t3_hw.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. static void t3_port_intr_clear(struct adapter *adapter, int idx);
  37. /**
  38. * t3_wait_op_done_val - wait until an operation is completed
  39. * @adapter: the adapter performing the operation
  40. * @reg: the register to check for completion
  41. * @mask: a single-bit field within @reg that indicates completion
  42. * @polarity: the value of the field when the operation is completed
  43. * @attempts: number of check iterations
  44. * @delay: delay in usecs between iterations
  45. * @valp: where to store the value of the register at completion time
  46. *
  47. * Wait until an operation is completed by checking a bit in a register
  48. * up to @attempts times. If @valp is not NULL the value of the register
  49. * at the time it indicated completion is stored there. Returns 0 if the
  50. * operation completes and -EAGAIN otherwise.
  51. */
  52. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  53. int polarity, int attempts, int delay, u32 *valp)
  54. {
  55. while (1) {
  56. u32 val = t3_read_reg(adapter, reg);
  57. if (!!(val & mask) == polarity) {
  58. if (valp)
  59. *valp = val;
  60. return 0;
  61. }
  62. if (--attempts == 0)
  63. return -EAGAIN;
  64. if (delay)
  65. udelay(delay);
  66. }
  67. }
  68. /**
  69. * t3_write_regs - write a bunch of registers
  70. * @adapter: the adapter to program
  71. * @p: an array of register address/register value pairs
  72. * @n: the number of address/value pairs
  73. * @offset: register address offset
  74. *
  75. * Takes an array of register address/register value pairs and writes each
  76. * value to the corresponding register. Register addresses are adjusted
  77. * by the supplied offset.
  78. */
  79. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  80. int n, unsigned int offset)
  81. {
  82. while (n--) {
  83. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  84. p++;
  85. }
  86. }
  87. /**
  88. * t3_set_reg_field - set a register field to a value
  89. * @adapter: the adapter to program
  90. * @addr: the register address
  91. * @mask: specifies the portion of the register to modify
  92. * @val: the new value for the register field
  93. *
  94. * Sets a register field specified by the supplied mask to the
  95. * given value.
  96. */
  97. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  98. u32 val)
  99. {
  100. u32 v = t3_read_reg(adapter, addr) & ~mask;
  101. t3_write_reg(adapter, addr, v | val);
  102. t3_read_reg(adapter, addr); /* flush */
  103. }
  104. /**
  105. * t3_read_indirect - read indirectly addressed registers
  106. * @adap: the adapter
  107. * @addr_reg: register holding the indirect address
  108. * @data_reg: register holding the value of the indirect register
  109. * @vals: where the read register values are stored
  110. * @start_idx: index of first indirect register to read
  111. * @nregs: how many indirect registers to read
  112. *
  113. * Reads registers that are accessed indirectly through an address/data
  114. * register pair.
  115. */
  116. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  117. unsigned int data_reg, u32 *vals,
  118. unsigned int nregs, unsigned int start_idx)
  119. {
  120. while (nregs--) {
  121. t3_write_reg(adap, addr_reg, start_idx);
  122. *vals++ = t3_read_reg(adap, data_reg);
  123. start_idx++;
  124. }
  125. }
  126. /**
  127. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  128. * @mc7: identifies MC7 to read from
  129. * @start: index of first 64-bit word to read
  130. * @n: number of 64-bit words to read
  131. * @buf: where to store the read result
  132. *
  133. * Read n 64-bit words from MC7 starting at word start, using backdoor
  134. * accesses.
  135. */
  136. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  137. u64 *buf)
  138. {
  139. static const int shift[] = { 0, 0, 16, 24 };
  140. static const int step[] = { 0, 32, 16, 8 };
  141. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  142. struct adapter *adap = mc7->adapter;
  143. if (start >= size64 || start + n > size64)
  144. return -EINVAL;
  145. start *= (8 << mc7->width);
  146. while (n--) {
  147. int i;
  148. u64 val64 = 0;
  149. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  150. int attempts = 10;
  151. u32 val;
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  153. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  154. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  155. while ((val & F_BUSY) && attempts--)
  156. val = t3_read_reg(adap,
  157. mc7->offset + A_MC7_BD_OP);
  158. if (val & F_BUSY)
  159. return -EIO;
  160. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  161. if (mc7->width == 0) {
  162. val64 = t3_read_reg(adap,
  163. mc7->offset +
  164. A_MC7_BD_DATA0);
  165. val64 |= (u64) val << 32;
  166. } else {
  167. if (mc7->width > 1)
  168. val >>= shift[mc7->width];
  169. val64 |= (u64) val << (step[mc7->width] * i);
  170. }
  171. start += 8;
  172. }
  173. *buf++ = val64;
  174. }
  175. return 0;
  176. }
  177. /*
  178. * Initialize MI1.
  179. */
  180. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  181. {
  182. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  183. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  184. t3_write_reg(adap, A_MI1_CFG, val);
  185. }
  186. #define MDIO_ATTEMPTS 20
  187. /*
  188. * MI1 read/write operations for clause 22 PHYs.
  189. */
  190. static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
  191. u16 reg_addr)
  192. {
  193. struct port_info *pi = netdev_priv(dev);
  194. struct adapter *adapter = pi->adapter;
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. mutex_lock(&adapter->mdio_lock);
  198. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  199. t3_write_reg(adapter, A_MI1_ADDR, addr);
  200. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  201. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  202. if (!ret)
  203. ret = t3_read_reg(adapter, A_MI1_DATA);
  204. mutex_unlock(&adapter->mdio_lock);
  205. return ret;
  206. }
  207. static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
  208. u16 reg_addr, u16 val)
  209. {
  210. struct port_info *pi = netdev_priv(dev);
  211. struct adapter *adapter = pi->adapter;
  212. int ret;
  213. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  214. mutex_lock(&adapter->mdio_lock);
  215. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. .read = t3_mi1_read,
  225. .write = t3_mi1_write,
  226. .mode_support = MDIO_SUPPORTS_C22
  227. };
  228. /*
  229. * Performs the address cycle for clause 45 PHYs.
  230. * Must be called with the MDIO_LOCK held.
  231. */
  232. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  233. int reg_addr)
  234. {
  235. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  236. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  237. t3_write_reg(adapter, A_MI1_ADDR, addr);
  238. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  239. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  240. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  241. MDIO_ATTEMPTS, 10);
  242. }
  243. /*
  244. * MI1 read/write operations for indirect-addressed PHYs.
  245. */
  246. static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
  247. u16 reg_addr)
  248. {
  249. struct port_info *pi = netdev_priv(dev);
  250. struct adapter *adapter = pi->adapter;
  251. int ret;
  252. mutex_lock(&adapter->mdio_lock);
  253. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  254. if (!ret) {
  255. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  256. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  257. MDIO_ATTEMPTS, 10);
  258. if (!ret)
  259. ret = t3_read_reg(adapter, A_MI1_DATA);
  260. }
  261. mutex_unlock(&adapter->mdio_lock);
  262. return ret;
  263. }
  264. static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
  265. u16 reg_addr, u16 val)
  266. {
  267. struct port_info *pi = netdev_priv(dev);
  268. struct adapter *adapter = pi->adapter;
  269. int ret;
  270. mutex_lock(&adapter->mdio_lock);
  271. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  272. if (!ret) {
  273. t3_write_reg(adapter, A_MI1_DATA, val);
  274. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  275. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  276. MDIO_ATTEMPTS, 10);
  277. }
  278. mutex_unlock(&adapter->mdio_lock);
  279. return ret;
  280. }
  281. static const struct mdio_ops mi1_mdio_ext_ops = {
  282. .read = mi1_ext_read,
  283. .write = mi1_ext_write,
  284. .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
  285. };
  286. /**
  287. * t3_mdio_change_bits - modify the value of a PHY register
  288. * @phy: the PHY to operate on
  289. * @mmd: the device address
  290. * @reg: the register address
  291. * @clear: what part of the register value to mask off
  292. * @set: what part of the register value to set
  293. *
  294. * Changes the value of a PHY register by applying a mask to its current
  295. * value and ORing the result with a new value.
  296. */
  297. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  298. unsigned int set)
  299. {
  300. int ret;
  301. unsigned int val;
  302. ret = t3_mdio_read(phy, mmd, reg, &val);
  303. if (!ret) {
  304. val &= ~clear;
  305. ret = t3_mdio_write(phy, mmd, reg, val | set);
  306. }
  307. return ret;
  308. }
  309. /**
  310. * t3_phy_reset - reset a PHY block
  311. * @phy: the PHY to operate on
  312. * @mmd: the device address of the PHY block to reset
  313. * @wait: how long to wait for the reset to complete in 1ms increments
  314. *
  315. * Resets a PHY block and optionally waits for the reset to complete.
  316. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  317. * for 10G PHYs.
  318. */
  319. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  320. {
  321. int err;
  322. unsigned int ctl;
  323. err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
  324. MDIO_CTRL1_RESET);
  325. if (err || !wait)
  326. return err;
  327. do {
  328. err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
  329. if (err)
  330. return err;
  331. ctl &= MDIO_CTRL1_RESET;
  332. if (ctl)
  333. msleep(1);
  334. } while (ctl && --wait);
  335. return ctl ? -1 : 0;
  336. }
  337. /**
  338. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  339. * @phy: the PHY to operate on
  340. * @advert: bitmap of capabilities the PHY should advertise
  341. *
  342. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  343. * requested capabilities.
  344. */
  345. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  346. {
  347. int err;
  348. unsigned int val = 0;
  349. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
  350. if (err)
  351. return err;
  352. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  353. if (advert & ADVERTISED_1000baseT_Half)
  354. val |= ADVERTISE_1000HALF;
  355. if (advert & ADVERTISED_1000baseT_Full)
  356. val |= ADVERTISE_1000FULL;
  357. err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
  358. if (err)
  359. return err;
  360. val = 1;
  361. if (advert & ADVERTISED_10baseT_Half)
  362. val |= ADVERTISE_10HALF;
  363. if (advert & ADVERTISED_10baseT_Full)
  364. val |= ADVERTISE_10FULL;
  365. if (advert & ADVERTISED_100baseT_Half)
  366. val |= ADVERTISE_100HALF;
  367. if (advert & ADVERTISED_100baseT_Full)
  368. val |= ADVERTISE_100FULL;
  369. if (advert & ADVERTISED_Pause)
  370. val |= ADVERTISE_PAUSE_CAP;
  371. if (advert & ADVERTISED_Asym_Pause)
  372. val |= ADVERTISE_PAUSE_ASYM;
  373. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  374. }
  375. /**
  376. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  377. * @phy: the PHY to operate on
  378. * @advert: bitmap of capabilities the PHY should advertise
  379. *
  380. * Sets a fiber PHY's advertisement register to advertise the
  381. * requested capabilities.
  382. */
  383. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  384. {
  385. unsigned int val = 0;
  386. if (advert & ADVERTISED_1000baseT_Half)
  387. val |= ADVERTISE_1000XHALF;
  388. if (advert & ADVERTISED_1000baseT_Full)
  389. val |= ADVERTISE_1000XFULL;
  390. if (advert & ADVERTISED_Pause)
  391. val |= ADVERTISE_1000XPAUSE;
  392. if (advert & ADVERTISED_Asym_Pause)
  393. val |= ADVERTISE_1000XPSE_ASYM;
  394. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  395. }
  396. /**
  397. * t3_set_phy_speed_duplex - force PHY speed and duplex
  398. * @phy: the PHY to operate on
  399. * @speed: requested PHY speed
  400. * @duplex: requested PHY duplex
  401. *
  402. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  403. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  404. */
  405. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  406. {
  407. int err;
  408. unsigned int ctl;
  409. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
  410. if (err)
  411. return err;
  412. if (speed >= 0) {
  413. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  414. if (speed == SPEED_100)
  415. ctl |= BMCR_SPEED100;
  416. else if (speed == SPEED_1000)
  417. ctl |= BMCR_SPEED1000;
  418. }
  419. if (duplex >= 0) {
  420. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  421. if (duplex == DUPLEX_FULL)
  422. ctl |= BMCR_FULLDPLX;
  423. }
  424. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  425. ctl |= BMCR_ANENABLE;
  426. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
  427. }
  428. int t3_phy_lasi_intr_enable(struct cphy *phy)
  429. {
  430. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
  431. MDIO_PMA_LASI_LSALARM);
  432. }
  433. int t3_phy_lasi_intr_disable(struct cphy *phy)
  434. {
  435. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
  436. }
  437. int t3_phy_lasi_intr_clear(struct cphy *phy)
  438. {
  439. u32 val;
  440. return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
  441. }
  442. int t3_phy_lasi_intr_handler(struct cphy *phy)
  443. {
  444. unsigned int status;
  445. int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
  446. &status);
  447. if (err)
  448. return err;
  449. return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
  450. }
  451. static const struct adapter_info t3_adap_info[] = {
  452. {1, 1, 0,
  453. F_GPIO2_OEN | F_GPIO4_OEN |
  454. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  455. &mi1_mdio_ops, "Chelsio PE9000"},
  456. {1, 1, 0,
  457. F_GPIO2_OEN | F_GPIO4_OEN |
  458. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  459. &mi1_mdio_ops, "Chelsio T302"},
  460. {1, 0, 0,
  461. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  462. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  463. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  464. &mi1_mdio_ext_ops, "Chelsio T310"},
  465. {1, 1, 0,
  466. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  467. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  468. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  469. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  470. &mi1_mdio_ext_ops, "Chelsio T320"},
  471. {},
  472. {},
  473. {1, 0, 0,
  474. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  475. F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  476. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  477. &mi1_mdio_ext_ops, "Chelsio T310" },
  478. {1, 0, 0,
  479. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  480. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
  481. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  482. &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
  483. };
  484. /*
  485. * Return the adapter_info structure with a given index. Out-of-range indices
  486. * return NULL.
  487. */
  488. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  489. {
  490. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  491. }
  492. struct port_type_info {
  493. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  494. int phy_addr, const struct mdio_ops *ops);
  495. };
  496. static const struct port_type_info port_types[] = {
  497. { NULL },
  498. { t3_ael1002_phy_prep },
  499. { t3_vsc8211_phy_prep },
  500. { NULL},
  501. { t3_xaui_direct_phy_prep },
  502. { t3_ael2005_phy_prep },
  503. { t3_qt2045_phy_prep },
  504. { t3_ael1006_phy_prep },
  505. { NULL },
  506. { t3_aq100x_phy_prep },
  507. { t3_ael2020_phy_prep },
  508. };
  509. #define VPD_ENTRY(name, len) \
  510. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  511. /*
  512. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  513. * VPD-R sections.
  514. */
  515. struct t3_vpd {
  516. u8 id_tag;
  517. u8 id_len[2];
  518. u8 id_data[16];
  519. u8 vpdr_tag;
  520. u8 vpdr_len[2];
  521. VPD_ENTRY(pn, 16); /* part number */
  522. VPD_ENTRY(ec, 16); /* EC level */
  523. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  524. VPD_ENTRY(na, 12); /* MAC address base */
  525. VPD_ENTRY(cclk, 6); /* core clock */
  526. VPD_ENTRY(mclk, 6); /* mem clock */
  527. VPD_ENTRY(uclk, 6); /* uP clk */
  528. VPD_ENTRY(mdc, 6); /* MDIO clk */
  529. VPD_ENTRY(mt, 2); /* mem timing */
  530. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  531. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  532. VPD_ENTRY(port0, 2); /* PHY0 complex */
  533. VPD_ENTRY(port1, 2); /* PHY1 complex */
  534. VPD_ENTRY(port2, 2); /* PHY2 complex */
  535. VPD_ENTRY(port3, 2); /* PHY3 complex */
  536. VPD_ENTRY(rv, 1); /* csum */
  537. u32 pad; /* for multiple-of-4 sizing and alignment */
  538. };
  539. #define EEPROM_MAX_POLL 40
  540. #define EEPROM_STAT_ADDR 0x4000
  541. #define VPD_BASE 0xc00
  542. /**
  543. * t3_seeprom_read - read a VPD EEPROM location
  544. * @adapter: adapter to read
  545. * @addr: EEPROM address
  546. * @data: where to store the read data
  547. *
  548. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  549. * VPD ROM capability. A zero is written to the flag bit when the
  550. * address is written to the control register. The hardware device will
  551. * set the flag to 1 when 4 bytes have been read into the data register.
  552. */
  553. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  554. {
  555. u16 val;
  556. int attempts = EEPROM_MAX_POLL;
  557. u32 v;
  558. unsigned int base = adapter->params.pci.vpd_cap_addr;
  559. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  560. return -EINVAL;
  561. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  562. do {
  563. udelay(10);
  564. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  565. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  566. if (!(val & PCI_VPD_ADDR_F)) {
  567. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  568. return -EIO;
  569. }
  570. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  571. *data = cpu_to_le32(v);
  572. return 0;
  573. }
  574. /**
  575. * t3_seeprom_write - write a VPD EEPROM location
  576. * @adapter: adapter to write
  577. * @addr: EEPROM address
  578. * @data: value to write
  579. *
  580. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  581. * VPD ROM capability.
  582. */
  583. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  584. {
  585. u16 val;
  586. int attempts = EEPROM_MAX_POLL;
  587. unsigned int base = adapter->params.pci.vpd_cap_addr;
  588. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  589. return -EINVAL;
  590. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  591. le32_to_cpu(data));
  592. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  593. addr | PCI_VPD_ADDR_F);
  594. do {
  595. msleep(1);
  596. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  597. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  598. if (val & PCI_VPD_ADDR_F) {
  599. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  600. return -EIO;
  601. }
  602. return 0;
  603. }
  604. /**
  605. * t3_seeprom_wp - enable/disable EEPROM write protection
  606. * @adapter: the adapter
  607. * @enable: 1 to enable write protection, 0 to disable it
  608. *
  609. * Enables or disables write protection on the serial EEPROM.
  610. */
  611. int t3_seeprom_wp(struct adapter *adapter, int enable)
  612. {
  613. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  614. }
  615. static int vpdstrtouint(char *s, int len, unsigned int base, unsigned int *val)
  616. {
  617. char tok[len + 1];
  618. memcpy(tok, s, len);
  619. tok[len] = 0;
  620. return kstrtouint(strim(tok), base, val);
  621. }
  622. static int vpdstrtou16(char *s, int len, unsigned int base, u16 *val)
  623. {
  624. char tok[len + 1];
  625. memcpy(tok, s, len);
  626. tok[len] = 0;
  627. return kstrtou16(strim(tok), base, val);
  628. }
  629. /**
  630. * get_vpd_params - read VPD parameters from VPD EEPROM
  631. * @adapter: adapter to read
  632. * @p: where to store the parameters
  633. *
  634. * Reads card parameters stored in VPD EEPROM.
  635. */
  636. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  637. {
  638. int i, addr, ret;
  639. struct t3_vpd vpd;
  640. /*
  641. * Card information is normally at VPD_BASE but some early cards had
  642. * it at 0.
  643. */
  644. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  645. if (ret)
  646. return ret;
  647. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  648. for (i = 0; i < sizeof(vpd); i += 4) {
  649. ret = t3_seeprom_read(adapter, addr + i,
  650. (__le32 *)((u8 *)&vpd + i));
  651. if (ret)
  652. return ret;
  653. }
  654. ret = vpdstrtouint(vpd.cclk_data, vpd.cclk_len, 10, &p->cclk);
  655. if (ret)
  656. return ret;
  657. ret = vpdstrtouint(vpd.mclk_data, vpd.mclk_len, 10, &p->mclk);
  658. if (ret)
  659. return ret;
  660. ret = vpdstrtouint(vpd.uclk_data, vpd.uclk_len, 10, &p->uclk);
  661. if (ret)
  662. return ret;
  663. ret = vpdstrtouint(vpd.mdc_data, vpd.mdc_len, 10, &p->mdc);
  664. if (ret)
  665. return ret;
  666. ret = vpdstrtouint(vpd.mt_data, vpd.mt_len, 10, &p->mem_timing);
  667. if (ret)
  668. return ret;
  669. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  670. /* Old eeproms didn't have port information */
  671. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  672. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  673. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  674. } else {
  675. p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
  676. p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
  677. ret = vpdstrtou16(vpd.xaui0cfg_data, vpd.xaui0cfg_len, 16,
  678. &p->xauicfg[0]);
  679. if (ret)
  680. return ret;
  681. ret = vpdstrtou16(vpd.xaui1cfg_data, vpd.xaui1cfg_len, 16,
  682. &p->xauicfg[1]);
  683. if (ret)
  684. return ret;
  685. }
  686. ret = hex2bin(p->eth_base, vpd.na_data, 6);
  687. if (ret < 0)
  688. return -EINVAL;
  689. return 0;
  690. }
  691. /* serial flash and firmware constants */
  692. enum {
  693. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  694. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  695. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  696. /* flash command opcodes */
  697. SF_PROG_PAGE = 2, /* program page */
  698. SF_WR_DISABLE = 4, /* disable writes */
  699. SF_RD_STATUS = 5, /* read status register */
  700. SF_WR_ENABLE = 6, /* enable writes */
  701. SF_RD_DATA_FAST = 0xb, /* read flash */
  702. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  703. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  704. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  705. FW_MIN_SIZE = 8 /* at least version and csum */
  706. };
  707. /**
  708. * sf1_read - read data from the serial flash
  709. * @adapter: the adapter
  710. * @byte_cnt: number of bytes to read
  711. * @cont: whether another operation will be chained
  712. * @valp: where to store the read data
  713. *
  714. * Reads up to 4 bytes of data from the serial flash. The location of
  715. * the read needs to be specified prior to calling this by issuing the
  716. * appropriate commands to the serial flash.
  717. */
  718. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  719. u32 *valp)
  720. {
  721. int ret;
  722. if (!byte_cnt || byte_cnt > 4)
  723. return -EINVAL;
  724. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  725. return -EBUSY;
  726. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  727. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  728. if (!ret)
  729. *valp = t3_read_reg(adapter, A_SF_DATA);
  730. return ret;
  731. }
  732. /**
  733. * sf1_write - write data to the serial flash
  734. * @adapter: the adapter
  735. * @byte_cnt: number of bytes to write
  736. * @cont: whether another operation will be chained
  737. * @val: value to write
  738. *
  739. * Writes up to 4 bytes of data to the serial flash. The location of
  740. * the write needs to be specified prior to calling this by issuing the
  741. * appropriate commands to the serial flash.
  742. */
  743. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  744. u32 val)
  745. {
  746. if (!byte_cnt || byte_cnt > 4)
  747. return -EINVAL;
  748. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  749. return -EBUSY;
  750. t3_write_reg(adapter, A_SF_DATA, val);
  751. t3_write_reg(adapter, A_SF_OP,
  752. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  753. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  754. }
  755. /**
  756. * flash_wait_op - wait for a flash operation to complete
  757. * @adapter: the adapter
  758. * @attempts: max number of polls of the status register
  759. * @delay: delay between polls in ms
  760. *
  761. * Wait for a flash operation to complete by polling the status register.
  762. */
  763. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  764. {
  765. int ret;
  766. u32 status;
  767. while (1) {
  768. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  769. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  770. return ret;
  771. if (!(status & 1))
  772. return 0;
  773. if (--attempts == 0)
  774. return -EAGAIN;
  775. if (delay)
  776. msleep(delay);
  777. }
  778. }
  779. /**
  780. * t3_read_flash - read words from serial flash
  781. * @adapter: the adapter
  782. * @addr: the start address for the read
  783. * @nwords: how many 32-bit words to read
  784. * @data: where to store the read data
  785. * @byte_oriented: whether to store data as bytes or as words
  786. *
  787. * Read the specified number of 32-bit words from the serial flash.
  788. * If @byte_oriented is set the read data is stored as a byte array
  789. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  790. * natural endianness.
  791. */
  792. static int t3_read_flash(struct adapter *adapter, unsigned int addr,
  793. unsigned int nwords, u32 *data, int byte_oriented)
  794. {
  795. int ret;
  796. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  797. return -EINVAL;
  798. addr = swab32(addr) | SF_RD_DATA_FAST;
  799. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  800. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  801. return ret;
  802. for (; nwords; nwords--, data++) {
  803. ret = sf1_read(adapter, 4, nwords > 1, data);
  804. if (ret)
  805. return ret;
  806. if (byte_oriented)
  807. *data = htonl(*data);
  808. }
  809. return 0;
  810. }
  811. /**
  812. * t3_write_flash - write up to a page of data to the serial flash
  813. * @adapter: the adapter
  814. * @addr: the start address to write
  815. * @n: length of data to write
  816. * @data: the data to write
  817. *
  818. * Writes up to a page of data (256 bytes) to the serial flash starting
  819. * at the given address.
  820. */
  821. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  822. unsigned int n, const u8 *data)
  823. {
  824. int ret;
  825. u32 buf[64];
  826. unsigned int i, c, left, val, offset = addr & 0xff;
  827. if (addr + n > SF_SIZE || offset + n > 256)
  828. return -EINVAL;
  829. val = swab32(addr) | SF_PROG_PAGE;
  830. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  831. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  832. return ret;
  833. for (left = n; left; left -= c) {
  834. c = min(left, 4U);
  835. for (val = 0, i = 0; i < c; ++i)
  836. val = (val << 8) + *data++;
  837. ret = sf1_write(adapter, c, c != left, val);
  838. if (ret)
  839. return ret;
  840. }
  841. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  842. return ret;
  843. /* Read the page to verify the write succeeded */
  844. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  845. if (ret)
  846. return ret;
  847. if (memcmp(data - n, (u8 *) buf + offset, n))
  848. return -EIO;
  849. return 0;
  850. }
  851. /**
  852. * t3_get_tp_version - read the tp sram version
  853. * @adapter: the adapter
  854. * @vers: where to place the version
  855. *
  856. * Reads the protocol sram version from sram.
  857. */
  858. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  859. {
  860. int ret;
  861. /* Get version loaded in SRAM */
  862. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  863. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  864. 1, 1, 5, 1);
  865. if (ret)
  866. return ret;
  867. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  868. return 0;
  869. }
  870. /**
  871. * t3_check_tpsram_version - read the tp sram version
  872. * @adapter: the adapter
  873. *
  874. * Reads the protocol sram version from flash.
  875. */
  876. int t3_check_tpsram_version(struct adapter *adapter)
  877. {
  878. int ret;
  879. u32 vers;
  880. unsigned int major, minor;
  881. if (adapter->params.rev == T3_REV_A)
  882. return 0;
  883. ret = t3_get_tp_version(adapter, &vers);
  884. if (ret)
  885. return ret;
  886. major = G_TP_VERSION_MAJOR(vers);
  887. minor = G_TP_VERSION_MINOR(vers);
  888. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  889. return 0;
  890. else {
  891. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  892. "driver compiled for version %d.%d\n", major, minor,
  893. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  894. }
  895. return -EINVAL;
  896. }
  897. /**
  898. * t3_check_tpsram - check if provided protocol SRAM
  899. * is compatible with this driver
  900. * @adapter: the adapter
  901. * @tp_sram: the firmware image to write
  902. * @size: image size
  903. *
  904. * Checks if an adapter's tp sram is compatible with the driver.
  905. * Returns 0 if the versions are compatible, a negative error otherwise.
  906. */
  907. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  908. unsigned int size)
  909. {
  910. u32 csum;
  911. unsigned int i;
  912. const __be32 *p = (const __be32 *)tp_sram;
  913. /* Verify checksum */
  914. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  915. csum += ntohl(p[i]);
  916. if (csum != 0xffffffff) {
  917. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  918. csum);
  919. return -EINVAL;
  920. }
  921. return 0;
  922. }
  923. enum fw_version_type {
  924. FW_VERSION_N3,
  925. FW_VERSION_T3
  926. };
  927. /**
  928. * t3_get_fw_version - read the firmware version
  929. * @adapter: the adapter
  930. * @vers: where to place the version
  931. *
  932. * Reads the FW version from flash.
  933. */
  934. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  935. {
  936. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  937. }
  938. /**
  939. * t3_check_fw_version - check if the FW is compatible with this driver
  940. * @adapter: the adapter
  941. *
  942. * Checks if an adapter's FW is compatible with the driver. Returns 0
  943. * if the versions are compatible, a negative error otherwise.
  944. */
  945. int t3_check_fw_version(struct adapter *adapter)
  946. {
  947. int ret;
  948. u32 vers;
  949. unsigned int type, major, minor;
  950. ret = t3_get_fw_version(adapter, &vers);
  951. if (ret)
  952. return ret;
  953. type = G_FW_VERSION_TYPE(vers);
  954. major = G_FW_VERSION_MAJOR(vers);
  955. minor = G_FW_VERSION_MINOR(vers);
  956. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  957. minor == FW_VERSION_MINOR)
  958. return 0;
  959. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  960. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  961. "driver compiled for version %u.%u\n", major, minor,
  962. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  963. else {
  964. CH_WARN(adapter, "found newer FW version(%u.%u), "
  965. "driver compiled for version %u.%u\n", major, minor,
  966. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  967. return 0;
  968. }
  969. return -EINVAL;
  970. }
  971. /**
  972. * t3_flash_erase_sectors - erase a range of flash sectors
  973. * @adapter: the adapter
  974. * @start: the first sector to erase
  975. * @end: the last sector to erase
  976. *
  977. * Erases the sectors in the given range.
  978. */
  979. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  980. {
  981. while (start <= end) {
  982. int ret;
  983. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  984. (ret = sf1_write(adapter, 4, 0,
  985. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  986. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  987. return ret;
  988. start++;
  989. }
  990. return 0;
  991. }
  992. /**
  993. * t3_load_fw - download firmware
  994. * @adapter: the adapter
  995. * @fw_data: the firmware image to write
  996. * @size: image size
  997. *
  998. * Write the supplied firmware image to the card's serial flash.
  999. * The FW image has the following sections: @size - 8 bytes of code and
  1000. * data, followed by 4 bytes of FW version, followed by the 32-bit
  1001. * 1's complement checksum of the whole image.
  1002. */
  1003. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  1004. {
  1005. u32 csum;
  1006. unsigned int i;
  1007. const __be32 *p = (const __be32 *)fw_data;
  1008. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  1009. if ((size & 3) || size < FW_MIN_SIZE)
  1010. return -EINVAL;
  1011. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  1012. return -EFBIG;
  1013. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  1014. csum += ntohl(p[i]);
  1015. if (csum != 0xffffffff) {
  1016. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  1017. csum);
  1018. return -EINVAL;
  1019. }
  1020. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  1021. if (ret)
  1022. goto out;
  1023. size -= 8; /* trim off version and checksum */
  1024. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  1025. unsigned int chunk_size = min(size, 256U);
  1026. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  1027. if (ret)
  1028. goto out;
  1029. addr += chunk_size;
  1030. fw_data += chunk_size;
  1031. size -= chunk_size;
  1032. }
  1033. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  1034. out:
  1035. if (ret)
  1036. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  1037. return ret;
  1038. }
  1039. #define CIM_CTL_BASE 0x2000
  1040. /**
  1041. * t3_cim_ctl_blk_read - read a block from CIM control region
  1042. *
  1043. * @adap: the adapter
  1044. * @addr: the start address within the CIM control region
  1045. * @n: number of words to read
  1046. * @valp: where to store the result
  1047. *
  1048. * Reads a block of 4-byte words from the CIM control region.
  1049. */
  1050. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1051. unsigned int n, unsigned int *valp)
  1052. {
  1053. int ret = 0;
  1054. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1055. return -EBUSY;
  1056. for ( ; !ret && n--; addr += 4) {
  1057. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1058. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1059. 0, 5, 2);
  1060. if (!ret)
  1061. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1062. }
  1063. return ret;
  1064. }
  1065. static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
  1066. u32 *rx_hash_high, u32 *rx_hash_low)
  1067. {
  1068. /* stop Rx unicast traffic */
  1069. t3_mac_disable_exact_filters(mac);
  1070. /* stop broadcast, multicast, promiscuous mode traffic */
  1071. *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
  1072. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1073. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1074. F_DISBCAST);
  1075. *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
  1076. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
  1077. *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
  1078. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
  1079. /* Leave time to drain max RX fifo */
  1080. msleep(1);
  1081. }
  1082. static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
  1083. u32 rx_hash_high, u32 rx_hash_low)
  1084. {
  1085. t3_mac_enable_exact_filters(mac);
  1086. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1087. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1088. rx_cfg);
  1089. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
  1090. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
  1091. }
  1092. /**
  1093. * t3_link_changed - handle interface link changes
  1094. * @adapter: the adapter
  1095. * @port_id: the port index that changed link state
  1096. *
  1097. * Called when a port's link settings change to propagate the new values
  1098. * to the associated PHY and MAC. After performing the common tasks it
  1099. * invokes an OS-specific handler.
  1100. */
  1101. void t3_link_changed(struct adapter *adapter, int port_id)
  1102. {
  1103. int link_ok, speed, duplex, fc;
  1104. struct port_info *pi = adap2pinfo(adapter, port_id);
  1105. struct cphy *phy = &pi->phy;
  1106. struct cmac *mac = &pi->mac;
  1107. struct link_config *lc = &pi->link_config;
  1108. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1109. if (!lc->link_ok && link_ok) {
  1110. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1111. u32 status;
  1112. t3_xgm_intr_enable(adapter, port_id);
  1113. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1114. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1115. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1116. status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
  1117. if (status & F_LINKFAULTCHANGE) {
  1118. mac->stats.link_faults++;
  1119. pi->link_fault = 1;
  1120. }
  1121. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1122. }
  1123. if (lc->requested_fc & PAUSE_AUTONEG)
  1124. fc &= lc->requested_fc;
  1125. else
  1126. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1127. if (link_ok == lc->link_ok && speed == lc->speed &&
  1128. duplex == lc->duplex && fc == lc->fc)
  1129. return; /* nothing changed */
  1130. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1131. uses_xaui(adapter)) {
  1132. if (link_ok)
  1133. t3b_pcs_reset(mac);
  1134. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1135. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1136. }
  1137. lc->link_ok = link_ok;
  1138. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1139. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1140. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1141. /* Set MAC speed, duplex, and flow control to match PHY. */
  1142. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1143. lc->fc = fc;
  1144. }
  1145. t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
  1146. speed, duplex, fc);
  1147. }
  1148. void t3_link_fault(struct adapter *adapter, int port_id)
  1149. {
  1150. struct port_info *pi = adap2pinfo(adapter, port_id);
  1151. struct cmac *mac = &pi->mac;
  1152. struct cphy *phy = &pi->phy;
  1153. struct link_config *lc = &pi->link_config;
  1154. int link_ok, speed, duplex, fc, link_fault;
  1155. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1156. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1157. if (adapter->params.rev > 0 && uses_xaui(adapter))
  1158. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
  1159. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1160. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1161. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1162. link_fault = t3_read_reg(adapter,
  1163. A_XGM_INT_STATUS + mac->offset);
  1164. link_fault &= F_LINKFAULTCHANGE;
  1165. link_ok = lc->link_ok;
  1166. speed = lc->speed;
  1167. duplex = lc->duplex;
  1168. fc = lc->fc;
  1169. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1170. if (link_fault) {
  1171. lc->link_ok = 0;
  1172. lc->speed = SPEED_INVALID;
  1173. lc->duplex = DUPLEX_INVALID;
  1174. t3_os_link_fault(adapter, port_id, 0);
  1175. /* Account link faults only when the phy reports a link up */
  1176. if (link_ok)
  1177. mac->stats.link_faults++;
  1178. } else {
  1179. if (link_ok)
  1180. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1181. F_TXACTENABLE | F_RXEN);
  1182. pi->link_fault = 0;
  1183. lc->link_ok = (unsigned char)link_ok;
  1184. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1185. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1186. t3_os_link_fault(adapter, port_id, link_ok);
  1187. }
  1188. }
  1189. /**
  1190. * t3_link_start - apply link configuration to MAC/PHY
  1191. * @phy: the PHY to setup
  1192. * @mac: the MAC to setup
  1193. * @lc: the requested link configuration
  1194. *
  1195. * Set up a port's MAC and PHY according to a desired link configuration.
  1196. * - If the PHY can auto-negotiate first decide what to advertise, then
  1197. * enable/disable auto-negotiation as desired, and reset.
  1198. * - If the PHY does not auto-negotiate just reset it.
  1199. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1200. * otherwise do it later based on the outcome of auto-negotiation.
  1201. */
  1202. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1203. {
  1204. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1205. lc->link_ok = 0;
  1206. if (lc->supported & SUPPORTED_Autoneg) {
  1207. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1208. if (fc) {
  1209. lc->advertising |= ADVERTISED_Asym_Pause;
  1210. if (fc & PAUSE_RX)
  1211. lc->advertising |= ADVERTISED_Pause;
  1212. }
  1213. phy->ops->advertise(phy, lc->advertising);
  1214. if (lc->autoneg == AUTONEG_DISABLE) {
  1215. lc->speed = lc->requested_speed;
  1216. lc->duplex = lc->requested_duplex;
  1217. lc->fc = (unsigned char)fc;
  1218. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1219. fc);
  1220. /* Also disables autoneg */
  1221. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1222. } else
  1223. phy->ops->autoneg_enable(phy);
  1224. } else {
  1225. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1226. lc->fc = (unsigned char)fc;
  1227. phy->ops->reset(phy, 0);
  1228. }
  1229. return 0;
  1230. }
  1231. /**
  1232. * t3_set_vlan_accel - control HW VLAN extraction
  1233. * @adapter: the adapter
  1234. * @ports: bitmap of adapter ports to operate on
  1235. * @on: enable (1) or disable (0) HW VLAN extraction
  1236. *
  1237. * Enables or disables HW extraction of VLAN tags for the given port.
  1238. */
  1239. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1240. {
  1241. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1242. ports << S_VLANEXTRACTIONENABLE,
  1243. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1244. }
  1245. struct intr_info {
  1246. unsigned int mask; /* bits to check in interrupt status */
  1247. const char *msg; /* message to print or NULL */
  1248. short stat_idx; /* stat counter to increment or -1 */
  1249. unsigned short fatal; /* whether the condition reported is fatal */
  1250. };
  1251. /**
  1252. * t3_handle_intr_status - table driven interrupt handler
  1253. * @adapter: the adapter that generated the interrupt
  1254. * @reg: the interrupt status register to process
  1255. * @mask: a mask to apply to the interrupt status
  1256. * @acts: table of interrupt actions
  1257. * @stats: statistics counters tracking interrupt occurrences
  1258. *
  1259. * A table driven interrupt handler that applies a set of masks to an
  1260. * interrupt status word and performs the corresponding actions if the
  1261. * interrupts described by the mask have occurred. The actions include
  1262. * optionally printing a warning or alert message, and optionally
  1263. * incrementing a stat counter. The table is terminated by an entry
  1264. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1265. */
  1266. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1267. unsigned int mask,
  1268. const struct intr_info *acts,
  1269. unsigned long *stats)
  1270. {
  1271. int fatal = 0;
  1272. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1273. for (; acts->mask; ++acts) {
  1274. if (!(status & acts->mask))
  1275. continue;
  1276. if (acts->fatal) {
  1277. fatal++;
  1278. CH_ALERT(adapter, "%s (0x%x)\n",
  1279. acts->msg, status & acts->mask);
  1280. status &= ~acts->mask;
  1281. } else if (acts->msg)
  1282. CH_WARN(adapter, "%s (0x%x)\n",
  1283. acts->msg, status & acts->mask);
  1284. if (acts->stat_idx >= 0)
  1285. stats[acts->stat_idx]++;
  1286. }
  1287. if (status) /* clear processed interrupts */
  1288. t3_write_reg(adapter, reg, status);
  1289. return fatal;
  1290. }
  1291. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1292. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1293. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1294. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1295. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1296. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1297. F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
  1298. F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
  1299. F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
  1300. F_LOPIODRBDROPERR)
  1301. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1302. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1303. F_NFASRCHFAIL)
  1304. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1305. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1306. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1307. F_TXFIFO_UNDERRUN)
  1308. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1309. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1310. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1311. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1312. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1313. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1314. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1315. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1316. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1317. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1318. F_TXPARERR | V_BISTERR(M_BISTERR))
  1319. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1320. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1321. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1322. #define ULPTX_INTR_MASK 0xfc
  1323. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1324. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1325. F_ZERO_SWITCH_ERROR)
  1326. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1327. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1328. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1329. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1330. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1331. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1332. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1333. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1334. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1335. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1336. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1337. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1338. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1339. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1340. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1341. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1342. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1343. V_MCAPARERRENB(M_MCAPARERRENB))
  1344. #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
  1345. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1346. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1347. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1348. F_MPS0 | F_CPL_SWITCH)
  1349. /*
  1350. * Interrupt handler for the PCIX1 module.
  1351. */
  1352. static void pci_intr_handler(struct adapter *adapter)
  1353. {
  1354. static const struct intr_info pcix1_intr_info[] = {
  1355. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1356. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1357. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1358. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1359. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1360. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1361. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1362. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1363. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1364. 1},
  1365. {F_DETCORECCERR, "PCI correctable ECC error",
  1366. STAT_PCI_CORR_ECC, 0},
  1367. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1368. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1369. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1370. 1},
  1371. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1372. 1},
  1373. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1374. 1},
  1375. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1376. "error", -1, 1},
  1377. {0}
  1378. };
  1379. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1380. pcix1_intr_info, adapter->irq_stats))
  1381. t3_fatal_err(adapter);
  1382. }
  1383. /*
  1384. * Interrupt handler for the PCIE module.
  1385. */
  1386. static void pcie_intr_handler(struct adapter *adapter)
  1387. {
  1388. static const struct intr_info pcie_intr_info[] = {
  1389. {F_PEXERR, "PCI PEX error", -1, 1},
  1390. {F_UNXSPLCPLERRR,
  1391. "PCI unexpected split completion DMA read error", -1, 1},
  1392. {F_UNXSPLCPLERRC,
  1393. "PCI unexpected split completion DMA command error", -1, 1},
  1394. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1395. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1396. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1397. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1398. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1399. "PCI MSI-X table/PBA parity error", -1, 1},
  1400. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1401. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1402. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1403. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1404. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1405. {0}
  1406. };
  1407. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1408. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1409. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1410. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1411. pcie_intr_info, adapter->irq_stats))
  1412. t3_fatal_err(adapter);
  1413. }
  1414. /*
  1415. * TP interrupt handler.
  1416. */
  1417. static void tp_intr_handler(struct adapter *adapter)
  1418. {
  1419. static const struct intr_info tp_intr_info[] = {
  1420. {0xffffff, "TP parity error", -1, 1},
  1421. {0x1000000, "TP out of Rx pages", -1, 1},
  1422. {0x2000000, "TP out of Tx pages", -1, 1},
  1423. {0}
  1424. };
  1425. static const struct intr_info tp_intr_info_t3c[] = {
  1426. {0x1fffffff, "TP parity error", -1, 1},
  1427. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1428. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1429. {0}
  1430. };
  1431. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1432. adapter->params.rev < T3_REV_C ?
  1433. tp_intr_info : tp_intr_info_t3c, NULL))
  1434. t3_fatal_err(adapter);
  1435. }
  1436. /*
  1437. * CIM interrupt handler.
  1438. */
  1439. static void cim_intr_handler(struct adapter *adapter)
  1440. {
  1441. static const struct intr_info cim_intr_info[] = {
  1442. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1443. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1444. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1445. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1446. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1447. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1448. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1449. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1450. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1451. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1452. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1453. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1454. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1455. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1456. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1457. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1458. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1459. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1460. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1461. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1462. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1463. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1464. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1465. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1466. {0}
  1467. };
  1468. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1469. cim_intr_info, NULL))
  1470. t3_fatal_err(adapter);
  1471. }
  1472. /*
  1473. * ULP RX interrupt handler.
  1474. */
  1475. static void ulprx_intr_handler(struct adapter *adapter)
  1476. {
  1477. static const struct intr_info ulprx_intr_info[] = {
  1478. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1479. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1480. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1481. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1482. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1483. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1484. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1485. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1486. {0}
  1487. };
  1488. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1489. ulprx_intr_info, NULL))
  1490. t3_fatal_err(adapter);
  1491. }
  1492. /*
  1493. * ULP TX interrupt handler.
  1494. */
  1495. static void ulptx_intr_handler(struct adapter *adapter)
  1496. {
  1497. static const struct intr_info ulptx_intr_info[] = {
  1498. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1499. STAT_ULP_CH0_PBL_OOB, 0},
  1500. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1501. STAT_ULP_CH1_PBL_OOB, 0},
  1502. {0xfc, "ULP TX parity error", -1, 1},
  1503. {0}
  1504. };
  1505. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1506. ulptx_intr_info, adapter->irq_stats))
  1507. t3_fatal_err(adapter);
  1508. }
  1509. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1510. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1511. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1512. F_ICSPI1_TX_FRAMING_ERROR)
  1513. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1514. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1515. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1516. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1517. /*
  1518. * PM TX interrupt handler.
  1519. */
  1520. static void pmtx_intr_handler(struct adapter *adapter)
  1521. {
  1522. static const struct intr_info pmtx_intr_info[] = {
  1523. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1524. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1525. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1526. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1527. "PMTX ispi parity error", -1, 1},
  1528. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1529. "PMTX ospi parity error", -1, 1},
  1530. {0}
  1531. };
  1532. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1533. pmtx_intr_info, NULL))
  1534. t3_fatal_err(adapter);
  1535. }
  1536. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1537. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1538. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1539. F_IESPI1_TX_FRAMING_ERROR)
  1540. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1541. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1542. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1543. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1544. /*
  1545. * PM RX interrupt handler.
  1546. */
  1547. static void pmrx_intr_handler(struct adapter *adapter)
  1548. {
  1549. static const struct intr_info pmrx_intr_info[] = {
  1550. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1551. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1552. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1553. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1554. "PMRX ispi parity error", -1, 1},
  1555. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1556. "PMRX ospi parity error", -1, 1},
  1557. {0}
  1558. };
  1559. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1560. pmrx_intr_info, NULL))
  1561. t3_fatal_err(adapter);
  1562. }
  1563. /*
  1564. * CPL switch interrupt handler.
  1565. */
  1566. static void cplsw_intr_handler(struct adapter *adapter)
  1567. {
  1568. static const struct intr_info cplsw_intr_info[] = {
  1569. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1570. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1571. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1572. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1573. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1574. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1575. {0}
  1576. };
  1577. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1578. cplsw_intr_info, NULL))
  1579. t3_fatal_err(adapter);
  1580. }
  1581. /*
  1582. * MPS interrupt handler.
  1583. */
  1584. static void mps_intr_handler(struct adapter *adapter)
  1585. {
  1586. static const struct intr_info mps_intr_info[] = {
  1587. {0x1ff, "MPS parity error", -1, 1},
  1588. {0}
  1589. };
  1590. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1591. mps_intr_info, NULL))
  1592. t3_fatal_err(adapter);
  1593. }
  1594. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1595. /*
  1596. * MC7 interrupt handler.
  1597. */
  1598. static void mc7_intr_handler(struct mc7 *mc7)
  1599. {
  1600. struct adapter *adapter = mc7->adapter;
  1601. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1602. if (cause & F_CE) {
  1603. mc7->stats.corr_err++;
  1604. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1605. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1606. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1607. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1608. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1609. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1610. }
  1611. if (cause & F_UE) {
  1612. mc7->stats.uncorr_err++;
  1613. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1614. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1615. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1616. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1617. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1618. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1619. }
  1620. if (G_PE(cause)) {
  1621. mc7->stats.parity_err++;
  1622. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1623. mc7->name, G_PE(cause));
  1624. }
  1625. if (cause & F_AE) {
  1626. u32 addr = 0;
  1627. if (adapter->params.rev > 0)
  1628. addr = t3_read_reg(adapter,
  1629. mc7->offset + A_MC7_ERR_ADDR);
  1630. mc7->stats.addr_err++;
  1631. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1632. mc7->name, addr);
  1633. }
  1634. if (cause & MC7_INTR_FATAL)
  1635. t3_fatal_err(adapter);
  1636. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1637. }
  1638. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1639. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1640. /*
  1641. * XGMAC interrupt handler.
  1642. */
  1643. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1644. {
  1645. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1646. /*
  1647. * We mask out interrupt causes for which we're not taking interrupts.
  1648. * This allows us to use polling logic to monitor some of the other
  1649. * conditions when taking interrupts would impose too much load on the
  1650. * system.
  1651. */
  1652. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
  1653. ~F_RXFIFO_OVERFLOW;
  1654. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1655. mac->stats.tx_fifo_parity_err++;
  1656. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1657. }
  1658. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1659. mac->stats.rx_fifo_parity_err++;
  1660. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1661. }
  1662. if (cause & F_TXFIFO_UNDERRUN)
  1663. mac->stats.tx_fifo_urun++;
  1664. if (cause & F_RXFIFO_OVERFLOW)
  1665. mac->stats.rx_fifo_ovfl++;
  1666. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1667. mac->stats.serdes_signal_loss++;
  1668. if (cause & F_XAUIPCSCTCERR)
  1669. mac->stats.xaui_pcs_ctc_err++;
  1670. if (cause & F_XAUIPCSALIGNCHANGE)
  1671. mac->stats.xaui_pcs_align_change++;
  1672. if (cause & F_XGM_INT) {
  1673. t3_set_reg_field(adap,
  1674. A_XGM_INT_ENABLE + mac->offset,
  1675. F_XGM_INT, 0);
  1676. mac->stats.link_faults++;
  1677. t3_os_link_fault_handler(adap, idx);
  1678. }
  1679. if (cause & XGM_INTR_FATAL)
  1680. t3_fatal_err(adap);
  1681. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1682. return cause != 0;
  1683. }
  1684. /*
  1685. * Interrupt handler for PHY events.
  1686. */
  1687. int t3_phy_intr_handler(struct adapter *adapter)
  1688. {
  1689. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1690. for_each_port(adapter, i) {
  1691. struct port_info *p = adap2pinfo(adapter, i);
  1692. if (!(p->phy.caps & SUPPORTED_IRQ))
  1693. continue;
  1694. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1695. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1696. if (phy_cause & cphy_cause_link_change)
  1697. t3_link_changed(adapter, i);
  1698. if (phy_cause & cphy_cause_fifo_error)
  1699. p->phy.fifo_errors++;
  1700. if (phy_cause & cphy_cause_module_change)
  1701. t3_os_phymod_changed(adapter, i);
  1702. }
  1703. }
  1704. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1705. return 0;
  1706. }
  1707. /*
  1708. * T3 slow path (non-data) interrupt handler.
  1709. */
  1710. int t3_slow_intr_handler(struct adapter *adapter)
  1711. {
  1712. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1713. cause &= adapter->slow_intr_mask;
  1714. if (!cause)
  1715. return 0;
  1716. if (cause & F_PCIM0) {
  1717. if (is_pcie(adapter))
  1718. pcie_intr_handler(adapter);
  1719. else
  1720. pci_intr_handler(adapter);
  1721. }
  1722. if (cause & F_SGE3)
  1723. t3_sge_err_intr_handler(adapter);
  1724. if (cause & F_MC7_PMRX)
  1725. mc7_intr_handler(&adapter->pmrx);
  1726. if (cause & F_MC7_PMTX)
  1727. mc7_intr_handler(&adapter->pmtx);
  1728. if (cause & F_MC7_CM)
  1729. mc7_intr_handler(&adapter->cm);
  1730. if (cause & F_CIM)
  1731. cim_intr_handler(adapter);
  1732. if (cause & F_TP1)
  1733. tp_intr_handler(adapter);
  1734. if (cause & F_ULP2_RX)
  1735. ulprx_intr_handler(adapter);
  1736. if (cause & F_ULP2_TX)
  1737. ulptx_intr_handler(adapter);
  1738. if (cause & F_PM1_RX)
  1739. pmrx_intr_handler(adapter);
  1740. if (cause & F_PM1_TX)
  1741. pmtx_intr_handler(adapter);
  1742. if (cause & F_CPL_SWITCH)
  1743. cplsw_intr_handler(adapter);
  1744. if (cause & F_MPS0)
  1745. mps_intr_handler(adapter);
  1746. if (cause & F_MC5A)
  1747. t3_mc5_intr_handler(&adapter->mc5);
  1748. if (cause & F_XGMAC0_0)
  1749. mac_intr_handler(adapter, 0);
  1750. if (cause & F_XGMAC0_1)
  1751. mac_intr_handler(adapter, 1);
  1752. if (cause & F_T3DBG)
  1753. t3_os_ext_intr_handler(adapter);
  1754. /* Clear the interrupts just processed. */
  1755. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1756. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1757. return 1;
  1758. }
  1759. static unsigned int calc_gpio_intr(struct adapter *adap)
  1760. {
  1761. unsigned int i, gpi_intr = 0;
  1762. for_each_port(adap, i)
  1763. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1764. adapter_info(adap)->gpio_intr[i])
  1765. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1766. return gpi_intr;
  1767. }
  1768. /**
  1769. * t3_intr_enable - enable interrupts
  1770. * @adapter: the adapter whose interrupts should be enabled
  1771. *
  1772. * Enable interrupts by setting the interrupt enable registers of the
  1773. * various HW modules and then enabling the top-level interrupt
  1774. * concentrator.
  1775. */
  1776. void t3_intr_enable(struct adapter *adapter)
  1777. {
  1778. static const struct addr_val_pair intr_en_avp[] = {
  1779. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1780. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1781. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1782. MC7_INTR_MASK},
  1783. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1784. MC7_INTR_MASK},
  1785. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1786. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1787. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1788. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1789. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1790. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1791. };
  1792. adapter->slow_intr_mask = PL_INTR_MASK;
  1793. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1794. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1795. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1796. if (adapter->params.rev > 0) {
  1797. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1798. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1799. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1800. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1801. F_PBL_BOUND_ERR_CH1);
  1802. } else {
  1803. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1804. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1805. }
  1806. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1807. if (is_pcie(adapter))
  1808. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1809. else
  1810. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1811. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1812. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1813. }
  1814. /**
  1815. * t3_intr_disable - disable a card's interrupts
  1816. * @adapter: the adapter whose interrupts should be disabled
  1817. *
  1818. * Disable interrupts. We only disable the top-level interrupt
  1819. * concentrator and the SGE data interrupts.
  1820. */
  1821. void t3_intr_disable(struct adapter *adapter)
  1822. {
  1823. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1824. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1825. adapter->slow_intr_mask = 0;
  1826. }
  1827. /**
  1828. * t3_intr_clear - clear all interrupts
  1829. * @adapter: the adapter whose interrupts should be cleared
  1830. *
  1831. * Clears all interrupts.
  1832. */
  1833. void t3_intr_clear(struct adapter *adapter)
  1834. {
  1835. static const unsigned int cause_reg_addr[] = {
  1836. A_SG_INT_CAUSE,
  1837. A_SG_RSPQ_FL_STATUS,
  1838. A_PCIX_INT_CAUSE,
  1839. A_MC7_INT_CAUSE,
  1840. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1841. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1842. A_CIM_HOST_INT_CAUSE,
  1843. A_TP_INT_CAUSE,
  1844. A_MC5_DB_INT_CAUSE,
  1845. A_ULPRX_INT_CAUSE,
  1846. A_ULPTX_INT_CAUSE,
  1847. A_CPL_INTR_CAUSE,
  1848. A_PM1_TX_INT_CAUSE,
  1849. A_PM1_RX_INT_CAUSE,
  1850. A_MPS_INT_CAUSE,
  1851. A_T3DBG_INT_CAUSE,
  1852. };
  1853. unsigned int i;
  1854. /* Clear PHY and MAC interrupts for each port. */
  1855. for_each_port(adapter, i)
  1856. t3_port_intr_clear(adapter, i);
  1857. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1858. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1859. if (is_pcie(adapter))
  1860. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1861. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1862. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1863. }
  1864. void t3_xgm_intr_enable(struct adapter *adapter, int idx)
  1865. {
  1866. struct port_info *pi = adap2pinfo(adapter, idx);
  1867. t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
  1868. XGM_EXTRA_INTR_MASK);
  1869. }
  1870. void t3_xgm_intr_disable(struct adapter *adapter, int idx)
  1871. {
  1872. struct port_info *pi = adap2pinfo(adapter, idx);
  1873. t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
  1874. 0x7ff);
  1875. }
  1876. /**
  1877. * t3_port_intr_enable - enable port-specific interrupts
  1878. * @adapter: associated adapter
  1879. * @idx: index of port whose interrupts should be enabled
  1880. *
  1881. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1882. * adapter port.
  1883. */
  1884. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1885. {
  1886. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1887. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1888. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1889. phy->ops->intr_enable(phy);
  1890. }
  1891. /**
  1892. * t3_port_intr_disable - disable port-specific interrupts
  1893. * @adapter: associated adapter
  1894. * @idx: index of port whose interrupts should be disabled
  1895. *
  1896. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1897. * adapter port.
  1898. */
  1899. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1900. {
  1901. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1902. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1903. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1904. phy->ops->intr_disable(phy);
  1905. }
  1906. /**
  1907. * t3_port_intr_clear - clear port-specific interrupts
  1908. * @adapter: associated adapter
  1909. * @idx: index of port whose interrupts to clear
  1910. *
  1911. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1912. * adapter port.
  1913. */
  1914. static void t3_port_intr_clear(struct adapter *adapter, int idx)
  1915. {
  1916. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1917. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1918. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1919. phy->ops->intr_clear(phy);
  1920. }
  1921. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1922. /**
  1923. * t3_sge_write_context - write an SGE context
  1924. * @adapter: the adapter
  1925. * @id: the context id
  1926. * @type: the context type
  1927. *
  1928. * Program an SGE context with the values already loaded in the
  1929. * CONTEXT_DATA? registers.
  1930. */
  1931. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1932. unsigned int type)
  1933. {
  1934. if (type == F_RESPONSEQ) {
  1935. /*
  1936. * Can't write the Response Queue Context bits for
  1937. * Interrupt Armed or the Reserve bits after the chip
  1938. * has been initialized out of reset. Writing to these
  1939. * bits can confuse the hardware.
  1940. */
  1941. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1942. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1943. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
  1944. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1945. } else {
  1946. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1947. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1948. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1949. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1950. }
  1951. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1952. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1953. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1954. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1955. }
  1956. /**
  1957. * clear_sge_ctxt - completely clear an SGE context
  1958. * @adapter: the adapter
  1959. * @id: the context id
  1960. * @type: the context type
  1961. *
  1962. * Completely clear an SGE context. Used predominantly at post-reset
  1963. * initialization. Note in particular that we don't skip writing to any
  1964. * "sensitive bits" in the contexts the way that t3_sge_write_context()
  1965. * does ...
  1966. */
  1967. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1968. unsigned int type)
  1969. {
  1970. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1971. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1972. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1973. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1974. t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
  1975. t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
  1976. t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
  1977. t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
  1978. t3_write_reg(adap, A_SG_CONTEXT_CMD,
  1979. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1980. return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1981. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1982. }
  1983. /**
  1984. * t3_sge_init_ecntxt - initialize an SGE egress context
  1985. * @adapter: the adapter to configure
  1986. * @id: the context id
  1987. * @gts_enable: whether to enable GTS for the context
  1988. * @type: the egress context type
  1989. * @respq: associated response queue
  1990. * @base_addr: base address of queue
  1991. * @size: number of queue entries
  1992. * @token: uP token
  1993. * @gen: initial generation value for the context
  1994. * @cidx: consumer pointer
  1995. *
  1996. * Initialize an SGE egress context and make it ready for use. If the
  1997. * platform allows concurrent context operations, the caller is
  1998. * responsible for appropriate locking.
  1999. */
  2000. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  2001. enum sge_context_type type, int respq, u64 base_addr,
  2002. unsigned int size, unsigned int token, int gen,
  2003. unsigned int cidx)
  2004. {
  2005. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  2006. if (base_addr & 0xfff) /* must be 4K aligned */
  2007. return -EINVAL;
  2008. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2009. return -EBUSY;
  2010. base_addr >>= 12;
  2011. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  2012. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  2013. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  2014. V_EC_BASE_LO(base_addr & 0xffff));
  2015. base_addr >>= 16;
  2016. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  2017. base_addr >>= 32;
  2018. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2019. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  2020. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  2021. F_EC_VALID);
  2022. return t3_sge_write_context(adapter, id, F_EGRESS);
  2023. }
  2024. /**
  2025. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  2026. * @adapter: the adapter to configure
  2027. * @id: the context id
  2028. * @gts_enable: whether to enable GTS for the context
  2029. * @base_addr: base address of queue
  2030. * @size: number of queue entries
  2031. * @bsize: size of each buffer for this queue
  2032. * @cong_thres: threshold to signal congestion to upstream producers
  2033. * @gen: initial generation value for the context
  2034. * @cidx: consumer pointer
  2035. *
  2036. * Initialize an SGE free list context and make it ready for use. The
  2037. * caller is responsible for ensuring only one context operation occurs
  2038. * at a time.
  2039. */
  2040. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  2041. int gts_enable, u64 base_addr, unsigned int size,
  2042. unsigned int bsize, unsigned int cong_thres, int gen,
  2043. unsigned int cidx)
  2044. {
  2045. if (base_addr & 0xfff) /* must be 4K aligned */
  2046. return -EINVAL;
  2047. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2048. return -EBUSY;
  2049. base_addr >>= 12;
  2050. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  2051. base_addr >>= 32;
  2052. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  2053. V_FL_BASE_HI((u32) base_addr) |
  2054. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  2055. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  2056. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  2057. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  2058. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2059. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  2060. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  2061. return t3_sge_write_context(adapter, id, F_FREELIST);
  2062. }
  2063. /**
  2064. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  2065. * @adapter: the adapter to configure
  2066. * @id: the context id
  2067. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  2068. * @base_addr: base address of queue
  2069. * @size: number of queue entries
  2070. * @fl_thres: threshold for selecting the normal or jumbo free list
  2071. * @gen: initial generation value for the context
  2072. * @cidx: consumer pointer
  2073. *
  2074. * Initialize an SGE response queue context and make it ready for use.
  2075. * The caller is responsible for ensuring only one context operation
  2076. * occurs at a time.
  2077. */
  2078. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  2079. int irq_vec_idx, u64 base_addr, unsigned int size,
  2080. unsigned int fl_thres, int gen, unsigned int cidx)
  2081. {
  2082. unsigned int intr = 0;
  2083. if (base_addr & 0xfff) /* must be 4K aligned */
  2084. return -EINVAL;
  2085. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2086. return -EBUSY;
  2087. base_addr >>= 12;
  2088. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  2089. V_CQ_INDEX(cidx));
  2090. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2091. base_addr >>= 32;
  2092. if (irq_vec_idx >= 0)
  2093. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  2094. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2095. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  2096. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  2097. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  2098. }
  2099. /**
  2100. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  2101. * @adapter: the adapter to configure
  2102. * @id: the context id
  2103. * @base_addr: base address of queue
  2104. * @size: number of queue entries
  2105. * @rspq: response queue for async notifications
  2106. * @ovfl_mode: CQ overflow mode
  2107. * @credits: completion queue credits
  2108. * @credit_thres: the credit threshold
  2109. *
  2110. * Initialize an SGE completion queue context and make it ready for use.
  2111. * The caller is responsible for ensuring only one context operation
  2112. * occurs at a time.
  2113. */
  2114. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  2115. unsigned int size, int rspq, int ovfl_mode,
  2116. unsigned int credits, unsigned int credit_thres)
  2117. {
  2118. if (base_addr & 0xfff) /* must be 4K aligned */
  2119. return -EINVAL;
  2120. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2121. return -EBUSY;
  2122. base_addr >>= 12;
  2123. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  2124. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2125. base_addr >>= 32;
  2126. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2127. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  2128. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  2129. V_CQ_ERR(ovfl_mode));
  2130. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  2131. V_CQ_CREDIT_THRES(credit_thres));
  2132. return t3_sge_write_context(adapter, id, F_CQ);
  2133. }
  2134. /**
  2135. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  2136. * @adapter: the adapter
  2137. * @id: the egress context id
  2138. * @enable: enable (1) or disable (0) the context
  2139. *
  2140. * Enable or disable an SGE egress context. The caller is responsible for
  2141. * ensuring only one context operation occurs at a time.
  2142. */
  2143. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  2144. {
  2145. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2146. return -EBUSY;
  2147. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2148. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2149. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2150. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  2151. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  2152. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2153. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  2154. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2155. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2156. }
  2157. /**
  2158. * t3_sge_disable_fl - disable an SGE free-buffer list
  2159. * @adapter: the adapter
  2160. * @id: the free list context id
  2161. *
  2162. * Disable an SGE free-buffer list. The caller is responsible for
  2163. * ensuring only one context operation occurs at a time.
  2164. */
  2165. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  2166. {
  2167. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2168. return -EBUSY;
  2169. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2170. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2171. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  2172. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2173. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  2174. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2175. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  2176. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2177. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2178. }
  2179. /**
  2180. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2181. * @adapter: the adapter
  2182. * @id: the response queue context id
  2183. *
  2184. * Disable an SGE response queue. The caller is responsible for
  2185. * ensuring only one context operation occurs at a time.
  2186. */
  2187. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2188. {
  2189. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2190. return -EBUSY;
  2191. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2192. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2193. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2194. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2195. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2196. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2197. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2198. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2199. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2200. }
  2201. /**
  2202. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2203. * @adapter: the adapter
  2204. * @id: the completion queue context id
  2205. *
  2206. * Disable an SGE completion queue. The caller is responsible for
  2207. * ensuring only one context operation occurs at a time.
  2208. */
  2209. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2210. {
  2211. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2212. return -EBUSY;
  2213. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2214. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2215. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2216. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2217. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2218. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2219. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2220. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2221. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2222. }
  2223. /**
  2224. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2225. * @adapter: the adapter
  2226. * @id: the context id
  2227. * @op: the operation to perform
  2228. *
  2229. * Perform the selected operation on an SGE completion queue context.
  2230. * The caller is responsible for ensuring only one context operation
  2231. * occurs at a time.
  2232. */
  2233. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2234. unsigned int credits)
  2235. {
  2236. u32 val;
  2237. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2238. return -EBUSY;
  2239. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2240. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2241. V_CONTEXT(id) | F_CQ);
  2242. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2243. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2244. return -EIO;
  2245. if (op >= 2 && op < 7) {
  2246. if (adapter->params.rev > 0)
  2247. return G_CQ_INDEX(val);
  2248. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2249. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2250. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2251. F_CONTEXT_CMD_BUSY, 0,
  2252. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2253. return -EIO;
  2254. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2255. }
  2256. return 0;
  2257. }
  2258. /**
  2259. * t3_config_rss - configure Rx packet steering
  2260. * @adapter: the adapter
  2261. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2262. * @cpus: values for the CPU lookup table (0xff terminated)
  2263. * @rspq: values for the response queue lookup table (0xffff terminated)
  2264. *
  2265. * Programs the receive packet steering logic. @cpus and @rspq provide
  2266. * the values for the CPU and response queue lookup tables. If they
  2267. * provide fewer values than the size of the tables the supplied values
  2268. * are used repeatedly until the tables are fully populated.
  2269. */
  2270. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2271. const u8 * cpus, const u16 *rspq)
  2272. {
  2273. int i, j, cpu_idx = 0, q_idx = 0;
  2274. if (cpus)
  2275. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2276. u32 val = i << 16;
  2277. for (j = 0; j < 2; ++j) {
  2278. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2279. if (cpus[cpu_idx] == 0xff)
  2280. cpu_idx = 0;
  2281. }
  2282. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2283. }
  2284. if (rspq)
  2285. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2286. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2287. (i << 16) | rspq[q_idx++]);
  2288. if (rspq[q_idx] == 0xffff)
  2289. q_idx = 0;
  2290. }
  2291. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2292. }
  2293. /**
  2294. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2295. * @adap: the adapter
  2296. * @enable: 1 to select offload mode, 0 for regular NIC
  2297. *
  2298. * Switches TP to NIC/offload mode.
  2299. */
  2300. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2301. {
  2302. if (is_offload(adap) || !enable)
  2303. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2304. V_NICMODE(!enable));
  2305. }
  2306. /**
  2307. * pm_num_pages - calculate the number of pages of the payload memory
  2308. * @mem_size: the size of the payload memory
  2309. * @pg_size: the size of each payload memory page
  2310. *
  2311. * Calculate the number of pages, each of the given size, that fit in a
  2312. * memory of the specified size, respecting the HW requirement that the
  2313. * number of pages must be a multiple of 24.
  2314. */
  2315. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2316. unsigned int pg_size)
  2317. {
  2318. unsigned int n = mem_size / pg_size;
  2319. return n - n % 24;
  2320. }
  2321. #define mem_region(adap, start, size, reg) \
  2322. t3_write_reg((adap), A_ ## reg, (start)); \
  2323. start += size
  2324. /**
  2325. * partition_mem - partition memory and configure TP memory settings
  2326. * @adap: the adapter
  2327. * @p: the TP parameters
  2328. *
  2329. * Partitions context and payload memory and configures TP's memory
  2330. * registers.
  2331. */
  2332. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2333. {
  2334. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2335. unsigned int timers = 0, timers_shift = 22;
  2336. if (adap->params.rev > 0) {
  2337. if (tids <= 16 * 1024) {
  2338. timers = 1;
  2339. timers_shift = 16;
  2340. } else if (tids <= 64 * 1024) {
  2341. timers = 2;
  2342. timers_shift = 18;
  2343. } else if (tids <= 256 * 1024) {
  2344. timers = 3;
  2345. timers_shift = 20;
  2346. }
  2347. }
  2348. t3_write_reg(adap, A_TP_PMM_SIZE,
  2349. p->chan_rx_size | (p->chan_tx_size >> 16));
  2350. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2351. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2352. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2353. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2354. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2355. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2356. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2357. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2358. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2359. /* Add a bit of headroom and make multiple of 24 */
  2360. pstructs += 48;
  2361. pstructs -= pstructs % 24;
  2362. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2363. m = tids * TCB_SIZE;
  2364. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2365. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2366. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2367. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2368. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2369. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2370. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2371. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2372. m = (m + 4095) & ~0xfff;
  2373. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2374. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2375. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2376. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2377. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2378. if (tids < m)
  2379. adap->params.mc5.nservers += m - tids;
  2380. }
  2381. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2382. u32 val)
  2383. {
  2384. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2385. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2386. }
  2387. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2388. {
  2389. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2390. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2391. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2392. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2393. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2394. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2395. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2396. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2397. V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
  2398. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2399. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2400. F_IPV6ENABLE | F_NICMODE);
  2401. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2402. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2403. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2404. adap->params.rev > 0 ? F_ENABLEESND :
  2405. F_T3A_ENABLEESND);
  2406. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2407. F_ENABLEEPCMDAFULL,
  2408. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2409. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2410. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2411. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2412. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2413. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2414. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2415. if (adap->params.rev > 0) {
  2416. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2417. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2418. F_TXPACEAUTO);
  2419. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2420. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2421. } else
  2422. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2423. if (adap->params.rev == T3_REV_C)
  2424. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2425. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2426. V_TABLELATENCYDELTA(4));
  2427. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2428. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2429. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2430. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2431. }
  2432. /* Desired TP timer resolution in usec */
  2433. #define TP_TMR_RES 50
  2434. /* TCP timer values in ms */
  2435. #define TP_DACK_TIMER 50
  2436. #define TP_RTO_MIN 250
  2437. /**
  2438. * tp_set_timers - set TP timing parameters
  2439. * @adap: the adapter to set
  2440. * @core_clk: the core clock frequency in Hz
  2441. *
  2442. * Set TP's timing parameters, such as the various timer resolutions and
  2443. * the TCP timer values.
  2444. */
  2445. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2446. {
  2447. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2448. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2449. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2450. unsigned int tps = core_clk >> tre;
  2451. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2452. V_DELAYEDACKRESOLUTION(dack_re) |
  2453. V_TIMESTAMPRESOLUTION(tstamp_re));
  2454. t3_write_reg(adap, A_TP_DACK_TIMER,
  2455. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2456. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2457. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2458. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2459. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2460. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2461. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2462. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2463. V_KEEPALIVEMAX(9));
  2464. #define SECONDS * tps
  2465. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2466. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2467. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2468. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2469. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2470. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2471. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2472. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2473. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2474. #undef SECONDS
  2475. }
  2476. /**
  2477. * t3_tp_set_coalescing_size - set receive coalescing size
  2478. * @adap: the adapter
  2479. * @size: the receive coalescing size
  2480. * @psh: whether a set PSH bit should deliver coalesced data
  2481. *
  2482. * Set the receive coalescing size and PSH bit handling.
  2483. */
  2484. static int t3_tp_set_coalescing_size(struct adapter *adap,
  2485. unsigned int size, int psh)
  2486. {
  2487. u32 val;
  2488. if (size > MAX_RX_COALESCING_LEN)
  2489. return -EINVAL;
  2490. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2491. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2492. if (size) {
  2493. val |= F_RXCOALESCEENABLE;
  2494. if (psh)
  2495. val |= F_RXCOALESCEPSHEN;
  2496. size = min(MAX_RX_COALESCING_LEN, size);
  2497. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2498. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2499. }
  2500. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2501. return 0;
  2502. }
  2503. /**
  2504. * t3_tp_set_max_rxsize - set the max receive size
  2505. * @adap: the adapter
  2506. * @size: the max receive size
  2507. *
  2508. * Set TP's max receive size. This is the limit that applies when
  2509. * receive coalescing is disabled.
  2510. */
  2511. static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2512. {
  2513. t3_write_reg(adap, A_TP_PARA_REG7,
  2514. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2515. }
  2516. static void init_mtus(unsigned short mtus[])
  2517. {
  2518. /*
  2519. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2520. * it can accommodate max size TCP/IP headers when SACK and timestamps
  2521. * are enabled and still have at least 8 bytes of payload.
  2522. */
  2523. mtus[0] = 88;
  2524. mtus[1] = 88;
  2525. mtus[2] = 256;
  2526. mtus[3] = 512;
  2527. mtus[4] = 576;
  2528. mtus[5] = 1024;
  2529. mtus[6] = 1280;
  2530. mtus[7] = 1492;
  2531. mtus[8] = 1500;
  2532. mtus[9] = 2002;
  2533. mtus[10] = 2048;
  2534. mtus[11] = 4096;
  2535. mtus[12] = 4352;
  2536. mtus[13] = 8192;
  2537. mtus[14] = 9000;
  2538. mtus[15] = 9600;
  2539. }
  2540. /*
  2541. * Initial congestion control parameters.
  2542. */
  2543. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2544. {
  2545. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2546. a[9] = 2;
  2547. a[10] = 3;
  2548. a[11] = 4;
  2549. a[12] = 5;
  2550. a[13] = 6;
  2551. a[14] = 7;
  2552. a[15] = 8;
  2553. a[16] = 9;
  2554. a[17] = 10;
  2555. a[18] = 14;
  2556. a[19] = 17;
  2557. a[20] = 21;
  2558. a[21] = 25;
  2559. a[22] = 30;
  2560. a[23] = 35;
  2561. a[24] = 45;
  2562. a[25] = 60;
  2563. a[26] = 80;
  2564. a[27] = 100;
  2565. a[28] = 200;
  2566. a[29] = 300;
  2567. a[30] = 400;
  2568. a[31] = 500;
  2569. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2570. b[9] = b[10] = 1;
  2571. b[11] = b[12] = 2;
  2572. b[13] = b[14] = b[15] = b[16] = 3;
  2573. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2574. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2575. b[28] = b[29] = 6;
  2576. b[30] = b[31] = 7;
  2577. }
  2578. /* The minimum additive increment value for the congestion control table */
  2579. #define CC_MIN_INCR 2U
  2580. /**
  2581. * t3_load_mtus - write the MTU and congestion control HW tables
  2582. * @adap: the adapter
  2583. * @mtus: the unrestricted values for the MTU table
  2584. * @alphs: the values for the congestion control alpha parameter
  2585. * @beta: the values for the congestion control beta parameter
  2586. * @mtu_cap: the maximum permitted effective MTU
  2587. *
  2588. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2589. * Update the high-speed congestion control table with the supplied alpha,
  2590. * beta, and MTUs.
  2591. */
  2592. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2593. unsigned short alpha[NCCTRL_WIN],
  2594. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2595. {
  2596. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2597. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2598. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2599. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2600. };
  2601. unsigned int i, w;
  2602. for (i = 0; i < NMTUS; ++i) {
  2603. unsigned int mtu = min(mtus[i], mtu_cap);
  2604. unsigned int log2 = fls(mtu);
  2605. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2606. log2--;
  2607. t3_write_reg(adap, A_TP_MTU_TABLE,
  2608. (i << 24) | (log2 << 16) | mtu);
  2609. for (w = 0; w < NCCTRL_WIN; ++w) {
  2610. unsigned int inc;
  2611. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2612. CC_MIN_INCR);
  2613. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2614. (w << 16) | (beta[w] << 13) | inc);
  2615. }
  2616. }
  2617. }
  2618. /**
  2619. * t3_tp_get_mib_stats - read TP's MIB counters
  2620. * @adap: the adapter
  2621. * @tps: holds the returned counter values
  2622. *
  2623. * Returns the values of TP's MIB counters.
  2624. */
  2625. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2626. {
  2627. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2628. sizeof(*tps) / sizeof(u32), 0);
  2629. }
  2630. #define ulp_region(adap, name, start, len) \
  2631. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2632. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2633. (start) + (len) - 1); \
  2634. start += len
  2635. #define ulptx_region(adap, name, start, len) \
  2636. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2637. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2638. (start) + (len) - 1)
  2639. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2640. {
  2641. unsigned int m = p->chan_rx_size;
  2642. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2643. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2644. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2645. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2646. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2647. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2648. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2649. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2650. }
  2651. /**
  2652. * t3_set_proto_sram - set the contents of the protocol sram
  2653. * @adapter: the adapter
  2654. * @data: the protocol image
  2655. *
  2656. * Write the contents of the protocol SRAM.
  2657. */
  2658. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2659. {
  2660. int i;
  2661. const __be32 *buf = (const __be32 *)data;
  2662. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2663. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2664. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2665. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2666. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2667. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2668. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2669. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2670. return -EIO;
  2671. }
  2672. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2673. return 0;
  2674. }
  2675. void t3_config_trace_filter(struct adapter *adapter,
  2676. const struct trace_params *tp, int filter_index,
  2677. int invert, int enable)
  2678. {
  2679. u32 addr, key[4], mask[4];
  2680. key[0] = tp->sport | (tp->sip << 16);
  2681. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2682. key[2] = tp->dip;
  2683. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2684. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2685. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2686. mask[2] = tp->dip_mask;
  2687. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2688. if (invert)
  2689. key[3] |= (1 << 29);
  2690. if (enable)
  2691. key[3] |= (1 << 28);
  2692. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2693. tp_wr_indirect(adapter, addr++, key[0]);
  2694. tp_wr_indirect(adapter, addr++, mask[0]);
  2695. tp_wr_indirect(adapter, addr++, key[1]);
  2696. tp_wr_indirect(adapter, addr++, mask[1]);
  2697. tp_wr_indirect(adapter, addr++, key[2]);
  2698. tp_wr_indirect(adapter, addr++, mask[2]);
  2699. tp_wr_indirect(adapter, addr++, key[3]);
  2700. tp_wr_indirect(adapter, addr, mask[3]);
  2701. t3_read_reg(adapter, A_TP_PIO_DATA);
  2702. }
  2703. /**
  2704. * t3_config_sched - configure a HW traffic scheduler
  2705. * @adap: the adapter
  2706. * @kbps: target rate in Kbps
  2707. * @sched: the scheduler index
  2708. *
  2709. * Configure a HW scheduler for the target rate
  2710. */
  2711. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2712. {
  2713. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2714. unsigned int clk = adap->params.vpd.cclk * 1000;
  2715. unsigned int selected_cpt = 0, selected_bpt = 0;
  2716. if (kbps > 0) {
  2717. kbps *= 125; /* -> bytes */
  2718. for (cpt = 1; cpt <= 255; cpt++) {
  2719. tps = clk / cpt;
  2720. bpt = (kbps + tps / 2) / tps;
  2721. if (bpt > 0 && bpt <= 255) {
  2722. v = bpt * tps;
  2723. delta = v >= kbps ? v - kbps : kbps - v;
  2724. if (delta <= mindelta) {
  2725. mindelta = delta;
  2726. selected_cpt = cpt;
  2727. selected_bpt = bpt;
  2728. }
  2729. } else if (selected_cpt)
  2730. break;
  2731. }
  2732. if (!selected_cpt)
  2733. return -EINVAL;
  2734. }
  2735. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2736. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2737. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2738. if (sched & 1)
  2739. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2740. else
  2741. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2742. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2743. return 0;
  2744. }
  2745. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2746. {
  2747. int busy = 0;
  2748. tp_config(adap, p);
  2749. t3_set_vlan_accel(adap, 3, 0);
  2750. if (is_offload(adap)) {
  2751. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2752. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2753. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2754. 0, 1000, 5);
  2755. if (busy)
  2756. CH_ERR(adap, "TP initialization timed out\n");
  2757. }
  2758. if (!busy)
  2759. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2760. return busy;
  2761. }
  2762. /*
  2763. * Perform the bits of HW initialization that are dependent on the Tx
  2764. * channels being used.
  2765. */
  2766. static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
  2767. {
  2768. int i;
  2769. if (chan_map != 3) { /* one channel */
  2770. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2771. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2772. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
  2773. (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
  2774. F_TPTXPORT1EN | F_PORT1ACTIVE));
  2775. t3_write_reg(adap, A_PM1_TX_CFG,
  2776. chan_map == 1 ? 0xffffffff : 0);
  2777. } else { /* two channels */
  2778. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2779. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2780. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2781. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2782. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2783. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2784. F_ENFORCEPKT);
  2785. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2786. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2787. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2788. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2789. for (i = 0; i < 16; i++)
  2790. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2791. (i << 16) | 0x1010);
  2792. }
  2793. }
  2794. static int calibrate_xgm(struct adapter *adapter)
  2795. {
  2796. if (uses_xaui(adapter)) {
  2797. unsigned int v, i;
  2798. for (i = 0; i < 5; ++i) {
  2799. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2800. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2801. msleep(1);
  2802. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2803. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2804. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2805. V_XAUIIMP(G_CALIMP(v) >> 2));
  2806. return 0;
  2807. }
  2808. }
  2809. CH_ERR(adapter, "MAC calibration failed\n");
  2810. return -1;
  2811. } else {
  2812. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2813. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2814. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2815. F_XGM_IMPSETUPDATE);
  2816. }
  2817. return 0;
  2818. }
  2819. static void calibrate_xgm_t3b(struct adapter *adapter)
  2820. {
  2821. if (!uses_xaui(adapter)) {
  2822. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2823. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2824. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2825. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2826. F_XGM_IMPSETUPDATE);
  2827. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2828. 0);
  2829. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2830. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2831. }
  2832. }
  2833. struct mc7_timing_params {
  2834. unsigned char ActToPreDly;
  2835. unsigned char ActToRdWrDly;
  2836. unsigned char PreCyc;
  2837. unsigned char RefCyc[5];
  2838. unsigned char BkCyc;
  2839. unsigned char WrToRdDly;
  2840. unsigned char RdToWrDly;
  2841. };
  2842. /*
  2843. * Write a value to a register and check that the write completed. These
  2844. * writes normally complete in a cycle or two, so one read should suffice.
  2845. * The very first read exists to flush the posted write to the device.
  2846. */
  2847. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2848. {
  2849. t3_write_reg(adapter, addr, val);
  2850. t3_read_reg(adapter, addr); /* flush */
  2851. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2852. return 0;
  2853. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2854. return -EIO;
  2855. }
  2856. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2857. {
  2858. static const unsigned int mc7_mode[] = {
  2859. 0x632, 0x642, 0x652, 0x432, 0x442
  2860. };
  2861. static const struct mc7_timing_params mc7_timings[] = {
  2862. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2863. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2864. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2865. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2866. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2867. };
  2868. u32 val;
  2869. unsigned int width, density, slow, attempts;
  2870. struct adapter *adapter = mc7->adapter;
  2871. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2872. if (!mc7->size)
  2873. return 0;
  2874. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2875. slow = val & F_SLOW;
  2876. width = G_WIDTH(val);
  2877. density = G_DEN(val);
  2878. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2879. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2880. msleep(1);
  2881. if (!slow) {
  2882. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2883. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2884. msleep(1);
  2885. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2886. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2887. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2888. mc7->name);
  2889. goto out_fail;
  2890. }
  2891. }
  2892. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2893. V_ACTTOPREDLY(p->ActToPreDly) |
  2894. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2895. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2896. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2897. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2898. val | F_CLKEN | F_TERM150);
  2899. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2900. if (!slow)
  2901. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2902. F_DLLENB);
  2903. udelay(1);
  2904. val = slow ? 3 : 6;
  2905. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2906. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2907. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2908. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2909. goto out_fail;
  2910. if (!slow) {
  2911. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2912. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2913. udelay(5);
  2914. }
  2915. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2916. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2917. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2918. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2919. mc7_mode[mem_type]) ||
  2920. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2921. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2922. goto out_fail;
  2923. /* clock value is in KHz */
  2924. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2925. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2926. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2927. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2928. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2929. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2930. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2931. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2932. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2933. (mc7->size << width) - 1);
  2934. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2935. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2936. attempts = 50;
  2937. do {
  2938. msleep(250);
  2939. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2940. } while ((val & F_BUSY) && --attempts);
  2941. if (val & F_BUSY) {
  2942. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2943. goto out_fail;
  2944. }
  2945. /* Enable normal memory accesses. */
  2946. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2947. return 0;
  2948. out_fail:
  2949. return -1;
  2950. }
  2951. static void config_pcie(struct adapter *adap)
  2952. {
  2953. static const u16 ack_lat[4][6] = {
  2954. {237, 416, 559, 1071, 2095, 4143},
  2955. {128, 217, 289, 545, 1057, 2081},
  2956. {73, 118, 154, 282, 538, 1050},
  2957. {67, 107, 86, 150, 278, 534}
  2958. };
  2959. static const u16 rpl_tmr[4][6] = {
  2960. {711, 1248, 1677, 3213, 6285, 12429},
  2961. {384, 651, 867, 1635, 3171, 6243},
  2962. {219, 354, 462, 846, 1614, 3150},
  2963. {201, 321, 258, 450, 834, 1602}
  2964. };
  2965. u16 val, devid;
  2966. unsigned int log2_width, pldsize;
  2967. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2968. pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, &val);
  2969. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2970. pci_read_config_word(adap->pdev, 0x2, &devid);
  2971. if (devid == 0x37) {
  2972. pcie_capability_write_word(adap->pdev, PCI_EXP_DEVCTL,
  2973. val & ~PCI_EXP_DEVCTL_READRQ &
  2974. ~PCI_EXP_DEVCTL_PAYLOAD);
  2975. pldsize = 0;
  2976. }
  2977. pcie_capability_read_word(adap->pdev, PCI_EXP_LNKCTL, &val);
  2978. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2979. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2980. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2981. log2_width = fls(adap->params.pci.width) - 1;
  2982. acklat = ack_lat[log2_width][pldsize];
  2983. if (val & PCI_EXP_LNKCTL_ASPM_L0S) /* check LOsEnable */
  2984. acklat += fst_trn_tx * 4;
  2985. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2986. if (adap->params.rev == 0)
  2987. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2988. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2989. V_T3A_ACKLAT(acklat));
  2990. else
  2991. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2992. V_ACKLAT(acklat));
  2993. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2994. V_REPLAYLMT(rpllmt));
  2995. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2996. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  2997. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  2998. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  2999. }
  3000. /*
  3001. * Initialize and configure T3 HW modules. This performs the
  3002. * initialization steps that need to be done once after a card is reset.
  3003. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  3004. *
  3005. * fw_params are passed to FW and their value is platform dependent. Only the
  3006. * top 8 bits are available for use, the rest must be 0.
  3007. */
  3008. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  3009. {
  3010. int err = -EIO, attempts, i;
  3011. const struct vpd_params *vpd = &adapter->params.vpd;
  3012. if (adapter->params.rev > 0)
  3013. calibrate_xgm_t3b(adapter);
  3014. else if (calibrate_xgm(adapter))
  3015. goto out_err;
  3016. if (vpd->mclk) {
  3017. partition_mem(adapter, &adapter->params.tp);
  3018. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  3019. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  3020. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  3021. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  3022. adapter->params.mc5.nfilters,
  3023. adapter->params.mc5.nroutes))
  3024. goto out_err;
  3025. for (i = 0; i < 32; i++)
  3026. if (clear_sge_ctxt(adapter, i, F_CQ))
  3027. goto out_err;
  3028. }
  3029. if (tp_init(adapter, &adapter->params.tp))
  3030. goto out_err;
  3031. t3_tp_set_coalescing_size(adapter,
  3032. min(adapter->params.sge.max_pkt_size,
  3033. MAX_RX_COALESCING_LEN), 1);
  3034. t3_tp_set_max_rxsize(adapter,
  3035. min(adapter->params.sge.max_pkt_size, 16384U));
  3036. ulp_config(adapter, &adapter->params.tp);
  3037. if (is_pcie(adapter))
  3038. config_pcie(adapter);
  3039. else
  3040. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3041. F_DMASTOPEN | F_CLIDECEN);
  3042. if (adapter->params.rev == T3_REV_C)
  3043. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3044. F_CFG_CQE_SOP_MASK);
  3045. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3046. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3047. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3048. chan_init_hw(adapter, adapter->params.chan_map);
  3049. t3_sge_init(adapter, &adapter->params.sge);
  3050. t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN);
  3051. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3052. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3053. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3054. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3055. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3056. attempts = 100;
  3057. do { /* wait for uP to initialize */
  3058. msleep(20);
  3059. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3060. if (!attempts) {
  3061. CH_ERR(adapter, "uP initialization timed out\n");
  3062. goto out_err;
  3063. }
  3064. err = 0;
  3065. out_err:
  3066. return err;
  3067. }
  3068. /**
  3069. * get_pci_mode - determine a card's PCI mode
  3070. * @adapter: the adapter
  3071. * @p: where to store the PCI settings
  3072. *
  3073. * Determines a card's PCI mode and associated parameters, such as speed
  3074. * and width.
  3075. */
  3076. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3077. {
  3078. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3079. u32 pci_mode;
  3080. if (pci_is_pcie(adapter->pdev)) {
  3081. u16 val;
  3082. p->variant = PCI_VARIANT_PCIE;
  3083. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3084. p->width = (val >> 4) & 0x3f;
  3085. return;
  3086. }
  3087. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3088. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3089. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3090. pci_mode = G_PCIXINITPAT(pci_mode);
  3091. if (pci_mode == 0)
  3092. p->variant = PCI_VARIANT_PCI;
  3093. else if (pci_mode < 4)
  3094. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3095. else if (pci_mode < 8)
  3096. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3097. else
  3098. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3099. }
  3100. /**
  3101. * init_link_config - initialize a link's SW state
  3102. * @lc: structure holding the link state
  3103. * @ai: information about the current card
  3104. *
  3105. * Initializes the SW state maintained for each link, including the link's
  3106. * capabilities and default speed/duplex/flow-control/autonegotiation
  3107. * settings.
  3108. */
  3109. static void init_link_config(struct link_config *lc, unsigned int caps)
  3110. {
  3111. lc->supported = caps;
  3112. lc->requested_speed = lc->speed = SPEED_INVALID;
  3113. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3114. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3115. if (lc->supported & SUPPORTED_Autoneg) {
  3116. lc->advertising = lc->supported;
  3117. lc->autoneg = AUTONEG_ENABLE;
  3118. lc->requested_fc |= PAUSE_AUTONEG;
  3119. } else {
  3120. lc->advertising = 0;
  3121. lc->autoneg = AUTONEG_DISABLE;
  3122. }
  3123. }
  3124. /**
  3125. * mc7_calc_size - calculate MC7 memory size
  3126. * @cfg: the MC7 configuration
  3127. *
  3128. * Calculates the size of an MC7 memory in bytes from the value of its
  3129. * configuration register.
  3130. */
  3131. static unsigned int mc7_calc_size(u32 cfg)
  3132. {
  3133. unsigned int width = G_WIDTH(cfg);
  3134. unsigned int banks = !!(cfg & F_BKS) + 1;
  3135. unsigned int org = !!(cfg & F_ORG) + 1;
  3136. unsigned int density = G_DEN(cfg);
  3137. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3138. return MBs << 20;
  3139. }
  3140. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3141. unsigned int base_addr, const char *name)
  3142. {
  3143. u32 cfg;
  3144. mc7->adapter = adapter;
  3145. mc7->name = name;
  3146. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3147. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3148. mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3149. mc7->width = G_WIDTH(cfg);
  3150. }
  3151. static void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3152. {
  3153. u16 devid;
  3154. mac->adapter = adapter;
  3155. pci_read_config_word(adapter->pdev, 0x2, &devid);
  3156. if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
  3157. index = 0;
  3158. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3159. mac->nucast = 1;
  3160. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3161. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3162. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3163. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3164. F_ENRGMII, 0);
  3165. }
  3166. }
  3167. static void early_hw_init(struct adapter *adapter,
  3168. const struct adapter_info *ai)
  3169. {
  3170. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3171. mi1_init(adapter, ai);
  3172. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3173. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3174. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3175. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3176. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3177. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3178. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3179. val |= F_ENRGMII;
  3180. /* Enable MAC clocks so we can access the registers */
  3181. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3182. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3183. val |= F_CLKDIVRESET_;
  3184. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3185. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3186. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3187. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3188. }
  3189. /*
  3190. * Reset the adapter.
  3191. * Older PCIe cards lose their config space during reset, PCI-X
  3192. * ones don't.
  3193. */
  3194. int t3_reset_adapter(struct adapter *adapter)
  3195. {
  3196. int i, save_and_restore_pcie =
  3197. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3198. uint16_t devid = 0;
  3199. if (save_and_restore_pcie)
  3200. pci_save_state(adapter->pdev);
  3201. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3202. /*
  3203. * Delay. Give Some time to device to reset fully.
  3204. * XXX The delay time should be modified.
  3205. */
  3206. for (i = 0; i < 10; i++) {
  3207. msleep(50);
  3208. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3209. if (devid == 0x1425)
  3210. break;
  3211. }
  3212. if (devid != 0x1425)
  3213. return -1;
  3214. if (save_and_restore_pcie)
  3215. pci_restore_state(adapter->pdev);
  3216. return 0;
  3217. }
  3218. static int init_parity(struct adapter *adap)
  3219. {
  3220. int i, err, addr;
  3221. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3222. return -EBUSY;
  3223. for (err = i = 0; !err && i < 16; i++)
  3224. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3225. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3226. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3227. for (i = 0; !err && i < SGE_QSETS; i++)
  3228. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3229. if (err)
  3230. return err;
  3231. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3232. for (i = 0; i < 4; i++)
  3233. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3234. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3235. F_IBQDBGWR | V_IBQDBGQID(i) |
  3236. V_IBQDBGADDR(addr));
  3237. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3238. F_IBQDBGBUSY, 0, 2, 1);
  3239. if (err)
  3240. return err;
  3241. }
  3242. return 0;
  3243. }
  3244. /*
  3245. * Initialize adapter SW state for the various HW modules, set initial values
  3246. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3247. * interface.
  3248. */
  3249. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3250. int reset)
  3251. {
  3252. int ret;
  3253. unsigned int i, j = -1;
  3254. get_pci_mode(adapter, &adapter->params.pci);
  3255. adapter->params.info = ai;
  3256. adapter->params.nports = ai->nports0 + ai->nports1;
  3257. adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
  3258. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3259. /*
  3260. * We used to only run the "adapter check task" once a second if
  3261. * we had PHYs which didn't support interrupts (we would check
  3262. * their link status once a second). Now we check other conditions
  3263. * in that routine which could potentially impose a very high
  3264. * interrupt load on the system. As such, we now always scan the
  3265. * adapter state once a second ...
  3266. */
  3267. adapter->params.linkpoll_period = 10;
  3268. adapter->params.stats_update_period = is_10G(adapter) ?
  3269. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3270. adapter->params.pci.vpd_cap_addr =
  3271. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3272. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3273. if (ret < 0)
  3274. return ret;
  3275. if (reset && t3_reset_adapter(adapter))
  3276. return -1;
  3277. t3_sge_prep(adapter, &adapter->params.sge);
  3278. if (adapter->params.vpd.mclk) {
  3279. struct tp_params *p = &adapter->params.tp;
  3280. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3281. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3282. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3283. p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
  3284. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3285. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3286. p->cm_size = t3_mc7_size(&adapter->cm);
  3287. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3288. p->chan_tx_size = p->pmtx_size / p->nchan;
  3289. p->rx_pg_size = 64 * 1024;
  3290. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3291. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3292. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3293. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3294. adapter->params.rev > 0 ? 12 : 6;
  3295. }
  3296. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3297. t3_mc7_size(&adapter->pmtx) &&
  3298. t3_mc7_size(&adapter->cm);
  3299. if (is_offload(adapter)) {
  3300. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3301. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3302. DEFAULT_NFILTERS : 0;
  3303. adapter->params.mc5.nroutes = 0;
  3304. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3305. init_mtus(adapter->params.mtus);
  3306. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3307. }
  3308. early_hw_init(adapter, ai);
  3309. ret = init_parity(adapter);
  3310. if (ret)
  3311. return ret;
  3312. for_each_port(adapter, i) {
  3313. u8 hw_addr[6];
  3314. const struct port_type_info *pti;
  3315. struct port_info *p = adap2pinfo(adapter, i);
  3316. while (!adapter->params.vpd.port_type[++j])
  3317. ;
  3318. pti = &port_types[adapter->params.vpd.port_type[j]];
  3319. if (!pti->phy_prep) {
  3320. CH_ALERT(adapter, "Invalid port type index %d\n",
  3321. adapter->params.vpd.port_type[j]);
  3322. return -EINVAL;
  3323. }
  3324. p->phy.mdio.dev = adapter->port[i];
  3325. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3326. ai->mdio_ops);
  3327. if (ret)
  3328. return ret;
  3329. mac_prep(&p->mac, adapter, j);
  3330. /*
  3331. * The VPD EEPROM stores the base Ethernet address for the
  3332. * card. A port's address is derived from the base by adding
  3333. * the port's index to the base's low octet.
  3334. */
  3335. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3336. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3337. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3338. ETH_ALEN);
  3339. init_link_config(&p->link_config, p->phy.caps);
  3340. p->phy.ops->power_down(&p->phy, 1);
  3341. /*
  3342. * If the PHY doesn't support interrupts for link status
  3343. * changes, schedule a scan of the adapter links at least
  3344. * once a second.
  3345. */
  3346. if (!(p->phy.caps & SUPPORTED_IRQ) &&
  3347. adapter->params.linkpoll_period > 10)
  3348. adapter->params.linkpoll_period = 10;
  3349. }
  3350. return 0;
  3351. }
  3352. void t3_led_ready(struct adapter *adapter)
  3353. {
  3354. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3355. F_GPIO0_OUT_VAL);
  3356. }
  3357. int t3_replay_prep_adapter(struct adapter *adapter)
  3358. {
  3359. const struct adapter_info *ai = adapter->params.info;
  3360. unsigned int i, j = -1;
  3361. int ret;
  3362. early_hw_init(adapter, ai);
  3363. ret = init_parity(adapter);
  3364. if (ret)
  3365. return ret;
  3366. for_each_port(adapter, i) {
  3367. const struct port_type_info *pti;
  3368. struct port_info *p = adap2pinfo(adapter, i);
  3369. while (!adapter->params.vpd.port_type[++j])
  3370. ;
  3371. pti = &port_types[adapter->params.vpd.port_type[j]];
  3372. ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
  3373. if (ret)
  3374. return ret;
  3375. p->phy.ops->power_down(&p->phy, 1);
  3376. }
  3377. return 0;
  3378. }