spin_unlock_bh(&ar_pci->ce_lock);
  578. return ret;
  579. }
  580. /*
  581. * Guts of interrupt handler for per-engine interrupts on a particular CE.
  582. *
  583. * Invokes registered callbacks for recv_complete,
  584. * send_complete, and watermarks.
  585. */
  586. void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
  587. {
  588. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  589. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  590. u32 ctrl_addr = ce_state->ctrl_addr;
  591. spin_lock_bh(&ar_pci->ce_lock);
  592. /* Clear the copy-complete interrupts that will be handled here. */
  593. ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
  594. HOST_IS_COPY_COMPLETE_MASK);
  595. spin_unlock_bh(&ar_pci->ce_lock);
  596. if (ce_state->recv_cb)
  597. ce_state->recv_cb(ce_state);
  598. if (ce_state->send_cb)
  599. ce_state->send_cb(ce_state);
  600. spin_lock_bh(&ar_pci->ce_lock);
  601. /*
  602. * Misc CE interrupts are not being handled, but still need
  603. * to be cleared.
  604. */
  605. ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
  606. spin_unlock_bh(&ar_pci->ce_lock);
  607. }
  608. /*
  609. * Handler for per-engine interrupts on ALL active CEs.
  610. * This is used in cases where the system is sharing a
  611. * single interrput for all CEs
  612. */
  613. void ath10k_ce_per_engine_service_any(struct ath10k *ar)
  614. {
  615. int ce_id;
  616. u32 intr_summary;
  617. intr_summary = CE_INTERRUPT_SUMMARY(ar);
  618. for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
  619. if (intr_summary & (1 << ce_id))
  620. intr_summary &= ~(1 << ce_id);
  621. else
  622. /* no intr pending on this CE */
  623. continue;
  624. ath10k_ce_per_engine_service(ar, ce_id);
  625. }
  626. }
  627. /*
  628. * Adjust interrupts for the copy complete handler.
  629. * If it's needed for either send or recv, then unmask
  630. * this interrupt; otherwise, mask it.
  631. *
  632. * Called with ce_lock held.
  633. */
  634. static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
  635. {
  636. u32 ctrl_addr = ce_state->ctrl_addr;
  637. struct ath10k *ar = ce_state->ar;
  638. bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
  639. if ((!disable_copy_compl_intr) &&
  640. (ce_state->send_cb || ce_state->recv_cb))
  641. ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
  642. else
  643. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  644. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  645. }
  646. int ath10k_ce_disable_interrupts(struct ath10k *ar)
  647. {
  648. int ce_id;
  649. for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
  650. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  651. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  652. ath10k_ce_error_intr_disable(ar, ctrl_addr);
  653. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  654. }
  655. return 0;
  656. }
  657. void ath10k_ce_enable_interrupts(struct ath10k *ar)
  658. {
  659. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  660. int ce_id;
  661. /* Skip the last copy engine, CE7 the diagnostic window, as that
  662. * uses polling and isn't initialized for interrupts.
  663. */
  664. for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
  665. ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
  666. }
  667. static int ath10k_ce_init_src_ring(struct ath10k *ar,
  668. unsigned int ce_id,
  669. const struct ce_attr *attr)
  670. {
  671. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  672. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  673. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  674. u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  675. nentries = roundup_pow_of_two(attr->src_nentries);
  676. memset(src_ring->base_addr_owner_space, 0,
  677. nentries * sizeof(struct ce_desc));
  678. src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  679. src_ring->sw_index &= src_ring->nentries_mask;
  680. src_ring->hw_index = src_ring->sw_index;
  681. src_ring->write_index =
  682. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
  683. src_ring->write_index &= src_ring->nentries_mask;
  684. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
  685. src_ring->base_addr_ce_space);
  686. ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
  687. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
  688. ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
  689. ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
  690. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
  691. ath10k_dbg(ar, ATH10K_DBG_BOOT,
  692. "boot init ce src ring id %d entries %d base_addr %pK\n",
  693. ce_id, nentries, src_ring->base_addr_owner_space);
  694. return 0;
  695. }
  696. static int ath10k_ce_init_dest_ring(struct ath10k *ar,
  697. unsigned int ce_id,
  698. const struct ce_attr *attr)
  699. {
  700. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  701. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  702. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  703. u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  704. nentries = roundup_pow_of_two(attr->dest_nentries);
  705. memset(dest_ring->base_addr_owner_space, 0,
  706. nentries * sizeof(struct ce_desc));
  707. dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
  708. dest_ring->sw_index &= dest_ring->nentries_mask;
  709. dest_ring->write_index =
  710. ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
  711. dest_ring->write_index &= dest_ring->nentries_mask;
  712. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
  713. dest_ring->base_addr_ce_space);
  714. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
  715. ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
  716. ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
  717. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
  718. ath10k_dbg(ar, ATH10K_DBG_BOOT,
  719. "boot ce dest ring id %d entries %d base_addr %pK\n",
  720. ce_id, nentries, dest_ring->base_addr_owner_space);
  721. return 0;
  722. }
  723. static struct ath10k_ce_ring *
  724. ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
  725. const struct ce_attr *attr)
  726. {
  727. struct ath10k_ce_ring *src_ring;
  728. u32 nentries = attr->src_nentries;
  729. dma_addr_t base_addr;
  730. nentries = roundup_pow_of_two(nentries);
  731. src_ring = kzalloc(sizeof(*src_ring) +
  732. (nentries *
  733. sizeof(*src_ring->per_transfer_context)),
  734. GFP_KERNEL);
  735. if (src_ring == NULL)
  736. return ERR_PTR(-ENOMEM);
  737. src_ring->nentries = nentries;
  738. src_ring->nentries_mask = nentries - 1;
  739. /*
  740. * Legacy platforms that do not support cache
  741. * coherent DMA are unsupported
  742. */
  743. src_ring->base_addr_owner_space_unaligned =
  744. dma_alloc_coherent(ar->dev,
  745. (nentries * sizeof(struct ce_desc) +
  746. CE_DESC_RING_ALIGN),
  747. &base_addr, GFP_KERNEL);
  748. if (!src_ring->base_addr_owner_space_unaligned) {
  749. kfree(src_ring);
  750. return ERR_PTR(-ENOMEM);
  751. }
  752. src_ring->base_addr_ce_space_unaligned = base_addr;
  753. src_ring->base_addr_owner_space = PTR_ALIGN(
  754. src_ring->base_addr_owner_space_unaligned,
  755. CE_DESC_RING_ALIGN);
  756. src_ring->base_addr_ce_space = ALIGN(
  757. src_ring->base_addr_ce_space_unaligned,
  758. CE_DESC_RING_ALIGN);
  759. return src_ring;
  760. }
  761. static struct ath10k_ce_ring *
  762. ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
  763. const struct ce_attr *attr)
  764. {
  765. struct ath10k_ce_ring *dest_ring;
  766. u32 nentries;
  767. dma_addr_t base_addr;
  768. nentries = roundup_pow_of_two(attr->dest_nentries);
  769. dest_ring = kzalloc(sizeof(*dest_ring) +
  770. (nentries *
  771. sizeof(*dest_ring->per_transfer_context)),
  772. GFP_KERNEL);
  773. if (dest_ring == NULL)
  774. return ERR_PTR(-ENOMEM);
  775. dest_ring->nentries = nentries;
  776. dest_ring->nentries_mask = nentries - 1;
  777. /*
  778. * Legacy platforms that do not support cache
  779. * coherent DMA are unsupported
  780. */
  781. dest_ring->base_addr_owner_space_unaligned =
  782. dma_alloc_coherent(ar->dev,
  783. (nentries * sizeof(struct ce_desc) +
  784. CE_DESC_RING_ALIGN),
  785. &base_addr, GFP_KERNEL);
  786. if (!dest_ring->base_addr_owner_space_unaligned) {
  787. kfree(dest_ring);
  788. return ERR_PTR(-ENOMEM);
  789. }
  790. dest_ring->base_addr_ce_space_unaligned = base_addr;
  791. /*
  792. * Correctly initialize memory to 0 to prevent garbage
  793. * data crashing system when download firmware
  794. */
  795. memset(dest_ring->base_addr_owner_space_unaligned, 0,
  796. nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
  797. dest_ring->base_addr_owner_space = PTR_ALIGN(
  798. dest_ring->base_addr_owner_space_unaligned,
  799. CE_DESC_RING_ALIGN);
  800. dest_ring->base_addr_ce_space = ALIGN(
  801. dest_ring->base_addr_ce_space_unaligned,
  802. CE_DESC_RING_ALIGN);
  803. return dest_ring;
  804. }
  805. /*
  806. * Initialize a Copy Engine based on caller-supplied attributes.
  807. * This may be called once to initialize both source and destination
  808. * rings or it may be called twice for separate source and destination
  809. * initialization. It may be that only one side or the other is
  810. * initialized by software/firmware.
  811. */
  812. int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
  813. const struct ce_attr *attr)
  814. {
  815. int ret;
  816. if (attr->src_nentries) {
  817. ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
  818. if (ret) {
  819. ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
  820. ce_id, ret);
  821. return ret;
  822. }
  823. }
  824. if (attr->dest_nentries) {
  825. ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
  826. if (ret) {
  827. ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
  828. ce_id, ret);
  829. return ret;
  830. }
  831. }
  832. return 0;
  833. }
  834. static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
  835. {
  836. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  837. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
  838. ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
  839. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
  840. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
  841. }
  842. static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
  843. {
  844. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  845. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
  846. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
  847. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
  848. }
  849. void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
  850. {
  851. ath10k_ce_deinit_src_ring(ar, ce_id);
  852. ath10k_ce_deinit_dest_ring(ar, ce_id);
  853. }
  854. int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
  855. const struct ce_attr *attr)
  856. {
  857. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  858. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  859. int ret;
  860. /*
  861. * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
  862. * additional TX locking checks.
  863. *
  864. * For the lack of a better place do the check here.
  865. */
  866. BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
  867. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  868. BUILD_BUG_ON(2 * TARGET_10X_NUM_MSDU_DESC >
  869. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  870. BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
  871. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  872. ce_state->ar = ar;
  873. ce_state->id = ce_id;
  874. ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  875. ce_state->attr_flags = attr->flags;
  876. ce_state->src_sz_max = attr->src_sz_max;
  877. if (attr->src_nentries)
  878. ce_state->send_cb = attr->send_cb;
  879. if (attr->dest_nentries)
  880. ce_state->recv_cb = attr->recv_cb;
  881. if (attr->src_nentries) {
  882. ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
  883. if (IS_ERR(ce_state->src_ring)) {
  884. ret = PTR_ERR(ce_state->src_ring);
  885. ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
  886. ce_id, ret);
  887. ce_state->src_ring = NULL;
  888. return ret;
  889. }
  890. }
  891. if (attr->dest_nentries) {
  892. ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
  893. attr);
  894. if (IS_ERR(ce_state->dest_ring)) {
  895. ret = PTR_ERR(ce_state->dest_ring);
  896. ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
  897. ce_id, ret);
  898. ce_state->dest_ring = NULL;
  899. return ret;
  900. }
  901. }
  902. return 0;
  903. }
  904. void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
  905. {
  906. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  907. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  908. if (ce_state->src_ring) {
  909. dma_free_coherent(ar->dev,
  910. (ce_state->src_ring->nentries *
  911. sizeof(struct ce_desc) +
  912. CE_DESC_RING_ALIGN),
  913. ce_state->src_ring->base_addr_owner_space,
  914. ce_state->src_ring->base_addr_ce_space);
  915. kfree(ce_state->src_ring);
  916. }
  917. if (ce_state->dest_ring) {
  918. dma_free_coherent(ar->dev,
  919. (ce_state->dest_ring->nentries *
  920. sizeof(struct ce_desc) +
  921. CE_DESC_RING_ALIGN),
  922. ce_state->dest_ring->base_addr_owner_space,
  923. ce_state->dest_ring->base_addr_ce_space);
  924. kfree(ce_state->dest_ring);
  925. }
  926. ce_state->src_ring = NULL;
  927. ce_state->dest_ring = NULL;
  928. }