ifi_canfd.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /*
  2. * CAN bus driver for IFI CANFD controller
  3. *
  4. * Copyright (C) 2016 Marek Vasut <marex@denx.de>
  5. *
  6. * Details about this controller can be found at
  7. * http://www.ifi-pld.de/IP/CANFD/canfd.html
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/io.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/of.h>
  21. #include <linux/of_device.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/can/dev.h>
  24. #define IFI_CANFD_STCMD 0x0
  25. #define IFI_CANFD_STCMD_HARDRESET 0xDEADCAFD
  26. #define IFI_CANFD_STCMD_ENABLE BIT(0)
  27. #define IFI_CANFD_STCMD_ERROR_ACTIVE BIT(2)
  28. #define IFI_CANFD_STCMD_ERROR_PASSIVE BIT(3)
  29. #define IFI_CANFD_STCMD_BUSOFF BIT(4)
  30. #define IFI_CANFD_STCMD_BUSMONITOR BIT(16)
  31. #define IFI_CANFD_STCMD_LOOPBACK BIT(18)
  32. #define IFI_CANFD_STCMD_DISABLE_CANFD BIT(24)
  33. #define IFI_CANFD_STCMD_ENABLE_ISO BIT(25)
  34. #define IFI_CANFD_STCMD_ENABLE_7_9_8_8_TIMING BIT(26)
  35. #define IFI_CANFD_STCMD_NORMAL_MODE ((u32)BIT(31))
  36. #define IFI_CANFD_RXSTCMD 0x4
  37. #define IFI_CANFD_RXSTCMD_REMOVE_MSG BIT(0)
  38. #define IFI_CANFD_RXSTCMD_RESET BIT(7)
  39. #define IFI_CANFD_RXSTCMD_EMPTY BIT(8)
  40. #define IFI_CANFD_RXSTCMD_OVERFLOW BIT(13)
  41. #define IFI_CANFD_TXSTCMD 0x8
  42. #define IFI_CANFD_TXSTCMD_ADD_MSG BIT(0)
  43. #define IFI_CANFD_TXSTCMD_HIGH_PRIO BIT(1)
  44. #define IFI_CANFD_TXSTCMD_RESET BIT(7)
  45. #define IFI_CANFD_TXSTCMD_EMPTY BIT(8)
  46. #define IFI_CANFD_TXSTCMD_FULL BIT(12)
  47. #define IFI_CANFD_TXSTCMD_OVERFLOW BIT(13)
  48. #define IFI_CANFD_INTERRUPT 0xc
  49. #define IFI_CANFD_INTERRUPT_ERROR_WARNING BIT(1)
  50. #define IFI_CANFD_INTERRUPT_ERROR_COUNTER BIT(10)
  51. #define IFI_CANFD_INTERRUPT_TXFIFO_EMPTY BIT(16)
  52. #define IFI_CANFD_INTERRUPT_TXFIFO_REMOVE BIT(22)
  53. #define IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY BIT(24)
  54. #define IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER BIT(25)
  55. #define IFI_CANFD_INTERRUPT_SET_IRQ ((u32)BIT(31))
  56. #define IFI_CANFD_IRQMASK 0x10
  57. #define IFI_CANFD_IRQMASK_SET_ERR BIT(7)
  58. #define IFI_CANFD_IRQMASK_SET_TS BIT(15)
  59. #define IFI_CANFD_IRQMASK_TXFIFO_EMPTY BIT(16)
  60. #define IFI_CANFD_IRQMASK_SET_TX BIT(23)
  61. #define IFI_CANFD_IRQMASK_RXFIFO_NEMPTY BIT(24)
  62. #define IFI_CANFD_IRQMASK_SET_RX ((u32)BIT(31))
  63. #define IFI_CANFD_TIME 0x14
  64. #define IFI_CANFD_FTIME 0x18
  65. #define IFI_CANFD_TIME_TIMEB_OFF 0
  66. #define IFI_CANFD_TIME_TIMEA_OFF 8
  67. #define IFI_CANFD_TIME_PRESCALE_OFF 16
  68. #define IFI_CANFD_TIME_SJW_OFF_7_9_8_8 25
  69. #define IFI_CANFD_TIME_SJW_OFF_4_12_6_6 28
  70. #define IFI_CANFD_TIME_SET_SJW_4_12_6_6 BIT(6)
  71. #define IFI_CANFD_TIME_SET_TIMEB_4_12_6_6 BIT(7)
  72. #define IFI_CANFD_TIME_SET_PRESC_4_12_6_6 BIT(14)
  73. #define IFI_CANFD_TIME_SET_TIMEA_4_12_6_6 BIT(15)
  74. #define IFI_CANFD_TDELAY 0x1c
  75. #define IFI_CANFD_TDELAY_DEFAULT 0xb
  76. #define IFI_CANFD_TDELAY_MASK 0x3fff
  77. #define IFI_CANFD_TDELAY_ABS BIT(14)
  78. #define IFI_CANFD_TDELAY_EN BIT(15)
  79. #define IFI_CANFD_ERROR 0x20
  80. #define IFI_CANFD_ERROR_TX_OFFSET 0
  81. #define IFI_CANFD_ERROR_TX_MASK 0xff
  82. #define IFI_CANFD_ERROR_RX_OFFSET 16
  83. #define IFI_CANFD_ERROR_RX_MASK 0xff
  84. #define IFI_CANFD_ERRCNT 0x24
  85. #define IFI_CANFD_SUSPEND 0x28
  86. #define IFI_CANFD_REPEAT 0x2c
  87. #define IFI_CANFD_TRAFFIC 0x30
  88. #define IFI_CANFD_TSCONTROL 0x34
  89. #define IFI_CANFD_TSC 0x38
  90. #define IFI_CANFD_TST 0x3c
  91. #define IFI_CANFD_RES1 0x40
  92. #define IFI_CANFD_ERROR_CTR 0x44
  93. #define IFI_CANFD_ERROR_CTR_UNLOCK_MAGIC 0x21302899
  94. #define IFI_CANFD_ERROR_CTR_OVERLOAD_FIRST BIT(0)
  95. #define IFI_CANFD_ERROR_CTR_ACK_ERROR_FIRST BIT(1)
  96. #define IFI_CANFD_ERROR_CTR_BIT0_ERROR_FIRST BIT(2)
  97. #define IFI_CANFD_ERROR_CTR_BIT1_ERROR_FIRST BIT(3)
  98. #define IFI_CANFD_ERROR_CTR_STUFF_ERROR_FIRST BIT(4)
  99. #define IFI_CANFD_ERROR_CTR_CRC_ERROR_FIRST BIT(5)
  100. #define IFI_CANFD_ERROR_CTR_FORM_ERROR_FIRST BIT(6)
  101. #define IFI_CANFD_ERROR_CTR_OVERLOAD_ALL BIT(8)
  102. #define IFI_CANFD_ERROR_CTR_ACK_ERROR_ALL BIT(9)
  103. #define IFI_CANFD_ERROR_CTR_BIT0_ERROR_ALL BIT(10)
  104. #define IFI_CANFD_ERROR_CTR_BIT1_ERROR_ALL BIT(11)
  105. #define IFI_CANFD_ERROR_CTR_STUFF_ERROR_ALL BIT(12)
  106. #define IFI_CANFD_ERROR_CTR_CRC_ERROR_ALL BIT(13)
  107. #define IFI_CANFD_ERROR_CTR_FORM_ERROR_ALL BIT(14)
  108. #define IFI_CANFD_ERROR_CTR_BITPOSITION_OFFSET 16
  109. #define IFI_CANFD_ERROR_CTR_BITPOSITION_MASK 0xff
  110. #define IFI_CANFD_ERROR_CTR_ER_RESET BIT(30)
  111. #define IFI_CANFD_ERROR_CTR_ER_ENABLE ((u32)BIT(31))
  112. #define IFI_CANFD_PAR 0x48
  113. #define IFI_CANFD_CANCLOCK 0x4c
  114. #define IFI_CANFD_SYSCLOCK 0x50
  115. #define IFI_CANFD_VER 0x54
  116. #define IFI_CANFD_IP_ID 0x58
  117. #define IFI_CANFD_IP_ID_VALUE 0xD073CAFD
  118. #define IFI_CANFD_TEST 0x5c
  119. #define IFI_CANFD_RXFIFO_TS_63_32 0x60
  120. #define IFI_CANFD_RXFIFO_TS_31_0 0x64
  121. #define IFI_CANFD_RXFIFO_DLC 0x68
  122. #define IFI_CANFD_RXFIFO_DLC_DLC_OFFSET 0
  123. #define IFI_CANFD_RXFIFO_DLC_DLC_MASK 0xf
  124. #define IFI_CANFD_RXFIFO_DLC_RTR BIT(4)
  125. #define IFI_CANFD_RXFIFO_DLC_EDL BIT(5)
  126. #define IFI_CANFD_RXFIFO_DLC_BRS BIT(6)
  127. #define IFI_CANFD_RXFIFO_DLC_ESI BIT(7)
  128. #define IFI_CANFD_RXFIFO_DLC_OBJ_OFFSET 8
  129. #define IFI_CANFD_RXFIFO_DLC_OBJ_MASK 0x1ff
  130. #define IFI_CANFD_RXFIFO_DLC_FNR_OFFSET 24
  131. #define IFI_CANFD_RXFIFO_DLC_FNR_MASK 0xff
  132. #define IFI_CANFD_RXFIFO_ID 0x6c
  133. #define IFI_CANFD_RXFIFO_ID_ID_OFFSET 0
  134. #define IFI_CANFD_RXFIFO_ID_ID_STD_MASK CAN_SFF_MASK
  135. #define IFI_CANFD_RXFIFO_ID_ID_STD_OFFSET 0
  136. #define IFI_CANFD_RXFIFO_ID_ID_STD_WIDTH 10
  137. #define IFI_CANFD_RXFIFO_ID_ID_XTD_MASK CAN_EFF_MASK
  138. #define IFI_CANFD_RXFIFO_ID_ID_XTD_OFFSET 11
  139. #define IFI_CANFD_RXFIFO_ID_ID_XTD_WIDTH 18
  140. #define IFI_CANFD_RXFIFO_ID_IDE BIT(29)
  141. #define IFI_CANFD_RXFIFO_DATA 0x70 /* 0x70..0xac */
  142. #define IFI_CANFD_TXFIFO_SUSPEND_US 0xb0
  143. #define IFI_CANFD_TXFIFO_REPEATCOUNT 0xb4
  144. #define IFI_CANFD_TXFIFO_DLC 0xb8
  145. #define IFI_CANFD_TXFIFO_DLC_DLC_OFFSET 0
  146. #define IFI_CANFD_TXFIFO_DLC_DLC_MASK 0xf
  147. #define IFI_CANFD_TXFIFO_DLC_RTR BIT(4)
  148. #define IFI_CANFD_TXFIFO_DLC_EDL BIT(5)
  149. #define IFI_CANFD_TXFIFO_DLC_BRS BIT(6)
  150. #define IFI_CANFD_TXFIFO_DLC_FNR_OFFSET 24
  151. #define IFI_CANFD_TXFIFO_DLC_FNR_MASK 0xff
  152. #define IFI_CANFD_TXFIFO_ID 0xbc
  153. #define IFI_CANFD_TXFIFO_ID_ID_OFFSET 0
  154. #define IFI_CANFD_TXFIFO_ID_ID_STD_MASK CAN_SFF_MASK
  155. #define IFI_CANFD_TXFIFO_ID_ID_STD_OFFSET 0
  156. #define IFI_CANFD_TXFIFO_ID_ID_STD_WIDTH 10
  157. #define IFI_CANFD_TXFIFO_ID_ID_XTD_MASK CAN_EFF_MASK
  158. #define IFI_CANFD_TXFIFO_ID_ID_XTD_OFFSET 11
  159. #define IFI_CANFD_TXFIFO_ID_ID_XTD_WIDTH 18
  160. #define IFI_CANFD_TXFIFO_ID_IDE BIT(29)
  161. #define IFI_CANFD_TXFIFO_DATA 0xc0 /* 0xb0..0xfc */
  162. #define IFI_CANFD_FILTER_MASK(n) (0x800 + ((n) * 8) + 0)
  163. #define IFI_CANFD_FILTER_MASK_EXT BIT(29)
  164. #define IFI_CANFD_FILTER_MASK_EDL BIT(30)
  165. #define IFI_CANFD_FILTER_MASK_VALID ((u32)BIT(31))
  166. #define IFI_CANFD_FILTER_IDENT(n) (0x800 + ((n) * 8) + 4)
  167. #define IFI_CANFD_FILTER_IDENT_IDE BIT(29)
  168. #define IFI_CANFD_FILTER_IDENT_CANFD BIT(30)
  169. #define IFI_CANFD_FILTER_IDENT_VALID ((u32)BIT(31))
  170. /* IFI CANFD private data structure */
  171. struct ifi_canfd_priv {
  172. struct can_priv can; /* must be the first member */
  173. struct napi_struct napi;
  174. struct net_device *ndev;
  175. void __iomem *base;
  176. };
  177. static void ifi_canfd_irq_enable(struct net_device *ndev, bool enable)
  178. {
  179. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  180. u32 enirq = 0;
  181. if (enable) {
  182. enirq = IFI_CANFD_IRQMASK_TXFIFO_EMPTY |
  183. IFI_CANFD_IRQMASK_RXFIFO_NEMPTY;
  184. if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
  185. enirq |= IFI_CANFD_INTERRUPT_ERROR_COUNTER;
  186. }
  187. writel(IFI_CANFD_IRQMASK_SET_ERR |
  188. IFI_CANFD_IRQMASK_SET_TS |
  189. IFI_CANFD_IRQMASK_SET_TX |
  190. IFI_CANFD_IRQMASK_SET_RX | enirq,
  191. priv->base + IFI_CANFD_IRQMASK);
  192. }
  193. static void ifi_canfd_read_fifo(struct net_device *ndev)
  194. {
  195. struct net_device_stats *stats = &ndev->stats;
  196. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  197. struct canfd_frame *cf;
  198. struct sk_buff *skb;
  199. const u32 rx_irq_mask = IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY |
  200. IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER;
  201. u32 rxdlc, rxid;
  202. u32 dlc, id;
  203. int i;
  204. rxdlc = readl(priv->base + IFI_CANFD_RXFIFO_DLC);
  205. if (rxdlc & IFI_CANFD_RXFIFO_DLC_EDL)
  206. skb = alloc_canfd_skb(ndev, &cf);
  207. else
  208. skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
  209. if (!skb) {
  210. stats->rx_dropped++;
  211. return;
  212. }
  213. dlc = (rxdlc >> IFI_CANFD_RXFIFO_DLC_DLC_OFFSET) &
  214. IFI_CANFD_RXFIFO_DLC_DLC_MASK;
  215. if (rxdlc & IFI_CANFD_RXFIFO_DLC_EDL)
  216. cf->len = can_dlc2len(dlc);
  217. else
  218. cf->len = get_can_dlc(dlc);
  219. rxid = readl(priv->base + IFI_CANFD_RXFIFO_ID);
  220. id = (rxid >> IFI_CANFD_RXFIFO_ID_ID_OFFSET);
  221. if (id & IFI_CANFD_RXFIFO_ID_IDE) {
  222. id &= IFI_CANFD_RXFIFO_ID_ID_XTD_MASK;
  223. /*
  224. * In case the Extended ID frame is received, the standard
  225. * and extended part of the ID are swapped in the register,
  226. * so swap them back to obtain the correct ID.
  227. */
  228. id = (id >> IFI_CANFD_RXFIFO_ID_ID_XTD_OFFSET) |
  229. ((id & IFI_CANFD_RXFIFO_ID_ID_STD_MASK) <<
  230. IFI_CANFD_RXFIFO_ID_ID_XTD_WIDTH);
  231. id |= CAN_EFF_FLAG;
  232. } else {
  233. id &= IFI_CANFD_RXFIFO_ID_ID_STD_MASK;
  234. }
  235. cf->can_id = id;
  236. if (rxdlc & IFI_CANFD_RXFIFO_DLC_ESI) {
  237. cf->flags |= CANFD_ESI;
  238. netdev_dbg(ndev, "ESI Error\n");
  239. }
  240. if (!(rxdlc & IFI_CANFD_RXFIFO_DLC_EDL) &&
  241. (rxdlc & IFI_CANFD_RXFIFO_DLC_RTR)) {
  242. cf->can_id |= CAN_RTR_FLAG;
  243. } else {
  244. if (rxdlc & IFI_CANFD_RXFIFO_DLC_BRS)
  245. cf->flags |= CANFD_BRS;
  246. for (i = 0; i < cf->len; i += 4) {
  247. *(u32 *)(cf->data + i) =
  248. readl(priv->base + IFI_CANFD_RXFIFO_DATA + i);
  249. }
  250. }
  251. /* Remove the packet from FIFO */
  252. writel(IFI_CANFD_RXSTCMD_REMOVE_MSG, priv->base + IFI_CANFD_RXSTCMD);
  253. writel(rx_irq_mask, priv->base + IFI_CANFD_INTERRUPT);
  254. stats->rx_packets++;
  255. stats->rx_bytes += cf->len;
  256. netif_receive_skb(skb);
  257. }
  258. static int ifi_canfd_do_rx_poll(struct net_device *ndev, int quota)
  259. {
  260. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  261. u32 pkts = 0;
  262. u32 rxst;
  263. rxst = readl(priv->base + IFI_CANFD_RXSTCMD);
  264. if (rxst & IFI_CANFD_RXSTCMD_EMPTY) {
  265. netdev_dbg(ndev, "No messages in RX FIFO\n");
  266. return 0;
  267. }
  268. for (;;) {
  269. if (rxst & IFI_CANFD_RXSTCMD_EMPTY)
  270. break;
  271. if (quota <= 0)
  272. break;
  273. ifi_canfd_read_fifo(ndev);
  274. quota--;
  275. pkts++;
  276. rxst = readl(priv->base + IFI_CANFD_RXSTCMD);
  277. }
  278. if (pkts)
  279. can_led_event(ndev, CAN_LED_EVENT_RX);
  280. return pkts;
  281. }
  282. static int ifi_canfd_handle_lost_msg(struct net_device *ndev)
  283. {
  284. struct net_device_stats *stats = &ndev->stats;
  285. struct sk_buff *skb;
  286. struct can_frame *frame;
  287. netdev_err(ndev, "RX FIFO overflow, message(s) lost.\n");
  288. stats->rx_errors++;
  289. stats->rx_over_errors++;
  290. skb = alloc_can_err_skb(ndev, &frame);
  291. if (unlikely(!skb))
  292. return 0;
  293. frame->can_id |= CAN_ERR_CRTL;
  294. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  295. netif_receive_skb(skb);
  296. return 1;
  297. }
  298. static int ifi_canfd_handle_lec_err(struct net_device *ndev, const u32 errctr)
  299. {
  300. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  301. struct net_device_stats *stats = &ndev->stats;
  302. struct can_frame *cf;
  303. struct sk_buff *skb;
  304. const u32 errmask = IFI_CANFD_ERROR_CTR_OVERLOAD_FIRST |
  305. IFI_CANFD_ERROR_CTR_ACK_ERROR_FIRST |
  306. IFI_CANFD_ERROR_CTR_BIT0_ERROR_FIRST |
  307. IFI_CANFD_ERROR_CTR_BIT1_ERROR_FIRST |
  308. IFI_CANFD_ERROR_CTR_STUFF_ERROR_FIRST |
  309. IFI_CANFD_ERROR_CTR_CRC_ERROR_FIRST |
  310. IFI_CANFD_ERROR_CTR_FORM_ERROR_FIRST;
  311. if (!(errctr & errmask)) /* No error happened. */
  312. return 0;
  313. priv->can.can_stats.bus_error++;
  314. stats->rx_errors++;
  315. /* Propagate the error condition to the CAN stack. */
  316. skb = alloc_can_err_skb(ndev, &cf);
  317. if (unlikely(!skb))
  318. return 0;
  319. /* Read the error counter register and check for new errors. */
  320. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  321. if (errctr & IFI_CANFD_ERROR_CTR_OVERLOAD_FIRST)
  322. cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
  323. if (errctr & IFI_CANFD_ERROR_CTR_ACK_ERROR_FIRST)
  324. cf->data[3] = CAN_ERR_PROT_LOC_ACK;
  325. if (errctr & IFI_CANFD_ERROR_CTR_BIT0_ERROR_FIRST)
  326. cf->data[2] |= CAN_ERR_PROT_BIT0;
  327. if (errctr & IFI_CANFD_ERROR_CTR_BIT1_ERROR_FIRST)
  328. cf->data[2] |= CAN_ERR_PROT_BIT1;
  329. if (errctr & IFI_CANFD_ERROR_CTR_STUFF_ERROR_FIRST)
  330. cf->data[2] |= CAN_ERR_PROT_STUFF;
  331. if (errctr & IFI_CANFD_ERROR_CTR_CRC_ERROR_FIRST)
  332. cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
  333. if (errctr & IFI_CANFD_ERROR_CTR_FORM_ERROR_FIRST)
  334. cf->data[2] |= CAN_ERR_PROT_FORM;
  335. /* Reset the error counter, ack the IRQ and re-enable the counter. */
  336. writel(IFI_CANFD_ERROR_CTR_ER_RESET, priv->base + IFI_CANFD_ERROR_CTR);
  337. writel(IFI_CANFD_INTERRUPT_ERROR_COUNTER,
  338. priv->base + IFI_CANFD_INTERRUPT);
  339. writel(IFI_CANFD_ERROR_CTR_ER_ENABLE, priv->base + IFI_CANFD_ERROR_CTR);
  340. stats->rx_packets++;
  341. stats->rx_bytes += cf->can_dlc;
  342. netif_receive_skb(skb);
  343. return 1;
  344. }
  345. static int ifi_canfd_get_berr_counter(const struct net_device *ndev,
  346. struct can_berr_counter *bec)
  347. {
  348. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  349. u32 err;
  350. err = readl(priv->base + IFI_CANFD_ERROR);
  351. bec->rxerr = (err >> IFI_CANFD_ERROR_RX_OFFSET) &
  352. IFI_CANFD_ERROR_RX_MASK;
  353. bec->txerr = (err >> IFI_CANFD_ERROR_TX_OFFSET) &
  354. IFI_CANFD_ERROR_TX_MASK;
  355. return 0;
  356. }
  357. static int ifi_canfd_handle_state_change(struct net_device *ndev,
  358. enum can_state new_state)
  359. {
  360. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  361. struct net_device_stats *stats = &ndev->stats;
  362. struct can_frame *cf;
  363. struct sk_buff *skb;
  364. struct can_berr_counter bec;
  365. switch (new_state) {
  366. case CAN_STATE_ERROR_ACTIVE:
  367. /* error warning state */
  368. priv->can.can_stats.error_warning++;
  369. priv->can.state = CAN_STATE_ERROR_WARNING;
  370. break;
  371. case CAN_STATE_ERROR_PASSIVE:
  372. /* error passive state */
  373. priv->can.can_stats.error_passive++;
  374. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  375. break;
  376. case CAN_STATE_BUS_OFF:
  377. /* bus-off state */
  378. priv->can.state = CAN_STATE_BUS_OFF;
  379. ifi_canfd_irq_enable(ndev, 0);
  380. priv->can.can_stats.bus_off++;
  381. can_bus_off(ndev);
  382. break;
  383. default:
  384. break;
  385. }
  386. /* propagate the error condition to the CAN stack */
  387. skb = alloc_can_err_skb(ndev, &cf);
  388. if (unlikely(!skb))
  389. return 0;
  390. ifi_canfd_get_berr_counter(ndev, &bec);
  391. switch (new_state) {
  392. case CAN_STATE_ERROR_ACTIVE:
  393. /* error warning state */
  394. cf->can_id |= CAN_ERR_CRTL;
  395. cf->data[1] = (bec.txerr > bec.rxerr) ?
  396. CAN_ERR_CRTL_TX_WARNING :
  397. CAN_ERR_CRTL_RX_WARNING;
  398. cf->data[6] = bec.txerr;
  399. cf->data[7] = bec.rxerr;
  400. break;
  401. case CAN_STATE_ERROR_PASSIVE:
  402. /* error passive state */
  403. cf->can_id |= CAN_ERR_CRTL;
  404. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  405. if (bec.txerr > 127)
  406. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  407. cf->data[6] = bec.txerr;
  408. cf->data[7] = bec.rxerr;
  409. break;
  410. case CAN_STATE_BUS_OFF:
  411. /* bus-off state */
  412. cf->can_id |= CAN_ERR_BUSOFF;
  413. break;
  414. default:
  415. break;
  416. }
  417. stats->rx_packets++;
  418. stats->rx_bytes += cf->can_dlc;
  419. netif_receive_skb(skb);
  420. return 1;
  421. }
  422. static int ifi_canfd_handle_state_errors(struct net_device *ndev, u32 stcmd)
  423. {
  424. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  425. int work_done = 0;
  426. u32 isr;
  427. /*
  428. * The ErrWarn condition is a little special, since the bit is
  429. * located in the INTERRUPT register instead of STCMD register.
  430. */
  431. isr = readl(priv->base + IFI_CANFD_INTERRUPT);
  432. if ((isr & IFI_CANFD_INTERRUPT_ERROR_WARNING) &&
  433. (priv->can.state != CAN_STATE_ERROR_WARNING)) {
  434. /* Clear the interrupt */
  435. writel(IFI_CANFD_INTERRUPT_ERROR_WARNING,
  436. priv->base + IFI_CANFD_INTERRUPT);
  437. netdev_dbg(ndev, "Error, entered warning state\n");
  438. work_done += ifi_canfd_handle_state_change(ndev,
  439. CAN_STATE_ERROR_WARNING);
  440. }
  441. if ((stcmd & IFI_CANFD_STCMD_ERROR_PASSIVE) &&
  442. (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
  443. netdev_dbg(ndev, "Error, entered passive state\n");
  444. work_done += ifi_canfd_handle_state_change(ndev,
  445. CAN_STATE_ERROR_PASSIVE);
  446. }
  447. if ((stcmd & IFI_CANFD_STCMD_BUSOFF) &&
  448. (priv->can.state != CAN_STATE_BUS_OFF)) {
  449. netdev_dbg(ndev, "Error, entered bus-off state\n");
  450. work_done += ifi_canfd_handle_state_change(ndev,
  451. CAN_STATE_BUS_OFF);
  452. }
  453. return work_done;
  454. }
  455. static int ifi_canfd_poll(struct napi_struct *napi, int quota)
  456. {
  457. struct net_device *ndev = napi->dev;
  458. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  459. const u32 stcmd_state_mask = IFI_CANFD_STCMD_ERROR_PASSIVE |
  460. IFI_CANFD_STCMD_BUSOFF;
  461. int work_done = 0;
  462. u32 stcmd = readl(priv->base + IFI_CANFD_STCMD);
  463. u32 rxstcmd = readl(priv->base + IFI_CANFD_STCMD);
  464. u32 errctr = readl(priv->base + IFI_CANFD_ERROR_CTR);
  465. /* Handle bus state changes */
  466. if ((stcmd & stcmd_state_mask) ||
  467. ((stcmd & IFI_CANFD_STCMD_ERROR_ACTIVE) == 0))
  468. work_done += ifi_canfd_handle_state_errors(ndev, stcmd);
  469. /* Handle lost messages on RX */
  470. if (rxstcmd & IFI_CANFD_RXSTCMD_OVERFLOW)
  471. work_done += ifi_canfd_handle_lost_msg(ndev);
  472. /* Handle lec errors on the bus */
  473. if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
  474. work_done += ifi_canfd_handle_lec_err(ndev, errctr);
  475. /* Handle normal messages on RX */
  476. if (!(rxstcmd & IFI_CANFD_RXSTCMD_EMPTY))
  477. work_done += ifi_canfd_do_rx_poll(ndev, quota - work_done);
  478. if (work_done < quota) {
  479. napi_complete(napi);
  480. ifi_canfd_irq_enable(ndev, 1);
  481. }
  482. return work_done;
  483. }
  484. static irqreturn_t ifi_canfd_isr(int irq, void *dev_id)
  485. {
  486. struct net_device *ndev = (struct net_device *)dev_id;
  487. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  488. struct net_device_stats *stats = &ndev->stats;
  489. const u32 rx_irq_mask = IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY |
  490. IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER |
  491. IFI_CANFD_INTERRUPT_ERROR_WARNING |
  492. IFI_CANFD_INTERRUPT_ERROR_COUNTER;
  493. const u32 tx_irq_mask = IFI_CANFD_INTERRUPT_TXFIFO_EMPTY |
  494. IFI_CANFD_INTERRUPT_TXFIFO_REMOVE;
  495. const u32 clr_irq_mask = ~((u32)(IFI_CANFD_INTERRUPT_SET_IRQ |
  496. IFI_CANFD_INTERRUPT_ERROR_WARNING));
  497. u32 isr;
  498. isr = readl(priv->base + IFI_CANFD_INTERRUPT);
  499. /* No interrupt */
  500. if (isr == 0)
  501. return IRQ_NONE;
  502. /* Clear all pending interrupts but ErrWarn */
  503. writel(clr_irq_mask, priv->base + IFI_CANFD_INTERRUPT);
  504. /* RX IRQ or bus warning, start NAPI */
  505. if (isr & rx_irq_mask) {
  506. ifi_canfd_irq_enable(ndev, 0);
  507. napi_schedule(&priv->napi);
  508. }
  509. /* TX IRQ */
  510. if (isr & IFI_CANFD_INTERRUPT_TXFIFO_REMOVE) {
  511. stats->tx_bytes += can_get_echo_skb(ndev, 0);
  512. stats->tx_packets++;
  513. can_led_event(ndev, CAN_LED_EVENT_TX);
  514. }
  515. if (isr & tx_irq_mask)
  516. netif_wake_queue(ndev);
  517. return IRQ_HANDLED;
  518. }
  519. static const struct can_bittiming_const ifi_canfd_bittiming_const = {
  520. .name = KBUILD_MODNAME,
  521. .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
  522. .tseg1_max = 256,
  523. .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
  524. .tseg2_max = 256,
  525. .sjw_max = 128,
  526. .brp_min = 2,
  527. .brp_max = 512,
  528. .brp_inc = 1,
  529. };
  530. static void ifi_canfd_set_bittiming(struct net_device *ndev)
  531. {
  532. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  533. const struct can_bittiming *bt = &priv->can.bittiming;
  534. const struct can_bittiming *dbt = &priv->can.data_bittiming;
  535. u16 brp, sjw, tseg1, tseg2, tdc;
  536. /* Configure bit timing */
  537. brp = bt->brp - 2;
  538. sjw = bt->sjw - 1;
  539. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  540. tseg2 = bt->phase_seg2 - 2;
  541. writel((tseg2 << IFI_CANFD_TIME_TIMEB_OFF) |
  542. (tseg1 << IFI_CANFD_TIME_TIMEA_OFF) |
  543. (brp << IFI_CANFD_TIME_PRESCALE_OFF) |
  544. (sjw << IFI_CANFD_TIME_SJW_OFF_7_9_8_8),
  545. priv->base + IFI_CANFD_TIME);
  546. /* Configure data bit timing */
  547. brp = dbt->brp - 2;
  548. sjw = dbt->sjw - 1;
  549. tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
  550. tseg2 = dbt->phase_seg2 - 2;
  551. writel((tseg2 << IFI_CANFD_TIME_TIMEB_OFF) |
  552. (tseg1 << IFI_CANFD_TIME_TIMEA_OFF) |
  553. (brp << IFI_CANFD_TIME_PRESCALE_OFF) |
  554. (sjw << IFI_CANFD_TIME_SJW_OFF_7_9_8_8),
  555. priv->base + IFI_CANFD_FTIME);
  556. /* Configure transmitter delay */
  557. tdc = (dbt->brp * (dbt->phase_seg1 + 1)) & IFI_CANFD_TDELAY_MASK;
  558. writel(IFI_CANFD_TDELAY_EN | IFI_CANFD_TDELAY_ABS | tdc,
  559. priv->base + IFI_CANFD_TDELAY);
  560. }
  561. static void ifi_canfd_set_filter(struct net_device *ndev, const u32 id,
  562. const u32 mask, const u32 ident)
  563. {
  564. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  565. writel(mask, priv->base + IFI_CANFD_FILTER_MASK(id));
  566. writel(ident, priv->base + IFI_CANFD_FILTER_IDENT(id));
  567. }
  568. static void ifi_canfd_set_filters(struct net_device *ndev)
  569. {
  570. /* Receive all CAN frames (standard ID) */
  571. ifi_canfd_set_filter(ndev, 0,
  572. IFI_CANFD_FILTER_MASK_VALID |
  573. IFI_CANFD_FILTER_MASK_EXT,
  574. IFI_CANFD_FILTER_IDENT_VALID);
  575. /* Receive all CAN frames (extended ID) */
  576. ifi_canfd_set_filter(ndev, 1,
  577. IFI_CANFD_FILTER_MASK_VALID |
  578. IFI_CANFD_FILTER_MASK_EXT,
  579. IFI_CANFD_FILTER_IDENT_VALID |
  580. IFI_CANFD_FILTER_IDENT_IDE);
  581. /* Receive all CANFD frames */
  582. ifi_canfd_set_filter(ndev, 2,
  583. IFI_CANFD_FILTER_MASK_VALID |
  584. IFI_CANFD_FILTER_MASK_EDL |
  585. IFI_CANFD_FILTER_MASK_EXT,
  586. IFI_CANFD_FILTER_IDENT_VALID |
  587. IFI_CANFD_FILTER_IDENT_CANFD |
  588. IFI_CANFD_FILTER_IDENT_IDE);
  589. }
  590. static void ifi_canfd_start(struct net_device *ndev)
  591. {
  592. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  593. u32 stcmd;
  594. /* Reset the IP */
  595. writel(IFI_CANFD_STCMD_HARDRESET, priv->base + IFI_CANFD_STCMD);
  596. writel(IFI_CANFD_STCMD_ENABLE_7_9_8_8_TIMING,
  597. priv->base + IFI_CANFD_STCMD);
  598. ifi_canfd_set_bittiming(ndev);
  599. ifi_canfd_set_filters(ndev);
  600. /* Reset FIFOs */
  601. writel(IFI_CANFD_RXSTCMD_RESET, priv->base + IFI_CANFD_RXSTCMD);
  602. writel(0, priv->base + IFI_CANFD_RXSTCMD);
  603. writel(IFI_CANFD_TXSTCMD_RESET, priv->base + IFI_CANFD_TXSTCMD);
  604. writel(0, priv->base + IFI_CANFD_TXSTCMD);
  605. /* Repeat transmission until successful */
  606. writel(0, priv->base + IFI_CANFD_REPEAT);
  607. writel(0, priv->base + IFI_CANFD_SUSPEND);
  608. /* Clear all pending interrupts */
  609. writel((u32)(~IFI_CANFD_INTERRUPT_SET_IRQ),
  610. priv->base + IFI_CANFD_INTERRUPT);
  611. stcmd = IFI_CANFD_STCMD_ENABLE | IFI_CANFD_STCMD_NORMAL_MODE |
  612. IFI_CANFD_STCMD_ENABLE_7_9_8_8_TIMING;
  613. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  614. stcmd |= IFI_CANFD_STCMD_BUSMONITOR;
  615. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  616. stcmd |= IFI_CANFD_STCMD_LOOPBACK;
  617. if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
  618. !(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
  619. stcmd |= IFI_CANFD_STCMD_ENABLE_ISO;
  620. if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
  621. stcmd |= IFI_CANFD_STCMD_DISABLE_CANFD;
  622. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  623. ifi_canfd_irq_enable(ndev, 1);
  624. /* Unlock, reset and enable the error counter. */
  625. writel(IFI_CANFD_ERROR_CTR_UNLOCK_MAGIC,
  626. priv->base + IFI_CANFD_ERROR_CTR);
  627. writel(IFI_CANFD_ERROR_CTR_ER_RESET, priv->base + IFI_CANFD_ERROR_CTR);
  628. writel(IFI_CANFD_ERROR_CTR_ER_ENABLE, priv->base + IFI_CANFD_ERROR_CTR);
  629. /* Enable controller */
  630. writel(stcmd, priv->base + IFI_CANFD_STCMD);
  631. }
  632. static void ifi_canfd_stop(struct net_device *ndev)
  633. {
  634. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  635. /* Reset and disable the error counter. */
  636. writel(IFI_CANFD_ERROR_CTR_ER_RESET, priv->base + IFI_CANFD_ERROR_CTR);
  637. writel(0, priv->base + IFI_CANFD_ERROR_CTR);
  638. /* Reset the IP */
  639. writel(IFI_CANFD_STCMD_HARDRESET, priv->base + IFI_CANFD_STCMD);
  640. /* Mask all interrupts */
  641. writel(~0, priv->base + IFI_CANFD_IRQMASK);
  642. /* Clear all pending interrupts */
  643. writel((u32)(~IFI_CANFD_INTERRUPT_SET_IRQ),
  644. priv->base + IFI_CANFD_INTERRUPT);
  645. /* Set the state as STOPPED */
  646. priv->can.state = CAN_STATE_STOPPED;
  647. }
  648. static int ifi_canfd_set_mode(struct net_device *ndev, enum can_mode mode)
  649. {
  650. switch (mode) {
  651. case CAN_MODE_START:
  652. ifi_canfd_start(ndev);
  653. netif_wake_queue(ndev);
  654. break;
  655. default:
  656. return -EOPNOTSUPP;
  657. }
  658. return 0;
  659. }
  660. static int ifi_canfd_open(struct net_device *ndev)
  661. {
  662. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  663. int ret;
  664. ret = open_candev(ndev);
  665. if (ret) {
  666. netdev_err(ndev, "Failed to open CAN device\n");
  667. return ret;
  668. }
  669. /* Register interrupt handler */
  670. ret = request_irq(ndev->irq, ifi_canfd_isr, IRQF_SHARED,
  671. ndev->name, ndev);
  672. if (ret < 0) {
  673. netdev_err(ndev, "Failed to request interrupt\n");
  674. goto err_irq;
  675. }
  676. ifi_canfd_start(ndev);
  677. can_led_event(ndev, CAN_LED_EVENT_OPEN);
  678. napi_enable(&priv->napi);
  679. netif_start_queue(ndev);
  680. return 0;
  681. err_irq:
  682. close_candev(ndev);
  683. return ret;
  684. }
  685. static int ifi_canfd_close(struct net_device *ndev)
  686. {
  687. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  688. netif_stop_queue(ndev);
  689. napi_disable(&priv->napi);
  690. ifi_canfd_stop(ndev);
  691. free_irq(ndev->irq, ndev);
  692. close_candev(ndev);
  693. can_led_event(ndev, CAN_LED_EVENT_STOP);
  694. return 0;
  695. }
  696. static netdev_tx_t ifi_canfd_start_xmit(struct sk_buff *skb,
  697. struct net_device *ndev)
  698. {
  699. struct ifi_canfd_priv *priv = netdev_priv(ndev);
  700. struct canfd_frame *cf = (struct canfd_frame *)skb->data;
  701. u32 txst, txid, txdlc;
  702. int i;
  703. if (can_dropped_invalid_skb(ndev, skb))
  704. return NETDEV_TX_OK;
  705. /* Check if the TX buffer is full */
  706. txst = readl(priv->base + IFI_CANFD_TXSTCMD);
  707. if (txst & IFI_CANFD_TXSTCMD_FULL) {
  708. netif_stop_queue(ndev);
  709. netdev_err(ndev, "BUG! TX FIFO full when queue awake!\n");
  710. return NETDEV_TX_BUSY;
  711. }
  712. netif_stop_queue(ndev);
  713. if (cf->can_id & CAN_EFF_FLAG) {
  714. txid = cf->can_id & CAN_EFF_MASK;
  715. /*
  716. * In case the Extended ID frame is transmitted, the
  717. * standard and extended part of the ID are swapped
  718. * in the register, so swap them back to send the
  719. * correct ID.
  720. */
  721. txid = (txid >> IFI_CANFD_TXFIFO_ID_ID_XTD_WIDTH) |
  722. ((txid & IFI_CANFD_TXFIFO_ID_ID_XTD_MASK) <<
  723. IFI_CANFD_TXFIFO_ID_ID_XTD_OFFSET);
  724. txid |= IFI_CANFD_TXFIFO_ID_IDE;
  725. } else {
  726. txid = cf->can_id & CAN_SFF_MASK;
  727. }
  728. txdlc = can_len2dlc(cf->len);
  729. if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && can_is_canfd_skb(skb)) {
  730. txdlc |= IFI_CANFD_TXFIFO_DLC_EDL;
  731. if (cf->flags & CANFD_BRS)
  732. txdlc |= IFI_CANFD_TXFIFO_DLC_BRS;
  733. }
  734. if (cf->can_id & CAN_RTR_FLAG)
  735. txdlc |= IFI_CANFD_TXFIFO_DLC_RTR;
  736. /* message ram configuration */
  737. writel(txid, priv->base + IFI_CANFD_TXFIFO_ID);
  738. writel(txdlc, priv->base + IFI_CANFD_TXFIFO_DLC);
  739. for (i = 0; i < cf->len; i += 4) {
  740. writel(*(u32 *)(cf->data + i),
  741. priv->base + IFI_CANFD_TXFIFO_DATA + i);
  742. }
  743. writel(0, priv->base + IFI_CANFD_TXFIFO_REPEATCOUNT);
  744. writel(0, priv->base + IFI_CANFD_TXFIFO_SUSPEND_US);
  745. can_put_echo_skb(skb, ndev, 0);
  746. /* Start the transmission */
  747. writel(IFI_CANFD_TXSTCMD_ADD_MSG, priv->base + IFI_CANFD_TXSTCMD);
  748. return NETDEV_TX_OK;
  749. }
  750. static const struct net_device_ops ifi_canfd_netdev_ops = {
  751. .ndo_open = ifi_canfd_open,
  752. .ndo_stop = ifi_canfd_close,
  753. .ndo_start_xmit = ifi_canfd_start_xmit,
  754. .ndo_change_mtu = can_change_mtu,
  755. };
  756. static int ifi_canfd_plat_probe(struct platform_device *pdev)
  757. {
  758. struct device *dev = &pdev->dev;
  759. struct net_device *ndev;
  760. struct ifi_canfd_priv *priv;
  761. struct resource *res;
  762. void __iomem *addr;
  763. int irq, ret;
  764. u32 id;
  765. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  766. addr = devm_ioremap_resource(dev, res);
  767. irq = platform_get_irq(pdev, 0);
  768. if (IS_ERR(addr) || irq < 0)
  769. return -EINVAL;
  770. id = readl(addr + IFI_CANFD_IP_ID);
  771. if (id != IFI_CANFD_IP_ID_VALUE) {
  772. dev_err(dev, "This block is not IFI CANFD, id=%08x\n", id);
  773. return -EINVAL;
  774. }
  775. ndev = alloc_candev(sizeof(*priv), 1);
  776. if (!ndev)
  777. return -ENOMEM;
  778. ndev->irq = irq;
  779. ndev->flags |= IFF_ECHO; /* we support local echo */
  780. ndev->netdev_ops = &ifi_canfd_netdev_ops;
  781. priv = netdev_priv(ndev);
  782. priv->ndev = ndev;
  783. priv->base = addr;
  784. netif_napi_add(ndev, &priv->napi, ifi_canfd_poll, 64);
  785. priv->can.state = CAN_STATE_STOPPED;
  786. priv->can.clock.freq = readl(addr + IFI_CANFD_CANCLOCK);
  787. priv->can.bittiming_const = &ifi_canfd_bittiming_const;
  788. priv->can.data_bittiming_const = &ifi_canfd_bittiming_const;
  789. priv->can.do_set_mode = ifi_canfd_set_mode;
  790. priv->can.do_get_berr_counter = ifi_canfd_get_berr_counter;
  791. /* IFI CANFD can do both Bosch FD and ISO FD */
  792. priv->can.ctrlmode = CAN_CTRLMODE_FD;
  793. /* IFI CANFD can do both Bosch FD and ISO FD */
  794. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  795. CAN_CTRLMODE_LISTENONLY |
  796. CAN_CTRLMODE_FD |
  797. CAN_CTRLMODE_FD_NON_ISO |
  798. CAN_CTRLMODE_BERR_REPORTING;
  799. platform_set_drvdata(pdev, ndev);
  800. SET_NETDEV_DEV(ndev, dev);
  801. ret = register_candev(ndev);
  802. if (ret) {
  803. dev_err(dev, "Failed to register (ret=%d)\n", ret);
  804. goto err_reg;
  805. }
  806. devm_can_led_init(ndev);
  807. dev_info(dev, "Driver registered: regs=%p, irq=%d, clock=%d\n",
  808. priv->base, ndev->irq, priv->can.clock.freq);
  809. return 0;
  810. err_reg:
  811. free_candev(ndev);
  812. return ret;
  813. }
  814. static int ifi_canfd_plat_remove(struct platform_device *pdev)
  815. {
  816. struct net_device *ndev = platform_get_drvdata(pdev);
  817. unregister_candev(ndev);
  818. platform_set_drvdata(pdev, NULL);
  819. free_candev(ndev);
  820. return 0;
  821. }
  822. static const struct of_device_id ifi_canfd_of_table[] = {
  823. { .compatible = "ifi,canfd-1.0", .data = NULL },
  824. { /* sentinel */ },
  825. };
  826. MODULE_DEVICE_TABLE(of, ifi_canfd_of_table);
  827. static struct platform_driver ifi_canfd_plat_driver = {
  828. .driver = {
  829. .name = KBUILD_MODNAME,
  830. .of_match_table = ifi_canfd_of_table,
  831. },
  832. .probe = ifi_canfd_plat_probe,
  833. .remove = ifi_canfd_plat_remove,
  834. };
  835. module_platform_driver(ifi_canfd_plat_driver);
  836. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  837. MODULE_LICENSE("GPL v2");
  838. MODULE_DESCRIPTION("CAN bus driver for IFI CANFD controller");