mcdi.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2008-2013 Solarflare Communications Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License version 2 as published
  7. * by the Free Software Foundation, incorporated herein by reference.
  8. */
  9. #include <linux/delay.h>
  10. #include <linux/moduleparam.h>
  11. #include <linux/atomic.h>
  12. #include "net_driver.h"
  13. #include "nic.h"
  14. #include "io.h"
  15. #include "farch_regs.h"
  16. #include "mcdi_pcol.h"
  17. /**************************************************************************
  18. *
  19. * Management-Controller-to-Driver Interface
  20. *
  21. **************************************************************************
  22. */
  23. #define MCDI_RPC_TIMEOUT (10 * HZ)
  24. /* A reboot/assertion causes the MCDI status word to be set after the
  25. * command word is set or a REBOOT event is sent. If we notice a reboot
  26. * via these mechanisms then wait 250ms for the status word to be set.
  27. */
  28. #define MCDI_STATUS_DELAY_US 100
  29. #define MCDI_STATUS_DELAY_COUNT 2500
  30. #define MCDI_STATUS_SLEEP_MS \
  31. (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
  32. #define SEQ_MASK \
  33. EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
  34. struct efx_mcdi_async_param {
  35. struct list_head list;
  36. unsigned int cmd;
  37. size_t inlen;
  38. size_t outlen;
  39. bool quiet;
  40. efx_mcdi_async_completer *complete;
  41. unsigned long cookie;
  42. /* followed by request/response buffer */
  43. };
  44. static void efx_mcdi_timeout_async(unsigned long context);
  45. static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  46. bool *was_attached_out);
  47. static bool efx_mcdi_poll_once(struct efx_nic *efx);
  48. static void efx_mcdi_abandon(struct efx_nic *efx);
  49. #ifdef CONFIG_SFC_MCDI_LOGGING
  50. static bool mcdi_logging_default;
  51. module_param(mcdi_logging_default, bool, 0644);
  52. MODULE_PARM_DESC(mcdi_logging_default,
  53. "Enable MCDI logging on newly-probed functions");
  54. #endif
  55. int efx_mcdi_init(struct efx_nic *efx)
  56. {
  57. struct efx_mcdi_iface *mcdi;
  58. bool already_attached;
  59. int rc = -ENOMEM;
  60. efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
  61. if (!efx->mcdi)
  62. goto fail;
  63. mcdi = efx_mcdi(efx);
  64. mcdi->efx = efx;
  65. #ifdef CONFIG_SFC_MCDI_LOGGING
  66. /* consuming code assumes buffer is page-sized */
  67. mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
  68. if (!mcdi->logging_buffer)
  69. goto fail1;
  70. mcdi->logging_enabled = mcdi_logging_default;
  71. #endif
  72. init_waitqueue_head(&mcdi->wq);
  73. init_waitqueue_head(&mcdi->proxy_rx_wq);
  74. spin_lock_init(&mcdi->iface_lock);
  75. mcdi->state = MCDI_STATE_QUIESCENT;
  76. mcdi->mode = MCDI_MODE_POLL;
  77. spin_lock_init(&mcdi->async_lock);
  78. INIT_LIST_HEAD(&mcdi->async_list);
  79. setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
  80. (unsigned long)mcdi);
  81. (void) efx_mcdi_poll_reboot(efx);
  82. mcdi->new_epoch = true;
  83. /* Recover from a failed assertion before probing */
  84. rc = efx_mcdi_handle_assertion(efx);
  85. if (rc)
  86. goto fail2;
  87. /* Let the MC (and BMC, if this is a LOM) know that the driver
  88. * is loaded. We should do this before we reset the NIC.
  89. */
  90. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  91. if (rc) {
  92. netif_err(efx, probe, efx->net_dev,
  93. "Unable to register driver with MCPU\n");
  94. goto fail2;
  95. }
  96. if (already_attached)
  97. /* Not a fatal error */
  98. netif_err(efx, probe, efx->net_dev,
  99. "Host already registered with MCPU\n");
  100. if (efx->mcdi->fn_flags &
  101. (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
  102. efx->primary = efx;
  103. return 0;
  104. fail2:
  105. #ifdef CONFIG_SFC_MCDI_LOGGING
  106. free_page((unsigned long)mcdi->logging_buffer);
  107. fail1:
  108. #endif
  109. kfree(efx->mcdi);
  110. efx->mcdi = NULL;
  111. fail:
  112. return rc;
  113. }
  114. void efx_mcdi_fini(struct efx_nic *efx)
  115. {
  116. if (!efx->mcdi)
  117. return;
  118. BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
  119. /* Relinquish the device (back to the BMC, if this is a LOM) */
  120. efx_mcdi_drv_attach(efx, false, NULL);
  121. #ifdef CONFIG_SFC_MCDI_LOGGING
  122. free_page((unsigned long)efx->mcdi->iface.logging_buffer);
  123. #endif
  124. kfree(efx->mcdi);
  125. }
  126. static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
  127. const efx_dword_t *inbuf, size_t inlen)
  128. {
  129. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  130. #ifdef CONFIG_SFC_MCDI_LOGGING
  131. char *buf = mcdi->logging_buffer; /* page-sized */
  132. #endif
  133. efx_dword_t hdr[2];
  134. size_t hdr_len;
  135. u32 xflags, seqno;
  136. BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
  137. /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
  138. spin_lock_bh(&mcdi->iface_lock);
  139. ++mcdi->seqno;
  140. spin_unlock_bh(&mcdi->iface_lock);
  141. seqno = mcdi->seqno & SEQ_MASK;
  142. xflags = 0;
  143. if (mcdi->mode == MCDI_MODE_EVENTS)
  144. xflags |= MCDI_HEADER_XFLAGS_EVREQ;
  145. if (efx->type->mcdi_max_ver == 1) {
  146. /* MCDI v1 */
  147. EFX_POPULATE_DWORD_7(hdr[0],
  148. MCDI_HEADER_RESPONSE, 0,
  149. MCDI_HEADER_RESYNC, 1,
  150. MCDI_HEADER_CODE, cmd,
  151. MCDI_HEADER_DATALEN, inlen,
  152. MCDI_HEADER_SEQ, seqno,
  153. MCDI_HEADER_XFLAGS, xflags,
  154. MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
  155. hdr_len = 4;
  156. } else {
  157. /* MCDI v2 */
  158. BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
  159. EFX_POPULATE_DWORD_7(hdr[0],
  160. MCDI_HEADER_RESPONSE, 0,
  161. MCDI_HEADER_RESYNC, 1,
  162. MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
  163. MCDI_HEADER_DATALEN, 0,
  164. MCDI_HEADER_SEQ, seqno,
  165. MCDI_HEADER_XFLAGS, xflags,
  166. MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
  167. EFX_POPULATE_DWORD_2(hdr[1],
  168. MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
  169. MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
  170. hdr_len = 8;
  171. }
  172. #ifdef CONFIG_SFC_MCDI_LOGGING
  173. if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
  174. int bytes = 0;
  175. int i;
  176. /* Lengths should always be a whole number of dwords, so scream
  177. * if they're not.
  178. */
  179. WARN_ON_ONCE(hdr_len % 4);
  180. WARN_ON_ONCE(inlen % 4);
  181. /* We own the logging buffer, as only one MCDI can be in
  182. * progress on a NIC at any one time. So no need for locking.
  183. */
  184. for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
  185. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  186. " %08x", le32_to_cpu(hdr[i].u32[0]));
  187. for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
  188. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  189. " %08x", le32_to_cpu(inbuf[i].u32[0]));
  190. netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
  191. }
  192. #endif
  193. efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
  194. mcdi->new_epoch = false;
  195. }
  196. static int efx_mcdi_errno(unsigned int mcdi_err)
  197. {
  198. switch (mcdi_err) {
  199. case 0:
  200. return 0;
  201. #define TRANSLATE_ERROR(name) \
  202. case MC_CMD_ERR_ ## name: \
  203. return -name;
  204. TRANSLATE_ERROR(EPERM);
  205. TRANSLATE_ERROR(ENOENT);
  206. TRANSLATE_ERROR(EINTR);
  207. TRANSLATE_ERROR(EAGAIN);
  208. TRANSLATE_ERROR(EACCES);
  209. TRANSLATE_ERROR(EBUSY);
  210. TRANSLATE_ERROR(EINVAL);
  211. TRANSLATE_ERROR(EDEADLK);
  212. TRANSLATE_ERROR(ENOSYS);
  213. TRANSLATE_ERROR(ETIME);
  214. TRANSLATE_ERROR(EALREADY);
  215. TRANSLATE_ERROR(ENOSPC);
  216. #undef TRANSLATE_ERROR
  217. case MC_CMD_ERR_ENOTSUP:
  218. return -EOPNOTSUPP;
  219. case MC_CMD_ERR_ALLOC_FAIL:
  220. return -ENOBUFS;
  221. case MC_CMD_ERR_MAC_EXIST:
  222. return -EADDRINUSE;
  223. default:
  224. return -EPROTO;
  225. }
  226. }
  227. static void efx_mcdi_read_response_header(struct efx_nic *efx)
  228. {
  229. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  230. unsigned int respseq, respcmd, error;
  231. #ifdef CONFIG_SFC_MCDI_LOGGING
  232. char *buf = mcdi->logging_buffer; /* page-sized */
  233. #endif
  234. efx_dword_t hdr;
  235. efx->type->mcdi_read_response(efx, &hdr, 0, 4);
  236. respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
  237. respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
  238. error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
  239. if (respcmd != MC_CMD_V2_EXTN) {
  240. mcdi->resp_hdr_len = 4;
  241. mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
  242. } else {
  243. efx->type->mcdi_read_response(efx, &hdr, 4, 4);
  244. mcdi->resp_hdr_len = 8;
  245. mcdi->resp_data_len =
  246. EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
  247. }
  248. #ifdef CONFIG_SFC_MCDI_LOGGING
  249. if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
  250. size_t hdr_len, data_len;
  251. int bytes = 0;
  252. int i;
  253. WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
  254. hdr_len = mcdi->resp_hdr_len / 4;
  255. /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
  256. * to dword size, and the MCDI buffer is always dword size
  257. */
  258. data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
  259. /* We own the logging buffer, as only one MCDI can be in
  260. * progress on a NIC at any one time. So no need for locking.
  261. */
  262. for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
  263. efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
  264. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  265. " %08x", le32_to_cpu(hdr.u32[0]));
  266. }
  267. for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
  268. efx->type->mcdi_read_response(efx, &hdr,
  269. mcdi->resp_hdr_len + (i * 4), 4);
  270. bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
  271. " %08x", le32_to_cpu(hdr.u32[0]));
  272. }
  273. netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
  274. }
  275. #endif
  276. mcdi->resprc_raw = 0;
  277. if (error && mcdi->resp_data_len == 0) {
  278. netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
  279. mcdi->resprc = -EIO;
  280. } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
  281. netif_err(efx, hw, efx->net_dev,
  282. "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
  283. respseq, mcdi->seqno);
  284. mcdi->resprc = -EIO;
  285. } else if (error) {
  286. efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
  287. mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
  288. mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
  289. } else {
  290. mcdi->resprc = 0;
  291. }
  292. }
  293. static bool efx_mcdi_poll_once(struct efx_nic *efx)
  294. {
  295. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  296. rmb();
  297. if (!efx->type->mcdi_poll_response(efx))
  298. return false;
  299. spin_lock_bh(&mcdi->iface_lock);
  300. efx_mcdi_read_response_header(efx);
  301. spin_unlock_bh(&mcdi->iface_lock);
  302. return true;
  303. }
  304. static int efx_mcdi_poll(struct efx_nic *efx)
  305. {
  306. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  307. unsigned long time, finish;
  308. unsigned int spins;
  309. int rc;
  310. /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
  311. rc = efx_mcdi_poll_reboot(efx);
  312. if (rc) {
  313. spin_lock_bh(&mcdi->iface_lock);
  314. mcdi->resprc = rc;
  315. mcdi->resp_hdr_len = 0;
  316. mcdi->resp_data_len = 0;
  317. spin_unlock_bh(&mcdi->iface_lock);
  318. return 0;
  319. }
  320. /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
  321. * because generally mcdi responses are fast. After that, back off
  322. * and poll once a jiffy (approximately)
  323. */
  324. spins = TICK_USEC;
  325. finish = jiffies + MCDI_RPC_TIMEOUT;
  326. while (1) {
  327. if (spins != 0) {
  328. --spins;
  329. udelay(1);
  330. } else {
  331. schedule_timeout_uninterruptible(1);
  332. }
  333. time = jiffies;
  334. if (efx_mcdi_poll_once(efx))
  335. break;
  336. if (time_after(time, finish))
  337. return -ETIMEDOUT;
  338. }
  339. /* Return rc=0 like wait_event_timeout() */
  340. return 0;
  341. }
  342. /* Test and clear MC-rebooted flag for this port/function; reset
  343. * software state as necessary.
  344. */
  345. int efx_mcdi_poll_reboot(struct efx_nic *efx)
  346. {
  347. if (!efx->mcdi)
  348. return 0;
  349. return efx->type->mcdi_poll_reboot(efx);
  350. }
  351. static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
  352. {
  353. return cmpxchg(&mcdi->state,
  354. MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
  355. MCDI_STATE_QUIESCENT;
  356. }
  357. static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
  358. {
  359. /* Wait until the interface becomes QUIESCENT and we win the race
  360. * to mark it RUNNING_SYNC.
  361. */
  362. wait_event(mcdi->wq,
  363. cmpxchg(&mcdi->state,
  364. MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
  365. MCDI_STATE_QUIESCENT);
  366. }
  367. static int efx_mcdi_await_completion(struct efx_nic *efx)
  368. {
  369. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  370. if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
  371. MCDI_RPC_TIMEOUT) == 0)
  372. return -ETIMEDOUT;
  373. /* Check if efx_mcdi_set_mode() switched us back to polled completions.
  374. * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
  375. * completed the request first, then we'll just end up completing the
  376. * request again, which is safe.
  377. *
  378. * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
  379. * wait_event_timeout() implicitly provides.
  380. */
  381. if (mcdi->mode == MCDI_MODE_POLL)
  382. return efx_mcdi_poll(efx);
  383. return 0;
  384. }
  385. /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
  386. * requester. Return whether this was done. Does not take any locks.
  387. */
  388. static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
  389. {
  390. if (cmpxchg(&mcdi->state,
  391. MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
  392. MCDI_STATE_RUNNING_SYNC) {
  393. wake_up(&mcdi->wq);
  394. return true;
  395. }
  396. return false;
  397. }
  398. static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
  399. {
  400. if (mcdi->mode == MCDI_MODE_EVENTS) {
  401. struct efx_mcdi_async_param *async;
  402. struct efx_nic *efx = mcdi->efx;
  403. /* Process the asynchronous request queue */
  404. spin_lock_bh(&mcdi->async_lock);
  405. async = list_first_entry_or_null(
  406. &mcdi->async_list, struct efx_mcdi_async_param, list);
  407. if (async) {
  408. mcdi->state = MCDI_STATE_RUNNING_ASYNC;
  409. efx_mcdi_send_request(efx, async->cmd,
  410. (const efx_dword_t *)(async + 1),
  411. async->inlen);
  412. mod_timer(&mcdi->async_timer,
  413. jiffies + MCDI_RPC_TIMEOUT);
  414. }
  415. spin_unlock_bh(&mcdi->async_lock);
  416. if (async)
  417. return;
  418. }
  419. mcdi->state = MCDI_STATE_QUIESCENT;
  420. wake_up(&mcdi->wq);
  421. }
  422. /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
  423. * asynchronous completion function, and release the interface.
  424. * Return whether this was done. Must be called in bh-disabled
  425. * context. Will take iface_lock and async_lock.
  426. */
  427. static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
  428. {
  429. struct efx_nic *efx = mcdi->efx;
  430. struct efx_mcdi_async_param *async;
  431. size_t hdr_len, data_len, err_len;
  432. efx_dword_t *outbuf;
  433. MCDI_DECLARE_BUF_ERR(errbuf);
  434. int rc;
  435. if (cmpxchg(&mcdi->state,
  436. MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
  437. MCDI_STATE_RUNNING_ASYNC)
  438. return false;
  439. spin_lock(&mcdi->iface_lock);
  440. if (timeout) {
  441. /* Ensure that if the completion event arrives later,
  442. * the seqno check in efx_mcdi_ev_cpl() will fail
  443. */
  444. ++mcdi->seqno;
  445. ++mcdi->credits;
  446. rc = -ETIMEDOUT;
  447. hdr_len = 0;
  448. data_len = 0;
  449. } else {
  450. rc = mcdi->resprc;
  451. hdr_len = mcdi->resp_hdr_len;
  452. data_len = mcdi->resp_data_len;
  453. }
  454. spin_unlock(&mcdi->iface_lock);
  455. /* Stop the timer. In case the timer function is running, we
  456. * must wait for it to return so that there is no possibility
  457. * of it aborting the next request.
  458. */
  459. if (!timeout)
  460. del_timer_sync(&mcdi->async_timer);
  461. spin_lock(&mcdi->async_lock);
  462. async = list_first_entry(&mcdi->async_list,
  463. struct efx_mcdi_async_param, list);
  464. list_del(&async->list);
  465. spin_unlock(&mcdi->async_lock);
  466. outbuf = (efx_dword_t *)(async + 1);
  467. efx->type->mcdi_read_response(efx, outbuf, hdr_len,
  468. min(async->outlen, data_len));
  469. if (!timeout && rc && !async->quiet) {
  470. err_len = min(sizeof(errbuf), data_len);
  471. efx->type->mcdi_read_response(efx, errbuf, hdr_len,
  472. sizeof(errbuf));
  473. efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
  474. err_len, rc);
  475. }
  476. if (async->complete)
  477. async->complete(efx, async->cookie, rc, outbuf,
  478. min(async->outlen, data_len));
  479. kfree(async);
  480. efx_mcdi_release(mcdi);
  481. return true;
  482. }
  483. static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
  484. unsigned int datalen, unsigned int mcdi_err)
  485. {
  486. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  487. bool wake = false;
  488. spin_lock(&mcdi->iface_lock);
  489. if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
  490. if (mcdi->credits)
  491. /* The request has been cancelled */
  492. --mcdi->credits;
  493. else
  494. netif_err(efx, hw, efx->net_dev,
  495. "MC response mismatch tx seq 0x%x rx "
  496. "seq 0x%x\n", seqno, mcdi->seqno);
  497. } else {
  498. if (efx->type->mcdi_max_ver >= 2) {
  499. /* MCDI v2 responses don't fit in an event */
  500. efx_mcdi_read_response_header(efx);
  501. } else {
  502. mcdi->resprc = efx_mcdi_errno(mcdi_err);
  503. mcdi->resp_hdr_len = 4;
  504. mcdi->resp_data_len = datalen;
  505. }
  506. wake = true;
  507. }
  508. spin_unlock(&mcdi->iface_lock);
  509. if (wake) {
  510. if (!efx_mcdi_complete_async(mcdi, false))
  511. (void) efx_mcdi_complete_sync(mcdi);
  512. /* If the interface isn't RUNNING_ASYNC or
  513. * RUNNING_SYNC then we've received a duplicate
  514. * completion after we've already transitioned back to
  515. * QUIESCENT. [A subsequent invocation would increment
  516. * seqno, so would have failed the seqno check].
  517. */
  518. }
  519. }
  520. static void efx_mcdi_timeout_async(unsigned long context)
  521. {
  522. struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
  523. efx_mcdi_complete_async(mcdi, true);
  524. }
  525. static int
  526. efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
  527. {
  528. if (efx->type->mcdi_max_ver < 0 ||
  529. (efx->type->mcdi_max_ver < 2 &&
  530. cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
  531. return -EINVAL;
  532. if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
  533. (efx->type->mcdi_max_ver < 2 &&
  534. inlen > MCDI_CTL_SDU_LEN_MAX_V1))
  535. return -EMSGSIZE;
  536. return 0;
  537. }
  538. static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
  539. size_t hdr_len, size_t data_len,
  540. u32 *proxy_handle)
  541. {
  542. MCDI_DECLARE_BUF_ERR(testbuf);
  543. const size_t buflen = sizeof(testbuf);
  544. if (!proxy_handle || data_len < buflen)
  545. return false;
  546. efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
  547. if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
  548. *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
  549. return true;
  550. }
  551. return false;
  552. }
  553. static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
  554. size_t inlen,
  555. efx_dword_t *outbuf, size_t outlen,
  556. size_t *outlen_actual, bool quiet,
  557. u32 *proxy_handle, int *raw_rc)
  558. {
  559. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  560. MCDI_DECLARE_BUF_ERR(errbuf);
  561. int rc;
  562. if (mcdi->mode == MCDI_MODE_POLL)
  563. rc = efx_mcdi_poll(efx);
  564. else
  565. rc = efx_mcdi_await_completion(efx);
  566. if (rc != 0) {
  567. netif_err(efx, hw, efx->net_dev,
  568. "MC command 0x%x inlen %d mode %d timed out\n",
  569. cmd, (int)inlen, mcdi->mode);
  570. if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
  571. netif_err(efx, hw, efx->net_dev,
  572. "MCDI request was completed without an event\n");
  573. rc = 0;
  574. }
  575. efx_mcdi_abandon(efx);
  576. /* Close the race with efx_mcdi_ev_cpl() executing just too late
  577. * and completing a request we've just cancelled, by ensuring
  578. * that the seqno check therein fails.
  579. */
  580. spin_lock_bh(&mcdi->iface_lock);
  581. ++mcdi->seqno;
  582. ++mcdi->credits;
  583. spin_unlock_bh(&mcdi->iface_lock);
  584. }
  585. if (proxy_handle)
  586. *proxy_handle = 0;
  587. if (rc != 0) {
  588. if (outlen_actual)
  589. *outlen_actual = 0;
  590. } else {
  591. size_t hdr_len, data_len, err_len;
  592. /* At the very least we need a memory barrier here to ensure
  593. * we pick up changes from efx_mcdi_ev_cpl(). Protect against
  594. * a spurious efx_mcdi_ev_cpl() running concurrently by
  595. * acquiring the iface_lock. */
  596. spin_lock_bh(&mcdi->iface_lock);
  597. rc = mcdi->resprc;
  598. if (raw_rc)
  599. *raw_rc = mcdi->resprc_raw;
  600. hdr_len = mcdi->resp_hdr_len;
  601. data_len = mcdi->resp_data_len;
  602. err_len = min(sizeof(errbuf), data_len);
  603. spin_unlock_bh(&mcdi->iface_lock);
  604. BUG_ON(rc > 0);
  605. efx->type->mcdi_read_response(efx, outbuf, hdr_len,
  606. min(outlen, data_len));
  607. if (outlen_actual)
  608. *outlen_actual = data_len;
  609. efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
  610. if (cmd == MC_CMD_REBOOT && rc == -EIO) {
  611. /* Don't reset if MC_CMD_REBOOT returns EIO */
  612. } else if (rc == -EIO || rc == -EINTR) {
  613. netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
  614. -rc);
  615. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  616. } else if (proxy_handle && (rc == -EPROTO) &&
  617. efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
  618. proxy_handle)) {
  619. mcdi->proxy_rx_status = 0;
  620. mcdi->proxy_rx_handle = 0;
  621. mcdi->state = MCDI_STATE_PROXY_WAIT;
  622. } else if (rc && !quiet) {
  623. efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
  624. rc);
  625. }
  626. if (rc == -EIO || rc == -EINTR) {
  627. msleep(MCDI_STATUS_SLEEP_MS);
  628. efx_mcdi_poll_reboot(efx);
  629. mcdi->new_epoch = true;
  630. }
  631. }
  632. if (!proxy_handle || !*proxy_handle)
  633. efx_mcdi_release(mcdi);
  634. return rc;
  635. }
  636. static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
  637. {
  638. if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
  639. /* Interrupt the proxy wait. */
  640. mcdi->proxy_rx_status = -EINTR;
  641. wake_up(&mcdi->proxy_rx_wq);
  642. }
  643. }
  644. static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
  645. u32 handle, int status)
  646. {
  647. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  648. WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
  649. mcdi->proxy_rx_status = efx_mcdi_errno(status);
  650. /* Ensure the status is written before we update the handle, since the
  651. * latter is used to check if we've finished.
  652. */
  653. wmb();
  654. mcdi->proxy_rx_handle = handle;
  655. wake_up(&mcdi->proxy_rx_wq);
  656. }
  657. static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
  658. {
  659. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  660. int rc;
  661. /* Wait for a proxy event, or timeout. */
  662. rc = wait_event_timeout(mcdi->proxy_rx_wq,
  663. mcdi->proxy_rx_handle != 0 ||
  664. mcdi->proxy_rx_status == -EINTR,
  665. MCDI_RPC_TIMEOUT);
  666. if (rc <= 0) {
  667. netif_dbg(efx, hw, efx->net_dev,
  668. "MCDI proxy timeout %d\n", handle);
  669. return -ETIMEDOUT;
  670. } else if (mcdi->proxy_rx_handle != handle) {
  671. netif_warn(efx, hw, efx->net_dev,
  672. "MCDI proxy unexpected handle %d (expected %d)\n",
  673. mcdi->proxy_rx_handle, handle);
  674. return -EINVAL;
  675. }
  676. return mcdi->proxy_rx_status;
  677. }
  678. static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
  679. const efx_dword_t *inbuf, size_t inlen,
  680. efx_dword_t *outbuf, size_t outlen,
  681. size_t *outlen_actual, bool quiet, int *raw_rc)
  682. {
  683. u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
  684. int rc;
  685. if (inbuf && inlen && (inbuf == outbuf)) {
  686. /* The input buffer can't be aliased with the output. */
  687. WARN_ON(1);
  688. return -EINVAL;
  689. }
  690. rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
  691. if (rc)
  692. return rc;
  693. rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
  694. outlen_actual, quiet, &proxy_handle, raw_rc);
  695. if (proxy_handle) {
  696. /* Handle proxy authorisation. This allows approval of MCDI
  697. * operations to be delegated to the admin function, allowing
  698. * fine control over (eg) multicast subscriptions.
  699. */
  700. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  701. netif_dbg(efx, hw, efx->net_dev,
  702. "MCDI waiting for proxy auth %d\n",
  703. proxy_handle);
  704. rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
  705. if (rc == 0) {
  706. netif_dbg(efx, hw, efx->net_dev,
  707. "MCDI proxy retry %d\n", proxy_handle);
  708. /* We now retry the original request. */
  709. mcdi->state = MCDI_STATE_RUNNING_SYNC;
  710. efx_mcdi_send_request(efx, cmd, inbuf, inlen);
  711. rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
  712. outbuf, outlen, outlen_actual,
  713. quiet, NULL, raw_rc);
  714. } else {
  715. netif_printk(efx, hw,
  716. rc == -EPERM ? KERN_DEBUG : KERN_ERR,
  717. efx->net_dev,
  718. "MC command 0x%x failed after proxy auth rc=%d\n",
  719. cmd, rc);
  720. if (rc == -EINTR || rc == -EIO)
  721. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  722. efx_mcdi_release(mcdi);
  723. }
  724. }
  725. return rc;
  726. }
  727. static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
  728. const efx_dword_t *inbuf, size_t inlen,
  729. efx_dword_t *outbuf, size_t outlen,
  730. size_t *outlen_actual, bool quiet)
  731. {
  732. int raw_rc = 0;
  733. int rc;
  734. rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
  735. outbuf, outlen, outlen_actual, true, &raw_rc);
  736. if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
  737. efx->type->is_vf) {
  738. /* If the EVB port isn't available within a VF this may
  739. * mean the PF is still bringing the switch up. We should
  740. * retry our request shortly.
  741. */
  742. unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
  743. unsigned int delay_us = 10000;
  744. netif_dbg(efx, hw, efx->net_dev,
  745. "%s: NO_EVB_PORT; will retry request\n",
  746. __func__);
  747. do {
  748. usleep_range(delay_us, delay_us + 10000);
  749. rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
  750. outbuf, outlen, outlen_actual,
  751. true, &raw_rc);
  752. if (delay_us < 100000)
  753. delay_us <<= 1;
  754. } while ((rc == -EPROTO) &&
  755. (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
  756. time_before(jiffies, abort_time));
  757. }
  758. if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
  759. efx_mcdi_display_error(efx, cmd, inlen,
  760. outbuf, outlen, rc);
  761. return rc;
  762. }
  763. /**
  764. * efx_mcdi_rpc - Issue an MCDI command and wait for completion
  765. * @efx: NIC through which to issue the command
  766. * @cmd: Command type number
  767. * @inbuf: Command parameters
  768. * @inlen: Length of command parameters, in bytes. Must be a multiple
  769. * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
  770. * @outbuf: Response buffer. May be %NULL if @outlen is 0.
  771. * @outlen: Length of response buffer, in bytes. If the actual
  772. * response is longer than @outlen & ~3, it will be truncated
  773. * to that length.
  774. * @outlen_actual: Pointer through which to return the actual response
  775. * length. May be %NULL if this is not needed.
  776. *
  777. * This function may sleep and therefore must be called in an appropriate
  778. * context.
  779. *
  780. * Return: A negative error code, or zero if successful. The error
  781. * code may come from the MCDI response or may indicate a failure
  782. * to communicate with the MC. In the former case, the response
  783. * will still be copied to @outbuf and *@outlen_actual will be
  784. * set accordingly. In the latter case, *@outlen_actual will be
  785. * set to zero.
  786. */
  787. int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
  788. const efx_dword_t *inbuf, size_t inlen,
  789. efx_dword_t *outbuf, size_t outlen,
  790. size_t *outlen_actual)
  791. {
  792. return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
  793. outlen_actual, false);
  794. }
  795. /* Normally, on receiving an error code in the MCDI response,
  796. * efx_mcdi_rpc will log an error message containing (among other
  797. * things) the raw error code, by means of efx_mcdi_display_error.
  798. * This _quiet version suppresses that; if the caller wishes to log
  799. * the error conditionally on the return code, it should call this
  800. * function and is then responsible for calling efx_mcdi_display_error
  801. * as needed.
  802. */
  803. int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
  804. const efx_dword_t *inbuf, size_t inlen,
  805. efx_dword_t *outbuf, size_t outlen,
  806. size_t *outlen_actual)
  807. {
  808. return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
  809. outlen_actual, true);
  810. }
  811. int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
  812. const efx_dword_t *inbuf, size_t inlen)
  813. {
  814. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  815. int rc;
  816. rc = efx_mcdi_check_supported(efx, cmd, inlen);
  817. if (rc)
  818. return rc;
  819. if (efx->mc_bist_for_other_fn)
  820. return -ENETDOWN;
  821. if (mcdi->mode == MCDI_MODE_FAIL)
  822. return -ENETDOWN;
  823. efx_mcdi_acquire_sync(mcdi);
  824. efx_mcdi_send_request(efx, cmd, inbuf, inlen);
  825. return 0;
  826. }
  827. static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
  828. const efx_dword_t *inbuf, size_t inlen,
  829. size_t outlen,
  830. efx_mcdi_async_completer *complete,
  831. unsigned long cookie, bool quiet)
  832. {
  833. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  834. struct efx_mcdi_async_param *async;
  835. int rc;
  836. rc = efx_mcdi_check_supported(efx, cmd, inlen);
  837. if (rc)
  838. return rc;
  839. if (efx->mc_bist_for_other_fn)
  840. return -ENETDOWN;
  841. async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
  842. GFP_ATOMIC);
  843. if (!async)
  844. return -ENOMEM;
  845. async->cmd = cmd;
  846. async->inlen = inlen;
  847. async->outlen = outlen;
  848. async->quiet = quiet;
  849. async->complete = complete;
  850. async->cookie = cookie;
  851. memcpy(async + 1, inbuf, inlen);
  852. spin_lock_bh(&mcdi->async_lock);
  853. if (mcdi->mode == MCDI_MODE_EVENTS) {
  854. list_add_tail(&async->list, &mcdi->async_list);
  855. /* If this is at the front of the queue, try to start it
  856. * immediately
  857. */
  858. if (mcdi->async_list.next == &async->list &&
  859. efx_mcdi_acquire_async(mcdi)) {
  860. efx_mcdi_send_request(efx, cmd, inbuf, inlen);
  861. mod_timer(&mcdi->async_timer,
  862. jiffies + MCDI_RPC_TIMEOUT);
  863. }
  864. } else {
  865. kfree(async);
  866. rc = -ENETDOWN;
  867. }
  868. spin_unlock_bh(&mcdi->async_lock);
  869. return rc;
  870. }
  871. /**
  872. * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
  873. * @efx: NIC through which to issue the command
  874. * @cmd: Command type number
  875. * @inbuf: Command parameters
  876. * @inlen: Length of command parameters, in bytes
  877. * @outlen: Length to allocate for response buffer, in bytes
  878. * @complete: Function to be called on completion or cancellation.
  879. * @cookie: Arbitrary value to be passed to @complete.
  880. *
  881. * This function does not sleep and therefore may be called in atomic
  882. * context. It will fail if event queues are disabled or if MCDI
  883. * event completions have been disabled due to an error.
  884. *
  885. * If it succeeds, the @complete function will be called exactly once
  886. * in atomic context, when one of the following occurs:
  887. * (a) the completion event is received (in NAPI context)
  888. * (b) event queues are disabled (in the process that disables them)
  889. * (c) the request times-out (in timer context)
  890. */
  891. int
  892. efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
  893. const efx_dword_t *inbuf, size_t inlen, size_t outlen,
  894. efx_mcdi_async_completer *complete, unsigned long cookie)
  895. {
  896. return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
  897. cookie, false);
  898. }
  899. int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
  900. const efx_dword_t *inbuf, size_t inlen,
  901. size_t outlen, efx_mcdi_async_completer *complete,
  902. unsigned long cookie)
  903. {
  904. return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
  905. cookie, true);
  906. }
  907. int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
  908. efx_dword_t *outbuf, size_t outlen,
  909. size_t *outlen_actual)
  910. {
  911. return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
  912. outlen_actual, false, NULL, NULL);
  913. }
  914. int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
  915. efx_dword_t *outbuf, size_t outlen,
  916. size_t *outlen_actual)
  917. {
  918. return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
  919. outlen_actual, true, NULL, NULL);
  920. }
  921. void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
  922. size_t inlen, efx_dword_t *outbuf,
  923. size_t outlen, int rc)
  924. {
  925. int code = 0, err_arg = 0;
  926. if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
  927. code = MCDI_DWORD(outbuf, ERR_CODE);
  928. if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
  929. err_arg = MCDI_DWORD(outbuf, ERR_ARG);
  930. netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
  931. efx->net_dev,
  932. "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
  933. cmd, inlen, rc, code, err_arg);
  934. }
  935. /* Switch to polled MCDI completions. This can be called in various
  936. * error conditions with various locks held, so it must be lockless.
  937. * Caller is responsible for flushing asynchronous requests later.
  938. */
  939. void efx_mcdi_mode_poll(struct efx_nic *efx)
  940. {
  941. struct efx_mcdi_iface *mcdi;
  942. if (!efx->mcdi)
  943. return;
  944. mcdi = efx_mcdi(efx);
  945. /* If already in polling mode, nothing to do.
  946. * If in fail-fast state, don't switch to polled completion.
  947. * FLR recovery will do that later.
  948. */
  949. if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
  950. return;
  951. /* We can switch from event completion to polled completion, because
  952. * mcdi requests are always completed in shared memory. We do this by
  953. * switching the mode to POLL'd then completing the request.
  954. * efx_mcdi_await_completion() will then call efx_mcdi_poll().
  955. *
  956. * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
  957. * which efx_mcdi_complete_sync() provides for us.
  958. */
  959. mcdi->mode = MCDI_MODE_POLL;
  960. efx_mcdi_complete_sync(mcdi);
  961. }
  962. /* Flush any running or queued asynchronous requests, after event processing
  963. * is stopped
  964. */
  965. void efx_mcdi_flush_async(struct efx_nic *efx)
  966. {
  967. struct efx_mcdi_async_param *async, *next;
  968. struct efx_mcdi_iface *mcdi;
  969. if (!efx->mcdi)
  970. return;
  971. mcdi = efx_mcdi(efx);
  972. /* We must be in poll or fail mode so no more requests can be queued */
  973. BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
  974. del_timer_sync(&mcdi->async_timer);
  975. /* If a request is still running, make sure we give the MC
  976. * time to complete it so that the response won't overwrite our
  977. * next request.
  978. */
  979. if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
  980. efx_mcdi_poll(efx);
  981. mcdi->state = MCDI_STATE_QUIESCENT;
  982. }
  983. /* Nothing else will access the async list now, so it is safe
  984. * to walk it without holding async_lock. If we hold it while
  985. * calling a completer then lockdep may warn that we have
  986. * acquired locks in the wrong order.
  987. */
  988. list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
  989. if (async->complete)
  990. async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
  991. list_del(&async->list);
  992. kfree(async);
  993. }
  994. }
  995. void efx_mcdi_mode_event(struct efx_nic *efx)
  996. {
  997. struct efx_mcdi_iface *mcdi;
  998. if (!efx->mcdi)
  999. return;
  1000. mcdi = efx_mcdi(efx);
  1001. /* If already in event completion mode, nothing to do.
  1002. * If in fail-fast state, don't switch to event completion. FLR
  1003. * recovery will do that later.
  1004. */
  1005. if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
  1006. return;
  1007. /* We can't switch from polled to event completion in the middle of a
  1008. * request, because the completion method is specified in the request.
  1009. * So acquire the interface to serialise the requestors. We don't need
  1010. * to acquire the iface_lock to change the mode here, but we do need a
  1011. * write memory barrier ensure that efx_mcdi_rpc() sees it, which
  1012. * efx_mcdi_acquire() provides.
  1013. */
  1014. efx_mcdi_acquire_sync(mcdi);
  1015. mcdi->mode = MCDI_MODE_EVENTS;
  1016. efx_mcdi_release(mcdi);
  1017. }
  1018. static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
  1019. {
  1020. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1021. /* If there is an outstanding MCDI request, it has been terminated
  1022. * either by a BADASSERT or REBOOT event. If the mcdi interface is
  1023. * in polled mode, then do nothing because the MC reboot handler will
  1024. * set the header correctly. However, if the mcdi interface is waiting
  1025. * for a CMDDONE event it won't receive it [and since all MCDI events
  1026. * are sent to the same queue, we can't be racing with
  1027. * efx_mcdi_ev_cpl()]
  1028. *
  1029. * If there is an outstanding asynchronous request, we can't
  1030. * complete it now (efx_mcdi_complete() would deadlock). The
  1031. * reset process will take care of this.
  1032. *
  1033. * There's a race here with efx_mcdi_send_request(), because
  1034. * we might receive a REBOOT event *before* the request has
  1035. * been copied out. In polled mode (during startup) this is
  1036. * irrelevant, because efx_mcdi_complete_sync() is ignored. In
  1037. * event mode, this condition is just an edge-case of
  1038. * receiving a REBOOT event after posting the MCDI
  1039. * request. Did the mc reboot before or after the copyout? The
  1040. * best we can do always is just return failure.
  1041. *
  1042. * If there is an outstanding proxy response expected it is not going
  1043. * to arrive. We should thus abort it.
  1044. */
  1045. spin_lock(&mcdi->iface_lock);
  1046. efx_mcdi_proxy_abort(mcdi);
  1047. if (efx_mcdi_complete_sync(mcdi)) {
  1048. if (mcdi->mode == MCDI_MODE_EVENTS) {
  1049. mcdi->resprc = rc;
  1050. mcdi->resp_hdr_len = 0;
  1051. mcdi->resp_data_len = 0;
  1052. ++mcdi->credits;
  1053. }
  1054. } else {
  1055. int count;
  1056. /* Consume the status word since efx_mcdi_rpc_finish() won't */
  1057. for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
  1058. rc = efx_mcdi_poll_reboot(efx);
  1059. if (rc)
  1060. break;
  1061. udelay(MCDI_STATUS_DELAY_US);
  1062. }
  1063. /* On EF10, a CODE_MC_REBOOT event can be received without the
  1064. * reboot detection in efx_mcdi_poll_reboot() being triggered.
  1065. * If zero was returned from the final call to
  1066. * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
  1067. * MC has definitely rebooted so prepare for the reset.
  1068. */
  1069. if (!rc && efx->type->mcdi_reboot_detected)
  1070. efx->type->mcdi_reboot_detected(efx);
  1071. mcdi->new_epoch = true;
  1072. /* Nobody was waiting for an MCDI request, so trigger a reset */
  1073. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  1074. }
  1075. spin_unlock(&mcdi->iface_lock);
  1076. }
  1077. /* The MC is going down in to BIST mode. set the BIST flag to block
  1078. * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
  1079. * (which doesn't actually execute a reset, it waits for the controlling
  1080. * function to reset it).
  1081. */
  1082. static void efx_mcdi_ev_bist(struct efx_nic *efx)
  1083. {
  1084. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1085. spin_lock(&mcdi->iface_lock);
  1086. efx->mc_bist_for_other_fn = true;
  1087. efx_mcdi_proxy_abort(mcdi);
  1088. if (efx_mcdi_complete_sync(mcdi)) {
  1089. if (mcdi->mode == MCDI_MODE_EVENTS) {
  1090. mcdi->resprc = -EIO;
  1091. mcdi->resp_hdr_len = 0;
  1092. mcdi->resp_data_len = 0;
  1093. ++mcdi->credits;
  1094. }
  1095. }
  1096. mcdi->new_epoch = true;
  1097. efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
  1098. spin_unlock(&mcdi->iface_lock);
  1099. }
  1100. /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
  1101. * to recover.
  1102. */
  1103. static void efx_mcdi_abandon(struct efx_nic *efx)
  1104. {
  1105. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1106. if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
  1107. return; /* it had already been done */
  1108. netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
  1109. efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
  1110. }
  1111. /* Called from falcon_process_eventq for MCDI events */
  1112. void efx_mcdi_process_event(struct efx_channel *channel,
  1113. efx_qword_t *event)
  1114. {
  1115. struct efx_nic *efx = channel->efx;
  1116. int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
  1117. u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
  1118. switch (code) {
  1119. case MCDI_EVENT_CODE_BADSSERT:
  1120. netif_err(efx, hw, efx->net_dev,
  1121. "MC watchdog or assertion failure at 0x%x\n", data);
  1122. efx_mcdi_ev_death(efx, -EINTR);
  1123. break;
  1124. case MCDI_EVENT_CODE_PMNOTICE:
  1125. netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
  1126. break;
  1127. case MCDI_EVENT_CODE_CMDDONE:
  1128. efx_mcdi_ev_cpl(efx,
  1129. MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
  1130. MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
  1131. MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
  1132. break;
  1133. case MCDI_EVENT_CODE_LINKCHANGE:
  1134. efx_mcdi_process_link_change(efx, event);
  1135. break;
  1136. case MCDI_EVENT_CODE_SENSOREVT:
  1137. efx_mcdi_sensor_event(efx, event);
  1138. break;
  1139. case MCDI_EVENT_CODE_SCHEDERR:
  1140. netif_dbg(efx, hw, efx->net_dev,
  1141. "MC Scheduler alert (0x%x)\n", data);
  1142. break;
  1143. case MCDI_EVENT_CODE_REBOOT:
  1144. case MCDI_EVENT_CODE_MC_REBOOT:
  1145. netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
  1146. efx_mcdi_ev_death(efx, -EIO);
  1147. break;
  1148. case MCDI_EVENT_CODE_MC_BIST:
  1149. netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
  1150. efx_mcdi_ev_bist(efx);
  1151. break;
  1152. case MCDI_EVENT_CODE_MAC_STATS_DMA:
  1153. /* MAC stats are gather lazily. We can ignore this. */
  1154. break;
  1155. case MCDI_EVENT_CODE_FLR:
  1156. if (efx->type->sriov_flr)
  1157. efx->type->sriov_flr(efx,
  1158. MCDI_EVENT_FIELD(*event, FLR_VF));
  1159. break;
  1160. case MCDI_EVENT_CODE_PTP_RX:
  1161. case MCDI_EVENT_CODE_PTP_FAULT:
  1162. case MCDI_EVENT_CODE_PTP_PPS:
  1163. efx_ptp_event(efx, event);
  1164. break;
  1165. case MCDI_EVENT_CODE_PTP_TIME:
  1166. efx_time_sync_event(channel, event);
  1167. break;
  1168. case MCDI_EVENT_CODE_TX_FLUSH:
  1169. case MCDI_EVENT_CODE_RX_FLUSH:
  1170. /* Two flush events will be sent: one to the same event
  1171. * queue as completions, and one to event queue 0.
  1172. * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
  1173. * flag will be set, and we should ignore the event
  1174. * because we want to wait for all completions.
  1175. */
  1176. BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
  1177. MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
  1178. if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
  1179. efx_ef10_handle_drain_event(efx);
  1180. break;
  1181. case MCDI_EVENT_CODE_TX_ERR:
  1182. case MCDI_EVENT_CODE_RX_ERR:
  1183. netif_err(efx, hw, efx->net_dev,
  1184. "%s DMA error (event: "EFX_QWORD_FMT")\n",
  1185. code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
  1186. EFX_QWORD_VAL(*event));
  1187. efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
  1188. break;
  1189. case MCDI_EVENT_CODE_PROXY_RESPONSE:
  1190. efx_mcdi_ev_proxy_response(efx,
  1191. MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
  1192. MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
  1193. break;
  1194. default:
  1195. netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
  1196. code);
  1197. }
  1198. }
  1199. /**************************************************************************
  1200. *
  1201. * Specific request functions
  1202. *
  1203. **************************************************************************
  1204. */
  1205. void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  1206. {
  1207. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
  1208. size_t outlength;
  1209. const __le16 *ver_words;
  1210. size_t offset;
  1211. int rc;
  1212. BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
  1213. rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
  1214. outbuf, sizeof(outbuf), &outlength);
  1215. if (rc)
  1216. goto fail;
  1217. if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
  1218. rc = -EIO;
  1219. goto fail;
  1220. }
  1221. ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
  1222. offset = snprintf(buf, len, "%u.%u.%u.%u",
  1223. le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
  1224. le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
  1225. /* EF10 may have multiple datapath firmware variants within a
  1226. * single version. Report which variants are running.
  1227. */
  1228. if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
  1229. struct efx_ef10_nic_data *nic_data = efx->nic_data;
  1230. offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
  1231. nic_data->rx_dpcpu_fw_id,
  1232. nic_data->tx_dpcpu_fw_id);
  1233. /* It's theoretically possible for the string to exceed 31
  1234. * characters, though in practice the first three version
  1235. * components are short enough that this doesn't happen.
  1236. */
  1237. if (WARN_ON(offset >= len))
  1238. buf[0] = 0;
  1239. }
  1240. return;
  1241. fail:
  1242. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1243. buf[0] = 0;
  1244. }
  1245. static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  1246. bool *was_attached)
  1247. {
  1248. MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
  1249. MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
  1250. size_t outlen;
  1251. int rc;
  1252. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
  1253. driver_operating ? 1 : 0);
  1254. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
  1255. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
  1256. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
  1257. outbuf, sizeof(outbuf), &outlen);
  1258. /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
  1259. * specified will fail with EPERM, and we have to tell the MC we don't
  1260. * care what firmware we get.
  1261. */
  1262. if (rc == -EPERM) {
  1263. netif_dbg(efx, probe, efx->net_dev,
  1264. "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
  1265. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
  1266. MC_CMD_FW_DONT_CARE);
  1267. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
  1268. sizeof(inbuf), outbuf, sizeof(outbuf),
  1269. &outlen);
  1270. }
  1271. if (rc) {
  1272. efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
  1273. outbuf, outlen, rc);
  1274. goto fail;
  1275. }
  1276. if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
  1277. rc = -EIO;
  1278. goto fail;
  1279. }
  1280. if (driver_operating) {
  1281. if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
  1282. efx->mcdi->fn_flags =
  1283. MCDI_DWORD(outbuf,
  1284. DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
  1285. } else {
  1286. /* Synthesise flags for Siena */
  1287. efx->mcdi->fn_flags =
  1288. 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
  1289. 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
  1290. (efx_port_num(efx) == 0) <<
  1291. MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
  1292. }
  1293. }
  1294. /* We currently assume we have control of the external link
  1295. * and are completely trusted by firmware. Abort probing
  1296. * if that's not true for this function.
  1297. */
  1298. if (was_attached != NULL)
  1299. *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
  1300. return 0;
  1301. fail:
  1302. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1303. return rc;
  1304. }
  1305. int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
  1306. u16 *fw_subtype_list, u32 *capabilities)
  1307. {
  1308. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
  1309. size_t outlen, i;
  1310. int port_num = efx_port_num(efx);
  1311. int rc;
  1312. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
  1313. /* we need __aligned(2) for ether_addr_copy */
  1314. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
  1315. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
  1316. rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
  1317. outbuf, sizeof(outbuf), &outlen);
  1318. if (rc)
  1319. goto fail;
  1320. if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
  1321. rc = -EIO;
  1322. goto fail;
  1323. }
  1324. if (mac_address)
  1325. ether_addr_copy(mac_address,
  1326. port_num ?
  1327. MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
  1328. MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
  1329. if (fw_subtype_list) {
  1330. for (i = 0;
  1331. i < MCDI_VAR_ARRAY_LEN(outlen,
  1332. GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
  1333. i++)
  1334. fw_subtype_list[i] = MCDI_ARRAY_WORD(
  1335. outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
  1336. for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
  1337. fw_subtype_list[i] = 0;
  1338. }
  1339. if (capabilities) {
  1340. if (port_num)
  1341. *capabilities = MCDI_DWORD(outbuf,
  1342. GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
  1343. else
  1344. *capabilities = MCDI_DWORD(outbuf,
  1345. GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
  1346. }
  1347. return 0;
  1348. fail:
  1349. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
  1350. __func__, rc, (int)outlen);
  1351. return rc;
  1352. }
  1353. int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
  1354. {
  1355. MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
  1356. u32 dest = 0;
  1357. int rc;
  1358. if (uart)
  1359. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
  1360. if (evq)
  1361. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
  1362. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
  1363. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
  1364. BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
  1365. rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
  1366. NULL, 0, NULL);
  1367. return rc;
  1368. }
  1369. int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
  1370. {
  1371. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
  1372. size_t outlen;
  1373. int rc;
  1374. BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
  1375. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
  1376. outbuf, sizeof(outbuf), &outlen);
  1377. if (rc)
  1378. goto fail;
  1379. if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
  1380. rc = -EIO;
  1381. goto fail;
  1382. }
  1383. *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
  1384. return 0;
  1385. fail:
  1386. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  1387. __func__, rc);
  1388. return rc;
  1389. }
  1390. int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
  1391. size_t *size_out, size_t *erase_size_out,
  1392. bool *protected_out)
  1393. {
  1394. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
  1395. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
  1396. size_t outlen;
  1397. int rc;
  1398. MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
  1399. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
  1400. outbuf, sizeof(outbuf), &outlen);
  1401. if (rc)
  1402. goto fail;
  1403. if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
  1404. rc = -EIO;
  1405. goto fail;
  1406. }
  1407. *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
  1408. *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
  1409. *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
  1410. (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
  1411. return 0;
  1412. fail:
  1413. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1414. return rc;
  1415. }
  1416. static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
  1417. {
  1418. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
  1419. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
  1420. int rc;
  1421. MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
  1422. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
  1423. outbuf, sizeof(outbuf), NULL);
  1424. if (rc)
  1425. return rc;
  1426. switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
  1427. case MC_CMD_NVRAM_TEST_PASS:
  1428. case MC_CMD_NVRAM_TEST_NOTSUPP:
  1429. return 0;
  1430. default:
  1431. return -EIO;
  1432. }
  1433. }
  1434. int efx_mcdi_nvram_test_all(struct efx_nic *efx)
  1435. {
  1436. u32 nvram_types;
  1437. unsigned int type;
  1438. int rc;
  1439. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  1440. if (rc)
  1441. goto fail1;
  1442. type = 0;
  1443. while (nvram_types != 0) {
  1444. if (nvram_types & 1) {
  1445. rc = efx_mcdi_nvram_test(efx, type);
  1446. if (rc)
  1447. goto fail2;
  1448. }
  1449. type++;
  1450. nvram_types >>= 1;
  1451. }
  1452. return 0;
  1453. fail2:
  1454. netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
  1455. __func__, type);
  1456. fail1:
  1457. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1458. return rc;
  1459. }
  1460. /* Returns 1 if an assertion was read, 0 if no assertion had fired,
  1461. * negative on error.
  1462. */
  1463. static int efx_mcdi_read_assertion(struct efx_nic *efx)
  1464. {
  1465. MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
  1466. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
  1467. unsigned int flags, index;
  1468. const char *reason;
  1469. size_t outlen;
  1470. int retry;
  1471. int rc;
  1472. /* Attempt to read any stored assertion state before we reboot
  1473. * the mcfw out of the assertion handler. Retry twice, once
  1474. * because a boot-time assertion might cause this command to fail
  1475. * with EINTR. And once again because GET_ASSERTS can race with
  1476. * MC_CMD_REBOOT running on the other port. */
  1477. retry = 2;
  1478. do {
  1479. MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
  1480. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
  1481. inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
  1482. outbuf, sizeof(outbuf), &outlen);
  1483. if (rc == -EPERM)
  1484. return 0;
  1485. } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
  1486. if (rc) {
  1487. efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
  1488. MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
  1489. outlen, rc);
  1490. return rc;
  1491. }
  1492. if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
  1493. return -EIO;
  1494. /* Print out any recorded assertion state */
  1495. flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
  1496. if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
  1497. return 0;
  1498. reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
  1499. ? "system-level assertion"
  1500. : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
  1501. ? "thread-level assertion"
  1502. : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
  1503. ? "watchdog reset"
  1504. : "unknown assertion";
  1505. netif_err(efx, hw, efx->net_dev,
  1506. "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
  1507. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
  1508. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
  1509. /* Print out the registers */
  1510. for (index = 0;
  1511. index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
  1512. index++)
  1513. netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
  1514. 1 + index,
  1515. MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
  1516. index));
  1517. return 1;
  1518. }
  1519. static int efx_mcdi_exit_assertion(struct efx_nic *efx)
  1520. {
  1521. MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
  1522. int rc;
  1523. /* If the MC is running debug firmware, it might now be
  1524. * waiting for a debugger to attach, but we just want it to
  1525. * reboot. We set a flag that makes the command a no-op if it
  1526. * has already done so.
  1527. * The MCDI will thus return either 0 or -EIO.
  1528. */
  1529. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  1530. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
  1531. MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
  1532. rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
  1533. NULL, 0, NULL);
  1534. if (rc == -EIO)
  1535. rc = 0;
  1536. if (rc)
  1537. efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
  1538. NULL, 0, rc);
  1539. return rc;
  1540. }
  1541. int efx_mcdi_handle_assertion(struct efx_nic *efx)
  1542. {
  1543. int rc;
  1544. rc = efx_mcdi_read_assertion(efx);
  1545. if (rc <= 0)
  1546. return rc;
  1547. return efx_mcdi_exit_assertion(efx);
  1548. }
  1549. void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  1550. {
  1551. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
  1552. int rc;
  1553. BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
  1554. BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
  1555. BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
  1556. BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
  1557. MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
  1558. rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
  1559. NULL, 0, NULL);
  1560. }
  1561. static int efx_mcdi_reset_func(struct efx_nic *efx)
  1562. {
  1563. MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
  1564. int rc;
  1565. BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
  1566. MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
  1567. ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
  1568. rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
  1569. NULL, 0, NULL);
  1570. return rc;
  1571. }
  1572. static int efx_mcdi_reset_mc(struct efx_nic *efx)
  1573. {
  1574. MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
  1575. int rc;
  1576. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  1577. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
  1578. rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
  1579. NULL, 0, NULL);
  1580. /* White is black, and up is down */
  1581. if (rc == -EIO)
  1582. return 0;
  1583. if (rc == 0)
  1584. rc = -EIO;
  1585. return rc;
  1586. }
  1587. enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
  1588. {
  1589. return RESET_TYPE_RECOVER_OR_ALL;
  1590. }
  1591. int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
  1592. {
  1593. int rc;
  1594. /* If MCDI is down, we can't handle_assertion */
  1595. if (method == RESET_TYPE_MCDI_TIMEOUT) {
  1596. rc = pci_reset_function(efx->pci_dev);
  1597. if (rc)
  1598. return rc;
  1599. /* Re-enable polled MCDI completion */
  1600. if (efx->mcdi) {
  1601. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  1602. mcdi->mode = MCDI_MODE_POLL;
  1603. }
  1604. return 0;
  1605. }
  1606. /* Recover from a failed assertion pre-reset */
  1607. rc = efx_mcdi_handle_assertion(efx);
  1608. if (rc)
  1609. return rc;
  1610. if (method == RESET_TYPE_DATAPATH)
  1611. return 0;
  1612. else if (method == RESET_TYPE_WORLD)
  1613. return efx_mcdi_reset_mc(efx);
  1614. else
  1615. return efx_mcdi_reset_func(efx);
  1616. }
  1617. static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
  1618. const u8 *mac, int *id_out)
  1619. {
  1620. MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
  1621. MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
  1622. size_t outlen;
  1623. int rc;
  1624. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
  1625. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
  1626. MC_CMD_FILTER_MODE_SIMPLE);
  1627. ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
  1628. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
  1629. outbuf, sizeof(outbuf), &outlen);
  1630. if (rc)
  1631. goto fail;
  1632. if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
  1633. rc = -EIO;
  1634. goto fail;
  1635. }
  1636. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
  1637. return 0;
  1638. fail:
  1639. *id_out = -1;
  1640. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1641. return rc;
  1642. }
  1643. int
  1644. efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
  1645. {
  1646. return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
  1647. }
  1648. int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
  1649. {
  1650. MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
  1651. size_t outlen;
  1652. int rc;
  1653. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
  1654. outbuf, sizeof(outbuf), &outlen);
  1655. if (rc)
  1656. goto fail;
  1657. if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
  1658. rc = -EIO;
  1659. goto fail;
  1660. }
  1661. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
  1662. return 0;
  1663. fail:
  1664. *id_out = -1;
  1665. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1666. return rc;
  1667. }
  1668. int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
  1669. {
  1670. MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
  1671. int rc;
  1672. MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
  1673. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
  1674. NULL, 0, NULL);
  1675. return rc;
  1676. }
  1677. int efx_mcdi_flush_rxqs(struct efx_nic *efx)
  1678. {
  1679. struct efx_channel *channel;
  1680. struct efx_rx_queue *rx_queue;
  1681. MCDI_DECLARE_BUF(inbuf,
  1682. MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
  1683. int rc, count;
  1684. BUILD_BUG_ON(EFX_MAX_CHANNELS >
  1685. MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
  1686. count = 0;
  1687. efx_for_each_channel(channel, efx) {
  1688. efx_for_each_channel_rx_queue(rx_queue, channel) {
  1689. if (rx_queue->flush_pending) {
  1690. rx_queue->flush_pending = false;
  1691. atomic_dec(&efx->rxq_flush_pending);
  1692. MCDI_SET_ARRAY_DWORD(
  1693. inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
  1694. count, efx_rx_queue_index(rx_queue));
  1695. count++;
  1696. }
  1697. }
  1698. }
  1699. rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
  1700. MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
  1701. WARN_ON(rc < 0);
  1702. return rc;
  1703. }
  1704. int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
  1705. {
  1706. int rc;
  1707. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
  1708. return rc;
  1709. }
  1710. int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
  1711. unsigned int *flags)
  1712. {
  1713. MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
  1714. MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
  1715. size_t outlen;
  1716. int rc;
  1717. BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
  1718. MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
  1719. MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
  1720. rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
  1721. outbuf, sizeof(outbuf), &outlen);
  1722. if (rc)
  1723. return rc;
  1724. if (!flags)
  1725. return 0;
  1726. if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
  1727. *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
  1728. else
  1729. *flags = 0;
  1730. return 0;
  1731. }
  1732. int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
  1733. unsigned int *enabled_out)
  1734. {
  1735. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
  1736. size_t outlen;
  1737. int rc;
  1738. rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
  1739. outbuf, sizeof(outbuf), &outlen);
  1740. if (rc)
  1741. goto fail;
  1742. if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
  1743. rc = -EIO;
  1744. goto fail;
  1745. }
  1746. if (impl_out)
  1747. *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
  1748. if (enabled_out)
  1749. *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
  1750. return 0;
  1751. fail:
  1752. /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
  1753. * terrifying. The call site will have to deal with it though.
  1754. */
  1755. netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
  1756. efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1757. return rc;
  1758. }
  1759. #ifdef CONFIG_SFC_MTD
  1760. #define EFX_MCDI_NVRAM_LEN_MAX 128
  1761. static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
  1762. {
  1763. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
  1764. int rc;
  1765. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
  1766. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
  1767. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
  1768. NULL, 0, NULL);
  1769. return rc;
  1770. }
  1771. static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
  1772. loff_t offset, u8 *buffer, size_t length)
  1773. {
  1774. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
  1775. MCDI_DECLARE_BUF(outbuf,
  1776. MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
  1777. size_t outlen;
  1778. int rc;
  1779. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
  1780. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
  1781. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
  1782. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
  1783. outbuf, sizeof(outbuf), &outlen);
  1784. if (rc)
  1785. return rc;
  1786. memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
  1787. return 0;
  1788. }
  1789. static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
  1790. loff_t offset, const u8 *buffer, size_t length)
  1791. {
  1792. MCDI_DECLARE_BUF(inbuf,
  1793. MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
  1794. int rc;
  1795. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
  1796. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
  1797. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
  1798. memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
  1799. BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
  1800. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
  1801. ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
  1802. NULL, 0, NULL);
  1803. return rc;
  1804. }
  1805. static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
  1806. loff_t offset, size_t length)
  1807. {
  1808. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
  1809. int rc;
  1810. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
  1811. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
  1812. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
  1813. BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
  1814. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
  1815. NULL, 0, NULL);
  1816. return rc;
  1817. }
  1818. static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
  1819. {
  1820. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
  1821. int rc;
  1822. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
  1823. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
  1824. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
  1825. NULL, 0, NULL);
  1826. return rc;
  1827. }
  1828. int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
  1829. size_t len, size_t *retlen, u8 *buffer)
  1830. {
  1831. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1832. struct efx_nic *efx = mtd->priv;
  1833. loff_t offset = start;
  1834. loff_t end = min_t(loff_t, start + len, mtd->size);
  1835. size_t chunk;
  1836. int rc = 0;
  1837. while (offset < end) {
  1838. chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
  1839. rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
  1840. buffer, chunk);
  1841. if (rc)
  1842. goto out;
  1843. offset += chunk;
  1844. buffer += chunk;
  1845. }
  1846. out:
  1847. *retlen = offset - start;
  1848. return rc;
  1849. }
  1850. int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
  1851. {
  1852. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1853. struct efx_nic *efx = mtd->priv;
  1854. loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
  1855. loff_t end = min_t(loff_t, start + len, mtd->size);
  1856. size_t chunk = part->common.mtd.erasesize;
  1857. int rc = 0;
  1858. if (!part->updating) {
  1859. rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
  1860. if (rc)
  1861. goto out;
  1862. part->updating = true;
  1863. }
  1864. /* The MCDI interface can in fact do multiple erase blocks at once;
  1865. * but erasing may be slow, so we make multiple calls here to avoid
  1866. * tripping the MCDI RPC timeout. */
  1867. while (offset < end) {
  1868. rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
  1869. chunk);
  1870. if (rc)
  1871. goto out;
  1872. offset += chunk;
  1873. }
  1874. out:
  1875. return rc;
  1876. }
  1877. int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
  1878. size_t len, size_t *retlen, const u8 *buffer)
  1879. {
  1880. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1881. struct efx_nic *efx = mtd->priv;
  1882. loff_t offset = start;
  1883. loff_t end = min_t(loff_t, start + len, mtd->size);
  1884. size_t chunk;
  1885. int rc = 0;
  1886. if (!part->updating) {
  1887. rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
  1888. if (rc)
  1889. goto out;
  1890. part->updating = true;
  1891. }
  1892. while (offset < end) {
  1893. chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
  1894. rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
  1895. buffer, chunk);
  1896. if (rc)
  1897. goto out;
  1898. offset += chunk;
  1899. buffer += chunk;
  1900. }
  1901. out:
  1902. *retlen = offset - start;
  1903. return rc;
  1904. }
  1905. int efx_mcdi_mtd_sync(struct mtd_info *mtd)
  1906. {
  1907. struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
  1908. struct efx_nic *efx = mtd->priv;
  1909. int rc = 0;
  1910. if (part->updating) {
  1911. part->updating = false;
  1912. rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
  1913. }
  1914. return rc;
  1915. }
  1916. void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
  1917. {
  1918. struct efx_mcdi_mtd_partition *mcdi_part =
  1919. container_of(part, struct efx_mcdi_mtd_partition, common);
  1920. struct efx_nic *efx = part->mtd.priv;
  1921. snprintf(part->name, sizeof(part->name), "%s %s:%02x",
  1922. efx->name, part->type_name, mcdi_part->fw_subtype);
  1923. }
  1924. #endif /* CONFIG_SFC_MTD */