hns_dsaf_misc.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /*
  2. * Copyright (c) 2014-2015 Hisilicon Limited.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. */
  9. #include "hns_dsaf_mac.h"
  10. #include "hns_dsaf_misc.h"
  11. #include "hns_dsaf_ppe.h"
  12. #include "hns_dsaf_reg.h"
  13. enum _dsm_op_index {
  14. HNS_OP_RESET_FUNC = 0x1,
  15. HNS_OP_SERDES_LP_FUNC = 0x2,
  16. HNS_OP_LED_SET_FUNC = 0x3,
  17. HNS_OP_GET_PORT_TYPE_FUNC = 0x4,
  18. HNS_OP_GET_SFP_STAT_FUNC = 0x5,
  19. };
  20. enum _dsm_rst_type {
  21. HNS_DSAF_RESET_FUNC = 0x1,
  22. HNS_PPE_RESET_FUNC = 0x2,
  23. HNS_XGE_RESET_FUNC = 0x4,
  24. HNS_GE_RESET_FUNC = 0x5,
  25. HNS_DSAF_CHN_RESET_FUNC = 0x6,
  26. HNS_ROCE_RESET_FUNC = 0x7,
  27. };
  28. const u8 hns_dsaf_acpi_dsm_uuid[] = {
  29. 0x1A, 0xAA, 0x85, 0x1A, 0x93, 0xE2, 0x5E, 0x41,
  30. 0x8E, 0x28, 0x8D, 0x69, 0x0A, 0x0F, 0x82, 0x0A
  31. };
  32. static void dsaf_write_sub(struct dsaf_device *dsaf_dev, u32 reg, u32 val)
  33. {
  34. if (dsaf_dev->sub_ctrl)
  35. dsaf_write_syscon(dsaf_dev->sub_ctrl, reg, val);
  36. else
  37. dsaf_write_reg(dsaf_dev->sc_base, reg, val);
  38. }
  39. static u32 dsaf_read_sub(struct dsaf_device *dsaf_dev, u32 reg)
  40. {
  41. u32 ret;
  42. if (dsaf_dev->sub_ctrl)
  43. ret = dsaf_read_syscon(dsaf_dev->sub_ctrl, reg);
  44. else
  45. ret = dsaf_read_reg(dsaf_dev->sc_base, reg);
  46. return ret;
  47. }
  48. static void hns_cpld_set_led(struct hns_mac_cb *mac_cb, int link_status,
  49. u16 speed, int data)
  50. {
  51. int speed_reg = 0;
  52. u8 value;
  53. if (!mac_cb) {
  54. pr_err("sfp_led_opt mac_dev is null!\n");
  55. return;
  56. }
  57. if (!mac_cb->cpld_ctrl) {
  58. dev_err(mac_cb->dev, "mac_id=%d, cpld syscon is null !\n",
  59. mac_cb->mac_id);
  60. return;
  61. }
  62. if (speed == MAC_SPEED_10000)
  63. speed_reg = 1;
  64. value = mac_cb->cpld_led_value;
  65. if (link_status) {
  66. dsaf_set_bit(value, DSAF_LED_LINK_B, link_status);
  67. dsaf_set_field(value, DSAF_LED_SPEED_M,
  68. DSAF_LED_SPEED_S, speed_reg);
  69. dsaf_set_bit(value, DSAF_LED_DATA_B, data);
  70. if (value != mac_cb->cpld_led_value) {
  71. dsaf_write_syscon(mac_cb->cpld_ctrl,
  72. mac_cb->cpld_ctrl_reg, value);
  73. mac_cb->cpld_led_value = value;
  74. }
  75. } else {
  76. value = (mac_cb->cpld_led_value) & (0x1 << DSAF_LED_ANCHOR_B);
  77. dsaf_write_syscon(mac_cb->cpld_ctrl,
  78. mac_cb->cpld_ctrl_reg, value);
  79. mac_cb->cpld_led_value = value;
  80. }
  81. }
  82. static void cpld_led_reset(struct hns_mac_cb *mac_cb)
  83. {
  84. if (!mac_cb || !mac_cb->cpld_ctrl)
  85. return;
  86. dsaf_write_syscon(mac_cb->cpld_ctrl, mac_cb->cpld_ctrl_reg,
  87. CPLD_LED_DEFAULT_VALUE);
  88. mac_cb->cpld_led_value = CPLD_LED_DEFAULT_VALUE;
  89. }
  90. static int cpld_set_led_id(struct hns_mac_cb *mac_cb,
  91. enum hnae_led_state status)
  92. {
  93. switch (status) {
  94. case HNAE_LED_ACTIVE:
  95. mac_cb->cpld_led_value =
  96. dsaf_read_syscon(mac_cb->cpld_ctrl,
  97. mac_cb->cpld_ctrl_reg);
  98. dsaf_set_bit(mac_cb->cpld_led_value, DSAF_LED_ANCHOR_B,
  99. CPLD_LED_ON_VALUE);
  100. dsaf_write_syscon(mac_cb->cpld_ctrl, mac_cb->cpld_ctrl_reg,
  101. mac_cb->cpld_led_value);
  102. break;
  103. case HNAE_LED_INACTIVE:
  104. dsaf_set_bit(mac_cb->cpld_led_value, DSAF_LED_ANCHOR_B,
  105. CPLD_LED_DEFAULT_VALUE);
  106. dsaf_write_syscon(mac_cb->cpld_ctrl, mac_cb->cpld_ctrl_reg,
  107. mac_cb->cpld_led_value);
  108. break;
  109. default:
  110. dev_err(mac_cb->dev, "invalid led state: %d!", status);
  111. return -EINVAL;
  112. }
  113. return 0;
  114. }
  115. #define RESET_REQ_OR_DREQ 1
  116. static void hns_dsaf_acpi_srst_by_port(struct dsaf_device *dsaf_dev, u8 op_type,
  117. u32 port_type, u32 port, u32 val)
  118. {
  119. union acpi_object *obj;
  120. union acpi_object obj_args[3], argv4;
  121. obj_args[0].integer.type = ACPI_TYPE_INTEGER;
  122. obj_args[0].integer.value = port_type;
  123. obj_args[1].integer.type = ACPI_TYPE_INTEGER;
  124. obj_args[1].integer.value = port;
  125. obj_args[2].integer.type = ACPI_TYPE_INTEGER;
  126. obj_args[2].integer.value = val;
  127. argv4.type = ACPI_TYPE_PACKAGE;
  128. argv4.package.count = 3;
  129. argv4.package.elements = obj_args;
  130. obj = acpi_evaluate_dsm(ACPI_HANDLE(dsaf_dev->dev),
  131. hns_dsaf_acpi_dsm_uuid, 0, op_type, &argv4);
  132. if (!obj) {
  133. dev_warn(dsaf_dev->dev, "reset port_type%d port%d fail!",
  134. port_type, port);
  135. return;
  136. }
  137. ACPI_FREE(obj);
  138. }
  139. static void hns_dsaf_rst(struct dsaf_device *dsaf_dev, bool dereset)
  140. {
  141. u32 xbar_reg_addr;
  142. u32 nt_reg_addr;
  143. if (!dereset) {
  144. xbar_reg_addr = DSAF_SUB_SC_XBAR_RESET_REQ_REG;
  145. nt_reg_addr = DSAF_SUB_SC_NT_RESET_REQ_REG;
  146. } else {
  147. xbar_reg_addr = DSAF_SUB_SC_XBAR_RESET_DREQ_REG;
  148. nt_reg_addr = DSAF_SUB_SC_NT_RESET_DREQ_REG;
  149. }
  150. dsaf_write_sub(dsaf_dev, xbar_reg_addr, RESET_REQ_OR_DREQ);
  151. dsaf_write_sub(dsaf_dev, nt_reg_addr, RESET_REQ_OR_DREQ);
  152. }
  153. static void hns_dsaf_rst_acpi(struct dsaf_device *dsaf_dev, bool dereset)
  154. {
  155. hns_dsaf_acpi_srst_by_port(dsaf_dev, HNS_OP_RESET_FUNC,
  156. HNS_DSAF_RESET_FUNC,
  157. 0, dereset);
  158. }
  159. static void hns_dsaf_xge_srst_by_port(struct dsaf_device *dsaf_dev, u32 port,
  160. bool dereset)
  161. {
  162. u32 reg_val = 0;
  163. u32 reg_addr;
  164. if (port >= DSAF_XGE_NUM)
  165. return;
  166. reg_val |= RESET_REQ_OR_DREQ;
  167. reg_val |= 0x2082082 << dsaf_dev->mac_cb[port]->port_rst_off;
  168. if (!dereset)
  169. reg_addr = DSAF_SUB_SC_XGE_RESET_REQ_REG;
  170. else
  171. reg_addr = DSAF_SUB_SC_XGE_RESET_DREQ_REG;
  172. dsaf_write_sub(dsaf_dev, reg_addr, reg_val);
  173. }
  174. static void hns_dsaf_xge_srst_by_port_acpi(struct dsaf_device *dsaf_dev,
  175. u32 port, bool dereset)
  176. {
  177. hns_dsaf_acpi_srst_by_port(dsaf_dev, HNS_OP_RESET_FUNC,
  178. HNS_XGE_RESET_FUNC, port, dereset);
  179. }
  180. /**
  181. * hns_dsaf_srst_chns - reset dsaf channels
  182. * @dsaf_dev: dsaf device struct pointer
  183. * @msk: xbar channels mask value:
  184. * bit0-5 for xge0-5
  185. * bit6-11 for ppe0-5
  186. * bit12-17 for roce0-5
  187. * bit18-19 for com/dfx
  188. * @enable: false - request reset , true - drop reset
  189. */
  190. void hns_dsaf_srst_chns(struct dsaf_device *dsaf_dev, u32 msk, bool dereset)
  191. {
  192. u32 reg_addr;
  193. if (!dereset)
  194. reg_addr = DSAF_SUB_SC_DSAF_RESET_REQ_REG;
  195. else
  196. reg_addr = DSAF_SUB_SC_DSAF_RESET_DREQ_REG;
  197. dsaf_write_sub(dsaf_dev, reg_addr, msk);
  198. }
  199. /**
  200. * hns_dsaf_srst_chns - reset dsaf channels
  201. * @dsaf_dev: dsaf device struct pointer
  202. * @msk: xbar channels mask value:
  203. * bit0-5 for xge0-5
  204. * bit6-11 for ppe0-5
  205. * bit12-17 for roce0-5
  206. * bit18-19 for com/dfx
  207. * @enable: false - request reset , true - drop reset
  208. */
  209. void
  210. hns_dsaf_srst_chns_acpi(struct dsaf_device *dsaf_dev, u32 msk, bool dereset)
  211. {
  212. hns_dsaf_acpi_srst_by_port(dsaf_dev, HNS_OP_RESET_FUNC,
  213. HNS_DSAF_CHN_RESET_FUNC,
  214. msk, dereset);
  215. }
  216. void hns_dsaf_roce_srst(struct dsaf_device *dsaf_dev, bool dereset)
  217. {
  218. if (!dereset) {
  219. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_ROCEE_RESET_REQ_REG, 1);
  220. } else {
  221. dsaf_write_sub(dsaf_dev,
  222. DSAF_SUB_SC_ROCEE_CLK_DIS_REG, 1);
  223. dsaf_write_sub(dsaf_dev,
  224. DSAF_SUB_SC_ROCEE_RESET_DREQ_REG, 1);
  225. msleep(20);
  226. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_ROCEE_CLK_EN_REG, 1);
  227. }
  228. }
  229. void hns_dsaf_roce_srst_acpi(struct dsaf_device *dsaf_dev, bool dereset)
  230. {
  231. hns_dsaf_acpi_srst_by_port(dsaf_dev, HNS_OP_RESET_FUNC,
  232. HNS_ROCE_RESET_FUNC, 0, dereset);
  233. }
  234. static void hns_dsaf_ge_srst_by_port(struct dsaf_device *dsaf_dev, u32 port,
  235. bool dereset)
  236. {
  237. u32 reg_val_1;
  238. u32 reg_val_2;
  239. u32 port_rst_off;
  240. if (port >= DSAF_GE_NUM)
  241. return;
  242. if (!HNS_DSAF_IS_DEBUG(dsaf_dev)) {
  243. reg_val_1 = 0x1 << port;
  244. port_rst_off = dsaf_dev->mac_cb[port]->port_rst_off;
  245. /* there is difference between V1 and V2 in register.*/
  246. reg_val_2 = AE_IS_VER1(dsaf_dev->dsaf_ver) ?
  247. 0x1041041 : 0x2082082;
  248. reg_val_2 <<= port_rst_off;
  249. if (!dereset) {
  250. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_GE_RESET_REQ1_REG,
  251. reg_val_1);
  252. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_GE_RESET_REQ0_REG,
  253. reg_val_2);
  254. } else {
  255. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_GE_RESET_DREQ0_REG,
  256. reg_val_2);
  257. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_GE_RESET_DREQ1_REG,
  258. reg_val_1);
  259. }
  260. } else {
  261. reg_val_1 = 0x15540;
  262. reg_val_2 = AE_IS_VER1(dsaf_dev->dsaf_ver) ? 0x100 : 0x40;
  263. reg_val_1 <<= dsaf_dev->reset_offset;
  264. reg_val_2 <<= dsaf_dev->reset_offset;
  265. if (!dereset) {
  266. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_GE_RESET_REQ1_REG,
  267. reg_val_1);
  268. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_PPE_RESET_REQ_REG,
  269. reg_val_2);
  270. } else {
  271. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_GE_RESET_DREQ1_REG,
  272. reg_val_1);
  273. dsaf_write_sub(dsaf_dev, DSAF_SUB_SC_PPE_RESET_DREQ_REG,
  274. reg_val_2);
  275. }
  276. }
  277. }
  278. static void hns_dsaf_ge_srst_by_port_acpi(struct dsaf_device *dsaf_dev,
  279. u32 port, bool dereset)
  280. {
  281. hns_dsaf_acpi_srst_by_port(dsaf_dev, HNS_OP_RESET_FUNC,
  282. HNS_GE_RESET_FUNC, port, dereset);
  283. }
  284. static void hns_ppe_srst_by_port(struct dsaf_device *dsaf_dev, u32 port,
  285. bool dereset)
  286. {
  287. u32 reg_val = 0;
  288. u32 reg_addr;
  289. reg_val |= RESET_REQ_OR_DREQ << dsaf_dev->mac_cb[port]->port_rst_off;
  290. if (!dereset)
  291. reg_addr = DSAF_SUB_SC_PPE_RESET_REQ_REG;
  292. else
  293. reg_addr = DSAF_SUB_SC_PPE_RESET_DREQ_REG;
  294. dsaf_write_sub(dsaf_dev, reg_addr, reg_val);
  295. }
  296. static void
  297. hns_ppe_srst_by_port_acpi(struct dsaf_device *dsaf_dev, u32 port, bool dereset)
  298. {
  299. hns_dsaf_acpi_srst_by_port(dsaf_dev, HNS_OP_RESET_FUNC,
  300. HNS_PPE_RESET_FUNC, port, dereset);
  301. }
  302. static void hns_ppe_com_srst(struct dsaf_device *dsaf_dev, bool dereset)
  303. {
  304. u32 reg_val;
  305. u32 reg_addr;
  306. if (!(dev_of_node(dsaf_dev->dev)))
  307. return;
  308. if (!HNS_DSAF_IS_DEBUG(dsaf_dev)) {
  309. reg_val = RESET_REQ_OR_DREQ;
  310. if (!dereset)
  311. reg_addr = DSAF_SUB_SC_RCB_PPE_COM_RESET_REQ_REG;
  312. else
  313. reg_addr = DSAF_SUB_SC_RCB_PPE_COM_RESET_DREQ_REG;
  314. } else {
  315. reg_val = 0x100 << dsaf_dev->reset_offset;
  316. if (!dereset)
  317. reg_addr = DSAF_SUB_SC_PPE_RESET_REQ_REG;
  318. else
  319. reg_addr = DSAF_SUB_SC_PPE_RESET_DREQ_REG;
  320. }
  321. dsaf_write_sub(dsaf_dev, reg_addr, reg_val);
  322. }
  323. /**
  324. * hns_mac_get_sds_mode - get phy ifterface form serdes mode
  325. * @mac_cb: mac control block
  326. * retuen phy interface
  327. */
  328. static phy_interface_t hns_mac_get_phy_if(struct hns_mac_cb *mac_cb)
  329. {
  330. u32 mode;
  331. u32 reg;
  332. bool is_ver1 = AE_IS_VER1(mac_cb->dsaf_dev->dsaf_ver);
  333. int mac_id = mac_cb->mac_id;
  334. phy_interface_t phy_if;
  335. if (is_ver1) {
  336. if (HNS_DSAF_IS_DEBUG(mac_cb->dsaf_dev))
  337. return PHY_INTERFACE_MODE_SGMII;
  338. if (mac_id >= 0 && mac_id <= 3)
  339. reg = HNS_MAC_HILINK4_REG;
  340. else
  341. reg = HNS_MAC_HILINK3_REG;
  342. } else{
  343. if (!HNS_DSAF_IS_DEBUG(mac_cb->dsaf_dev) && mac_id <= 3)
  344. reg = HNS_MAC_HILINK4V2_REG;
  345. else
  346. reg = HNS_MAC_HILINK3V2_REG;
  347. }
  348. mode = dsaf_read_sub(mac_cb->dsaf_dev, reg);
  349. if (dsaf_get_bit(mode, mac_cb->port_mode_off))
  350. phy_if = PHY_INTERFACE_MODE_XGMII;
  351. else
  352. phy_if = PHY_INTERFACE_MODE_SGMII;
  353. return phy_if;
  354. }
  355. static phy_interface_t hns_mac_get_phy_if_acpi(struct hns_mac_cb *mac_cb)
  356. {
  357. phy_interface_t phy_if = PHY_INTERFACE_MODE_NA;
  358. union acpi_object *obj;
  359. union acpi_object obj_args, argv4;
  360. obj_args.integer.type = ACPI_TYPE_INTEGER;
  361. obj_args.integer.value = mac_cb->mac_id;
  362. argv4.type = ACPI_TYPE_PACKAGE,
  363. argv4.package.count = 1,
  364. argv4.package.elements = &obj_args,
  365. obj = acpi_evaluate_dsm(ACPI_HANDLE(mac_cb->dev),
  366. hns_dsaf_acpi_dsm_uuid, 0,
  367. HNS_OP_GET_PORT_TYPE_FUNC, &argv4);
  368. if (!obj || obj->type != ACPI_TYPE_INTEGER)
  369. return phy_if;
  370. phy_if = obj->integer.value ?
  371. PHY_INTERFACE_MODE_XGMII : PHY_INTERFACE_MODE_SGMII;
  372. dev_dbg(mac_cb->dev, "mac_id=%d, phy_if=%d\n", mac_cb->mac_id, phy_if);
  373. ACPI_FREE(obj);
  374. return phy_if;
  375. }
  376. int hns_mac_get_sfp_prsnt(struct hns_mac_cb *mac_cb, int *sfp_prsnt)
  377. {
  378. if (!mac_cb->cpld_ctrl)
  379. return -ENODEV;
  380. *sfp_prsnt = !dsaf_read_syscon(mac_cb->cpld_ctrl, mac_cb->cpld_ctrl_reg
  381. + MAC_SFP_PORT_OFFSET);
  382. return 0;
  383. }
  384. /**
  385. * hns_mac_config_sds_loopback - set loop back for serdes
  386. * @mac_cb: mac control block
  387. * retuen 0 == success
  388. */
  389. static int hns_mac_config_sds_loopback(struct hns_mac_cb *mac_cb, bool en)
  390. {
  391. const u8 lane_id[] = {
  392. 0, /* mac 0 -> lane 0 */
  393. 1, /* mac 1 -> lane 1 */
  394. 2, /* mac 2 -> lane 2 */
  395. 3, /* mac 3 -> lane 3 */
  396. 2, /* mac 4 -> lane 2 */
  397. 3, /* mac 5 -> lane 3 */
  398. 0, /* mac 6 -> lane 0 */
  399. 1 /* mac 7 -> lane 1 */
  400. };
  401. #define RX_CSR(lane, reg) ((0x4080 + (reg) * 0x0002 + (lane) * 0x0200) * 2)
  402. u64 reg_offset = RX_CSR(lane_id[mac_cb->mac_id], 0);
  403. int sfp_prsnt;
  404. int ret = hns_mac_get_sfp_prsnt(mac_cb, &sfp_prsnt);
  405. if (!mac_cb->phy_dev) {
  406. if (ret)
  407. pr_info("please confirm sfp is present or not\n");
  408. else
  409. if (!sfp_prsnt)
  410. pr_info("no sfp in this eth\n");
  411. }
  412. if (mac_cb->serdes_ctrl) {
  413. u32 origin;
  414. if (!AE_IS_VER1(mac_cb->dsaf_dev->dsaf_ver)) {
  415. #define HILINK_ACCESS_SEL_CFG 0x40008
  416. /* hilink4 & hilink3 use the same xge training and
  417. * xge u adaptor. There is a hilink access sel cfg
  418. * register to select which one to be configed
  419. */
  420. if ((!HNS_DSAF_IS_DEBUG(mac_cb->dsaf_dev)) &&
  421. (mac_cb->mac_id <= 3))
  422. dsaf_write_syscon(mac_cb->serdes_ctrl,
  423. HILINK_ACCESS_SEL_CFG, 0);
  424. else
  425. dsaf_write_syscon(mac_cb->serdes_ctrl,
  426. HILINK_ACCESS_SEL_CFG, 3);
  427. }
  428. origin = dsaf_read_syscon(mac_cb->serdes_ctrl, reg_offset);
  429. dsaf_set_field(origin, 1ull << 10, 10, en);
  430. dsaf_write_syscon(mac_cb->serdes_ctrl, reg_offset, origin);
  431. } else {
  432. u8 *base_addr = (u8 *)mac_cb->serdes_vaddr +
  433. (mac_cb->mac_id <= 3 ? 0x00280000 : 0x00200000);
  434. dsaf_set_reg_field(base_addr, reg_offset, 1ull << 10, 10, en);
  435. }
  436. return 0;
  437. }
  438. static int
  439. hns_mac_config_sds_loopback_acpi(struct hns_mac_cb *mac_cb, bool en)
  440. {
  441. union acpi_object *obj;
  442. union acpi_object obj_args[3], argv4;
  443. obj_args[0].integer.type = ACPI_TYPE_INTEGER;
  444. obj_args[0].integer.value = mac_cb->mac_id;
  445. obj_args[1].integer.type = ACPI_TYPE_INTEGER;
  446. obj_args[1].integer.value = !!en;
  447. argv4.type = ACPI_TYPE_PACKAGE;
  448. argv4.package.count = 2;
  449. argv4.package.elements = obj_args;
  450. obj = acpi_evaluate_dsm(ACPI_HANDLE(mac_cb->dsaf_dev->dev),
  451. hns_dsaf_acpi_dsm_uuid, 0,
  452. HNS_OP_SERDES_LP_FUNC, &argv4);
  453. if (!obj) {
  454. dev_warn(mac_cb->dsaf_dev->dev, "set port%d serdes lp fail!",
  455. mac_cb->mac_id);
  456. return -ENOTSUPP;
  457. }
  458. ACPI_FREE(obj);
  459. return 0;
  460. }
  461. struct dsaf_misc_op *hns_misc_op_get(struct dsaf_device *dsaf_dev)
  462. {
  463. struct dsaf_misc_op *misc_op;
  464. misc_op = devm_kzalloc(dsaf_dev->dev, sizeof(*misc_op), GFP_KERNEL);
  465. if (!misc_op)
  466. return NULL;
  467. if (dev_of_node(dsaf_dev->dev)) {
  468. misc_op->cpld_set_led = hns_cpld_set_led;
  469. misc_op->cpld_reset_led = cpld_led_reset;
  470. misc_op->cpld_set_led_id = cpld_set_led_id;
  471. misc_op->dsaf_reset = hns_dsaf_rst;
  472. misc_op->xge_srst = hns_dsaf_xge_srst_by_port;
  473. misc_op->ge_srst = hns_dsaf_ge_srst_by_port;
  474. misc_op->ppe_srst = hns_ppe_srst_by_port;
  475. misc_op->ppe_comm_srst = hns_ppe_com_srst;
  476. misc_op->hns_dsaf_srst_chns = hns_dsaf_srst_chns;
  477. misc_op->hns_dsaf_roce_srst = hns_dsaf_roce_srst;
  478. misc_op->get_phy_if = hns_mac_get_phy_if;
  479. misc_op->get_sfp_prsnt = hns_mac_get_sfp_prsnt;
  480. misc_op->cfg_serdes_loopback = hns_mac_config_sds_loopback;
  481. } else if (is_acpi_node(dsaf_dev->dev->fwnode)) {
  482. misc_op->cpld_set_led = hns_cpld_set_led;
  483. misc_op->cpld_reset_led = cpld_led_reset;
  484. misc_op->cpld_set_led_id = cpld_set_led_id;
  485. misc_op->dsaf_reset = hns_dsaf_rst_acpi;
  486. misc_op->xge_srst = hns_dsaf_xge_srst_by_port_acpi;
  487. misc_op->ge_srst = hns_dsaf_ge_srst_by_port_acpi;
  488. misc_op->ppe_srst = hns_ppe_srst_by_port_acpi;
  489. misc_op->ppe_comm_srst = hns_ppe_com_srst;
  490. misc_op->hns_dsaf_srst_chns = hns_dsaf_srst_chns_acpi;
  491. misc_op->hns_dsaf_roce_srst = hns_dsaf_roce_srst_acpi;
  492. misc_op->get_phy_if = hns_mac_get_phy_if_acpi;
  493. misc_op->get_sfp_prsnt = hns_mac_get_sfp_prsnt;
  494. misc_op->cfg_serdes_loopback = hns_mac_config_sds_loopback_acpi;
  495. } else {
  496. devm_kfree(dsaf_dev->dev, (void *)misc_op);
  497. misc_op = NULL;
  498. }
  499. return (void *)misc_op;
  500. }
  501. static int hns_dsaf_dev_match(struct device *dev, void *fwnode)
  502. {
  503. return dev->fwnode == fwnode;
  504. }
  505. struct
  506. platform_device *hns_dsaf_find_platform_device(struct fwnode_handle *fwnode)
  507. {
  508. struct device *dev;
  509. dev = bus_find_device(&platform_bus_type, NULL,
  510. fwnode, hns_dsaf_dev_match);
  511. return dev ? to_platform_device(dev) : NULL;
  512. }