tc35815.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156
  1. /*
  2. * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
  3. *
  4. * Based on skelton.c by Donald Becker.
  5. *
  6. * This driver is a replacement of older and less maintained version.
  7. * This is a header of the older version:
  8. * -----<snip>-----
  9. * Copyright 2001 MontaVista Software Inc.
  10. * Author: MontaVista Software, Inc.
  11. * ahennessy@mvista.com
  12. * Copyright (C) 2000-2001 Toshiba Corporation
  13. * static const char *version =
  14. * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15. * -----<snip>-----
  16. *
  17. * This file is subject to the terms and conditions of the GNU General Public
  18. * License. See the file "COPYING" in the main directory of this archive
  19. * for more details.
  20. *
  21. * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22. * All Rights Reserved.
  23. */
  24. #define DRV_VERSION "1.39"
  25. static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  26. #define MODNAME "tc35815"
  27. #include <linux/module.h>
  28. #include <linux/kernel.h>
  29. #include <linux/types.h>
  30. #include <linux/fcntl.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/ioport.h>
  33. #include <linux/in.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/slab.h>
  36. #include <linux/string.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/errno.h>
  39. #include <linux/netdevice.h>
  40. #include <linux/etherdevice.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/delay.h>
  43. #include <linux/pci.h>
  44. #include <linux/phy.h>
  45. #include <linux/workqueue.h>
  46. #include <linux/platform_device.h>
  47. #include <linux/prefetch.h>
  48. #include <asm/io.h>
  49. #include <asm/byteorder.h>
  50. enum tc35815_chiptype {
  51. TC35815CF = 0,
  52. TC35815_NWU,
  53. TC35815_TX4939,
  54. };
  55. /* indexed by tc35815_chiptype, above */
  56. static const struct {
  57. const char *name;
  58. } chip_info[] = {
  59. { "TOSHIBA TC35815CF 10/100BaseTX" },
  60. { "TOSHIBA TC35815 with Wake on LAN" },
  61. { "TOSHIBA TC35815/TX4939" },
  62. };
  63. static const struct pci_device_id tc35815_pci_tbl[] = {
  64. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  65. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  66. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  67. {0,}
  68. };
  69. MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  70. /* see MODULE_PARM_DESC */
  71. static struct tc35815_options {
  72. int speed;
  73. int duplex;
  74. } options;
  75. /*
  76. * Registers
  77. */
  78. struct tc35815_regs {
  79. __u32 DMA_Ctl; /* 0x00 */
  80. __u32 TxFrmPtr;
  81. __u32 TxThrsh;
  82. __u32 TxPollCtr;
  83. __u32 BLFrmPtr;
  84. __u32 RxFragSize;
  85. __u32 Int_En;
  86. __u32 FDA_Bas;
  87. __u32 FDA_Lim; /* 0x20 */
  88. __u32 Int_Src;
  89. __u32 unused0[2];
  90. __u32 PauseCnt;
  91. __u32 RemPauCnt;
  92. __u32 TxCtlFrmStat;
  93. __u32 unused1;
  94. __u32 MAC_Ctl; /* 0x40 */
  95. __u32 CAM_Ctl;
  96. __u32 Tx_Ctl;
  97. __u32 Tx_Stat;
  98. __u32 Rx_Ctl;
  99. __u32 Rx_Stat;
  100. __u32 MD_Data;
  101. __u32 MD_CA;
  102. __u32 CAM_Adr; /* 0x60 */
  103. __u32 CAM_Data;
  104. __u32 CAM_Ena;
  105. __u32 PROM_Ctl;
  106. __u32 PROM_Data;
  107. __u32 Algn_Cnt;
  108. __u32 CRC_Cnt;
  109. __u32 Miss_Cnt;
  110. };
  111. /*
  112. * Bit assignments
  113. */
  114. /* DMA_Ctl bit assign ------------------------------------------------------- */
  115. #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
  116. #define DMA_RxAlign_1 0x00400000
  117. #define DMA_RxAlign_2 0x00800000
  118. #define DMA_RxAlign_3 0x00c00000
  119. #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
  120. #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
  121. #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
  122. #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
  123. #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
  124. #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
  125. #define DMA_TestMode 0x00002000 /* 1:Test Mode */
  126. #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
  127. #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
  128. /* RxFragSize bit assign ---------------------------------------------------- */
  129. #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
  130. #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
  131. /* MAC_Ctl bit assign ------------------------------------------------------- */
  132. #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
  133. #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
  134. #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
  135. #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
  136. #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
  137. #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
  138. #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
  139. #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
  140. #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
  141. #define MAC_Reset 0x00000004 /* 1:Software Reset */
  142. #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
  143. #define MAC_HaltReq 0x00000001 /* 1:Halt request */
  144. /* PROM_Ctl bit assign ------------------------------------------------------ */
  145. #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
  146. #define PROM_Read 0x00004000 /*10:Read operation */
  147. #define PROM_Write 0x00002000 /*01:Write operation */
  148. #define PROM_Erase 0x00006000 /*11:Erase operation */
  149. /*00:Enable or Disable Writting, */
  150. /* as specified in PROM_Addr. */
  151. #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
  152. /*00xxxx: disable */
  153. /* CAM_Ctl bit assign ------------------------------------------------------- */
  154. #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
  155. #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
  156. /* accept other */
  157. #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
  158. #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
  159. #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
  160. /* CAM_Ena bit assign ------------------------------------------------------- */
  161. #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
  162. #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
  163. #define CAM_Ena_Bit(index) (1 << (index))
  164. #define CAM_ENTRY_DESTINATION 0
  165. #define CAM_ENTRY_SOURCE 1
  166. #define CAM_ENTRY_MACCTL 20
  167. /* Tx_Ctl bit assign -------------------------------------------------------- */
  168. #define Tx_En 0x00000001 /* 1:Transmit enable */
  169. #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
  170. #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
  171. #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
  172. #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
  173. #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
  174. #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
  175. #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
  176. #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
  177. #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
  178. #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
  179. #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
  180. /* Tx_Stat bit assign ------------------------------------------------------- */
  181. #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
  182. #define Tx_ExColl 0x00000010 /* Excessive Collision */
  183. #define Tx_TXDefer 0x00000020 /* Transmit Defered */
  184. #define Tx_Paused 0x00000040 /* Transmit Paused */
  185. #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
  186. #define Tx_Under 0x00000100 /* Underrun */
  187. #define Tx_Defer 0x00000200 /* Deferral */
  188. #define Tx_NCarr 0x00000400 /* No Carrier */
  189. #define Tx_10Stat 0x00000800 /* 10Mbps Status */
  190. #define Tx_LateColl 0x00001000 /* Late Collision */
  191. #define Tx_TxPar 0x00002000 /* Tx Parity Error */
  192. #define Tx_Comp 0x00004000 /* Completion */
  193. #define Tx_Halted 0x00008000 /* Tx Halted */
  194. #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
  195. /* Rx_Ctl bit assign -------------------------------------------------------- */
  196. #define Rx_EnGood 0x00004000 /* 1:Enable Good */
  197. #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
  198. #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
  199. #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
  200. #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
  201. #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
  202. #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
  203. #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
  204. #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
  205. #define Rx_LongEn 0x00000004 /* 1:Long Enable */
  206. #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
  207. #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
  208. /* Rx_Stat bit assign ------------------------------------------------------- */
  209. #define Rx_Halted 0x00008000 /* Rx Halted */
  210. #define Rx_Good 0x00004000 /* Rx Good */
  211. #define Rx_RxPar 0x00002000 /* Rx Parity Error */
  212. #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
  213. #define Rx_LongErr 0x00000800 /* Rx Long Error */
  214. #define Rx_Over 0x00000400 /* Rx Overflow */
  215. #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
  216. #define Rx_Align 0x00000100 /* Rx Alignment Error */
  217. #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
  218. #define Rx_IntRx 0x00000040 /* Rx Interrupt */
  219. #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
  220. #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
  221. #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
  222. /* Int_En bit assign -------------------------------------------------------- */
  223. #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
  224. #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
  225. #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
  226. #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
  227. #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
  228. #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
  229. #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
  230. #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
  231. #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
  232. #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
  233. #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
  234. #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
  235. /* Exhausted Enable */
  236. /* Int_Src bit assign ------------------------------------------------------- */
  237. #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
  238. #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
  239. #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
  240. #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
  241. #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
  242. #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
  243. #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
  244. #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
  245. #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
  246. #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
  247. #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
  248. #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
  249. #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
  250. #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
  251. #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
  252. /* MD_CA bit assign --------------------------------------------------------- */
  253. #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
  254. #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
  255. #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
  256. /*
  257. * Descriptors
  258. */
  259. /* Frame descriptor */
  260. struct FDesc {
  261. volatile __u32 FDNext;
  262. volatile __u32 FDSystem;
  263. volatile __u32 FDStat;
  264. volatile __u32 FDCtl;
  265. };
  266. /* Buffer descriptor */
  267. struct BDesc {
  268. volatile __u32 BuffData;
  269. volatile __u32 BDCtl;
  270. };
  271. #define FD_ALIGN 16
  272. /* Frame Descriptor bit assign ---------------------------------------------- */
  273. #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
  274. #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
  275. #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
  276. #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
  277. #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
  278. #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
  279. #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
  280. #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
  281. #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
  282. #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
  283. #define FD_BDCnt_SHIFT 16
  284. /* Buffer Descriptor bit assign --------------------------------------------- */
  285. #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
  286. #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
  287. #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
  288. #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
  289. #define BD_RxBDID_SHIFT 16
  290. #define BD_RxBDSeqN_SHIFT 24
  291. /* Some useful constants. */
  292. #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
  293. Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
  294. Tx_En) /* maybe 0x7b01 */
  295. /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
  296. #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
  297. | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
  298. #define INT_EN_CMD (Int_NRAbtEn | \
  299. Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
  300. Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
  301. Int_STargAbtEn | \
  302. Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
  303. #define DMA_CTL_CMD DMA_BURST_SIZE
  304. #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
  305. /* Tuning parameters */
  306. #define DMA_BURST_SIZE 32
  307. #define TX_THRESHOLD 1024
  308. /* used threshold with packet max byte for low pci transfer ability.*/
  309. #define TX_THRESHOLD_MAX 1536
  310. /* setting threshold max value when overrun error occurred this count. */
  311. #define TX_THRESHOLD_KEEP_LIMIT 10
  312. /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
  313. #define FD_PAGE_NUM 4
  314. #define RX_BUF_NUM 128 /* < 256 */
  315. #define RX_FD_NUM 256 /* >= 32 */
  316. #define TX_FD_NUM 128
  317. #if RX_CTL_CMD & Rx_LongEn
  318. #define RX_BUF_SIZE PAGE_SIZE
  319. #elif RX_CTL_CMD & Rx_StripCRC
  320. #define RX_BUF_SIZE \
  321. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
  322. #else
  323. #define RX_BUF_SIZE \
  324. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
  325. #endif
  326. #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
  327. #define NAPI_WEIGHT 16
  328. struct TxFD {
  329. struct FDesc fd;
  330. struct BDesc bd;
  331. struct BDesc unused;
  332. };
  333. struct RxFD {
  334. struct FDesc fd;
  335. struct BDesc bd[0]; /* variable length */
  336. };
  337. struct FrFD {
  338. struct FDesc fd;
  339. struct BDesc bd[RX_BUF_NUM];
  340. };
  341. #define tc_readl(addr) ioread32(addr)
  342. #define tc_writel(d, addr) iowrite32(d, addr)
  343. #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
  344. /* Information that need to be kept for each controller. */
  345. struct tc35815_local {
  346. struct pci_dev *pci_dev;
  347. struct net_device *dev;
  348. struct napi_struct napi;
  349. /* statistics */
  350. struct {
  351. int max_tx_qlen;
  352. int tx_ints;
  353. int rx_ints;
  354. int tx_underrun;
  355. } lstats;
  356. /* Tx control lock. This protects the transmit buffer ring
  357. * state along with the "tx full" state of the driver. This
  358. * means all netif_queue flow control actions are protected
  359. * by this lock as well.
  360. */
  361. spinlock_t lock;
  362. spinlock_t rx_lock;
  363. struct mii_bus *mii_bus;
  364. int duplex;
  365. int speed;
  366. int link;
  367. struct work_struct restart_work;
  368. /*
  369. * Transmitting: Batch Mode.
  370. * 1 BD in 1 TxFD.
  371. * Receiving: Non-Packing Mode.
  372. * 1 circular FD for Free Buffer List.
  373. * RX_BUF_NUM BD in Free Buffer FD.
  374. * One Free Buffer BD has ETH_FRAME_LEN data buffer.
  375. */
  376. void *fd_buf; /* for TxFD, RxFD, FrFD */
  377. dma_addr_t fd_buf_dma;
  378. struct TxFD *tfd_base;
  379. unsigned int tfd_start;
  380. unsigned int tfd_end;
  381. struct RxFD *rfd_base;
  382. struct RxFD *rfd_limit;
  383. struct RxFD *rfd_cur;
  384. struct FrFD *fbl_ptr;
  385. unsigned int fbl_count;
  386. struct {
  387. struct sk_buff *skb;
  388. dma_addr_t skb_dma;
  389. } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
  390. u32 msg_enable;
  391. enum tc35815_chiptype chiptype;
  392. };
  393. static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
  394. {
  395. return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
  396. }
  397. #ifdef DEBUG
  398. static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
  399. {
  400. return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
  401. }
  402. #endif
  403. static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
  404. struct pci_dev *hwdev,
  405. dma_addr_t *dma_handle)
  406. {
  407. struct sk_buff *skb;
  408. skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
  409. if (!skb)
  410. return NULL;
  411. *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
  412. PCI_DMA_FROMDEVICE);
  413. if (pci_dma_mapping_error(hwdev, *dma_handle)) {
  414. dev_kfree_skb_any(skb);
  415. return NULL;
  416. }
  417. skb_reserve(skb, 2); /* make IP header 4byte aligned */
  418. return skb;
  419. }
  420. static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
  421. {
  422. pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
  423. PCI_DMA_FROMDEVICE);
  424. dev_kfree_skb_any(skb);
  425. }
  426. /* Index to functions, as function prototypes. */
  427. static int tc35815_open(struct net_device *dev);
  428. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
  429. static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
  430. static int tc35815_rx(struct net_device *dev, int limit);
  431. static int tc35815_poll(struct napi_struct *napi, int budget);
  432. static void tc35815_txdone(struct net_device *dev);
  433. static int tc35815_close(struct net_device *dev);
  434. static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
  435. static void tc35815_set_multicast_list(struct net_device *dev);
  436. static void tc35815_tx_timeout(struct net_device *dev);
  437. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
  438. #ifdef CONFIG_NET_POLL_CONTROLLER
  439. static void tc35815_poll_controller(struct net_device *dev);
  440. #endif
  441. static const struct ethtool_ops tc35815_ethtool_ops;
  442. /* Example routines you must write ;->. */
  443. static void tc35815_chip_reset(struct net_device *dev);
  444. static void tc35815_chip_init(struct net_device *dev);
  445. #ifdef DEBUG
  446. static void panic_queues(struct net_device *dev);
  447. #endif
  448. static void tc35815_restart_work(struct work_struct *work);
  449. static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  450. {
  451. struct net_device *dev = bus->priv;
  452. struct tc35815_regs __iomem *tr =
  453. (struct tc35815_regs __iomem *)dev->base_addr;
  454. unsigned long timeout = jiffies + HZ;
  455. tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
  456. udelay(12); /* it takes 32 x 400ns at least */
  457. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  458. if (time_after(jiffies, timeout))
  459. return -EIO;
  460. cpu_relax();
  461. }
  462. return tc_readl(&tr->MD_Data) & 0xffff;
  463. }
  464. static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
  465. {
  466. struct net_device *dev = bus->priv;
  467. struct tc35815_regs __iomem *tr =
  468. (struct tc35815_regs __iomem *)dev->base_addr;
  469. unsigned long timeout = jiffies + HZ;
  470. tc_writel(val, &tr->MD_Data);
  471. tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
  472. &tr->MD_CA);
  473. udelay(12); /* it takes 32 x 400ns at least */
  474. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  475. if (time_after(jiffies, timeout))
  476. return -EIO;
  477. cpu_relax();
  478. }
  479. return 0;
  480. }
  481. static void tc_handle_link_change(struct net_device *dev)
  482. {
  483. struct tc35815_local *lp = netdev_priv(dev);
  484. struct phy_device *phydev = dev->phydev;
  485. unsigned long flags;
  486. int status_change = 0;
  487. spin_lock_irqsave(&lp->lock, flags);
  488. if (phydev->link &&
  489. (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
  490. struct tc35815_regs __iomem *tr =
  491. (struct tc35815_regs __iomem *)dev->base_addr;
  492. u32 reg;
  493. reg = tc_readl(&tr->MAC_Ctl);
  494. reg |= MAC_HaltReq;
  495. tc_writel(reg, &tr->MAC_Ctl);
  496. if (phydev->duplex == DUPLEX_FULL)
  497. reg |= MAC_FullDup;
  498. else
  499. reg &= ~MAC_FullDup;
  500. tc_writel(reg, &tr->MAC_Ctl);
  501. reg &= ~MAC_HaltReq;
  502. tc_writel(reg, &tr->MAC_Ctl);
  503. /*
  504. * TX4939 PCFG.SPEEDn bit will be changed on
  505. * NETDEV_CHANGE event.
  506. */
  507. /*
  508. * WORKAROUND: enable LostCrS only if half duplex
  509. * operation.
  510. * (TX4939 does not have EnLCarr)
  511. */
  512. if (phydev->duplex == DUPLEX_HALF &&
  513. lp->chiptype != TC35815_TX4939)
  514. tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
  515. &tr->Tx_Ctl);
  516. lp->speed = phydev->speed;
  517. lp->duplex = phydev->duplex;
  518. status_change = 1;
  519. }
  520. if (phydev->link != lp->link) {
  521. if (phydev->link) {
  522. /* delayed promiscuous enabling */
  523. if (dev->flags & IFF_PROMISC)
  524. tc35815_set_multicast_list(dev);
  525. } else {
  526. lp->speed = 0;
  527. lp->duplex = -1;
  528. }
  529. lp->link = phydev->link;
  530. status_change = 1;
  531. }
  532. spin_unlock_irqrestore(&lp->lock, flags);
  533. if (status_change && netif_msg_link(lp)) {
  534. phy_print_status(phydev);
  535. pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
  536. dev->name,
  537. phy_read(phydev, MII_BMCR),
  538. phy_read(phydev, MII_BMSR),
  539. phy_read(phydev, MII_LPA));
  540. }
  541. }
  542. static int tc_mii_probe(struct net_device *dev)
  543. {
  544. struct tc35815_local *lp = netdev_priv(dev);
  545. struct phy_device *phydev;
  546. u32 dropmask;
  547. phydev = phy_find_first(lp->mii_bus);
  548. if (!phydev) {
  549. printk(KERN_ERR "%s: no PHY found\n", dev->name);
  550. return -ENODEV;
  551. }
  552. /* attach the mac to the phy */
  553. phydev = phy_connect(dev, phydev_name(phydev),
  554. &tc_handle_link_change,
  555. lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
  556. if (IS_ERR(phydev)) {
  557. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  558. return PTR_ERR(phydev);
  559. }
  560. phy_attached_info(phydev);
  561. /* mask with MAC supported features */
  562. phydev->supported &= PHY_BASIC_FEATURES;
  563. dropmask = 0;
  564. if (options.speed == 10)
  565. dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
  566. else if (options.speed == 100)
  567. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
  568. if (options.duplex == 1)
  569. dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
  570. else if (options.duplex == 2)
  571. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
  572. phydev->supported &= ~dropmask;
  573. phydev->advertising = phydev->supported;
  574. lp->link = 0;
  575. lp->speed = 0;
  576. lp->duplex = -1;
  577. return 0;
  578. }
  579. static int tc_mii_init(struct net_device *dev)
  580. {
  581. struct tc35815_local *lp = netdev_priv(dev);
  582. int err;
  583. lp->mii_bus = mdiobus_alloc();
  584. if (lp->mii_bus == NULL) {
  585. err = -ENOMEM;
  586. goto err_out;
  587. }
  588. lp->mii_bus->name = "tc35815_mii_bus";
  589. lp->mii_bus->read = tc_mdio_read;
  590. lp->mii_bus->write = tc_mdio_write;
  591. snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  592. (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
  593. lp->mii_bus->priv = dev;
  594. lp->mii_bus->parent = &lp->pci_dev->dev;
  595. err = mdiobus_register(lp->mii_bus);
  596. if (err)
  597. goto err_out_free_mii_bus;
  598. err = tc_mii_probe(dev);
  599. if (err)
  600. goto err_out_unregister_bus;
  601. return 0;
  602. err_out_unregister_bus:
  603. mdiobus_unregister(lp->mii_bus);
  604. err_out_free_mii_bus:
  605. mdiobus_free(lp->mii_bus);
  606. err_out:
  607. return err;
  608. }
  609. #ifdef CONFIG_CPU_TX49XX
  610. /*
  611. * Find a platform_device providing a MAC address. The platform code
  612. * should provide a "tc35815-mac" device with a MAC address in its
  613. * platform_data.
  614. */
  615. static int tc35815_mac_match(struct device *dev, void *data)
  616. {
  617. struct platform_device *plat_dev = to_platform_device(dev);
  618. struct pci_dev *pci_dev = data;
  619. unsigned int id = pci_dev->irq;
  620. return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
  621. }
  622. static int tc35815_read_plat_dev_addr(struct net_device *dev)
  623. {
  624. struct tc35815_local *lp = netdev_priv(dev);
  625. struct device *pd = bus_find_device(&platform_bus_type, NULL,
  626. lp->pci_dev, tc35815_mac_match);
  627. if (pd) {
  628. if (pd->platform_data)
  629. memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
  630. put_device(pd);
  631. return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
  632. }
  633. return -ENODEV;
  634. }
  635. #else
  636. static int tc35815_read_plat_dev_addr(struct net_device *dev)
  637. {
  638. return -ENODEV;
  639. }
  640. #endif
  641. static int tc35815_init_dev_addr(struct net_device *dev)
  642. {
  643. struct tc35815_regs __iomem *tr =
  644. (struct tc35815_regs __iomem *)dev->base_addr;
  645. int i;
  646. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  647. ;
  648. for (i = 0; i < 6; i += 2) {
  649. unsigned short data;
  650. tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
  651. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  652. ;
  653. data = tc_readl(&tr->PROM_Data);
  654. dev->dev_addr[i] = data & 0xff;
  655. dev->dev_addr[i+1] = data >> 8;
  656. }
  657. if (!is_valid_ether_addr(dev->dev_addr))
  658. return tc35815_read_plat_dev_addr(dev);
  659. return 0;
  660. }
  661. static const struct net_device_ops tc35815_netdev_ops = {
  662. .ndo_open = tc35815_open,
  663. .ndo_stop = tc35815_close,
  664. .ndo_start_xmit = tc35815_send_packet,
  665. .ndo_get_stats = tc35815_get_stats,
  666. .ndo_set_rx_mode = tc35815_set_multicast_list,
  667. .ndo_tx_timeout = tc35815_tx_timeout,
  668. .ndo_do_ioctl = tc35815_ioctl,
  669. .ndo_validate_addr = eth_validate_addr,
  670. .ndo_set_mac_address = eth_mac_addr,
  671. #ifdef CONFIG_NET_POLL_CONTROLLER
  672. .ndo_poll_controller = tc35815_poll_controller,
  673. #endif
  674. };
  675. static int tc35815_init_one(struct pci_dev *pdev,
  676. const struct pci_device_id *ent)
  677. {
  678. void __iomem *ioaddr = NULL;
  679. struct net_device *dev;
  680. struct tc35815_local *lp;
  681. int rc;
  682. static int printed_version;
  683. if (!printed_version++) {
  684. printk(version);
  685. dev_printk(KERN_DEBUG, &pdev->dev,
  686. "speed:%d duplex:%d\n",
  687. options.speed, options.duplex);
  688. }
  689. if (!pdev->irq) {
  690. dev_warn(&pdev->dev, "no IRQ assigned.\n");
  691. return -ENODEV;
  692. }
  693. /* dev zeroed in alloc_etherdev */
  694. dev = alloc_etherdev(sizeof(*lp));
  695. if (dev == NULL)
  696. return -ENOMEM;
  697. SET_NETDEV_DEV(dev, &pdev->dev);
  698. lp = netdev_priv(dev);
  699. lp->dev = dev;
  700. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  701. rc = pcim_enable_device(pdev);
  702. if (rc)
  703. goto err_out;
  704. rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
  705. if (rc)
  706. goto err_out;
  707. pci_set_master(pdev);
  708. ioaddr = pcim_iomap_table(pdev)[1];
  709. /* Initialize the device structure. */
  710. dev->netdev_ops = &tc35815_netdev_ops;
  711. dev->ethtool_ops = &tc35815_ethtool_ops;
  712. dev->watchdog_timeo = TC35815_TX_TIMEOUT;
  713. netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
  714. dev->irq = pdev->irq;
  715. dev->base_addr = (unsigned long)ioaddr;
  716. INIT_WORK(&lp->restart_work, tc35815_restart_work);
  717. spin_lock_init(&lp->lock);
  718. spin_lock_init(&lp->rx_lock);
  719. lp->pci_dev = pdev;
  720. lp->chiptype = ent->driver_data;
  721. lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
  722. pci_set_drvdata(pdev, dev);
  723. /* Soft reset the chip. */
  724. tc35815_chip_reset(dev);
  725. /* Retrieve the ethernet address. */
  726. if (tc35815_init_dev_addr(dev)) {
  727. dev_warn(&pdev->dev, "not valid ether addr\n");
  728. eth_hw_addr_random(dev);
  729. }
  730. rc = register_netdev(dev);
  731. if (rc)
  732. goto err_out;
  733. printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
  734. dev->name,
  735. chip_info[ent->driver_data].name,
  736. dev->base_addr,
  737. dev->dev_addr,
  738. dev->irq);
  739. rc = tc_mii_init(dev);
  740. if (rc)
  741. goto err_out_unregister;
  742. return 0;
  743. err_out_unregister:
  744. unregister_netdev(dev);
  745. err_out:
  746. free_netdev(dev);
  747. return rc;
  748. }
  749. static void tc35815_remove_one(struct pci_dev *pdev)
  750. {
  751. struct net_device *dev = pci_get_drvdata(pdev);
  752. struct tc35815_local *lp = netdev_priv(dev);
  753. phy_disconnect(dev->phydev);
  754. mdiobus_unregister(lp->mii_bus);
  755. mdiobus_free(lp->mii_bus);
  756. unregister_netdev(dev);
  757. free_netdev(dev);
  758. }
  759. static int
  760. tc35815_init_queues(struct net_device *dev)
  761. {
  762. struct tc35815_local *lp = netdev_priv(dev);
  763. int i;
  764. unsigned long fd_addr;
  765. if (!lp->fd_buf) {
  766. BUG_ON(sizeof(struct FDesc) +
  767. sizeof(struct BDesc) * RX_BUF_NUM +
  768. sizeof(struct FDesc) * RX_FD_NUM +
  769. sizeof(struct TxFD) * TX_FD_NUM >
  770. PAGE_SIZE * FD_PAGE_NUM);
  771. lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
  772. PAGE_SIZE * FD_PAGE_NUM,
  773. &lp->fd_buf_dma);
  774. if (!lp->fd_buf)
  775. return -ENOMEM;
  776. for (i = 0; i < RX_BUF_NUM; i++) {
  777. lp->rx_skbs[i].skb =
  778. alloc_rxbuf_skb(dev, lp->pci_dev,
  779. &lp->rx_skbs[i].skb_dma);
  780. if (!lp->rx_skbs[i].skb) {
  781. while (--i >= 0) {
  782. free_rxbuf_skb(lp->pci_dev,
  783. lp->rx_skbs[i].skb,
  784. lp->rx_skbs[i].skb_dma);
  785. lp->rx_skbs[i].skb = NULL;
  786. }
  787. pci_free_consistent(lp->pci_dev,
  788. PAGE_SIZE * FD_PAGE_NUM,
  789. lp->fd_buf,
  790. lp->fd_buf_dma);
  791. lp->fd_buf = NULL;
  792. return -ENOMEM;
  793. }
  794. }
  795. printk(KERN_DEBUG "%s: FD buf %p DataBuf",
  796. dev->name, lp->fd_buf);
  797. printk("\n");
  798. } else {
  799. for (i = 0; i < FD_PAGE_NUM; i++)
  800. clear_page((void *)((unsigned long)lp->fd_buf +
  801. i * PAGE_SIZE));
  802. }
  803. fd_addr = (unsigned long)lp->fd_buf;
  804. /* Free Descriptors (for Receive) */
  805. lp->rfd_base = (struct RxFD *)fd_addr;
  806. fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
  807. for (i = 0; i < RX_FD_NUM; i++)
  808. lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
  809. lp->rfd_cur = lp->rfd_base;
  810. lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
  811. /* Transmit Descriptors */
  812. lp->tfd_base = (struct TxFD *)fd_addr;
  813. fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
  814. for (i = 0; i < TX_FD_NUM; i++) {
  815. lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
  816. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  817. lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
  818. }
  819. lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
  820. lp->tfd_start = 0;
  821. lp->tfd_end = 0;
  822. /* Buffer List (for Receive) */
  823. lp->fbl_ptr = (struct FrFD *)fd_addr;
  824. lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
  825. lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
  826. /*
  827. * move all allocated skbs to head of rx_skbs[] array.
  828. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
  829. * tc35815_rx() had failed.
  830. */
  831. lp->fbl_count = 0;
  832. for (i = 0; i < RX_BUF_NUM; i++) {
  833. if (lp->rx_skbs[i].skb) {
  834. if (i != lp->fbl_count) {
  835. lp->rx_skbs[lp->fbl_count].skb =
  836. lp->rx_skbs[i].skb;
  837. lp->rx_skbs[lp->fbl_count].skb_dma =
  838. lp->rx_skbs[i].skb_dma;
  839. }
  840. lp->fbl_count++;
  841. }
  842. }
  843. for (i = 0; i < RX_BUF_NUM; i++) {
  844. if (i >= lp->fbl_count) {
  845. lp->fbl_ptr->bd[i].BuffData = 0;
  846. lp->fbl_ptr->bd[i].BDCtl = 0;
  847. continue;
  848. }
  849. lp->fbl_ptr->bd[i].BuffData =
  850. cpu_to_le32(lp->rx_skbs[i].skb_dma);
  851. /* BDID is index of FrFD.bd[] */
  852. lp->fbl_ptr->bd[i].BDCtl =
  853. cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
  854. RX_BUF_SIZE);
  855. }
  856. printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
  857. dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
  858. return 0;
  859. }
  860. static void
  861. tc35815_clear_queues(struct net_device *dev)
  862. {
  863. struct tc35815_local *lp = netdev_priv(dev);
  864. int i;
  865. for (i = 0; i < TX_FD_NUM; i++) {
  866. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  867. struct sk_buff *skb =
  868. fdsystem != 0xffffffff ?
  869. lp->tx_skbs[fdsystem].skb : NULL;
  870. #ifdef DEBUG
  871. if (lp->tx_skbs[i].skb != skb) {
  872. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  873. panic_queues(dev);
  874. }
  875. #else
  876. BUG_ON(lp->tx_skbs[i].skb != skb);
  877. #endif
  878. if (skb) {
  879. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  880. lp->tx_skbs[i].skb = NULL;
  881. lp->tx_skbs[i].skb_dma = 0;
  882. dev_kfree_skb_any(skb);
  883. }
  884. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  885. }
  886. tc35815_init_queues(dev);
  887. }
  888. static void
  889. tc35815_free_queues(struct net_device *dev)
  890. {
  891. struct tc35815_local *lp = netdev_priv(dev);
  892. int i;
  893. if (lp->tfd_base) {
  894. for (i = 0; i < TX_FD_NUM; i++) {
  895. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  896. struct sk_buff *skb =
  897. fdsystem != 0xffffffff ?
  898. lp->tx_skbs[fdsystem].skb : NULL;
  899. #ifdef DEBUG
  900. if (lp->tx_skbs[i].skb != skb) {
  901. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  902. panic_queues(dev);
  903. }
  904. #else
  905. BUG_ON(lp->tx_skbs[i].skb != skb);
  906. #endif
  907. if (skb) {
  908. dev_kfree_skb(skb);
  909. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  910. lp->tx_skbs[i].skb = NULL;
  911. lp->tx_skbs[i].skb_dma = 0;
  912. }
  913. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  914. }
  915. }
  916. lp->rfd_base = NULL;
  917. lp->rfd_limit = NULL;
  918. lp->rfd_cur = NULL;
  919. lp->fbl_ptr = NULL;
  920. for (i = 0; i < RX_BUF_NUM; i++) {
  921. if (lp->rx_skbs[i].skb) {
  922. free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
  923. lp->rx_skbs[i].skb_dma);
  924. lp->rx_skbs[i].skb = NULL;
  925. }
  926. }
  927. if (lp->fd_buf) {
  928. pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
  929. lp->fd_buf, lp->fd_buf_dma);
  930. lp->fd_buf = NULL;
  931. }
  932. }
  933. static void
  934. dump_txfd(struct TxFD *fd)
  935. {
  936. printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
  937. le32_to_cpu(fd->fd.FDNext),
  938. le32_to_cpu(fd->fd.FDSystem),
  939. le32_to_cpu(fd->fd.FDStat),
  940. le32_to_cpu(fd->fd.FDCtl));
  941. printk("BD: ");
  942. printk(" %08x %08x",
  943. le32_to_cpu(fd->bd.BuffData),
  944. le32_to_cpu(fd->bd.BDCtl));
  945. printk("\n");
  946. }
  947. static int
  948. dump_rxfd(struct RxFD *fd)
  949. {
  950. int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  951. if (bd_count > 8)
  952. bd_count = 8;
  953. printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
  954. le32_to_cpu(fd->fd.FDNext),
  955. le32_to_cpu(fd->fd.FDSystem),
  956. le32_to_cpu(fd->fd.FDStat),
  957. le32_to_cpu(fd->fd.FDCtl));
  958. if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
  959. return 0;
  960. printk("BD: ");
  961. for (i = 0; i < bd_count; i++)
  962. printk(" %08x %08x",
  963. le32_to_cpu(fd->bd[i].BuffData),
  964. le32_to_cpu(fd->bd[i].BDCtl));
  965. printk("\n");
  966. return bd_count;
  967. }
  968. #ifdef DEBUG
  969. static void
  970. dump_frfd(struct FrFD *fd)
  971. {
  972. int i;
  973. printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
  974. le32_to_cpu(fd->fd.FDNext),
  975. le32_to_cpu(fd->fd.FDSystem),
  976. le32_to_cpu(fd->fd.FDStat),
  977. le32_to_cpu(fd->fd.FDCtl));
  978. printk("BD: ");
  979. for (i = 0; i < RX_BUF_NUM; i++)
  980. printk(" %08x %08x",
  981. le32_to_cpu(fd->bd[i].BuffData),
  982. le32_to_cpu(fd->bd[i].BDCtl));
  983. printk("\n");
  984. }
  985. static void
  986. panic_queues(struct net_device *dev)
  987. {
  988. struct tc35815_local *lp = netdev_priv(dev);
  989. int i;
  990. printk("TxFD base %p, start %u, end %u\n",
  991. lp->tfd_base, lp->tfd_start, lp->tfd_end);
  992. printk("RxFD base %p limit %p cur %p\n",
  993. lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
  994. printk("FrFD %p\n", lp->fbl_ptr);
  995. for (i = 0; i < TX_FD_NUM; i++)
  996. dump_txfd(&lp->tfd_base[i]);
  997. for (i = 0; i < RX_FD_NUM; i++) {
  998. int bd_count = dump_rxfd(&lp->rfd_base[i]);
  999. i += (bd_count + 1) / 2; /* skip BDs */
  1000. }
  1001. dump_frfd(lp->fbl_ptr);
  1002. panic("%s: Illegal queue state.", dev->name);
  1003. }
  1004. #endif
  1005. static void print_eth(const u8 *add)
  1006. {
  1007. printk(KERN_DEBUG "print_eth(%p)\n", add);
  1008. printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
  1009. add + 6, add, add[12], add[13]);
  1010. }
  1011. static int tc35815_tx_full(struct net_device *dev)
  1012. {
  1013. struct tc35815_local *lp = netdev_priv(dev);
  1014. return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
  1015. }
  1016. static void tc35815_restart(struct net_device *dev)
  1017. {
  1018. struct tc35815_local *lp = netdev_priv(dev);
  1019. int ret;
  1020. if (dev->phydev) {
  1021. ret = phy_init_hw(dev->phydev);
  1022. if (ret)
  1023. printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
  1024. }
  1025. spin_lock_bh(&lp->rx_lock);
  1026. spin_lock_irq(&lp->lock);
  1027. tc35815_chip_reset(dev);
  1028. tc35815_clear_queues(dev);
  1029. tc35815_chip_init(dev);
  1030. /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
  1031. tc35815_set_multicast_list(dev);
  1032. spin_unlock_irq(&lp->lock);
  1033. spin_unlock_bh(&lp->rx_lock);
  1034. netif_wake_queue(dev);
  1035. }
  1036. static void tc35815_restart_work(struct work_struct *work)
  1037. {
  1038. struct tc35815_local *lp =
  1039. container_of(work, struct tc35815_local, restart_work);
  1040. struct net_device *dev = lp->dev;
  1041. tc35815_restart(dev);
  1042. }
  1043. static void tc35815_schedule_restart(struct net_device *dev)
  1044. {
  1045. struct tc35815_local *lp = netdev_priv(dev);
  1046. struct tc35815_regs __iomem *tr =
  1047. (struct tc35815_regs __iomem *)dev->base_addr;
  1048. unsigned long flags;
  1049. /* disable interrupts */
  1050. spin_lock_irqsave(&lp->lock, flags);
  1051. tc_writel(0, &tr->Int_En);
  1052. tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
  1053. schedule_work(&lp->restart_work);
  1054. spin_unlock_irqrestore(&lp->lock, flags);
  1055. }
  1056. static void tc35815_tx_timeout(struct net_device *dev)
  1057. {
  1058. struct tc35815_regs __iomem *tr =
  1059. (struct tc35815_regs __iomem *)dev->base_addr;
  1060. printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
  1061. dev->name, tc_readl(&tr->Tx_Stat));
  1062. /* Try to restart the adaptor. */
  1063. tc35815_schedule_restart(dev);
  1064. dev->stats.tx_errors++;
  1065. }
  1066. /*
  1067. * Open/initialize the controller. This is called (in the current kernel)
  1068. * sometime after booting when the 'ifconfig' program is run.
  1069. *
  1070. * This routine should set everything up anew at each open, even
  1071. * registers that "should" only need to be set once at boot, so that
  1072. * there is non-reboot way to recover if something goes wrong.
  1073. */
  1074. static int
  1075. tc35815_open(struct net_device *dev)
  1076. {
  1077. struct tc35815_local *lp = netdev_priv(dev);
  1078. /*
  1079. * This is used if the interrupt line can turned off (shared).
  1080. * See 3c503.c for an example of selecting the IRQ at config-time.
  1081. */
  1082. if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
  1083. dev->name, dev))
  1084. return -EAGAIN;
  1085. tc35815_chip_reset(dev);
  1086. if (tc35815_init_queues(dev) != 0) {
  1087. free_irq(dev->irq, dev);
  1088. return -EAGAIN;
  1089. }
  1090. napi_enable(&lp->napi);
  1091. /* Reset the hardware here. Don't forget to set the station address. */
  1092. spin_lock_irq(&lp->lock);
  1093. tc35815_chip_init(dev);
  1094. spin_unlock_irq(&lp->lock);
  1095. netif_carrier_off(dev);
  1096. /* schedule a link state check */
  1097. phy_start(dev->phydev);
  1098. /* We are now ready to accept transmit requeusts from
  1099. * the queueing layer of the networking.
  1100. */
  1101. netif_start_queue(dev);
  1102. return 0;
  1103. }
  1104. /* This will only be invoked if your driver is _not_ in XOFF state.
  1105. * What this means is that you need not check it, and that this
  1106. * invariant will hold if you make sure that the netif_*_queue()
  1107. * calls are done at the proper times.
  1108. */
  1109. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
  1110. {
  1111. struct tc35815_local *lp = netdev_priv(dev);
  1112. struct TxFD *txfd;
  1113. unsigned long flags;
  1114. /* If some error occurs while trying to transmit this
  1115. * packet, you should return '1' from this function.
  1116. * In such a case you _may not_ do anything to the
  1117. * SKB, it is still owned by the network queueing
  1118. * layer when an error is returned. This means you
  1119. * may not modify any SKB fields, you may not free
  1120. * the SKB, etc.
  1121. */
  1122. /* This is the most common case for modern hardware.
  1123. * The spinlock protects this code from the TX complete
  1124. * hardware interrupt handler. Queue flow control is
  1125. * thus managed under this lock as well.
  1126. */
  1127. spin_lock_irqsave(&lp->lock, flags);
  1128. /* failsafe... (handle txdone now if half of FDs are used) */
  1129. if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
  1130. TX_FD_NUM / 2)
  1131. tc35815_txdone(dev);
  1132. if (netif_msg_pktdata(lp))
  1133. print_eth(skb->data);
  1134. #ifdef DEBUG
  1135. if (lp->tx_skbs[lp->tfd_start].skb) {
  1136. printk("%s: tx_skbs conflict.\n", dev->name);
  1137. panic_queues(dev);
  1138. }
  1139. #else
  1140. BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
  1141. #endif
  1142. lp->tx_skbs[lp->tfd_start].skb = skb;
  1143. lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
  1144. /*add to ring */
  1145. txfd = &lp->tfd_base[lp->tfd_start];
  1146. txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
  1147. txfd->bd.BDCtl = cpu_to_le32(skb->len);
  1148. txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
  1149. txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
  1150. if (lp->tfd_start == lp->tfd_end) {
  1151. struct tc35815_regs __iomem *tr =
  1152. (struct tc35815_regs __iomem *)dev->base_addr;
  1153. /* Start DMA Transmitter. */
  1154. txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1155. txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1156. if (netif_msg_tx_queued(lp)) {
  1157. printk("%s: starting TxFD.\n", dev->name);
  1158. dump_txfd(txfd);
  1159. }
  1160. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1161. } else {
  1162. txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
  1163. if (netif_msg_tx_queued(lp)) {
  1164. printk("%s: queueing TxFD.\n", dev->name);
  1165. dump_txfd(txfd);
  1166. }
  1167. }
  1168. lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
  1169. /* If we just used up the very last entry in the
  1170. * TX ring on this device, tell the queueing
  1171. * layer to send no more.
  1172. */
  1173. if (tc35815_tx_full(dev)) {
  1174. if (netif_msg_tx_queued(lp))
  1175. printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
  1176. netif_stop_queue(dev);
  1177. }
  1178. /* When the TX completion hw interrupt arrives, this
  1179. * is when the transmit statistics are updated.
  1180. */
  1181. spin_unlock_irqrestore(&lp->lock, flags);
  1182. return NETDEV_TX_OK;
  1183. }
  1184. #define FATAL_ERROR_INT \
  1185. (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
  1186. static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
  1187. {
  1188. static int count;
  1189. printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
  1190. dev->name, status);
  1191. if (status & Int_IntPCI)
  1192. printk(" IntPCI");
  1193. if (status & Int_DmParErr)
  1194. printk(" DmParErr");
  1195. if (status & Int_IntNRAbt)
  1196. printk(" IntNRAbt");
  1197. printk("\n");
  1198. if (count++ > 100)
  1199. panic("%s: Too many fatal errors.", dev->name);
  1200. printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
  1201. /* Try to restart the adaptor. */
  1202. tc35815_schedule_restart(dev);
  1203. }
  1204. static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
  1205. {
  1206. struct tc35815_local *lp = netdev_priv(dev);
  1207. int ret = -1;
  1208. /* Fatal errors... */
  1209. if (status & FATAL_ERROR_INT) {
  1210. tc35815_fatal_error_interrupt(dev, status);
  1211. return 0;
  1212. }
  1213. /* recoverable errors */
  1214. if (status & Int_IntFDAEx) {
  1215. if (netif_msg_rx_err(lp))
  1216. dev_warn(&dev->dev,
  1217. "Free Descriptor Area Exhausted (%#x).\n",
  1218. status);
  1219. dev->stats.rx_dropped++;
  1220. ret = 0;
  1221. }
  1222. if (status & Int_IntBLEx) {
  1223. if (netif_msg_rx_err(lp))
  1224. dev_warn(&dev->dev,
  1225. "Buffer List Exhausted (%#x).\n",
  1226. status);
  1227. dev->stats.rx_dropped++;
  1228. ret = 0;
  1229. }
  1230. if (status & Int_IntExBD) {
  1231. if (netif_msg_rx_err(lp))
  1232. dev_warn(&dev->dev,
  1233. "Excessive Buffer Descriptors (%#x).\n",
  1234. status);
  1235. dev->stats.rx_length_errors++;
  1236. ret = 0;
  1237. }
  1238. /* normal notification */
  1239. if (status & Int_IntMacRx) {
  1240. /* Got a packet(s). */
  1241. ret = tc35815_rx(dev, limit);
  1242. lp->lstats.rx_ints++;
  1243. }
  1244. if (status & Int_IntMacTx) {
  1245. /* Transmit complete. */
  1246. lp->lstats.tx_ints++;
  1247. spin_lock_irq(&lp->lock);
  1248. tc35815_txdone(dev);
  1249. spin_unlock_irq(&lp->lock);
  1250. if (ret < 0)
  1251. ret = 0;
  1252. }
  1253. return ret;
  1254. }
  1255. /*
  1256. * The typical workload of the driver:
  1257. * Handle the network interface interrupts.
  1258. */
  1259. static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
  1260. {
  1261. struct net_device *dev = dev_id;
  1262. struct tc35815_local *lp = netdev_priv(dev);
  1263. struct tc35815_regs __iomem *tr =
  1264. (struct tc35815_regs __iomem *)dev->base_addr;
  1265. u32 dmactl = tc_readl(&tr->DMA_Ctl);
  1266. if (!(dmactl & DMA_IntMask)) {
  1267. /* disable interrupts */
  1268. tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
  1269. if (napi_schedule_prep(&lp->napi))
  1270. __napi_schedule(&lp->napi);
  1271. else {
  1272. printk(KERN_ERR "%s: interrupt taken in poll\n",
  1273. dev->name);
  1274. BUG();
  1275. }
  1276. (void)tc_readl(&tr->Int_Src); /* flush */
  1277. return IRQ_HANDLED;
  1278. }
  1279. return IRQ_NONE;
  1280. }
  1281. #ifdef CONFIG_NET_POLL_CONTROLLER
  1282. static void tc35815_poll_controller(struct net_device *dev)
  1283. {
  1284. disable_irq(dev->irq);
  1285. tc35815_interrupt(dev->irq, dev);
  1286. enable_irq(dev->irq);
  1287. }
  1288. #endif
  1289. /* We have a good packet(s), get it/them out of the buffers. */
  1290. static int
  1291. tc35815_rx(struct net_device *dev, int limit)
  1292. {
  1293. struct tc35815_local *lp = netdev_priv(dev);
  1294. unsigned int fdctl;
  1295. int i;
  1296. int received = 0;
  1297. while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
  1298. int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
  1299. int pkt_len = fdctl & FD_FDLength_MASK;
  1300. int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  1301. #ifdef DEBUG
  1302. struct RxFD *next_rfd;
  1303. #endif
  1304. #if (RX_CTL_CMD & Rx_StripCRC) == 0
  1305. pkt_len -= ETH_FCS_LEN;
  1306. #endif
  1307. if (netif_msg_rx_status(lp))
  1308. dump_rxfd(lp->rfd_cur);
  1309. if (status & Rx_Good) {
  1310. struct sk_buff *skb;
  1311. unsigned char *data;
  1312. int cur_bd;
  1313. if (--limit < 0)
  1314. break;
  1315. BUG_ON(bd_count > 1);
  1316. cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
  1317. & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1318. #ifdef DEBUG
  1319. if (cur_bd >= RX_BUF_NUM) {
  1320. printk("%s: invalid BDID.\n", dev->name);
  1321. panic_queues(dev);
  1322. }
  1323. BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
  1324. (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
  1325. if (!lp->rx_skbs[cur_bd].skb) {
  1326. printk("%s: NULL skb.\n", dev->name);
  1327. panic_queues(dev);
  1328. }
  1329. #else
  1330. BUG_ON(cur_bd >= RX_BUF_NUM);
  1331. #endif
  1332. skb = lp->rx_skbs[cur_bd].skb;
  1333. prefetch(skb->data);
  1334. lp->rx_skbs[cur_bd].skb = NULL;
  1335. pci_unmap_single(lp->pci_dev,
  1336. lp->rx_skbs[cur_bd].skb_dma,
  1337. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  1338. if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
  1339. memmove(skb->data, skb->data - NET_IP_ALIGN,
  1340. pkt_len);
  1341. data = skb_put(skb, pkt_len);
  1342. if (netif_msg_pktdata(lp))
  1343. print_eth(data);
  1344. skb->protocol = eth_type_trans(skb, dev);
  1345. netif_receive_skb(skb);
  1346. received++;
  1347. dev->stats.rx_packets++;
  1348. dev->stats.rx_bytes += pkt_len;
  1349. } else {
  1350. dev->stats.rx_errors++;
  1351. if (netif_msg_rx_err(lp))
  1352. dev_info(&dev->dev, "Rx error (status %x)\n",
  1353. status & Rx_Stat_Mask);
  1354. /* WORKAROUND: LongErr and CRCErr means Overflow. */
  1355. if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
  1356. status &= ~(Rx_LongErr|Rx_CRCErr);
  1357. status |= Rx_Over;
  1358. }
  1359. if (status & Rx_LongErr)
  1360. dev->stats.rx_length_errors++;
  1361. if (status & Rx_Over)
  1362. dev->stats.rx_fifo_errors++;
  1363. if (status & Rx_CRCErr)
  1364. dev->stats.rx_crc_errors++;
  1365. if (status & Rx_Align)
  1366. dev->stats.rx_frame_errors++;
  1367. }
  1368. if (bd_count > 0) {
  1369. /* put Free Buffer back to controller */
  1370. int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
  1371. unsigned char id =
  1372. (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1373. #ifdef DEBUG
  1374. if (id >= RX_BUF_NUM) {
  1375. printk("%s: invalid BDID.\n", dev->name);
  1376. panic_queues(dev);
  1377. }
  1378. #else
  1379. BUG_ON(id >= RX_BUF_NUM);
  1380. #endif
  1381. /* free old buffers */
  1382. lp->fbl_count--;
  1383. while (lp->fbl_count < RX_BUF_NUM)
  1384. {
  1385. unsigned char curid =
  1386. (id + 1 + lp->fbl_count) % RX_BUF_NUM;
  1387. struct BDesc *bd = &lp->fbl_ptr->bd[curid];
  1388. #ifdef DEBUG
  1389. bdctl = le32_to_cpu(bd->BDCtl);
  1390. if (bdctl & BD_CownsBD) {
  1391. printk("%s: Freeing invalid BD.\n",
  1392. dev->name);
  1393. panic_queues(dev);
  1394. }
  1395. #endif
  1396. /* pass BD to controller */
  1397. if (!lp->rx_skbs[curid].skb) {
  1398. lp->rx_skbs[curid].skb =
  1399. alloc_rxbuf_skb(dev,
  1400. lp->pci_dev,
  1401. &lp->rx_skbs[curid].skb_dma);
  1402. if (!lp->rx_skbs[curid].skb)
  1403. break; /* try on next reception */
  1404. bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
  1405. }
  1406. /* Note: BDLength was modified by chip. */
  1407. bd->BDCtl = cpu_to_le32(BD_CownsBD |
  1408. (curid << BD_RxBDID_SHIFT) |
  1409. RX_BUF_SIZE);
  1410. lp->fbl_count++;
  1411. }
  1412. }
  1413. /* put RxFD back to controller */
  1414. #ifdef DEBUG
  1415. next_rfd = fd_bus_to_virt(lp,
  1416. le32_to_cpu(lp->rfd_cur->fd.FDNext));
  1417. if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
  1418. printk("%s: RxFD FDNext invalid.\n", dev->name);
  1419. panic_queues(dev);
  1420. }
  1421. #endif
  1422. for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
  1423. /* pass FD to controller */
  1424. #ifdef DEBUG
  1425. lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
  1426. #else
  1427. lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
  1428. #endif
  1429. lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
  1430. lp->rfd_cur++;
  1431. }
  1432. if (lp->rfd_cur > lp->rfd_limit)
  1433. lp->rfd_cur = lp->rfd_base;
  1434. #ifdef DEBUG
  1435. if (lp->rfd_cur != next_rfd)
  1436. printk("rfd_cur = %p, next_rfd %p\n",
  1437. lp->rfd_cur, next_rfd);
  1438. #endif
  1439. }
  1440. return received;
  1441. }
  1442. static int tc35815_poll(struct napi_struct *napi, int budget)
  1443. {
  1444. struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
  1445. struct net_device *dev = lp->dev;
  1446. struct tc35815_regs __iomem *tr =
  1447. (struct tc35815_regs __iomem *)dev->base_addr;
  1448. int received = 0, handled;
  1449. u32 status;
  1450. if (budget <= 0)
  1451. return received;
  1452. spin_lock(&lp->rx_lock);
  1453. status = tc_readl(&tr->Int_Src);
  1454. do {
  1455. /* BLEx, FDAEx will be cleared later */
  1456. tc_writel(status & ~(Int_BLEx | Int_FDAEx),
  1457. &tr->Int_Src); /* write to clear */
  1458. handled = tc35815_do_interrupt(dev, status, budget - received);
  1459. if (status & (Int_BLEx | Int_FDAEx))
  1460. tc_writel(status & (Int_BLEx | Int_FDAEx),
  1461. &tr->Int_Src);
  1462. if (handled >= 0) {
  1463. received += handled;
  1464. if (received >= budget)
  1465. break;
  1466. }
  1467. status = tc_readl(&tr->Int_Src);
  1468. } while (status);
  1469. spin_unlock(&lp->rx_lock);
  1470. if (received < budget) {
  1471. napi_complete(napi);
  1472. /* enable interrupts */
  1473. tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
  1474. }
  1475. return received;
  1476. }
  1477. #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
  1478. static void
  1479. tc35815_check_tx_stat(struct net_device *dev, int status)
  1480. {
  1481. struct tc35815_local *lp = netdev_priv(dev);
  1482. const char *msg = NULL;
  1483. /* count collisions */
  1484. if (status & Tx_ExColl)
  1485. dev->stats.collisions += 16;
  1486. if (status & Tx_TxColl_MASK)
  1487. dev->stats.collisions += status & Tx_TxColl_MASK;
  1488. /* TX4939 does not have NCarr */
  1489. if (lp->chiptype == TC35815_TX4939)
  1490. status &= ~Tx_NCarr;
  1491. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1492. if (!lp->link || lp->duplex == DUPLEX_FULL)
  1493. status &= ~Tx_NCarr;
  1494. if (!(status & TX_STA_ERR)) {
  1495. /* no error. */
  1496. dev->stats.tx_packets++;
  1497. return;
  1498. }
  1499. dev->stats.tx_errors++;
  1500. if (status & Tx_ExColl) {
  1501. dev->stats.tx_aborted_errors++;
  1502. msg = "Excessive Collision.";
  1503. }
  1504. if (status & Tx_Under) {
  1505. dev->stats.tx_fifo_errors++;
  1506. msg = "Tx FIFO Underrun.";
  1507. if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
  1508. lp->lstats.tx_underrun++;
  1509. if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
  1510. struct tc35815_regs __iomem *tr =
  1511. (struct tc35815_regs __iomem *)dev->base_addr;
  1512. tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
  1513. msg = "Tx FIFO Underrun.Change Tx threshold to max.";
  1514. }
  1515. }
  1516. }
  1517. if (status & Tx_Defer) {
  1518. dev->stats.tx_fifo_errors++;
  1519. msg = "Excessive Deferral.";
  1520. }
  1521. if (status & Tx_NCarr) {
  1522. dev->stats.tx_carrier_errors++;
  1523. msg = "Lost Carrier Sense.";
  1524. }
  1525. if (status & Tx_LateColl) {
  1526. dev->stats.tx_aborted_errors++;
  1527. msg = "Late Collision.";
  1528. }
  1529. if (status & Tx_TxPar) {
  1530. dev->stats.tx_fifo_errors++;
  1531. msg = "Transmit Parity Error.";
  1532. }
  1533. if (status & Tx_SQErr) {
  1534. dev->stats.tx_heartbeat_errors++;
  1535. msg = "Signal Quality Error.";
  1536. }
  1537. if (msg && netif_msg_tx_err(lp))
  1538. printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
  1539. }
  1540. /* This handles TX complete events posted by the device
  1541. * via interrupts.
  1542. */
  1543. static void
  1544. tc35815_txdone(struct net_device *dev)
  1545. {
  1546. struct tc35815_local *lp = netdev_priv(dev);
  1547. struct TxFD *txfd;
  1548. unsigned int fdctl;
  1549. txfd = &lp->tfd_base[lp->tfd_end];
  1550. while (lp->tfd_start != lp->tfd_end &&
  1551. !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
  1552. int status = le32_to_cpu(txfd->fd.FDStat);
  1553. struct sk_buff *skb;
  1554. unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
  1555. u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
  1556. if (netif_msg_tx_done(lp)) {
  1557. printk("%s: complete TxFD.\n", dev->name);
  1558. dump_txfd(txfd);
  1559. }
  1560. tc35815_check_tx_stat(dev, status);
  1561. skb = fdsystem != 0xffffffff ?
  1562. lp->tx_skbs[fdsystem].skb : NULL;
  1563. #ifdef DEBUG
  1564. if (lp->tx_skbs[lp->tfd_end].skb != skb) {
  1565. printk("%s: tx_skbs mismatch.\n", dev->name);
  1566. panic_queues(dev);
  1567. }
  1568. #else
  1569. BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
  1570. #endif
  1571. if (skb) {
  1572. dev->stats.tx_bytes += skb->len;
  1573. pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
  1574. lp->tx_skbs[lp->tfd_end].skb = NULL;
  1575. lp->tx_skbs[lp->tfd_end].skb_dma = 0;
  1576. dev_kfree_skb_any(skb);
  1577. }
  1578. txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
  1579. lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
  1580. txfd = &lp->tfd_base[lp->tfd_end];
  1581. #ifdef DEBUG
  1582. if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
  1583. printk("%s: TxFD FDNext invalid.\n", dev->name);
  1584. panic_queues(dev);
  1585. }
  1586. #endif
  1587. if (fdnext & FD_Next_EOL) {
  1588. /* DMA Transmitter has been stopping... */
  1589. if (lp->tfd_end != lp->tfd_start) {
  1590. struct tc35815_regs __iomem *tr =
  1591. (struct tc35815_regs __iomem *)dev->base_addr;
  1592. int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
  1593. struct TxFD *txhead = &lp->tfd_base[head];
  1594. int qlen = (lp->tfd_start + TX_FD_NUM
  1595. - lp->tfd_end) % TX_FD_NUM;
  1596. #ifdef DEBUG
  1597. if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
  1598. printk("%s: TxFD FDCtl invalid.\n", dev->name);
  1599. panic_queues(dev);
  1600. }
  1601. #endif
  1602. /* log max queue length */
  1603. if (lp->lstats.max_tx_qlen < qlen)
  1604. lp->lstats.max_tx_qlen = qlen;
  1605. /* start DMA Transmitter again */
  1606. txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1607. txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1608. if (netif_msg_tx_queued(lp)) {
  1609. printk("%s: start TxFD on queue.\n",
  1610. dev->name);
  1611. dump_txfd(txfd);
  1612. }
  1613. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1614. }
  1615. break;
  1616. }
  1617. }
  1618. /* If we had stopped the queue due to a "tx full"
  1619. * condition, and space has now been made available,
  1620. * wake up the queue.
  1621. */
  1622. if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
  1623. netif_wake_queue(dev);
  1624. }
  1625. /* The inverse routine to tc35815_open(). */
  1626. static int
  1627. tc35815_close(struct net_device *dev)
  1628. {
  1629. struct tc35815_local *lp = netdev_priv(dev);
  1630. netif_stop_queue(dev);
  1631. napi_disable(&lp->napi);
  1632. if (dev->phydev)
  1633. phy_stop(dev->phydev);
  1634. cancel_work_sync(&lp->restart_work);
  1635. /* Flush the Tx and disable Rx here. */
  1636. tc35815_chip_reset(dev);
  1637. free_irq(dev->irq, dev);
  1638. tc35815_free_queues(dev);
  1639. return 0;
  1640. }
  1641. /*
  1642. * Get the current statistics.
  1643. * This may be called with the card open or closed.
  1644. */
  1645. static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
  1646. {
  1647. struct tc35815_regs __iomem *tr =
  1648. (struct tc35815_regs __iomem *)dev->base_addr;
  1649. if (netif_running(dev))
  1650. /* Update the statistics from the device registers. */
  1651. dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
  1652. return &dev->stats;
  1653. }
  1654. static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
  1655. {
  1656. struct tc35815_local *lp = netdev_priv(dev);
  1657. struct tc35815_regs __iomem *tr =
  1658. (struct tc35815_regs __iomem *)dev->base_addr;
  1659. int cam_index = index * 6;
  1660. u32 cam_data;
  1661. u32 saved_addr;
  1662. saved_addr = tc_readl(&tr->CAM_Adr);
  1663. if (netif_msg_hw(lp))
  1664. printk(KERN_DEBUG "%s: CAM %d: %pM\n",
  1665. dev->name, index, addr);
  1666. if (index & 1) {
  1667. /* read modify write */
  1668. tc_writel(cam_index - 2, &tr->CAM_Adr);
  1669. cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
  1670. cam_data |= addr[0] << 8 | addr[1];
  1671. tc_writel(cam_data, &tr->CAM_Data);
  1672. /* write whole word */
  1673. tc_writel(cam_index + 2, &tr->CAM_Adr);
  1674. cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
  1675. tc_writel(cam_data, &tr->CAM_Data);
  1676. } else {
  1677. /* write whole word */
  1678. tc_writel(cam_index, &tr->CAM_Adr);
  1679. cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
  1680. tc_writel(cam_data, &tr->CAM_Data);
  1681. /* read modify write */
  1682. tc_writel(cam_index + 4, &tr->CAM_Adr);
  1683. cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
  1684. cam_data |= addr[4] << 24 | (addr[5] << 16);
  1685. tc_writel(cam_data, &tr->CAM_Data);
  1686. }
  1687. tc_writel(saved_addr, &tr->CAM_Adr);
  1688. }
  1689. /*
  1690. * Set or clear the multicast filter for this adaptor.
  1691. * num_addrs == -1 Promiscuous mode, receive all packets
  1692. * num_addrs == 0 Normal mode, clear multicast list
  1693. * num_addrs > 0 Multicast mode, receive normal and MC packets,
  1694. * and do best-effort filtering.
  1695. */
  1696. static void
  1697. tc35815_set_multicast_list(struct net_device *dev)
  1698. {
  1699. struct tc35815_regs __iomem *tr =
  1700. (struct tc35815_regs __iomem *)dev->base_addr;
  1701. if (dev->flags & IFF_PROMISC) {
  1702. /* With some (all?) 100MHalf HUB, controller will hang
  1703. * if we enabled promiscuous mode before linkup... */
  1704. struct tc35815_local *lp = netdev_priv(dev);
  1705. if (!lp->link)
  1706. return;
  1707. /* Enable promiscuous mode */
  1708. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
  1709. } else if ((dev->flags & IFF_ALLMULTI) ||
  1710. netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
  1711. /* CAM 0, 1, 20 are reserved. */
  1712. /* Disable promiscuous mode, use normal mode. */
  1713. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
  1714. } else if (!netdev_mc_empty(dev)) {
  1715. struct netdev_hw_addr *ha;
  1716. int i;
  1717. int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
  1718. tc_writel(0, &tr->CAM_Ctl);
  1719. /* Walk the address list, and load the filter */
  1720. i = 0;
  1721. netdev_for_each_mc_addr(ha, dev) {
  1722. /* entry 0,1 is reserved. */
  1723. tc35815_set_cam_entry(dev, i + 2, ha->addr);
  1724. ena_bits |= CAM_Ena_Bit(i + 2);
  1725. i++;
  1726. }
  1727. tc_writel(ena_bits, &tr->CAM_Ena);
  1728. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1729. } else {
  1730. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1731. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1732. }
  1733. }
  1734. static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1735. {
  1736. struct tc35815_local *lp = netdev_priv(dev);
  1737. strlcpy(info->driver, MODNAME, sizeof(info->driver));
  1738. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  1739. strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
  1740. }
  1741. static u32 tc35815_get_msglevel(struct net_device *dev)
  1742. {
  1743. struct tc35815_local *lp = netdev_priv(dev);
  1744. return lp->msg_enable;
  1745. }
  1746. static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
  1747. {
  1748. struct tc35815_local *lp = netdev_priv(dev);
  1749. lp->msg_enable = datum;
  1750. }
  1751. static int tc35815_get_sset_count(struct net_device *dev, int sset)
  1752. {
  1753. struct tc35815_local *lp = netdev_priv(dev);
  1754. switch (sset) {
  1755. case ETH_SS_STATS:
  1756. return sizeof(lp->lstats) / sizeof(int);
  1757. default:
  1758. return -EOPNOTSUPP;
  1759. }
  1760. }
  1761. static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
  1762. {
  1763. struct tc35815_local *lp = netdev_priv(dev);
  1764. data[0] = lp->lstats.max_tx_qlen;
  1765. data[1] = lp->lstats.tx_ints;
  1766. data[2] = lp->lstats.rx_ints;
  1767. data[3] = lp->lstats.tx_underrun;
  1768. }
  1769. static struct {
  1770. const char str[ETH_GSTRING_LEN];
  1771. } ethtool_stats_keys[] = {
  1772. { "max_tx_qlen" },
  1773. { "tx_ints" },
  1774. { "rx_ints" },
  1775. { "tx_underrun" },
  1776. };
  1777. static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  1778. {
  1779. memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
  1780. }
  1781. static const struct ethtool_ops tc35815_ethtool_ops = {
  1782. .get_drvinfo = tc35815_get_drvinfo,
  1783. .get_link = ethtool_op_get_link,
  1784. .get_msglevel = tc35815_get_msglevel,
  1785. .set_msglevel = tc35815_set_msglevel,
  1786. .get_strings = tc35815_get_strings,
  1787. .get_sset_count = tc35815_get_sset_count,
  1788. .get_ethtool_stats = tc35815_get_ethtool_stats,
  1789. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  1790. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  1791. };
  1792. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1793. {
  1794. if (!netif_running(dev))
  1795. return -EINVAL;
  1796. if (!dev->phydev)
  1797. return -ENODEV;
  1798. return phy_mii_ioctl(dev->phydev, rq, cmd);
  1799. }
  1800. static void tc35815_chip_reset(struct net_device *dev)
  1801. {
  1802. struct tc35815_regs __iomem *tr =
  1803. (struct tc35815_regs __iomem *)dev->base_addr;
  1804. int i;
  1805. /* reset the controller */
  1806. tc_writel(MAC_Reset, &tr->MAC_Ctl);
  1807. udelay(4); /* 3200ns */
  1808. i = 0;
  1809. while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
  1810. if (i++ > 100) {
  1811. printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
  1812. break;
  1813. }
  1814. mdelay(1);
  1815. }
  1816. tc_writel(0, &tr->MAC_Ctl);
  1817. /* initialize registers to default value */
  1818. tc_writel(0, &tr->DMA_Ctl);
  1819. tc_writel(0, &tr->TxThrsh);
  1820. tc_writel(0, &tr->TxPollCtr);
  1821. tc_writel(0, &tr->RxFragSize);
  1822. tc_writel(0, &tr->Int_En);
  1823. tc_writel(0, &tr->FDA_Bas);
  1824. tc_writel(0, &tr->FDA_Lim);
  1825. tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
  1826. tc_writel(0, &tr->CAM_Ctl);
  1827. tc_writel(0, &tr->Tx_Ctl);
  1828. tc_writel(0, &tr->Rx_Ctl);
  1829. tc_writel(0, &tr->CAM_Ena);
  1830. (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
  1831. /* initialize internal SRAM */
  1832. tc_writel(DMA_TestMode, &tr->DMA_Ctl);
  1833. for (i = 0; i < 0x1000; i += 4) {
  1834. tc_writel(i, &tr->CAM_Adr);
  1835. tc_writel(0, &tr->CAM_Data);
  1836. }
  1837. tc_writel(0, &tr->DMA_Ctl);
  1838. }
  1839. static void tc35815_chip_init(struct net_device *dev)
  1840. {
  1841. struct tc35815_local *lp = netdev_priv(dev);
  1842. struct tc35815_regs __iomem *tr =
  1843. (struct tc35815_regs __iomem *)dev->base_addr;
  1844. unsigned long txctl = TX_CTL_CMD;
  1845. /* load station address to CAM */
  1846. tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
  1847. /* Enable CAM (broadcast and unicast) */
  1848. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1849. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1850. /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
  1851. if (HAVE_DMA_RXALIGN(lp))
  1852. tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
  1853. else
  1854. tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
  1855. tc_writel(0, &tr->TxPollCtr); /* Batch mode */
  1856. tc_writel(TX_THRESHOLD, &tr->TxThrsh);
  1857. tc_writel(INT_EN_CMD, &tr->Int_En);
  1858. /* set queues */
  1859. tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
  1860. tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
  1861. &tr->FDA_Lim);
  1862. /*
  1863. * Activation method:
  1864. * First, enable the MAC Transmitter and the DMA Receive circuits.
  1865. * Then enable the DMA Transmitter and the MAC Receive circuits.
  1866. */
  1867. tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
  1868. tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
  1869. /* start MAC transmitter */
  1870. /* TX4939 does not have EnLCarr */
  1871. if (lp->chiptype == TC35815_TX4939)
  1872. txctl &= ~Tx_EnLCarr;
  1873. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1874. if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
  1875. txctl &= ~Tx_EnLCarr;
  1876. tc_writel(txctl, &tr->Tx_Ctl);
  1877. }
  1878. #ifdef CONFIG_PM
  1879. static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
  1880. {
  1881. struct net_device *dev = pci_get_drvdata(pdev);
  1882. struct tc35815_local *lp = netdev_priv(dev);
  1883. unsigned long flags;
  1884. pci_save_state(pdev);
  1885. if (!netif_running(dev))
  1886. return 0;
  1887. netif_device_detach(dev);
  1888. if (dev->phydev)
  1889. phy_stop(dev->phydev);
  1890. spin_lock_irqsave(&lp->lock, flags);
  1891. tc35815_chip_reset(dev);
  1892. spin_unlock_irqrestore(&lp->lock, flags);
  1893. pci_set_power_state(pdev, PCI_D3hot);
  1894. return 0;
  1895. }
  1896. static int tc35815_resume(struct pci_dev *pdev)
  1897. {
  1898. struct net_device *dev = pci_get_drvdata(pdev);
  1899. pci_restore_state(pdev);
  1900. if (!netif_running(dev))
  1901. return 0;
  1902. pci_set_power_state(pdev, PCI_D0);
  1903. tc35815_restart(dev);
  1904. netif_carrier_off(dev);
  1905. if (dev->phydev)
  1906. phy_start(dev->phydev);
  1907. netif_device_attach(dev);
  1908. return 0;
  1909. }
  1910. #endif /* CONFIG_PM */
  1911. static struct pci_driver tc35815_pci_driver = {
  1912. .name = MODNAME,
  1913. .id_table = tc35815_pci_tbl,
  1914. .probe = tc35815_init_one,
  1915. .remove = tc35815_remove_one,
  1916. #ifdef CONFIG_PM
  1917. .suspend = tc35815_suspend,
  1918. .resume = tc35815_resume,
  1919. #endif
  1920. };
  1921. module_param_named(speed, options.speed, int, 0);
  1922. MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
  1923. module_param_named(duplex, options.duplex, int, 0);
  1924. MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
  1925. module_pci_driver(tc35815_pci_driver);
  1926. MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
  1927. MODULE_LICENSE("GPL");