bnxt_ulp.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /* Broadcom NetXtreme-C/E network driver.
  2. *
  3. * Copyright (c) 2016 Broadcom Limited
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. */
  9. #include <linux/module.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/pci.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/rtnetlink.h>
  16. #include <linux/bitops.h>
  17. #include <linux/irq.h>
  18. #include <asm/byteorder.h>
  19. #include <linux/bitmap.h>
  20. #include "bnxt_hsi.h"
  21. #include "bnxt.h"
  22. #include "bnxt_ulp.h"
  23. static int bnxt_register_dev(struct bnxt_en_dev *edev, int ulp_id,
  24. struct bnxt_ulp_ops *ulp_ops, void *handle)
  25. {
  26. struct net_device *dev = edev->net;
  27. struct bnxt *bp = netdev_priv(dev);
  28. struct bnxt_ulp *ulp;
  29. ASSERT_RTNL();
  30. if (ulp_id >= BNXT_MAX_ULP)
  31. return -EINVAL;
  32. ulp = &edev->ulp_tbl[ulp_id];
  33. if (rcu_access_pointer(ulp->ulp_ops)) {
  34. netdev_err(bp->dev, "ulp id %d already registered\n", ulp_id);
  35. return -EBUSY;
  36. }
  37. if (ulp_id == BNXT_ROCE_ULP) {
  38. unsigned int max_stat_ctxs;
  39. max_stat_ctxs = bnxt_get_max_func_stat_ctxs(bp);
  40. if (max_stat_ctxs <= BNXT_MIN_ROCE_STAT_CTXS ||
  41. bp->num_stat_ctxs == max_stat_ctxs)
  42. return -ENOMEM;
  43. bnxt_set_max_func_stat_ctxs(bp, max_stat_ctxs -
  44. BNXT_MIN_ROCE_STAT_CTXS);
  45. }
  46. atomic_set(&ulp->ref_count, 0);
  47. ulp->handle = handle;
  48. rcu_assign_pointer(ulp->ulp_ops, ulp_ops);
  49. if (ulp_id == BNXT_ROCE_ULP) {
  50. if (test_bit(BNXT_STATE_OPEN, &bp->state))
  51. bnxt_hwrm_vnic_cfg(bp, 0);
  52. }
  53. return 0;
  54. }
  55. static int bnxt_unregister_dev(struct bnxt_en_dev *edev, int ulp_id)
  56. {
  57. struct net_device *dev = edev->net;
  58. struct bnxt *bp = netdev_priv(dev);
  59. struct bnxt_ulp *ulp;
  60. int i = 0;
  61. ASSERT_RTNL();
  62. if (ulp_id >= BNXT_MAX_ULP)
  63. return -EINVAL;
  64. ulp = &edev->ulp_tbl[ulp_id];
  65. if (!rcu_access_pointer(ulp->ulp_ops)) {
  66. netdev_err(bp->dev, "ulp id %d not registered\n", ulp_id);
  67. return -EINVAL;
  68. }
  69. if (ulp_id == BNXT_ROCE_ULP) {
  70. unsigned int max_stat_ctxs;
  71. max_stat_ctxs = bnxt_get_max_func_stat_ctxs(bp);
  72. bnxt_set_max_func_stat_ctxs(bp, max_stat_ctxs + 1);
  73. }
  74. if (ulp->max_async_event_id)
  75. bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
  76. RCU_INIT_POINTER(ulp->ulp_ops, NULL);
  77. synchronize_rcu();
  78. ulp->max_async_event_id = 0;
  79. ulp->async_events_bmap = NULL;
  80. while (atomic_read(&ulp->ref_count) != 0 && i < 10) {
  81. msleep(100);
  82. i++;
  83. }
  84. return 0;
  85. }
  86. static int bnxt_req_msix_vecs(struct bnxt_en_dev *edev, int ulp_id,
  87. struct bnxt_msix_entry *ent, int num_msix)
  88. {
  89. struct net_device *dev = edev->net;
  90. struct bnxt *bp = netdev_priv(dev);
  91. int max_idx, max_cp_rings;
  92. int avail_msix, i, idx;
  93. ASSERT_RTNL();
  94. if (ulp_id != BNXT_ROCE_ULP)
  95. return -EINVAL;
  96. if (!(bp->flags & BNXT_FLAG_USING_MSIX))
  97. return -ENODEV;
  98. max_cp_rings = bnxt_get_max_func_cp_rings(bp);
  99. max_idx = min_t(int, bp->total_irqs, max_cp_rings);
  100. avail_msix = max_idx - bp->cp_nr_rings;
  101. if (!avail_msix)
  102. return -ENOMEM;
  103. if (avail_msix > num_msix)
  104. avail_msix = num_msix;
  105. idx = max_idx - avail_msix;
  106. for (i = 0; i < avail_msix; i++) {
  107. ent[i].vector = bp->irq_tbl[idx + i].vector;
  108. ent[i].ring_idx = idx + i;
  109. ent[i].db_offset = (idx + i) * 0x80;
  110. }
  111. bnxt_set_max_func_irqs(bp, max_idx - avail_msix);
  112. bnxt_set_max_func_cp_rings(bp, max_cp_rings - avail_msix);
  113. edev->ulp_tbl[ulp_id].msix_requested = avail_msix;
  114. return avail_msix;
  115. }
  116. static int bnxt_free_msix_vecs(struct bnxt_en_dev *edev, int ulp_id)
  117. {
  118. struct net_device *dev = edev->net;
  119. struct bnxt *bp = netdev_priv(dev);
  120. int max_cp_rings, msix_requested;
  121. ASSERT_RTNL();
  122. if (ulp_id != BNXT_ROCE_ULP)
  123. return -EINVAL;
  124. max_cp_rings = bnxt_get_max_func_cp_rings(bp);
  125. msix_requested = edev->ulp_tbl[ulp_id].msix_requested;
  126. bnxt_set_max_func_cp_rings(bp, max_cp_rings + msix_requested);
  127. edev->ulp_tbl[ulp_id].msix_requested = 0;
  128. bnxt_set_max_func_irqs(bp, bp->total_irqs);
  129. return 0;
  130. }
  131. void bnxt_subtract_ulp_resources(struct bnxt *bp, int ulp_id)
  132. {
  133. ASSERT_RTNL();
  134. if (bnxt_ulp_registered(bp->edev, ulp_id)) {
  135. struct bnxt_en_dev *edev = bp->edev;
  136. unsigned int msix_req, max;
  137. msix_req = edev->ulp_tbl[ulp_id].msix_requested;
  138. max = bnxt_get_max_func_cp_rings(bp);
  139. bnxt_set_max_func_cp_rings(bp, max - msix_req);
  140. max = bnxt_get_max_func_stat_ctxs(bp);
  141. bnxt_set_max_func_stat_ctxs(bp, max - 1);
  142. }
  143. }
  144. static int bnxt_send_msg(struct bnxt_en_dev *edev, int ulp_id,
  145. struct bnxt_fw_msg *fw_msg)
  146. {
  147. struct net_device *dev = edev->net;
  148. struct bnxt *bp = netdev_priv(dev);
  149. struct input *req;
  150. int rc;
  151. mutex_lock(&bp->hwrm_cmd_lock);
  152. req = fw_msg->msg;
  153. req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
  154. rc = _hwrm_send_message(bp, fw_msg->msg, fw_msg->msg_len,
  155. fw_msg->timeout);
  156. if (!rc) {
  157. struct output *resp = bp->hwrm_cmd_resp_addr;
  158. u32 len = le16_to_cpu(resp->resp_len);
  159. if (fw_msg->resp_max_len < len)
  160. len = fw_msg->resp_max_len;
  161. memcpy(fw_msg->resp, resp, len);
  162. }
  163. mutex_unlock(&bp->hwrm_cmd_lock);
  164. return rc;
  165. }
  166. static void bnxt_ulp_get(struct bnxt_ulp *ulp)
  167. {
  168. atomic_inc(&ulp->ref_count);
  169. }
  170. static void bnxt_ulp_put(struct bnxt_ulp *ulp)
  171. {
  172. atomic_dec(&ulp->ref_count);
  173. }
  174. void bnxt_ulp_stop(struct bnxt *bp)
  175. {
  176. struct bnxt_en_dev *edev = bp->edev;
  177. struct bnxt_ulp_ops *ops;
  178. int i;
  179. if (!edev)
  180. return;
  181. for (i = 0; i < BNXT_MAX_ULP; i++) {
  182. struct bnxt_ulp *ulp = &edev->ulp_tbl[i];
  183. ops = rtnl_dereference(ulp->ulp_ops);
  184. if (!ops || !ops->ulp_stop)
  185. continue;
  186. ops->ulp_stop(ulp->handle);
  187. }
  188. }
  189. void bnxt_ulp_start(struct bnxt *bp)
  190. {
  191. struct bnxt_en_dev *edev = bp->edev;
  192. struct bnxt_ulp_ops *ops;
  193. int i;
  194. if (!edev)
  195. return;
  196. for (i = 0; i < BNXT_MAX_ULP; i++) {
  197. struct bnxt_ulp *ulp = &edev->ulp_tbl[i];
  198. ops = rtnl_dereference(ulp->ulp_ops);
  199. if (!ops || !ops->ulp_start)
  200. continue;
  201. ops->ulp_start(ulp->handle);
  202. }
  203. }
  204. void bnxt_ulp_sriov_cfg(struct bnxt *bp, int num_vfs)
  205. {
  206. struct bnxt_en_dev *edev = bp->edev;
  207. struct bnxt_ulp_ops *ops;
  208. int i;
  209. if (!edev)
  210. return;
  211. for (i = 0; i < BNXT_MAX_ULP; i++) {
  212. struct bnxt_ulp *ulp = &edev->ulp_tbl[i];
  213. rcu_read_lock();
  214. ops = rcu_dereference(ulp->ulp_ops);
  215. if (!ops || !ops->ulp_sriov_config) {
  216. rcu_read_unlock();
  217. continue;
  218. }
  219. bnxt_ulp_get(ulp);
  220. rcu_read_unlock();
  221. ops->ulp_sriov_config(ulp->handle, num_vfs);
  222. bnxt_ulp_put(ulp);
  223. }
  224. }
  225. void bnxt_ulp_async_events(struct bnxt *bp, struct hwrm_async_event_cmpl *cmpl)
  226. {
  227. u16 event_id = le16_to_cpu(cmpl->event_id);
  228. struct bnxt_en_dev *edev = bp->edev;
  229. struct bnxt_ulp_ops *ops;
  230. int i;
  231. if (!edev)
  232. return;
  233. rcu_read_lock();
  234. for (i = 0; i < BNXT_MAX_ULP; i++) {
  235. struct bnxt_ulp *ulp = &edev->ulp_tbl[i];
  236. ops = rcu_dereference(ulp->ulp_ops);
  237. if (!ops || !ops->ulp_async_notifier)
  238. continue;
  239. if (!ulp->async_events_bmap ||
  240. event_id > ulp->max_async_event_id)
  241. continue;
  242. /* Read max_async_event_id first before testing the bitmap. */
  243. smp_rmb();
  244. if (test_bit(event_id, ulp->async_events_bmap))
  245. ops->ulp_async_notifier(ulp->handle, cmpl);
  246. }
  247. rcu_read_unlock();
  248. }
  249. static int bnxt_register_async_events(struct bnxt_en_dev *edev, int ulp_id,
  250. unsigned long *events_bmap, u16 max_id)
  251. {
  252. struct net_device *dev = edev->net;
  253. struct bnxt *bp = netdev_priv(dev);
  254. struct bnxt_ulp *ulp;
  255. if (ulp_id >= BNXT_MAX_ULP)
  256. return -EINVAL;
  257. ulp = &edev->ulp_tbl[ulp_id];
  258. ulp->async_events_bmap = events_bmap;
  259. /* Make sure bnxt_ulp_async_events() sees this order */
  260. smp_wmb();
  261. ulp->max_async_event_id = max_id;
  262. bnxt_hwrm_func_rgtr_async_events(bp, events_bmap, max_id + 1);
  263. return 0;
  264. }
  265. static const struct bnxt_en_ops bnxt_en_ops_tbl = {
  266. .bnxt_register_device = bnxt_register_dev,
  267. .bnxt_unregister_device = bnxt_unregister_dev,
  268. .bnxt_request_msix = bnxt_req_msix_vecs,
  269. .bnxt_free_msix = bnxt_free_msix_vecs,
  270. .bnxt_send_fw_msg = bnxt_send_msg,
  271. .bnxt_register_fw_async_events = bnxt_register_async_events,
  272. };
  273. struct bnxt_en_dev *bnxt_ulp_probe(struct net_device *dev)
  274. {
  275. struct bnxt *bp = netdev_priv(dev);
  276. struct bnxt_en_dev *edev;
  277. edev = bp->edev;
  278. if (!edev) {
  279. edev = kzalloc(sizeof(*edev), GFP_KERNEL);
  280. if (!edev)
  281. return ERR_PTR(-ENOMEM);
  282. edev->en_ops = &bnxt_en_ops_tbl;
  283. if (bp->flags & BNXT_FLAG_ROCEV1_CAP)
  284. edev->flags |= BNXT_EN_FLAG_ROCEV1_CAP;
  285. if (bp->flags & BNXT_FLAG_ROCEV2_CAP)
  286. edev->flags |= BNXT_EN_FLAG_ROCEV2_CAP;
  287. edev->net = dev;
  288. edev->pdev = bp->pdev;
  289. bp->edev = edev;
  290. }
  291. return bp->edev;
  292. }