qed_init_fw_funcs.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /* QLogic qed NIC Driver
  2. * Copyright (c) 2015 QLogic Corporation
  3. *
  4. * This software is available under the terms of the GNU General Public License
  5. * (GPL) Version 2, available from the file COPYING in the main directory of
  6. * this source tree.
  7. */
  8. #include <linux/types.h>
  9. #include <linux/delay.h>
  10. #include <linux/kernel.h>
  11. #include <linux/slab.h>
  12. #include <linux/string.h>
  13. #include "qed_hsi.h"
  14. #include "qed_hw.h"
  15. #include "qed_init_ops.h"
  16. #include "qed_reg_addr.h"
  17. enum cminterface {
  18. MCM_SEC,
  19. MCM_PRI,
  20. UCM_SEC,
  21. UCM_PRI,
  22. TCM_SEC,
  23. TCM_PRI,
  24. YCM_SEC,
  25. YCM_PRI,
  26. XCM_SEC,
  27. XCM_PRI,
  28. NUM_OF_CM_INTERFACES
  29. };
  30. /* general constants */
  31. #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
  32. QM_PQ_ELEMENT_SIZE, \
  33. 0x1000) : 0)
  34. #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
  35. 0x100) - 1 : 0)
  36. #define QM_INVALID_PQ_ID 0xffff
  37. /* feature enable */
  38. #define QM_BYPASS_EN 1
  39. #define QM_BYTE_CRD_EN 1
  40. /* other PQ constants */
  41. #define QM_OTHER_PQS_PER_PF 4
  42. /* WFQ constants */
  43. #define QM_WFQ_UPPER_BOUND 62500000
  44. #define QM_WFQ_VP_PQ_VOQ_SHIFT 0
  45. #define QM_WFQ_VP_PQ_PF_SHIFT 5
  46. #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
  47. #define QM_WFQ_MAX_INC_VAL 43750000
  48. /* RL constants */
  49. #define QM_RL_UPPER_BOUND 62500000
  50. #define QM_RL_PERIOD 5 /* in us */
  51. #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
  52. #define QM_RL_MAX_INC_VAL 43750000
  53. #define QM_RL_INC_VAL(rate) max_t(u32, \
  54. (u32)(((rate ? rate : \
  55. 1000000) * \
  56. QM_RL_PERIOD * \
  57. 101) / (8 * 100)), 1)
  58. /* AFullOprtnstcCrdMask constants */
  59. #define QM_OPPOR_LINE_VOQ_DEF 1
  60. #define QM_OPPOR_FW_STOP_DEF 0
  61. #define QM_OPPOR_PQ_EMPTY_DEF 1
  62. /* Command Queue constants */
  63. #define PBF_CMDQ_PURE_LB_LINES 150
  64. #define PBF_CMDQ_LINES_RT_OFFSET(voq) ( \
  65. PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + voq * \
  66. (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
  67. PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
  68. #define PBF_BTB_GUARANTEED_RT_OFFSET(voq) ( \
  69. PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
  70. (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
  71. PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
  72. #define QM_VOQ_LINE_CRD(pbf_cmd_lines) ((((pbf_cmd_lines) - \
  73. 4) * \
  74. 2) | QM_LINE_CRD_REG_SIGN_BIT)
  75. /* BTB: blocks constants (block size = 256B) */
  76. #define BTB_JUMBO_PKT_BLOCKS 38
  77. #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
  78. #define BTB_PURE_LB_FACTOR 10
  79. #define BTB_PURE_LB_RATIO 7
  80. /* QM stop command constants */
  81. #define QM_STOP_PQ_MASK_WIDTH 32
  82. #define QM_STOP_CMD_ADDR 0x2
  83. #define QM_STOP_CMD_STRUCT_SIZE 2
  84. #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
  85. #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
  86. #define QM_STOP_CMD_PAUSE_MASK_MASK -1
  87. #define QM_STOP_CMD_GROUP_ID_OFFSET 1
  88. #define QM_STOP_CMD_GROUP_ID_SHIFT 16
  89. #define QM_STOP_CMD_GROUP_ID_MASK 15
  90. #define QM_STOP_CMD_PQ_TYPE_OFFSET 1
  91. #define QM_STOP_CMD_PQ_TYPE_SHIFT 24
  92. #define QM_STOP_CMD_PQ_TYPE_MASK 1
  93. #define QM_STOP_CMD_MAX_POLL_COUNT 100
  94. #define QM_STOP_CMD_POLL_PERIOD_US 500
  95. /* QM command macros */
  96. #define QM_CMD_STRUCT_SIZE(cmd) cmd ## \
  97. _STRUCT_SIZE
  98. #define QM_CMD_SET_FIELD(var, cmd, field, \
  99. value) SET_FIELD(var[cmd ## _ ## field ## \
  100. _OFFSET], \
  101. cmd ## _ ## field, \
  102. value)
  103. /* QM: VOQ macros */
  104. #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) ((port) * \
  105. (max_phys_tcs_per_port) + \
  106. (tc))
  107. #define LB_VOQ(port) ( \
  108. MAX_PHYS_VOQS + (port))
  109. #define VOQ(port, tc, max_phy_tcs_pr_port) \
  110. ((tc) < \
  111. LB_TC ? PHYS_VOQ(port, \
  112. tc, \
  113. max_phy_tcs_pr_port) \
  114. : LB_VOQ(port))
  115. /******************** INTERNAL IMPLEMENTATION *********************/
  116. /* Prepare PF RL enable/disable runtime init values */
  117. static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
  118. {
  119. STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
  120. if (pf_rl_en) {
  121. /* enable RLs for all VOQs */
  122. STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
  123. (1 << MAX_NUM_VOQS) - 1);
  124. /* write RL period */
  125. STORE_RT_REG(p_hwfn,
  126. QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
  127. STORE_RT_REG(p_hwfn,
  128. QM_REG_RLPFPERIODTIMER_RT_OFFSET,
  129. QM_RL_PERIOD_CLK_25M);
  130. /* set credit threshold for QM bypass flow */
  131. if (QM_BYPASS_EN)
  132. STORE_RT_REG(p_hwfn,
  133. QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
  134. QM_RL_UPPER_BOUND);
  135. }
  136. }
  137. /* Prepare PF WFQ enable/disable runtime init values */
  138. static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
  139. {
  140. STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
  141. /* set credit threshold for QM bypass flow */
  142. if (pf_wfq_en && QM_BYPASS_EN)
  143. STORE_RT_REG(p_hwfn,
  144. QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
  145. QM_WFQ_UPPER_BOUND);
  146. }
  147. /* Prepare VPORT RL enable/disable runtime init values */
  148. static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
  149. {
  150. STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
  151. vport_rl_en ? 1 : 0);
  152. if (vport_rl_en) {
  153. /* write RL period (use timer 0 only) */
  154. STORE_RT_REG(p_hwfn,
  155. QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
  156. QM_RL_PERIOD_CLK_25M);
  157. STORE_RT_REG(p_hwfn,
  158. QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
  159. QM_RL_PERIOD_CLK_25M);
  160. /* set credit threshold for QM bypass flow */
  161. if (QM_BYPASS_EN)
  162. STORE_RT_REG(p_hwfn,
  163. QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
  164. QM_RL_UPPER_BOUND);
  165. }
  166. }
  167. /* Prepare VPORT WFQ enable/disable runtime init values */
  168. static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
  169. {
  170. STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
  171. vport_wfq_en ? 1 : 0);
  172. /* set credit threshold for QM bypass flow */
  173. if (vport_wfq_en && QM_BYPASS_EN)
  174. STORE_RT_REG(p_hwfn,
  175. QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
  176. QM_WFQ_UPPER_BOUND);
  177. }
  178. /* Prepare runtime init values to allocate PBF command queue lines for
  179. * the specified VOQ
  180. */
  181. static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
  182. u8 voq, u16 cmdq_lines)
  183. {
  184. u32 qm_line_crd;
  185. /* In A0 - Limit the size of pbf queue so that only 511 commands with
  186. * the minimum size of 4 (FCoE minimum size)
  187. */
  188. bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
  189. if (is_bb_a0)
  190. cmdq_lines = min_t(u32, cmdq_lines, 1022);
  191. qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
  192. OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
  193. (u32)cmdq_lines);
  194. STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
  195. STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
  196. qm_line_crd);
  197. }
  198. /* Prepare runtime init values to allocate PBF command queue lines. */
  199. static void qed_cmdq_lines_rt_init(
  200. struct qed_hwfn *p_hwfn,
  201. u8 max_ports_per_engine,
  202. u8 max_phys_tcs_per_port,
  203. struct init_qm_port_params port_params[MAX_NUM_PORTS])
  204. {
  205. u8 tc, voq, port_id, num_tcs_in_port;
  206. /* clear PBF lines for all VOQs */
  207. for (voq = 0; voq < MAX_NUM_VOQS; voq++)
  208. STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
  209. for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
  210. if (port_params[port_id].active) {
  211. u16 phys_lines, phys_lines_per_tc;
  212. /* find #lines to divide between active phys TCs */
  213. phys_lines = port_params[port_id].num_pbf_cmd_lines -
  214. PBF_CMDQ_PURE_LB_LINES;
  215. /* find #lines per active physical TC */
  216. num_tcs_in_port = 0;
  217. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  218. if (((port_params[port_id].active_phys_tcs >>
  219. tc) & 0x1) == 1)
  220. num_tcs_in_port++;
  221. }
  222. phys_lines_per_tc = phys_lines / num_tcs_in_port;
  223. /* init registers per active TC */
  224. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  225. if (((port_params[port_id].active_phys_tcs >>
  226. tc) & 0x1) != 1)
  227. continue;
  228. voq = PHYS_VOQ(port_id, tc,
  229. max_phys_tcs_per_port);
  230. qed_cmdq_lines_voq_rt_init(p_hwfn, voq,
  231. phys_lines_per_tc);
  232. }
  233. /* init registers for pure LB TC */
  234. qed_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
  235. PBF_CMDQ_PURE_LB_LINES);
  236. }
  237. }
  238. }
  239. static void qed_btb_blocks_rt_init(
  240. struct qed_hwfn *p_hwfn,
  241. u8 max_ports_per_engine,
  242. u8 max_phys_tcs_per_port,
  243. struct init_qm_port_params port_params[MAX_NUM_PORTS])
  244. {
  245. u32 usable_blocks, pure_lb_blocks, phys_blocks;
  246. u8 tc, voq, port_id, num_tcs_in_port;
  247. for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
  248. u32 temp;
  249. if (!port_params[port_id].active)
  250. continue;
  251. /* subtract headroom blocks */
  252. usable_blocks = port_params[port_id].num_btb_blocks -
  253. BTB_HEADROOM_BLOCKS;
  254. /* find blocks per physical TC */
  255. num_tcs_in_port = 0;
  256. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  257. if (((port_params[port_id].active_phys_tcs >>
  258. tc) & 0x1) == 1)
  259. num_tcs_in_port++;
  260. }
  261. pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
  262. (num_tcs_in_port * BTB_PURE_LB_FACTOR +
  263. BTB_PURE_LB_RATIO);
  264. pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
  265. pure_lb_blocks / BTB_PURE_LB_FACTOR);
  266. phys_blocks = (usable_blocks - pure_lb_blocks) /
  267. num_tcs_in_port;
  268. /* init physical TCs */
  269. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  270. if (((port_params[port_id].active_phys_tcs >>
  271. tc) & 0x1) != 1)
  272. continue;
  273. voq = PHYS_VOQ(port_id, tc,
  274. max_phys_tcs_per_port);
  275. STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(voq),
  276. phys_blocks);
  277. }
  278. /* init pure LB TC */
  279. temp = LB_VOQ(port_id);
  280. STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(temp),
  281. pure_lb_blocks);
  282. }
  283. }
  284. /* Prepare Tx PQ mapping runtime init values for the specified PF */
  285. static void qed_tx_pq_map_rt_init(
  286. struct qed_hwfn *p_hwfn,
  287. struct qed_ptt *p_ptt,
  288. struct qed_qm_pf_rt_init_params *p_params,
  289. u32 base_mem_addr_4kb)
  290. {
  291. struct init_qm_vport_params *vport_params = p_params->vport_params;
  292. u16 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
  293. u16 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
  294. u16 last_pq_group = (p_params->start_pq + num_pqs - 1) /
  295. QM_PF_QUEUE_GROUP_SIZE;
  296. bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
  297. u16 i, pq_id, pq_group;
  298. /* a bit per Tx PQ indicating if the PQ is associated with a VF */
  299. u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
  300. u32 tx_pq_vf_mask_width = is_bb_a0 ? 32 : QM_PF_QUEUE_GROUP_SIZE;
  301. u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / tx_pq_vf_mask_width;
  302. u32 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
  303. u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
  304. u32 mem_addr_4kb = base_mem_addr_4kb;
  305. /* set mapping from PQ group to PF */
  306. for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
  307. STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
  308. (u32)(p_params->pf_id));
  309. /* set PQ sizes */
  310. STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
  311. QM_PQ_SIZE_256B(p_params->num_pf_cids));
  312. STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
  313. QM_PQ_SIZE_256B(p_params->num_vf_cids));
  314. /* go over all Tx PQs */
  315. for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
  316. u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
  317. p_params->max_phys_tcs_per_port);
  318. bool is_vf_pq = (i >= p_params->num_pf_pqs);
  319. struct qm_rf_pq_map tx_pq_map;
  320. /* update first Tx PQ of VPORT/TC */
  321. u8 vport_id_in_pf = p_params->pq_params[i].vport_id -
  322. p_params->start_vport;
  323. u16 *pq_ids = &vport_params[vport_id_in_pf].first_tx_pq_id[0];
  324. u16 first_tx_pq_id = pq_ids[p_params->pq_params[i].tc_id];
  325. if (first_tx_pq_id == QM_INVALID_PQ_ID) {
  326. /* create new VP PQ */
  327. pq_ids[p_params->pq_params[i].tc_id] = pq_id;
  328. first_tx_pq_id = pq_id;
  329. /* map VP PQ to VOQ and PF */
  330. STORE_RT_REG(p_hwfn,
  331. QM_REG_WFQVPMAP_RT_OFFSET +
  332. first_tx_pq_id,
  333. (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
  334. (p_params->pf_id <<
  335. QM_WFQ_VP_PQ_PF_SHIFT));
  336. }
  337. /* fill PQ map entry */
  338. memset(&tx_pq_map, 0, sizeof(tx_pq_map));
  339. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
  340. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_VALID,
  341. p_params->pq_params[i].rl_valid ? 1 : 0);
  342. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
  343. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
  344. p_params->pq_params[i].rl_valid ?
  345. p_params->pq_params[i].vport_id : 0);
  346. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
  347. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
  348. p_params->pq_params[i].wrr_group);
  349. /* write PQ map entry to CAM */
  350. STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
  351. *((u32 *)&tx_pq_map));
  352. /* set base address */
  353. STORE_RT_REG(p_hwfn,
  354. QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
  355. mem_addr_4kb);
  356. /* check if VF PQ */
  357. if (is_vf_pq) {
  358. /* if PQ is associated with a VF, add indication
  359. * to PQ VF mask
  360. */
  361. tx_pq_vf_mask[pq_id / tx_pq_vf_mask_width] |=
  362. (1 << (pq_id % tx_pq_vf_mask_width));
  363. mem_addr_4kb += vport_pq_mem_4kb;
  364. } else {
  365. mem_addr_4kb += pq_mem_4kb;
  366. }
  367. }
  368. /* store Tx PQ VF mask to size select register */
  369. for (i = 0; i < num_tx_pq_vf_masks; i++) {
  370. if (tx_pq_vf_mask[i]) {
  371. u32 addr;
  372. addr = QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i;
  373. STORE_RT_REG(p_hwfn, addr,
  374. tx_pq_vf_mask[i]);
  375. }
  376. }
  377. }
  378. /* Prepare Other PQ mapping runtime init values for the specified PF */
  379. static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
  380. u8 port_id,
  381. u8 pf_id,
  382. u32 num_pf_cids,
  383. u32 num_tids, u32 base_mem_addr_4kb)
  384. {
  385. u16 i, pq_id;
  386. /* a single other PQ group is used in each PF,
  387. * where PQ group i is used in PF i.
  388. */
  389. u16 pq_group = pf_id;
  390. u32 pq_size = num_pf_cids + num_tids;
  391. u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
  392. u32 mem_addr_4kb = base_mem_addr_4kb;
  393. /* map PQ group to PF */
  394. STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
  395. (u32)(pf_id));
  396. /* set PQ sizes */
  397. STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
  398. QM_PQ_SIZE_256B(pq_size));
  399. /* set base address */
  400. for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
  401. i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
  402. STORE_RT_REG(p_hwfn,
  403. QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
  404. mem_addr_4kb);
  405. mem_addr_4kb += pq_mem_4kb;
  406. }
  407. }
  408. /* Prepare PF WFQ runtime init values for the specified PF.
  409. * Return -1 on error.
  410. */
  411. static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
  412. struct qed_qm_pf_rt_init_params *p_params)
  413. {
  414. u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
  415. u32 crd_reg_offset;
  416. u32 inc_val;
  417. u16 i;
  418. if (p_params->pf_id < MAX_NUM_PFS_BB)
  419. crd_reg_offset = QM_REG_WFQPFCRD_RT_OFFSET;
  420. else
  421. crd_reg_offset = QM_REG_WFQPFCRD_MSB_RT_OFFSET +
  422. (p_params->pf_id % MAX_NUM_PFS_BB);
  423. inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
  424. if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  425. DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
  426. return -1;
  427. }
  428. for (i = 0; i < num_tx_pqs; i++) {
  429. u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
  430. p_params->max_phys_tcs_per_port);
  431. OVERWRITE_RT_REG(p_hwfn,
  432. crd_reg_offset + voq * MAX_NUM_PFS_BB,
  433. QM_WFQ_CRD_REG_SIGN_BIT);
  434. }
  435. STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
  436. inc_val);
  437. STORE_RT_REG(p_hwfn,
  438. QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
  439. QM_WFQ_UPPER_BOUND | QM_WFQ_CRD_REG_SIGN_BIT);
  440. return 0;
  441. }
  442. /* Prepare PF RL runtime init values for the specified PF.
  443. * Return -1 on error.
  444. */
  445. static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
  446. {
  447. u32 inc_val = QM_RL_INC_VAL(pf_rl);
  448. if (inc_val > QM_RL_MAX_INC_VAL) {
  449. DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
  450. return -1;
  451. }
  452. STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
  453. QM_RL_CRD_REG_SIGN_BIT);
  454. STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
  455. QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
  456. STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
  457. return 0;
  458. }
  459. /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
  460. * Return -1 on error.
  461. */
  462. static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
  463. u8 num_vports,
  464. struct init_qm_vport_params *vport_params)
  465. {
  466. u32 inc_val;
  467. u8 tc, i;
  468. /* go over all PF VPORTs */
  469. for (i = 0; i < num_vports; i++) {
  470. if (!vport_params[i].vport_wfq)
  471. continue;
  472. inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
  473. if (inc_val > QM_WFQ_MAX_INC_VAL) {
  474. DP_NOTICE(p_hwfn,
  475. "Invalid VPORT WFQ weight configuration");
  476. return -1;
  477. }
  478. /* each VPORT can have several VPORT PQ IDs for
  479. * different TCs
  480. */
  481. for (tc = 0; tc < NUM_OF_TCS; tc++) {
  482. u16 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
  483. if (vport_pq_id != QM_INVALID_PQ_ID) {
  484. STORE_RT_REG(p_hwfn,
  485. QM_REG_WFQVPCRD_RT_OFFSET +
  486. vport_pq_id,
  487. QM_WFQ_CRD_REG_SIGN_BIT);
  488. STORE_RT_REG(p_hwfn,
  489. QM_REG_WFQVPWEIGHT_RT_OFFSET +
  490. vport_pq_id, inc_val);
  491. }
  492. }
  493. }
  494. return 0;
  495. }
  496. static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
  497. u8 start_vport,
  498. u8 num_vports,
  499. struct init_qm_vport_params *vport_params)
  500. {
  501. u8 i, vport_id;
  502. /* go over all PF VPORTs */
  503. for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
  504. u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
  505. if (inc_val > QM_RL_MAX_INC_VAL) {
  506. DP_NOTICE(p_hwfn,
  507. "Invalid VPORT rate-limit configuration");
  508. return -1;
  509. }
  510. STORE_RT_REG(p_hwfn,
  511. QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
  512. QM_RL_CRD_REG_SIGN_BIT);
  513. STORE_RT_REG(p_hwfn,
  514. QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
  515. QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
  516. STORE_RT_REG(p_hwfn,
  517. QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
  518. inc_val);
  519. }
  520. return 0;
  521. }
  522. static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
  523. struct qed_ptt *p_ptt)
  524. {
  525. u32 reg_val, i;
  526. for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
  527. i++) {
  528. udelay(QM_STOP_CMD_POLL_PERIOD_US);
  529. reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
  530. }
  531. /* check if timeout while waiting for SDM command ready */
  532. if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
  533. DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
  534. "Timeout when waiting for QM SDM command ready signal\n");
  535. return false;
  536. }
  537. return true;
  538. }
  539. static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
  540. struct qed_ptt *p_ptt,
  541. u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
  542. {
  543. if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
  544. return false;
  545. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
  546. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
  547. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
  548. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
  549. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
  550. return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
  551. }
  552. /******************** INTERFACE IMPLEMENTATION *********************/
  553. u32 qed_qm_pf_mem_size(u8 pf_id,
  554. u32 num_pf_cids,
  555. u32 num_vf_cids,
  556. u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
  557. {
  558. return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
  559. QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
  560. QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
  561. }
  562. int qed_qm_common_rt_init(
  563. struct qed_hwfn *p_hwfn,
  564. struct qed_qm_common_rt_init_params *p_params)
  565. {
  566. /* init AFullOprtnstcCrdMask */
  567. u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
  568. QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
  569. (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
  570. (p_params->pf_wfq_en <<
  571. QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
  572. (p_params->vport_wfq_en <<
  573. QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
  574. (p_params->pf_rl_en <<
  575. QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
  576. (p_params->vport_rl_en <<
  577. QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
  578. (QM_OPPOR_FW_STOP_DEF <<
  579. QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
  580. (QM_OPPOR_PQ_EMPTY_DEF <<
  581. QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
  582. STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
  583. qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
  584. qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
  585. qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
  586. qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
  587. qed_cmdq_lines_rt_init(p_hwfn,
  588. p_params->max_ports_per_engine,
  589. p_params->max_phys_tcs_per_port,
  590. p_params->port_params);
  591. qed_btb_blocks_rt_init(p_hwfn,
  592. p_params->max_ports_per_engine,
  593. p_params->max_phys_tcs_per_port,
  594. p_params->port_params);
  595. return 0;
  596. }
  597. int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
  598. struct qed_ptt *p_ptt,
  599. struct qed_qm_pf_rt_init_params *p_params)
  600. {
  601. struct init_qm_vport_params *vport_params = p_params->vport_params;
  602. u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
  603. p_params->num_tids) *
  604. QM_OTHER_PQS_PER_PF;
  605. u8 tc, i;
  606. /* clear first Tx PQ ID array for each VPORT */
  607. for (i = 0; i < p_params->num_vports; i++)
  608. for (tc = 0; tc < NUM_OF_TCS; tc++)
  609. vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
  610. /* map Other PQs (if any) */
  611. qed_other_pq_map_rt_init(p_hwfn, p_params->port_id, p_params->pf_id,
  612. p_params->num_pf_cids, p_params->num_tids, 0);
  613. /* map Tx PQs */
  614. qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
  615. if (p_params->pf_wfq)
  616. if (qed_pf_wfq_rt_init(p_hwfn, p_params))
  617. return -1;
  618. if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
  619. return -1;
  620. if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
  621. return -1;
  622. if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
  623. p_params->num_vports, vport_params))
  624. return -1;
  625. return 0;
  626. }
  627. int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
  628. struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
  629. {
  630. u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
  631. if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  632. DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
  633. return -1;
  634. }
  635. qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
  636. return 0;
  637. }
  638. int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
  639. struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
  640. {
  641. u32 inc_val = QM_RL_INC_VAL(pf_rl);
  642. if (inc_val > QM_RL_MAX_INC_VAL) {
  643. DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
  644. return -1;
  645. }
  646. qed_wr(p_hwfn, p_ptt,
  647. QM_REG_RLPFCRD + pf_id * 4,
  648. QM_RL_CRD_REG_SIGN_BIT);
  649. qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
  650. return 0;
  651. }
  652. int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
  653. struct qed_ptt *p_ptt,
  654. u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
  655. {
  656. u32 inc_val = QM_WFQ_INC_VAL(vport_wfq);
  657. u8 tc;
  658. if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  659. DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration");
  660. return -1;
  661. }
  662. for (tc = 0; tc < NUM_OF_TCS; tc++) {
  663. u16 vport_pq_id = first_tx_pq_id[tc];
  664. if (vport_pq_id != QM_INVALID_PQ_ID)
  665. qed_wr(p_hwfn, p_ptt,
  666. QM_REG_WFQVPWEIGHT + vport_pq_id * 4,
  667. inc_val);
  668. }
  669. return 0;
  670. }
  671. int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
  672. struct qed_ptt *p_ptt, u8 vport_id, u32 vport_rl)
  673. {
  674. u32 inc_val = QM_RL_INC_VAL(vport_rl);
  675. if (inc_val > QM_RL_MAX_INC_VAL) {
  676. DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration");
  677. return -1;
  678. }
  679. qed_wr(p_hwfn, p_ptt,
  680. QM_REG_RLGLBLCRD + vport_id * 4,
  681. QM_RL_CRD_REG_SIGN_BIT);
  682. qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
  683. return 0;
  684. }
  685. bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
  686. struct qed_ptt *p_ptt,
  687. bool is_release_cmd,
  688. bool is_tx_pq, u16 start_pq, u16 num_pqs)
  689. {
  690. u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
  691. u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
  692. /* set command's PQ type */
  693. QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
  694. for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
  695. /* set PQ bit in mask (stop command only) */
  696. if (!is_release_cmd)
  697. pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
  698. /* if last PQ or end of PQ mask, write command */
  699. if ((pq_id == last_pq) ||
  700. (pq_id % QM_STOP_PQ_MASK_WIDTH ==
  701. (QM_STOP_PQ_MASK_WIDTH - 1))) {
  702. QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
  703. PAUSE_MASK, pq_mask);
  704. QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
  705. GROUP_ID,
  706. pq_id / QM_STOP_PQ_MASK_WIDTH);
  707. if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
  708. cmd_arr[0], cmd_arr[1]))
  709. return false;
  710. pq_mask = 0;
  711. }
  712. }
  713. return true;
  714. }
  715. static void
  716. qed_set_tunnel_type_enable_bit(unsigned long *var, int bit, bool enable)
  717. {
  718. if (enable)
  719. set_bit(bit, var);
  720. else
  721. clear_bit(bit, var);
  722. }
  723. #define PRS_ETH_TUNN_FIC_FORMAT -188897008
  724. void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
  725. struct qed_ptt *p_ptt, u16 dest_port)
  726. {
  727. qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
  728. qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
  729. qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
  730. }
  731. void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
  732. struct qed_ptt *p_ptt, bool vxlan_enable)
  733. {
  734. unsigned long reg_val = 0;
  735. u8 shift;
  736. reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
  737. shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
  738. qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
  739. qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
  740. if (reg_val)
  741. qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
  742. PRS_ETH_TUNN_FIC_FORMAT);
  743. reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
  744. shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
  745. qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
  746. qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
  747. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
  748. vxlan_enable ? 1 : 0);
  749. }
  750. void qed_set_gre_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
  751. bool eth_gre_enable, bool ip_gre_enable)
  752. {
  753. unsigned long reg_val = 0;
  754. u8 shift;
  755. reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
  756. shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
  757. qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
  758. shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
  759. qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
  760. qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
  761. if (reg_val)
  762. qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
  763. PRS_ETH_TUNN_FIC_FORMAT);
  764. reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
  765. shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
  766. qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
  767. shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
  768. qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
  769. qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
  770. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
  771. eth_gre_enable ? 1 : 0);
  772. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
  773. ip_gre_enable ? 1 : 0);
  774. }
  775. void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
  776. struct qed_ptt *p_ptt, u16 dest_port)
  777. {
  778. qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
  779. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
  780. qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
  781. }
  782. void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
  783. struct qed_ptt *p_ptt,
  784. bool eth_geneve_enable, bool ip_geneve_enable)
  785. {
  786. unsigned long reg_val = 0;
  787. u8 shift;
  788. reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
  789. shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
  790. qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_geneve_enable);
  791. shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
  792. qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_geneve_enable);
  793. qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
  794. if (reg_val)
  795. qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
  796. PRS_ETH_TUNN_FIC_FORMAT);
  797. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
  798. eth_geneve_enable ? 1 : 0);
  799. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
  800. /* comp ver */
  801. reg_val = (ip_geneve_enable || eth_geneve_enable) ? 1 : 0;
  802. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_COMP_VER, reg_val);
  803. qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_COMP_VER, reg_val);
  804. qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_COMP_VER, reg_val);
  805. /* EDPM with geneve tunnel not supported in BB_B0 */
  806. if (QED_IS_BB_B0(p_hwfn->cdev))
  807. return;
  808. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
  809. eth_geneve_enable ? 1 : 0);
  810. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
  811. ip_geneve_enable ? 1 : 0);
  812. }