netcp_core.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213
  1. /*
  2. * Keystone NetCP Core driver
  3. *
  4. * Copyright (C) 2014 Texas Instruments Incorporated
  5. * Authors: Sandeep Nair <sandeep_n@ti.com>
  6. * Sandeep Paulraj <s-paulraj@ti.com>
  7. * Cyril Chemparathy <cyril@ti.com>
  8. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  9. * Murali Karicheri <m-karicheri2@ti.com>
  10. * Wingman Kwok <w-kwok2@ti.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation version 2.
  15. *
  16. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  17. * kind, whether express or implied; without even the implied warranty
  18. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. */
  21. #include <linux/io.h>
  22. #include <linux/module.h>
  23. #include <linux/of_net.h>
  24. #include <linux/of_address.h>
  25. #include <linux/if_vlan.h>
  26. #include <linux/pm_runtime.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/soc/ti/knav_qmss.h>
  29. #include <linux/soc/ti/knav_dma.h>
  30. #include "netcp.h"
  31. #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
  32. #define NETCP_NAPI_WEIGHT 64
  33. #define NETCP_TX_TIMEOUT (5 * HZ)
  34. #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
  35. #define NETCP_MIN_PACKET_SIZE ETH_ZLEN
  36. #define NETCP_MAX_MCAST_ADDR 16
  37. #define NETCP_EFUSE_REG_INDEX 0
  38. #define NETCP_MOD_PROBE_SKIPPED 1
  39. #define NETCP_MOD_PROBE_FAILED 2
  40. #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
  41. NETIF_MSG_DRV | NETIF_MSG_LINK | \
  42. NETIF_MSG_IFUP | NETIF_MSG_INTR | \
  43. NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
  44. NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
  45. NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
  46. NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
  47. NETIF_MSG_RX_STATUS)
  48. #define NETCP_EFUSE_ADDR_SWAP 2
  49. #define knav_queue_get_id(q) knav_queue_device_control(q, \
  50. KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  51. #define knav_queue_enable_notify(q) knav_queue_device_control(q, \
  52. KNAV_QUEUE_ENABLE_NOTIFY, \
  53. (unsigned long)NULL)
  54. #define knav_queue_disable_notify(q) knav_queue_device_control(q, \
  55. KNAV_QUEUE_DISABLE_NOTIFY, \
  56. (unsigned long)NULL)
  57. #define knav_queue_get_count(q) knav_queue_device_control(q, \
  58. KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  59. #define for_each_netcp_module(module) \
  60. list_for_each_entry(module, &netcp_modules, module_list)
  61. #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  62. list_for_each_entry(inst_modpriv, \
  63. &((netcp_device)->modpriv_head), inst_list)
  64. #define for_each_module(netcp, intf_modpriv) \
  65. list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  66. /* Module management structures */
  67. struct netcp_device {
  68. struct list_head device_list;
  69. struct list_head interface_head;
  70. struct list_head modpriv_head;
  71. struct device *device;
  72. };
  73. struct netcp_inst_modpriv {
  74. struct netcp_device *netcp_device;
  75. struct netcp_module *netcp_module;
  76. struct list_head inst_list;
  77. void *module_priv;
  78. };
  79. struct netcp_intf_modpriv {
  80. struct netcp_intf *netcp_priv;
  81. struct netcp_module *netcp_module;
  82. struct list_head intf_list;
  83. void *module_priv;
  84. };
  85. struct netcp_tx_cb {
  86. void *ts_context;
  87. void (*txtstamp)(void *context, struct sk_buff *skb);
  88. };
  89. static LIST_HEAD(netcp_devices);
  90. static LIST_HEAD(netcp_modules);
  91. static DEFINE_MUTEX(netcp_modules_lock);
  92. static int netcp_debug_level = -1;
  93. module_param(netcp_debug_level, int, 0);
  94. MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
  95. /* Helper functions - Get/Set */
  96. static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
  97. struct knav_dma_desc *desc)
  98. {
  99. *buff_len = le32_to_cpu(desc->buff_len);
  100. *buff = le32_to_cpu(desc->buff);
  101. *ndesc = le32_to_cpu(desc->next_desc);
  102. }
  103. static u32 get_sw_data(int index, struct knav_dma_desc *desc)
  104. {
  105. /* No Endian conversion needed as this data is untouched by hw */
  106. return desc->sw_data[index];
  107. }
  108. /* use these macros to get sw data */
  109. #define GET_SW_DATA0(desc) get_sw_data(0, desc)
  110. #define GET_SW_DATA1(desc) get_sw_data(1, desc)
  111. #define GET_SW_DATA2(desc) get_sw_data(2, desc)
  112. #define GET_SW_DATA3(desc) get_sw_data(3, desc)
  113. static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
  114. struct knav_dma_desc *desc)
  115. {
  116. *buff = le32_to_cpu(desc->orig_buff);
  117. *buff_len = le32_to_cpu(desc->orig_len);
  118. }
  119. static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
  120. {
  121. int i;
  122. for (i = 0; i < num_words; i++)
  123. words[i] = le32_to_cpu(desc[i]);
  124. }
  125. static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
  126. struct knav_dma_desc *desc)
  127. {
  128. desc->buff_len = cpu_to_le32(buff_len);
  129. desc->buff = cpu_to_le32(buff);
  130. desc->next_desc = cpu_to_le32(ndesc);
  131. }
  132. static void set_desc_info(u32 desc_info, u32 pkt_info,
  133. struct knav_dma_desc *desc)
  134. {
  135. desc->desc_info = cpu_to_le32(desc_info);
  136. desc->packet_info = cpu_to_le32(pkt_info);
  137. }
  138. static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
  139. {
  140. /* No Endian conversion needed as this data is untouched by hw */
  141. desc->sw_data[index] = data;
  142. }
  143. /* use these macros to set sw data */
  144. #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
  145. #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
  146. #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
  147. #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
  148. static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
  149. struct knav_dma_desc *desc)
  150. {
  151. desc->orig_buff = cpu_to_le32(buff);
  152. desc->orig_len = cpu_to_le32(buff_len);
  153. }
  154. static void set_words(u32 *words, int num_words, __le32 *desc)
  155. {
  156. int i;
  157. for (i = 0; i < num_words; i++)
  158. desc[i] = cpu_to_le32(words[i]);
  159. }
  160. /* Read the e-fuse value as 32 bit values to be endian independent */
  161. static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
  162. {
  163. unsigned int addr0, addr1;
  164. addr1 = readl(efuse_mac + 4);
  165. addr0 = readl(efuse_mac);
  166. switch (swap) {
  167. case NETCP_EFUSE_ADDR_SWAP:
  168. addr0 = addr1;
  169. addr1 = readl(efuse_mac);
  170. break;
  171. default:
  172. break;
  173. }
  174. x[0] = (addr1 & 0x0000ff00) >> 8;
  175. x[1] = addr1 & 0x000000ff;
  176. x[2] = (addr0 & 0xff000000) >> 24;
  177. x[3] = (addr0 & 0x00ff0000) >> 16;
  178. x[4] = (addr0 & 0x0000ff00) >> 8;
  179. x[5] = addr0 & 0x000000ff;
  180. return 0;
  181. }
  182. static const char *netcp_node_name(struct device_node *node)
  183. {
  184. const char *name;
  185. if (of_property_read_string(node, "label", &name) < 0)
  186. name = node->name;
  187. if (!name)
  188. name = "unknown";
  189. return name;
  190. }
  191. /* Module management routines */
  192. static int netcp_register_interface(struct netcp_intf *netcp)
  193. {
  194. int ret;
  195. ret = register_netdev(netcp->ndev);
  196. if (!ret)
  197. netcp->netdev_registered = true;
  198. return ret;
  199. }
  200. static int netcp_module_probe(struct netcp_device *netcp_device,
  201. struct netcp_module *module)
  202. {
  203. struct device *dev = netcp_device->device;
  204. struct device_node *devices, *interface, *node = dev->of_node;
  205. struct device_node *child;
  206. struct netcp_inst_modpriv *inst_modpriv;
  207. struct netcp_intf *netcp_intf;
  208. struct netcp_module *tmp;
  209. bool primary_module_registered = false;
  210. int ret;
  211. /* Find this module in the sub-tree for this device */
  212. devices = of_get_child_by_name(node, "netcp-devices");
  213. if (!devices) {
  214. dev_err(dev, "could not find netcp-devices node\n");
  215. return NETCP_MOD_PROBE_SKIPPED;
  216. }
  217. for_each_available_child_of_node(devices, child) {
  218. const char *name = netcp_node_name(child);
  219. if (!strcasecmp(module->name, name))
  220. break;
  221. }
  222. of_node_put(devices);
  223. /* If module not used for this device, skip it */
  224. if (!child) {
  225. dev_warn(dev, "module(%s) not used for device\n", module->name);
  226. return NETCP_MOD_PROBE_SKIPPED;
  227. }
  228. inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
  229. if (!inst_modpriv) {
  230. of_node_put(child);
  231. return -ENOMEM;
  232. }
  233. inst_modpriv->netcp_device = netcp_device;
  234. inst_modpriv->netcp_module = module;
  235. list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
  236. ret = module->probe(netcp_device, dev, child,
  237. &inst_modpriv->module_priv);
  238. of_node_put(child);
  239. if (ret) {
  240. dev_err(dev, "Probe of module(%s) failed with %d\n",
  241. module->name, ret);
  242. list_del(&inst_modpriv->inst_list);
  243. devm_kfree(dev, inst_modpriv);
  244. return NETCP_MOD_PROBE_FAILED;
  245. }
  246. /* Attach modules only if the primary module is probed */
  247. for_each_netcp_module(tmp) {
  248. if (tmp->primary)
  249. primary_module_registered = true;
  250. }
  251. if (!primary_module_registered)
  252. return 0;
  253. /* Attach module to interfaces */
  254. list_for_each_entry(netcp_intf, &netcp_device->interface_head,
  255. interface_list) {
  256. struct netcp_intf_modpriv *intf_modpriv;
  257. intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
  258. GFP_KERNEL);
  259. if (!intf_modpriv)
  260. return -ENOMEM;
  261. interface = of_parse_phandle(netcp_intf->node_interface,
  262. module->name, 0);
  263. if (!interface) {
  264. devm_kfree(dev, intf_modpriv);
  265. continue;
  266. }
  267. intf_modpriv->netcp_priv = netcp_intf;
  268. intf_modpriv->netcp_module = module;
  269. list_add_tail(&intf_modpriv->intf_list,
  270. &netcp_intf->module_head);
  271. ret = module->attach(inst_modpriv->module_priv,
  272. netcp_intf->ndev, interface,
  273. &intf_modpriv->module_priv);
  274. of_node_put(interface);
  275. if (ret) {
  276. dev_dbg(dev, "Attach of module %s declined with %d\n",
  277. module->name, ret);
  278. list_del(&intf_modpriv->intf_list);
  279. devm_kfree(dev, intf_modpriv);
  280. continue;
  281. }
  282. }
  283. /* Now register the interface with netdev */
  284. list_for_each_entry(netcp_intf,
  285. &netcp_device->interface_head,
  286. interface_list) {
  287. /* If interface not registered then register now */
  288. if (!netcp_intf->netdev_registered) {
  289. ret = netcp_register_interface(netcp_intf);
  290. if (ret)
  291. return -ENODEV;
  292. }
  293. }
  294. return 0;
  295. }
  296. int netcp_register_module(struct netcp_module *module)
  297. {
  298. struct netcp_device *netcp_device;
  299. struct netcp_module *tmp;
  300. int ret;
  301. if (!module->name) {
  302. WARN(1, "error registering netcp module: no name\n");
  303. return -EINVAL;
  304. }
  305. if (!module->probe) {
  306. WARN(1, "error registering netcp module: no probe\n");
  307. return -EINVAL;
  308. }
  309. mutex_lock(&netcp_modules_lock);
  310. for_each_netcp_module(tmp) {
  311. if (!strcasecmp(tmp->name, module->name)) {
  312. mutex_unlock(&netcp_modules_lock);
  313. return -EEXIST;
  314. }
  315. }
  316. list_add_tail(&module->module_list, &netcp_modules);
  317. list_for_each_entry(netcp_device, &netcp_devices, device_list) {
  318. ret = netcp_module_probe(netcp_device, module);
  319. if (ret < 0)
  320. goto fail;
  321. }
  322. mutex_unlock(&netcp_modules_lock);
  323. return 0;
  324. fail:
  325. mutex_unlock(&netcp_modules_lock);
  326. netcp_unregister_module(module);
  327. return ret;
  328. }
  329. EXPORT_SYMBOL_GPL(netcp_register_module);
  330. static void netcp_release_module(struct netcp_device *netcp_device,
  331. struct netcp_module *module)
  332. {
  333. struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
  334. struct netcp_intf *netcp_intf, *netcp_tmp;
  335. struct device *dev = netcp_device->device;
  336. /* Release the module from each interface */
  337. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  338. &netcp_device->interface_head,
  339. interface_list) {
  340. struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
  341. list_for_each_entry_safe(intf_modpriv, intf_tmp,
  342. &netcp_intf->module_head,
  343. intf_list) {
  344. if (intf_modpriv->netcp_module == module) {
  345. module->release(intf_modpriv->module_priv);
  346. list_del(&intf_modpriv->intf_list);
  347. devm_kfree(dev, intf_modpriv);
  348. break;
  349. }
  350. }
  351. }
  352. /* Remove the module from each instance */
  353. list_for_each_entry_safe(inst_modpriv, inst_tmp,
  354. &netcp_device->modpriv_head, inst_list) {
  355. if (inst_modpriv->netcp_module == module) {
  356. module->remove(netcp_device,
  357. inst_modpriv->module_priv);
  358. list_del(&inst_modpriv->inst_list);
  359. devm_kfree(dev, inst_modpriv);
  360. break;
  361. }
  362. }
  363. }
  364. void netcp_unregister_module(struct netcp_module *module)
  365. {
  366. struct netcp_device *netcp_device;
  367. struct netcp_module *module_tmp;
  368. mutex_lock(&netcp_modules_lock);
  369. list_for_each_entry(netcp_device, &netcp_devices, device_list) {
  370. netcp_release_module(netcp_device, module);
  371. }
  372. /* Remove the module from the module list */
  373. for_each_netcp_module(module_tmp) {
  374. if (module == module_tmp) {
  375. list_del(&module->module_list);
  376. break;
  377. }
  378. }
  379. mutex_unlock(&netcp_modules_lock);
  380. }
  381. EXPORT_SYMBOL_GPL(netcp_unregister_module);
  382. void *netcp_module_get_intf_data(struct netcp_module *module,
  383. struct netcp_intf *intf)
  384. {
  385. struct netcp_intf_modpriv *intf_modpriv;
  386. list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
  387. if (intf_modpriv->netcp_module == module)
  388. return intf_modpriv->module_priv;
  389. return NULL;
  390. }
  391. EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
  392. /* Module TX and RX Hook management */
  393. struct netcp_hook_list {
  394. struct list_head list;
  395. netcp_hook_rtn *hook_rtn;
  396. void *hook_data;
  397. int order;
  398. };
  399. int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
  400. netcp_hook_rtn *hook_rtn, void *hook_data)
  401. {
  402. struct netcp_hook_list *entry;
  403. struct netcp_hook_list *next;
  404. unsigned long flags;
  405. entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
  406. if (!entry)
  407. return -ENOMEM;
  408. entry->hook_rtn = hook_rtn;
  409. entry->hook_data = hook_data;
  410. entry->order = order;
  411. spin_lock_irqsave(&netcp_priv->lock, flags);
  412. list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
  413. if (next->order > order)
  414. break;
  415. }
  416. __list_add(&entry->list, next->list.prev, &next->list);
  417. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  418. return 0;
  419. }
  420. EXPORT_SYMBOL_GPL(netcp_register_txhook);
  421. int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
  422. netcp_hook_rtn *hook_rtn, void *hook_data)
  423. {
  424. struct netcp_hook_list *next, *n;
  425. unsigned long flags;
  426. spin_lock_irqsave(&netcp_priv->lock, flags);
  427. list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
  428. if ((next->order == order) &&
  429. (next->hook_rtn == hook_rtn) &&
  430. (next->hook_data == hook_data)) {
  431. list_del(&next->list);
  432. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  433. devm_kfree(netcp_priv->dev, next);
  434. return 0;
  435. }
  436. }
  437. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  438. return -ENOENT;
  439. }
  440. EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
  441. int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
  442. netcp_hook_rtn *hook_rtn, void *hook_data)
  443. {
  444. struct netcp_hook_list *entry;
  445. struct netcp_hook_list *next;
  446. unsigned long flags;
  447. entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
  448. if (!entry)
  449. return -ENOMEM;
  450. entry->hook_rtn = hook_rtn;
  451. entry->hook_data = hook_data;
  452. entry->order = order;
  453. spin_lock_irqsave(&netcp_priv->lock, flags);
  454. list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
  455. if (next->order > order)
  456. break;
  457. }
  458. __list_add(&entry->list, next->list.prev, &next->list);
  459. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  460. return 0;
  461. }
  462. EXPORT_SYMBOL_GPL(netcp_register_rxhook);
  463. int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
  464. netcp_hook_rtn *hook_rtn, void *hook_data)
  465. {
  466. struct netcp_hook_list *next, *n;
  467. unsigned long flags;
  468. spin_lock_irqsave(&netcp_priv->lock, flags);
  469. list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
  470. if ((next->order == order) &&
  471. (next->hook_rtn == hook_rtn) &&
  472. (next->hook_data == hook_data)) {
  473. list_del(&next->list);
  474. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  475. devm_kfree(netcp_priv->dev, next);
  476. return 0;
  477. }
  478. }
  479. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  480. return -ENOENT;
  481. }
  482. EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
  483. static void netcp_frag_free(bool is_frag, void *ptr)
  484. {
  485. if (is_frag)
  486. skb_free_frag(ptr);
  487. else
  488. kfree(ptr);
  489. }
  490. static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
  491. struct knav_dma_desc *desc)
  492. {
  493. struct knav_dma_desc *ndesc;
  494. dma_addr_t dma_desc, dma_buf;
  495. unsigned int buf_len, dma_sz = sizeof(*ndesc);
  496. void *buf_ptr;
  497. u32 tmp;
  498. get_words(&dma_desc, 1, &desc->next_desc);
  499. while (dma_desc) {
  500. ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  501. if (unlikely(!ndesc)) {
  502. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  503. break;
  504. }
  505. get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
  506. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  507. * field as a 32bit value. Will not work on 64bit machines
  508. */
  509. buf_ptr = (void *)GET_SW_DATA0(ndesc);
  510. buf_len = (int)GET_SW_DATA1(desc);
  511. dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
  512. __free_page(buf_ptr);
  513. knav_pool_desc_put(netcp->rx_pool, desc);
  514. }
  515. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  516. * field as a 32bit value. Will not work on 64bit machines
  517. */
  518. buf_ptr = (void *)GET_SW_DATA0(desc);
  519. buf_len = (int)GET_SW_DATA1(desc);
  520. if (buf_ptr)
  521. netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
  522. knav_pool_desc_put(netcp->rx_pool, desc);
  523. }
  524. static void netcp_empty_rx_queue(struct netcp_intf *netcp)
  525. {
  526. struct knav_dma_desc *desc;
  527. unsigned int dma_sz;
  528. dma_addr_t dma;
  529. for (; ;) {
  530. dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
  531. if (!dma)
  532. break;
  533. desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
  534. if (unlikely(!desc)) {
  535. dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
  536. __func__);
  537. netcp->ndev->stats.rx_errors++;
  538. continue;
  539. }
  540. netcp_free_rx_desc_chain(netcp, desc);
  541. netcp->ndev->stats.rx_dropped++;
  542. }
  543. }
  544. static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
  545. {
  546. unsigned int dma_sz, buf_len, org_buf_len;
  547. struct knav_dma_desc *desc, *ndesc;
  548. unsigned int pkt_sz = 0, accum_sz;
  549. struct netcp_hook_list *rx_hook;
  550. dma_addr_t dma_desc, dma_buff;
  551. struct netcp_packet p_info;
  552. struct sk_buff *skb;
  553. void *org_buf_ptr;
  554. dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
  555. if (!dma_desc)
  556. return -1;
  557. desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  558. if (unlikely(!desc)) {
  559. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  560. return 0;
  561. }
  562. get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
  563. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  564. * field as a 32bit value. Will not work on 64bit machines
  565. */
  566. org_buf_ptr = (void *)GET_SW_DATA0(desc);
  567. org_buf_len = (int)GET_SW_DATA1(desc);
  568. if (unlikely(!org_buf_ptr)) {
  569. dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
  570. goto free_desc;
  571. }
  572. pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
  573. accum_sz = buf_len;
  574. dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
  575. /* Build a new sk_buff for the primary buffer */
  576. skb = build_skb(org_buf_ptr, org_buf_len);
  577. if (unlikely(!skb)) {
  578. dev_err(netcp->ndev_dev, "build_skb() failed\n");
  579. goto free_desc;
  580. }
  581. /* update data, tail and len */
  582. skb_reserve(skb, NETCP_SOP_OFFSET);
  583. __skb_put(skb, buf_len);
  584. /* Fill in the page fragment list */
  585. while (dma_desc) {
  586. struct page *page;
  587. ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  588. if (unlikely(!ndesc)) {
  589. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  590. goto free_desc;
  591. }
  592. get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
  593. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  594. * field as a 32bit value. Will not work on 64bit machines
  595. */
  596. page = (struct page *)GET_SW_DATA0(desc);
  597. if (likely(dma_buff && buf_len && page)) {
  598. dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
  599. DMA_FROM_DEVICE);
  600. } else {
  601. dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
  602. &dma_buff, buf_len, page);
  603. goto free_desc;
  604. }
  605. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  606. offset_in_page(dma_buff), buf_len, PAGE_SIZE);
  607. accum_sz += buf_len;
  608. /* Free the descriptor */
  609. knav_pool_desc_put(netcp->rx_pool, ndesc);
  610. }
  611. /* Free the primary descriptor */
  612. knav_pool_desc_put(netcp->rx_pool, desc);
  613. /* check for packet len and warn */
  614. if (unlikely(pkt_sz != accum_sz))
  615. dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
  616. pkt_sz, accum_sz);
  617. /* Remove ethernet FCS from the packet */
  618. __pskb_trim(skb, skb->len - ETH_FCS_LEN);
  619. /* Call each of the RX hooks */
  620. p_info.skb = skb;
  621. skb->dev = netcp->ndev;
  622. p_info.rxtstamp_complete = false;
  623. list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
  624. int ret;
  625. ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
  626. &p_info);
  627. if (unlikely(ret)) {
  628. dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
  629. rx_hook->order, ret);
  630. netcp->ndev->stats.rx_errors++;
  631. dev_kfree_skb(skb);
  632. return 0;
  633. }
  634. }
  635. netcp->ndev->stats.rx_packets++;
  636. netcp->ndev->stats.rx_bytes += skb->len;
  637. /* push skb up the stack */
  638. skb->protocol = eth_type_trans(skb, netcp->ndev);
  639. netif_receive_skb(skb);
  640. return 0;
  641. free_desc:
  642. netcp_free_rx_desc_chain(netcp, desc);
  643. netcp->ndev->stats.rx_errors++;
  644. return 0;
  645. }
  646. static int netcp_process_rx_packets(struct netcp_intf *netcp,
  647. unsigned int budget)
  648. {
  649. int i;
  650. for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
  651. ;
  652. return i;
  653. }
  654. /* Release descriptors and attached buffers from Rx FDQ */
  655. static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
  656. {
  657. struct knav_dma_desc *desc;
  658. unsigned int buf_len, dma_sz;
  659. dma_addr_t dma;
  660. void *buf_ptr;
  661. /* Allocate descriptor */
  662. while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
  663. desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
  664. if (unlikely(!desc)) {
  665. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  666. continue;
  667. }
  668. get_org_pkt_info(&dma, &buf_len, desc);
  669. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  670. * field as a 32bit value. Will not work on 64bit machines
  671. */
  672. buf_ptr = (void *)GET_SW_DATA0(desc);
  673. if (unlikely(!dma)) {
  674. dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
  675. knav_pool_desc_put(netcp->rx_pool, desc);
  676. continue;
  677. }
  678. if (unlikely(!buf_ptr)) {
  679. dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
  680. knav_pool_desc_put(netcp->rx_pool, desc);
  681. continue;
  682. }
  683. if (fdq == 0) {
  684. dma_unmap_single(netcp->dev, dma, buf_len,
  685. DMA_FROM_DEVICE);
  686. netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
  687. } else {
  688. dma_unmap_page(netcp->dev, dma, buf_len,
  689. DMA_FROM_DEVICE);
  690. __free_page(buf_ptr);
  691. }
  692. knav_pool_desc_put(netcp->rx_pool, desc);
  693. }
  694. }
  695. static void netcp_rxpool_free(struct netcp_intf *netcp)
  696. {
  697. int i;
  698. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  699. !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
  700. netcp_free_rx_buf(netcp, i);
  701. if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
  702. dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
  703. netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
  704. knav_pool_destroy(netcp->rx_pool);
  705. netcp->rx_pool = NULL;
  706. }
  707. static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
  708. {
  709. struct knav_dma_desc *hwdesc;
  710. unsigned int buf_len, dma_sz;
  711. u32 desc_info, pkt_info;
  712. struct page *page;
  713. dma_addr_t dma;
  714. void *bufptr;
  715. u32 sw_data[2];
  716. /* Allocate descriptor */
  717. hwdesc = knav_pool_desc_get(netcp->rx_pool);
  718. if (IS_ERR_OR_NULL(hwdesc)) {
  719. dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
  720. return -ENOMEM;
  721. }
  722. if (likely(fdq == 0)) {
  723. unsigned int primary_buf_len;
  724. /* Allocate a primary receive queue entry */
  725. buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
  726. primary_buf_len = SKB_DATA_ALIGN(buf_len) +
  727. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  728. bufptr = netdev_alloc_frag(primary_buf_len);
  729. sw_data[1] = primary_buf_len;
  730. if (unlikely(!bufptr)) {
  731. dev_warn_ratelimited(netcp->ndev_dev,
  732. "Primary RX buffer alloc failed\n");
  733. goto fail;
  734. }
  735. dma = dma_map_single(netcp->dev, bufptr, buf_len,
  736. DMA_TO_DEVICE);
  737. if (unlikely(dma_mapping_error(netcp->dev, dma)))
  738. goto fail;
  739. /* warning!!!! We are saving the virtual ptr in the sw_data
  740. * field as a 32bit value. Will not work on 64bit machines
  741. */
  742. sw_data[0] = (u32)bufptr;
  743. } else {
  744. /* Allocate a secondary receive queue entry */
  745. page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
  746. if (unlikely(!page)) {
  747. dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
  748. goto fail;
  749. }
  750. buf_len = PAGE_SIZE;
  751. dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
  752. /* warning!!!! We are saving the virtual ptr in the sw_data
  753. * field as a 32bit value. Will not work on 64bit machines
  754. */
  755. sw_data[0] = (u32)page;
  756. sw_data[1] = 0;
  757. }
  758. desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
  759. desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
  760. pkt_info = KNAV_DMA_DESC_HAS_EPIB;
  761. pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
  762. pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
  763. KNAV_DMA_DESC_RETQ_SHIFT;
  764. set_org_pkt_info(dma, buf_len, hwdesc);
  765. SET_SW_DATA0(sw_data[0], hwdesc);
  766. SET_SW_DATA1(sw_data[1], hwdesc);
  767. set_desc_info(desc_info, pkt_info, hwdesc);
  768. /* Push to FDQs */
  769. knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
  770. &dma_sz);
  771. knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
  772. return 0;
  773. fail:
  774. knav_pool_desc_put(netcp->rx_pool, hwdesc);
  775. return -ENOMEM;
  776. }
  777. /* Refill Rx FDQ with descriptors & attached buffers */
  778. static void netcp_rxpool_refill(struct netcp_intf *netcp)
  779. {
  780. u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
  781. int i, ret = 0;
  782. /* Calculate the FDQ deficit and refill */
  783. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
  784. fdq_deficit[i] = netcp->rx_queue_depths[i] -
  785. knav_queue_get_count(netcp->rx_fdq[i]);
  786. while (fdq_deficit[i]-- && !ret)
  787. ret = netcp_allocate_rx_buf(netcp, i);
  788. } /* end for fdqs */
  789. }
  790. /* NAPI poll */
  791. static int netcp_rx_poll(struct napi_struct *napi, int budget)
  792. {
  793. struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
  794. rx_napi);
  795. unsigned int packets;
  796. packets = netcp_process_rx_packets(netcp, budget);
  797. netcp_rxpool_refill(netcp);
  798. if (packets < budget) {
  799. napi_complete(&netcp->rx_napi);
  800. knav_queue_enable_notify(netcp->rx_queue);
  801. }
  802. return packets;
  803. }
  804. static void netcp_rx_notify(void *arg)
  805. {
  806. struct netcp_intf *netcp = arg;
  807. knav_queue_disable_notify(netcp->rx_queue);
  808. napi_schedule(&netcp->rx_napi);
  809. }
  810. static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
  811. struct knav_dma_desc *desc,
  812. unsigned int desc_sz)
  813. {
  814. struct knav_dma_desc *ndesc = desc;
  815. dma_addr_t dma_desc, dma_buf;
  816. unsigned int buf_len;
  817. while (ndesc) {
  818. get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
  819. if (dma_buf && buf_len)
  820. dma_unmap_single(netcp->dev, dma_buf, buf_len,
  821. DMA_TO_DEVICE);
  822. else
  823. dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
  824. &dma_buf, buf_len);
  825. knav_pool_desc_put(netcp->tx_pool, ndesc);
  826. ndesc = NULL;
  827. if (dma_desc) {
  828. ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
  829. desc_sz);
  830. if (!ndesc)
  831. dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
  832. }
  833. }
  834. }
  835. static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
  836. unsigned int budget)
  837. {
  838. struct knav_dma_desc *desc;
  839. struct netcp_tx_cb *tx_cb;
  840. struct sk_buff *skb;
  841. unsigned int dma_sz;
  842. dma_addr_t dma;
  843. int pkts = 0;
  844. while (budget--) {
  845. dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
  846. if (!dma)
  847. break;
  848. desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
  849. if (unlikely(!desc)) {
  850. dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
  851. netcp->ndev->stats.tx_errors++;
  852. continue;
  853. }
  854. /* warning!!!! We are retrieving the virtual ptr in the sw_data
  855. * field as a 32bit value. Will not work on 64bit machines
  856. */
  857. skb = (struct sk_buff *)GET_SW_DATA0(desc);
  858. netcp_free_tx_desc_chain(netcp, desc, dma_sz);
  859. if (!skb) {
  860. dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
  861. netcp->ndev->stats.tx_errors++;
  862. continue;
  863. }
  864. tx_cb = (struct netcp_tx_cb *)skb->cb;
  865. if (tx_cb->txtstamp)
  866. tx_cb->txtstamp(tx_cb->ts_context, skb);
  867. if (netif_subqueue_stopped(netcp->ndev, skb) &&
  868. netif_running(netcp->ndev) &&
  869. (knav_pool_count(netcp->tx_pool) >
  870. netcp->tx_resume_threshold)) {
  871. u16 subqueue = skb_get_queue_mapping(skb);
  872. netif_wake_subqueue(netcp->ndev, subqueue);
  873. }
  874. netcp->ndev->stats.tx_packets++;
  875. netcp->ndev->stats.tx_bytes += skb->len;
  876. dev_kfree_skb(skb);
  877. pkts++;
  878. }
  879. return pkts;
  880. }
  881. static int netcp_tx_poll(struct napi_struct *napi, int budget)
  882. {
  883. int packets;
  884. struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
  885. tx_napi);
  886. packets = netcp_process_tx_compl_packets(netcp, budget);
  887. if (packets < budget) {
  888. napi_complete(&netcp->tx_napi);
  889. knav_queue_enable_notify(netcp->tx_compl_q);
  890. }
  891. return packets;
  892. }
  893. static void netcp_tx_notify(void *arg)
  894. {
  895. struct netcp_intf *netcp = arg;
  896. knav_queue_disable_notify(netcp->tx_compl_q);
  897. napi_schedule(&netcp->tx_napi);
  898. }
  899. static struct knav_dma_desc*
  900. netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
  901. {
  902. struct knav_dma_desc *desc, *ndesc, *pdesc;
  903. unsigned int pkt_len = skb_headlen(skb);
  904. struct device *dev = netcp->dev;
  905. dma_addr_t dma_addr;
  906. unsigned int dma_sz;
  907. int i;
  908. /* Map the linear buffer */
  909. dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
  910. if (unlikely(dma_mapping_error(dev, dma_addr))) {
  911. dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
  912. return NULL;
  913. }
  914. desc = knav_pool_desc_get(netcp->tx_pool);
  915. if (IS_ERR_OR_NULL(desc)) {
  916. dev_err(netcp->ndev_dev, "out of TX desc\n");
  917. dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
  918. return NULL;
  919. }
  920. set_pkt_info(dma_addr, pkt_len, 0, desc);
  921. if (skb_is_nonlinear(skb)) {
  922. prefetchw(skb_shinfo(skb));
  923. } else {
  924. desc->next_desc = 0;
  925. goto upd_pkt_len;
  926. }
  927. pdesc = desc;
  928. /* Handle the case where skb is fragmented in pages */
  929. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  930. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  931. struct page *page = skb_frag_page(frag);
  932. u32 page_offset = frag->page_offset;
  933. u32 buf_len = skb_frag_size(frag);
  934. dma_addr_t desc_dma;
  935. u32 desc_dma_32;
  936. u32 pkt_info;
  937. dma_addr = dma_map_page(dev, page, page_offset, buf_len,
  938. DMA_TO_DEVICE);
  939. if (unlikely(!dma_addr)) {
  940. dev_err(netcp->ndev_dev, "Failed to map skb page\n");
  941. goto free_descs;
  942. }
  943. ndesc = knav_pool_desc_get(netcp->tx_pool);
  944. if (IS_ERR_OR_NULL(ndesc)) {
  945. dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
  946. dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
  947. goto free_descs;
  948. }
  949. desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
  950. pkt_info =
  951. (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
  952. KNAV_DMA_DESC_RETQ_SHIFT;
  953. set_pkt_info(dma_addr, buf_len, 0, ndesc);
  954. desc_dma_32 = (u32)desc_dma;
  955. set_words(&desc_dma_32, 1, &pdesc->next_desc);
  956. pkt_len += buf_len;
  957. if (pdesc != desc)
  958. knav_pool_desc_map(netcp->tx_pool, pdesc,
  959. sizeof(*pdesc), &desc_dma, &dma_sz);
  960. pdesc = ndesc;
  961. }
  962. if (pdesc != desc)
  963. knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
  964. &dma_addr, &dma_sz);
  965. /* frag list based linkage is not supported for now. */
  966. if (skb_shinfo(skb)->frag_list) {
  967. dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
  968. goto free_descs;
  969. }
  970. upd_pkt_len:
  971. WARN_ON(pkt_len != skb->len);
  972. pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
  973. set_words(&pkt_len, 1, &desc->desc_info);
  974. return desc;
  975. free_descs:
  976. netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
  977. return NULL;
  978. }
  979. static int netcp_tx_submit_skb(struct netcp_intf *netcp,
  980. struct sk_buff *skb,
  981. struct knav_dma_desc *desc)
  982. {
  983. struct netcp_tx_pipe *tx_pipe = NULL;
  984. struct netcp_hook_list *tx_hook;
  985. struct netcp_packet p_info;
  986. struct netcp_tx_cb *tx_cb;
  987. unsigned int dma_sz;
  988. dma_addr_t dma;
  989. u32 tmp = 0;
  990. int ret = 0;
  991. p_info.netcp = netcp;
  992. p_info.skb = skb;
  993. p_info.tx_pipe = NULL;
  994. p_info.psdata_len = 0;
  995. p_info.ts_context = NULL;
  996. p_info.txtstamp = NULL;
  997. p_info.epib = desc->epib;
  998. p_info.psdata = (u32 __force *)desc->psdata;
  999. memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
  1000. /* Find out where to inject the packet for transmission */
  1001. list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
  1002. ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
  1003. &p_info);
  1004. if (unlikely(ret != 0)) {
  1005. dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
  1006. tx_hook->order, ret);
  1007. ret = (ret < 0) ? ret : NETDEV_TX_OK;
  1008. goto out;
  1009. }
  1010. }
  1011. /* Make sure some TX hook claimed the packet */
  1012. tx_pipe = p_info.tx_pipe;
  1013. if (!tx_pipe) {
  1014. dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
  1015. ret = -ENXIO;
  1016. goto out;
  1017. }
  1018. tx_cb = (struct netcp_tx_cb *)skb->cb;
  1019. tx_cb->ts_context = p_info.ts_context;
  1020. tx_cb->txtstamp = p_info.txtstamp;
  1021. /* update descriptor */
  1022. if (p_info.psdata_len) {
  1023. /* psdata points to both native-endian and device-endian data */
  1024. __le32 *psdata = (void __force *)p_info.psdata;
  1025. memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
  1026. p_info.psdata_len);
  1027. set_words(p_info.psdata, p_info.psdata_len, psdata);
  1028. tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
  1029. KNAV_DMA_DESC_PSLEN_SHIFT;
  1030. }
  1031. tmp |= KNAV_DMA_DESC_HAS_EPIB |
  1032. ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
  1033. KNAV_DMA_DESC_RETQ_SHIFT);
  1034. if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
  1035. tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
  1036. KNAV_DMA_DESC_PSFLAG_SHIFT);
  1037. }
  1038. set_words(&tmp, 1, &desc->packet_info);
  1039. /* warning!!!! We are saving the virtual ptr in the sw_data
  1040. * field as a 32bit value. Will not work on 64bit machines
  1041. */
  1042. SET_SW_DATA0((u32)skb, desc);
  1043. if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
  1044. tmp = tx_pipe->switch_to_port;
  1045. set_words(&tmp, 1, &desc->tag_info);
  1046. }
  1047. /* submit packet descriptor */
  1048. ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
  1049. &dma_sz);
  1050. if (unlikely(ret)) {
  1051. dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
  1052. ret = -ENOMEM;
  1053. goto out;
  1054. }
  1055. skb_tx_timestamp(skb);
  1056. knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
  1057. out:
  1058. return ret;
  1059. }
  1060. /* Submit the packet */
  1061. static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1062. {
  1063. struct netcp_intf *netcp = netdev_priv(ndev);
  1064. int subqueue = skb_get_queue_mapping(skb);
  1065. struct knav_dma_desc *desc;
  1066. int desc_count, ret = 0;
  1067. if (unlikely(skb->len <= 0)) {
  1068. dev_kfree_skb(skb);
  1069. return NETDEV_TX_OK;
  1070. }
  1071. if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
  1072. ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
  1073. if (ret < 0) {
  1074. /* If we get here, the skb has already been dropped */
  1075. dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
  1076. ret);
  1077. ndev->stats.tx_dropped++;
  1078. return ret;
  1079. }
  1080. skb->len = NETCP_MIN_PACKET_SIZE;
  1081. }
  1082. desc = netcp_tx_map_skb(skb, netcp);
  1083. if (unlikely(!desc)) {
  1084. netif_stop_subqueue(ndev, subqueue);
  1085. ret = -ENOBUFS;
  1086. goto drop;
  1087. }
  1088. ret = netcp_tx_submit_skb(netcp, skb, desc);
  1089. if (ret)
  1090. goto drop;
  1091. netif_trans_update(ndev);
  1092. /* Check Tx pool count & stop subqueue if needed */
  1093. desc_count = knav_pool_count(netcp->tx_pool);
  1094. if (desc_count < netcp->tx_pause_threshold) {
  1095. dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
  1096. netif_stop_subqueue(ndev, subqueue);
  1097. }
  1098. return NETDEV_TX_OK;
  1099. drop:
  1100. ndev->stats.tx_dropped++;
  1101. if (desc)
  1102. netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
  1103. dev_kfree_skb(skb);
  1104. return ret;
  1105. }
  1106. int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
  1107. {
  1108. if (tx_pipe->dma_channel) {
  1109. knav_dma_close_channel(tx_pipe->dma_channel);
  1110. tx_pipe->dma_channel = NULL;
  1111. }
  1112. return 0;
  1113. }
  1114. EXPORT_SYMBOL_GPL(netcp_txpipe_close);
  1115. int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
  1116. {
  1117. struct device *dev = tx_pipe->netcp_device->device;
  1118. struct knav_dma_cfg config;
  1119. int ret = 0;
  1120. u8 name[16];
  1121. memset(&config, 0, sizeof(config));
  1122. config.direction = DMA_MEM_TO_DEV;
  1123. config.u.tx.filt_einfo = false;
  1124. config.u.tx.filt_pswords = false;
  1125. config.u.tx.priority = DMA_PRIO_MED_L;
  1126. tx_pipe->dma_channel = knav_dma_open_channel(dev,
  1127. tx_pipe->dma_chan_name, &config);
  1128. if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
  1129. dev_err(dev, "failed opening tx chan(%s)\n",
  1130. tx_pipe->dma_chan_name);
  1131. goto err;
  1132. }
  1133. snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
  1134. tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
  1135. KNAV_QUEUE_SHARED);
  1136. if (IS_ERR(tx_pipe->dma_queue)) {
  1137. dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
  1138. name, ret);
  1139. ret = PTR_ERR(tx_pipe->dma_queue);
  1140. goto err;
  1141. }
  1142. dev_dbg(dev, "opened tx pipe %s\n", name);
  1143. return 0;
  1144. err:
  1145. if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
  1146. knav_dma_close_channel(tx_pipe->dma_channel);
  1147. tx_pipe->dma_channel = NULL;
  1148. return ret;
  1149. }
  1150. EXPORT_SYMBOL_GPL(netcp_txpipe_open);
  1151. int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
  1152. struct netcp_device *netcp_device,
  1153. const char *dma_chan_name, unsigned int dma_queue_id)
  1154. {
  1155. memset(tx_pipe, 0, sizeof(*tx_pipe));
  1156. tx_pipe->netcp_device = netcp_device;
  1157. tx_pipe->dma_chan_name = dma_chan_name;
  1158. tx_pipe->dma_queue_id = dma_queue_id;
  1159. return 0;
  1160. }
  1161. EXPORT_SYMBOL_GPL(netcp_txpipe_init);
  1162. static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
  1163. const u8 *addr,
  1164. enum netcp_addr_type type)
  1165. {
  1166. struct netcp_addr *naddr;
  1167. list_for_each_entry(naddr, &netcp->addr_list, node) {
  1168. if (naddr->type != type)
  1169. continue;
  1170. if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
  1171. continue;
  1172. return naddr;
  1173. }
  1174. return NULL;
  1175. }
  1176. static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
  1177. const u8 *addr,
  1178. enum netcp_addr_type type)
  1179. {
  1180. struct netcp_addr *naddr;
  1181. naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
  1182. if (!naddr)
  1183. return NULL;
  1184. naddr->type = type;
  1185. naddr->flags = 0;
  1186. naddr->netcp = netcp;
  1187. if (addr)
  1188. ether_addr_copy(naddr->addr, addr);
  1189. else
  1190. eth_zero_addr(naddr->addr);
  1191. list_add_tail(&naddr->node, &netcp->addr_list);
  1192. return naddr;
  1193. }
  1194. static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
  1195. {
  1196. list_del(&naddr->node);
  1197. devm_kfree(netcp->dev, naddr);
  1198. }
  1199. static void netcp_addr_clear_mark(struct netcp_intf *netcp)
  1200. {
  1201. struct netcp_addr *naddr;
  1202. list_for_each_entry(naddr, &netcp->addr_list, node)
  1203. naddr->flags = 0;
  1204. }
  1205. static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
  1206. enum netcp_addr_type type)
  1207. {
  1208. struct netcp_addr *naddr;
  1209. naddr = netcp_addr_find(netcp, addr, type);
  1210. if (naddr) {
  1211. naddr->flags |= ADDR_VALID;
  1212. return;
  1213. }
  1214. naddr = netcp_addr_add(netcp, addr, type);
  1215. if (!WARN_ON(!naddr))
  1216. naddr->flags |= ADDR_NEW;
  1217. }
  1218. static void netcp_addr_sweep_del(struct netcp_intf *netcp)
  1219. {
  1220. struct netcp_addr *naddr, *tmp;
  1221. struct netcp_intf_modpriv *priv;
  1222. struct netcp_module *module;
  1223. int error;
  1224. list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
  1225. if (naddr->flags & (ADDR_VALID | ADDR_NEW))
  1226. continue;
  1227. dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
  1228. naddr->addr, naddr->type);
  1229. for_each_module(netcp, priv) {
  1230. module = priv->netcp_module;
  1231. if (!module->del_addr)
  1232. continue;
  1233. error = module->del_addr(priv->module_priv,
  1234. naddr);
  1235. WARN_ON(error);
  1236. }
  1237. netcp_addr_del(netcp, naddr);
  1238. }
  1239. }
  1240. static void netcp_addr_sweep_add(struct netcp_intf *netcp)
  1241. {
  1242. struct netcp_addr *naddr, *tmp;
  1243. struct netcp_intf_modpriv *priv;
  1244. struct netcp_module *module;
  1245. int error;
  1246. list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
  1247. if (!(naddr->flags & ADDR_NEW))
  1248. continue;
  1249. dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
  1250. naddr->addr, naddr->type);
  1251. for_each_module(netcp, priv) {
  1252. module = priv->netcp_module;
  1253. if (!module->add_addr)
  1254. continue;
  1255. error = module->add_addr(priv->module_priv, naddr);
  1256. WARN_ON(error);
  1257. }
  1258. }
  1259. }
  1260. static void netcp_set_rx_mode(struct net_device *ndev)
  1261. {
  1262. struct netcp_intf *netcp = netdev_priv(ndev);
  1263. struct netdev_hw_addr *ndev_addr;
  1264. bool promisc;
  1265. promisc = (ndev->flags & IFF_PROMISC ||
  1266. ndev->flags & IFF_ALLMULTI ||
  1267. netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
  1268. spin_lock(&netcp->lock);
  1269. /* first clear all marks */
  1270. netcp_addr_clear_mark(netcp);
  1271. /* next add new entries, mark existing ones */
  1272. netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
  1273. for_each_dev_addr(ndev, ndev_addr)
  1274. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
  1275. netdev_for_each_uc_addr(ndev_addr, ndev)
  1276. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
  1277. netdev_for_each_mc_addr(ndev_addr, ndev)
  1278. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
  1279. if (promisc)
  1280. netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
  1281. /* finally sweep and callout into modules */
  1282. netcp_addr_sweep_del(netcp);
  1283. netcp_addr_sweep_add(netcp);
  1284. spin_unlock(&netcp->lock);
  1285. }
  1286. static void netcp_free_navigator_resources(struct netcp_intf *netcp)
  1287. {
  1288. int i;
  1289. if (netcp->rx_channel) {
  1290. knav_dma_close_channel(netcp->rx_channel);
  1291. netcp->rx_channel = NULL;
  1292. }
  1293. if (!IS_ERR_OR_NULL(netcp->rx_pool))
  1294. netcp_rxpool_free(netcp);
  1295. if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
  1296. knav_queue_close(netcp->rx_queue);
  1297. netcp->rx_queue = NULL;
  1298. }
  1299. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  1300. !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
  1301. knav_queue_close(netcp->rx_fdq[i]);
  1302. netcp->rx_fdq[i] = NULL;
  1303. }
  1304. if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
  1305. knav_queue_close(netcp->tx_compl_q);
  1306. netcp->tx_compl_q = NULL;
  1307. }
  1308. if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
  1309. knav_pool_destroy(netcp->tx_pool);
  1310. netcp->tx_pool = NULL;
  1311. }
  1312. }
  1313. static int netcp_setup_navigator_resources(struct net_device *ndev)
  1314. {
  1315. struct netcp_intf *netcp = netdev_priv(ndev);
  1316. struct knav_queue_notify_config notify_cfg;
  1317. struct knav_dma_cfg config;
  1318. u32 last_fdq = 0;
  1319. u8 name[16];
  1320. int ret;
  1321. int i;
  1322. /* Create Rx/Tx descriptor pools */
  1323. snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
  1324. netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
  1325. netcp->rx_pool_region_id);
  1326. if (IS_ERR_OR_NULL(netcp->rx_pool)) {
  1327. dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
  1328. ret = PTR_ERR(netcp->rx_pool);
  1329. goto fail;
  1330. }
  1331. snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
  1332. netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
  1333. netcp->tx_pool_region_id);
  1334. if (IS_ERR_OR_NULL(netcp->tx_pool)) {
  1335. dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
  1336. ret = PTR_ERR(netcp->tx_pool);
  1337. goto fail;
  1338. }
  1339. /* open Tx completion queue */
  1340. snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
  1341. netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
  1342. if (IS_ERR(netcp->tx_compl_q)) {
  1343. ret = PTR_ERR(netcp->tx_compl_q);
  1344. goto fail;
  1345. }
  1346. netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
  1347. /* Set notification for Tx completion */
  1348. notify_cfg.fn = netcp_tx_notify;
  1349. notify_cfg.fn_arg = netcp;
  1350. ret = knav_queue_device_control(netcp->tx_compl_q,
  1351. KNAV_QUEUE_SET_NOTIFIER,
  1352. (unsigned long)&notify_cfg);
  1353. if (ret)
  1354. goto fail;
  1355. knav_queue_disable_notify(netcp->tx_compl_q);
  1356. /* open Rx completion queue */
  1357. snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
  1358. netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
  1359. if (IS_ERR(netcp->rx_queue)) {
  1360. ret = PTR_ERR(netcp->rx_queue);
  1361. goto fail;
  1362. }
  1363. netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
  1364. /* Set notification for Rx completion */
  1365. notify_cfg.fn = netcp_rx_notify;
  1366. notify_cfg.fn_arg = netcp;
  1367. ret = knav_queue_device_control(netcp->rx_queue,
  1368. KNAV_QUEUE_SET_NOTIFIER,
  1369. (unsigned long)&notify_cfg);
  1370. if (ret)
  1371. goto fail;
  1372. knav_queue_disable_notify(netcp->rx_queue);
  1373. /* open Rx FDQs */
  1374. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
  1375. ++i) {
  1376. snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
  1377. netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  1378. if (IS_ERR(netcp->rx_fdq[i])) {
  1379. ret = PTR_ERR(netcp->rx_fdq[i]);
  1380. goto fail;
  1381. }
  1382. }
  1383. memset(&config, 0, sizeof(config));
  1384. config.direction = DMA_DEV_TO_MEM;
  1385. config.u.rx.einfo_present = true;
  1386. config.u.rx.psinfo_present = true;
  1387. config.u.rx.err_mode = DMA_DROP;
  1388. config.u.rx.desc_type = DMA_DESC_HOST;
  1389. config.u.rx.psinfo_at_sop = false;
  1390. config.u.rx.sop_offset = NETCP_SOP_OFFSET;
  1391. config.u.rx.dst_q = netcp->rx_queue_id;
  1392. config.u.rx.thresh = DMA_THRESH_NONE;
  1393. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
  1394. if (netcp->rx_fdq[i])
  1395. last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
  1396. config.u.rx.fdq[i] = last_fdq;
  1397. }
  1398. netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
  1399. netcp->dma_chan_name, &config);
  1400. if (IS_ERR_OR_NULL(netcp->rx_channel)) {
  1401. dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
  1402. netcp->dma_chan_name);
  1403. goto fail;
  1404. }
  1405. dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
  1406. return 0;
  1407. fail:
  1408. netcp_free_navigator_resources(netcp);
  1409. return ret;
  1410. }
  1411. /* Open the device */
  1412. static int netcp_ndo_open(struct net_device *ndev)
  1413. {
  1414. struct netcp_intf *netcp = netdev_priv(ndev);
  1415. struct netcp_intf_modpriv *intf_modpriv;
  1416. struct netcp_module *module;
  1417. int ret;
  1418. netif_carrier_off(ndev);
  1419. ret = netcp_setup_navigator_resources(ndev);
  1420. if (ret) {
  1421. dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
  1422. goto fail;
  1423. }
  1424. for_each_module(netcp, intf_modpriv) {
  1425. module = intf_modpriv->netcp_module;
  1426. if (module->open) {
  1427. ret = module->open(intf_modpriv->module_priv, ndev);
  1428. if (ret != 0) {
  1429. dev_err(netcp->ndev_dev, "module open failed\n");
  1430. goto fail_open;
  1431. }
  1432. }
  1433. }
  1434. napi_enable(&netcp->rx_napi);
  1435. napi_enable(&netcp->tx_napi);
  1436. knav_queue_enable_notify(netcp->tx_compl_q);
  1437. knav_queue_enable_notify(netcp->rx_queue);
  1438. netcp_rxpool_refill(netcp);
  1439. netif_tx_wake_all_queues(ndev);
  1440. dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
  1441. return 0;
  1442. fail_open:
  1443. for_each_module(netcp, intf_modpriv) {
  1444. module = intf_modpriv->netcp_module;
  1445. if (module->close)
  1446. module->close(intf_modpriv->module_priv, ndev);
  1447. }
  1448. fail:
  1449. netcp_free_navigator_resources(netcp);
  1450. return ret;
  1451. }
  1452. /* Close the device */
  1453. static int netcp_ndo_stop(struct net_device *ndev)
  1454. {
  1455. struct netcp_intf *netcp = netdev_priv(ndev);
  1456. struct netcp_intf_modpriv *intf_modpriv;
  1457. struct netcp_module *module;
  1458. int err = 0;
  1459. netif_tx_stop_all_queues(ndev);
  1460. netif_carrier_off(ndev);
  1461. netcp_addr_clear_mark(netcp);
  1462. netcp_addr_sweep_del(netcp);
  1463. knav_queue_disable_notify(netcp->rx_queue);
  1464. knav_queue_disable_notify(netcp->tx_compl_q);
  1465. napi_disable(&netcp->rx_napi);
  1466. napi_disable(&netcp->tx_napi);
  1467. for_each_module(netcp, intf_modpriv) {
  1468. module = intf_modpriv->netcp_module;
  1469. if (module->close) {
  1470. err = module->close(intf_modpriv->module_priv, ndev);
  1471. if (err != 0)
  1472. dev_err(netcp->ndev_dev, "Close failed\n");
  1473. }
  1474. }
  1475. /* Recycle Rx descriptors from completion queue */
  1476. netcp_empty_rx_queue(netcp);
  1477. /* Recycle Tx descriptors from completion queue */
  1478. netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
  1479. if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
  1480. dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
  1481. netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
  1482. netcp_free_navigator_resources(netcp);
  1483. dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
  1484. return 0;
  1485. }
  1486. static int netcp_ndo_ioctl(struct net_device *ndev,
  1487. struct ifreq *req, int cmd)
  1488. {
  1489. struct netcp_intf *netcp = netdev_priv(ndev);
  1490. struct netcp_intf_modpriv *intf_modpriv;
  1491. struct netcp_module *module;
  1492. int ret = -1, err = -EOPNOTSUPP;
  1493. if (!netif_running(ndev))
  1494. return -EINVAL;
  1495. for_each_module(netcp, intf_modpriv) {
  1496. module = intf_modpriv->netcp_module;
  1497. if (!module->ioctl)
  1498. continue;
  1499. err = module->ioctl(intf_modpriv->module_priv, req, cmd);
  1500. if ((err < 0) && (err != -EOPNOTSUPP)) {
  1501. ret = err;
  1502. goto out;
  1503. }
  1504. if (err == 0)
  1505. ret = err;
  1506. }
  1507. out:
  1508. return (ret == 0) ? 0 : err;
  1509. }
  1510. static void netcp_ndo_tx_timeout(struct net_device *ndev)
  1511. {
  1512. struct netcp_intf *netcp = netdev_priv(ndev);
  1513. unsigned int descs = knav_pool_count(netcp->tx_pool);
  1514. dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
  1515. netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
  1516. netif_trans_update(ndev);
  1517. netif_tx_wake_all_queues(ndev);
  1518. }
  1519. static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  1520. {
  1521. struct netcp_intf *netcp = netdev_priv(ndev);
  1522. struct netcp_intf_modpriv *intf_modpriv;
  1523. struct netcp_module *module;
  1524. unsigned long flags;
  1525. int err = 0;
  1526. dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
  1527. spin_lock_irqsave(&netcp->lock, flags);
  1528. for_each_module(netcp, intf_modpriv) {
  1529. module = intf_modpriv->netcp_module;
  1530. if ((module->add_vid) && (vid != 0)) {
  1531. err = module->add_vid(intf_modpriv->module_priv, vid);
  1532. if (err != 0) {
  1533. dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
  1534. vid);
  1535. break;
  1536. }
  1537. }
  1538. }
  1539. spin_unlock_irqrestore(&netcp->lock, flags);
  1540. return err;
  1541. }
  1542. static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  1543. {
  1544. struct netcp_intf *netcp = netdev_priv(ndev);
  1545. struct netcp_intf_modpriv *intf_modpriv;
  1546. struct netcp_module *module;
  1547. unsigned long flags;
  1548. int err = 0;
  1549. dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
  1550. spin_lock_irqsave(&netcp->lock, flags);
  1551. for_each_module(netcp, intf_modpriv) {
  1552. module = intf_modpriv->netcp_module;
  1553. if (module->del_vid) {
  1554. err = module->del_vid(intf_modpriv->module_priv, vid);
  1555. if (err != 0) {
  1556. dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
  1557. vid);
  1558. break;
  1559. }
  1560. }
  1561. }
  1562. spin_unlock_irqrestore(&netcp->lock, flags);
  1563. return err;
  1564. }
  1565. static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
  1566. void *accel_priv,
  1567. select_queue_fallback_t fallback)
  1568. {
  1569. return 0;
  1570. }
  1571. static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
  1572. struct tc_to_netdev *tc)
  1573. {
  1574. int i;
  1575. /* setup tc must be called under rtnl lock */
  1576. ASSERT_RTNL();
  1577. if (tc->type != TC_SETUP_MQPRIO)
  1578. return -EINVAL;
  1579. /* Sanity-check the number of traffic classes requested */
  1580. if ((dev->real_num_tx_queues <= 1) ||
  1581. (dev->real_num_tx_queues < tc->tc))
  1582. return -EINVAL;
  1583. /* Configure traffic class to queue mappings */
  1584. if (tc->tc) {
  1585. netdev_set_num_tc(dev, tc->tc);
  1586. for (i = 0; i < tc->tc; i++)
  1587. netdev_set_tc_queue(dev, i, 1, i);
  1588. } else {
  1589. netdev_reset_tc(dev);
  1590. }
  1591. return 0;
  1592. }
  1593. static const struct net_device_ops netcp_netdev_ops = {
  1594. .ndo_open = netcp_ndo_open,
  1595. .ndo_stop = netcp_ndo_stop,
  1596. .ndo_start_xmit = netcp_ndo_start_xmit,
  1597. .ndo_set_rx_mode = netcp_set_rx_mode,
  1598. .ndo_do_ioctl = netcp_ndo_ioctl,
  1599. .ndo_set_mac_address = eth_mac_addr,
  1600. .ndo_validate_addr = eth_validate_addr,
  1601. .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
  1602. .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
  1603. .ndo_tx_timeout = netcp_ndo_tx_timeout,
  1604. .ndo_select_queue = netcp_select_queue,
  1605. .ndo_setup_tc = netcp_setup_tc,
  1606. };
  1607. static int netcp_create_interface(struct netcp_device *netcp_device,
  1608. struct device_node *node_interface)
  1609. {
  1610. struct device *dev = netcp_device->device;
  1611. struct device_node *node = dev->of_node;
  1612. struct netcp_intf *netcp;
  1613. struct net_device *ndev;
  1614. resource_size_t size;
  1615. struct resource res;
  1616. void __iomem *efuse = NULL;
  1617. u32 efuse_mac = 0;
  1618. const void *mac_addr;
  1619. u8 efuse_mac_addr[6];
  1620. u32 temp[2];
  1621. int ret = 0;
  1622. ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
  1623. if (!ndev) {
  1624. dev_err(dev, "Error allocating netdev\n");
  1625. return -ENOMEM;
  1626. }
  1627. ndev->features |= NETIF_F_SG;
  1628. ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
  1629. ndev->hw_features = ndev->features;
  1630. ndev->vlan_features |= NETIF_F_SG;
  1631. /* MTU range: 68 - 9486 */
  1632. ndev->min_mtu = ETH_MIN_MTU;
  1633. ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
  1634. netcp = netdev_priv(ndev);
  1635. spin_lock_init(&netcp->lock);
  1636. INIT_LIST_HEAD(&netcp->module_head);
  1637. INIT_LIST_HEAD(&netcp->txhook_list_head);
  1638. INIT_LIST_HEAD(&netcp->rxhook_list_head);
  1639. INIT_LIST_HEAD(&netcp->addr_list);
  1640. netcp->netcp_device = netcp_device;
  1641. netcp->dev = netcp_device->device;
  1642. netcp->ndev = ndev;
  1643. netcp->ndev_dev = &ndev->dev;
  1644. netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
  1645. netcp->tx_pause_threshold = MAX_SKB_FRAGS;
  1646. netcp->tx_resume_threshold = netcp->tx_pause_threshold;
  1647. netcp->node_interface = node_interface;
  1648. ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
  1649. if (efuse_mac) {
  1650. if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
  1651. dev_err(dev, "could not find efuse-mac reg resource\n");
  1652. ret = -ENODEV;
  1653. goto quit;
  1654. }
  1655. size = resource_size(&res);
  1656. if (!devm_request_mem_region(dev, res.start, size,
  1657. dev_name(dev))) {
  1658. dev_err(dev, "could not reserve resource\n");
  1659. ret = -ENOMEM;
  1660. goto quit;
  1661. }
  1662. efuse = devm_ioremap_nocache(dev, res.start, size);
  1663. if (!efuse) {
  1664. dev_err(dev, "could not map resource\n");
  1665. devm_release_mem_region(dev, res.start, size);
  1666. ret = -ENOMEM;
  1667. goto quit;
  1668. }
  1669. emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
  1670. if (is_valid_ether_addr(efuse_mac_addr))
  1671. ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
  1672. else
  1673. random_ether_addr(ndev->dev_addr);
  1674. devm_iounmap(dev, efuse);
  1675. devm_release_mem_region(dev, res.start, size);
  1676. } else {
  1677. mac_addr = of_get_mac_address(node_interface);
  1678. if (mac_addr)
  1679. ether_addr_copy(ndev->dev_addr, mac_addr);
  1680. else
  1681. random_ether_addr(ndev->dev_addr);
  1682. }
  1683. ret = of_property_read_string(node_interface, "rx-channel",
  1684. &netcp->dma_chan_name);
  1685. if (ret < 0) {
  1686. dev_err(dev, "missing \"rx-channel\" parameter\n");
  1687. ret = -ENODEV;
  1688. goto quit;
  1689. }
  1690. ret = of_property_read_u32(node_interface, "rx-queue",
  1691. &netcp->rx_queue_id);
  1692. if (ret < 0) {
  1693. dev_warn(dev, "missing \"rx-queue\" parameter\n");
  1694. netcp->rx_queue_id = KNAV_QUEUE_QPEND;
  1695. }
  1696. ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
  1697. netcp->rx_queue_depths,
  1698. KNAV_DMA_FDQ_PER_CHAN);
  1699. if (ret < 0) {
  1700. dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
  1701. netcp->rx_queue_depths[0] = 128;
  1702. }
  1703. ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
  1704. if (ret < 0) {
  1705. dev_err(dev, "missing \"rx-pool\" parameter\n");
  1706. ret = -ENODEV;
  1707. goto quit;
  1708. }
  1709. netcp->rx_pool_size = temp[0];
  1710. netcp->rx_pool_region_id = temp[1];
  1711. ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
  1712. if (ret < 0) {
  1713. dev_err(dev, "missing \"tx-pool\" parameter\n");
  1714. ret = -ENODEV;
  1715. goto quit;
  1716. }
  1717. netcp->tx_pool_size = temp[0];
  1718. netcp->tx_pool_region_id = temp[1];
  1719. if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
  1720. dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
  1721. MAX_SKB_FRAGS);
  1722. ret = -ENODEV;
  1723. goto quit;
  1724. }
  1725. ret = of_property_read_u32(node_interface, "tx-completion-queue",
  1726. &netcp->tx_compl_qid);
  1727. if (ret < 0) {
  1728. dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
  1729. netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
  1730. }
  1731. /* NAPI register */
  1732. netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
  1733. netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
  1734. /* Register the network device */
  1735. ndev->dev_id = 0;
  1736. ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
  1737. ndev->netdev_ops = &netcp_netdev_ops;
  1738. SET_NETDEV_DEV(ndev, dev);
  1739. list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
  1740. return 0;
  1741. quit:
  1742. free_netdev(ndev);
  1743. return ret;
  1744. }
  1745. static void netcp_delete_interface(struct netcp_device *netcp_device,
  1746. struct net_device *ndev)
  1747. {
  1748. struct netcp_intf_modpriv *intf_modpriv, *tmp;
  1749. struct netcp_intf *netcp = netdev_priv(ndev);
  1750. struct netcp_module *module;
  1751. dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
  1752. ndev->name);
  1753. /* Notify each of the modules that the interface is going away */
  1754. list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
  1755. intf_list) {
  1756. module = intf_modpriv->netcp_module;
  1757. dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
  1758. module->name);
  1759. if (module->release)
  1760. module->release(intf_modpriv->module_priv);
  1761. list_del(&intf_modpriv->intf_list);
  1762. }
  1763. WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
  1764. ndev->name);
  1765. list_del(&netcp->interface_list);
  1766. of_node_put(netcp->node_interface);
  1767. unregister_netdev(ndev);
  1768. netif_napi_del(&netcp->rx_napi);
  1769. free_netdev(ndev);
  1770. }
  1771. static int netcp_probe(struct platform_device *pdev)
  1772. {
  1773. struct device_node *node = pdev->dev.of_node;
  1774. struct netcp_intf *netcp_intf, *netcp_tmp;
  1775. struct device_node *child, *interfaces;
  1776. struct netcp_device *netcp_device;
  1777. struct device *dev = &pdev->dev;
  1778. int ret;
  1779. if (!node) {
  1780. dev_err(dev, "could not find device info\n");
  1781. return -ENODEV;
  1782. }
  1783. /* Allocate a new NETCP device instance */
  1784. netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
  1785. if (!netcp_device)
  1786. return -ENOMEM;
  1787. pm_runtime_enable(&pdev->dev);
  1788. ret = pm_runtime_get_sync(&pdev->dev);
  1789. if (ret < 0) {
  1790. dev_err(dev, "Failed to enable NETCP power-domain\n");
  1791. pm_runtime_disable(&pdev->dev);
  1792. return ret;
  1793. }
  1794. /* Initialize the NETCP device instance */
  1795. INIT_LIST_HEAD(&netcp_device->interface_head);
  1796. INIT_LIST_HEAD(&netcp_device->modpriv_head);
  1797. netcp_device->device = dev;
  1798. platform_set_drvdata(pdev, netcp_device);
  1799. /* create interfaces */
  1800. interfaces = of_get_child_by_name(node, "netcp-interfaces");
  1801. if (!interfaces) {
  1802. dev_err(dev, "could not find netcp-interfaces node\n");
  1803. ret = -ENODEV;
  1804. goto probe_quit;
  1805. }
  1806. for_each_available_child_of_node(interfaces, child) {
  1807. ret = netcp_create_interface(netcp_device, child);
  1808. if (ret) {
  1809. dev_err(dev, "could not create interface(%s)\n",
  1810. child->name);
  1811. goto probe_quit_interface;
  1812. }
  1813. }
  1814. of_node_put(interfaces);
  1815. /* Add the device instance to the list */
  1816. list_add_tail(&netcp_device->device_list, &netcp_devices);
  1817. return 0;
  1818. probe_quit_interface:
  1819. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  1820. &netcp_device->interface_head,
  1821. interface_list) {
  1822. netcp_delete_interface(netcp_device, netcp_intf->ndev);
  1823. }
  1824. of_node_put(interfaces);
  1825. probe_quit:
  1826. pm_runtime_put_sync(&pdev->dev);
  1827. pm_runtime_disable(&pdev->dev);
  1828. platform_set_drvdata(pdev, NULL);
  1829. return ret;
  1830. }
  1831. static int netcp_remove(struct platform_device *pdev)
  1832. {
  1833. struct netcp_device *netcp_device = platform_get_drvdata(pdev);
  1834. struct netcp_intf *netcp_intf, *netcp_tmp;
  1835. struct netcp_inst_modpriv *inst_modpriv, *tmp;
  1836. struct netcp_module *module;
  1837. list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
  1838. inst_list) {
  1839. module = inst_modpriv->netcp_module;
  1840. dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
  1841. module->remove(netcp_device, inst_modpriv->module_priv);
  1842. list_del(&inst_modpriv->inst_list);
  1843. }
  1844. /* now that all modules are removed, clean up the interfaces */
  1845. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  1846. &netcp_device->interface_head,
  1847. interface_list) {
  1848. netcp_delete_interface(netcp_device, netcp_intf->ndev);
  1849. }
  1850. WARN(!list_empty(&netcp_device->interface_head),
  1851. "%s interface list not empty!\n", pdev->name);
  1852. pm_runtime_put_sync(&pdev->dev);
  1853. pm_runtime_disable(&pdev->dev);
  1854. platform_set_drvdata(pdev, NULL);
  1855. return 0;
  1856. }
  1857. static const struct of_device_id of_match[] = {
  1858. { .compatible = "ti,netcp-1.0", },
  1859. {},
  1860. };
  1861. MODULE_DEVICE_TABLE(of, of_match);
  1862. static struct platform_driver netcp_driver = {
  1863. .driver = {
  1864. .name = "netcp-1.0",
  1865. .of_match_table = of_match,
  1866. },
  1867. .probe = netcp_probe,
  1868. .remove = netcp_remove,
  1869. };
  1870. module_platform_driver(netcp_driver);
  1871. MODULE_LICENSE("GPL v2");
  1872. MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
  1873. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");