nandsim.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422
  1. /*
  2. * NAND flash simulator.
  3. *
  4. * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
  5. *
  6. * Copyright (C) 2004 Nokia Corporation
  7. *
  8. * Note: NS means "NAND Simulator".
  9. * Note: Input means input TO flash chip, output means output FROM chip.
  10. *
  11. * This program is free software; you can redistribute it and/or modify it
  12. * under the terms of the GNU General Public License as published by the
  13. * Free Software Foundation; either version 2, or (at your option) any later
  14. * version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19. * Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24. */
  25. #include <linux/init.h>
  26. #include <linux/types.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/math64.h>
  31. #include <linux/slab.h>
  32. #include <linux/errno.h>
  33. #include <linux/string.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/nand.h>
  36. #include <linux/mtd/nand_bch.h>
  37. #include <linux/mtd/partitions.h>
  38. #include <linux/delay.h>
  39. #include <linux/list.h>
  40. #include <linux/random.h>
  41. #include <linux/sched.h>
  42. #include <linux/fs.h>
  43. #include <linux/pagemap.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/debugfs.h>
  46. /* Default simulator parameters values */
  47. #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
  48. !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  49. !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
  50. !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  51. #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
  52. #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  53. #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
  54. #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  55. #endif
  56. #ifndef CONFIG_NANDSIM_ACCESS_DELAY
  57. #define CONFIG_NANDSIM_ACCESS_DELAY 25
  58. #endif
  59. #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  60. #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  61. #endif
  62. #ifndef CONFIG_NANDSIM_ERASE_DELAY
  63. #define CONFIG_NANDSIM_ERASE_DELAY 2
  64. #endif
  65. #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  66. #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  67. #endif
  68. #ifndef CONFIG_NANDSIM_INPUT_CYCLE
  69. #define CONFIG_NANDSIM_INPUT_CYCLE 50
  70. #endif
  71. #ifndef CONFIG_NANDSIM_BUS_WIDTH
  72. #define CONFIG_NANDSIM_BUS_WIDTH 8
  73. #endif
  74. #ifndef CONFIG_NANDSIM_DO_DELAYS
  75. #define CONFIG_NANDSIM_DO_DELAYS 0
  76. #endif
  77. #ifndef CONFIG_NANDSIM_LOG
  78. #define CONFIG_NANDSIM_LOG 0
  79. #endif
  80. #ifndef CONFIG_NANDSIM_DBG
  81. #define CONFIG_NANDSIM_DBG 0
  82. #endif
  83. #ifndef CONFIG_NANDSIM_MAX_PARTS
  84. #define CONFIG_NANDSIM_MAX_PARTS 32
  85. #endif
  86. static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
  87. static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  88. static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
  89. static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
  90. static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
  91. static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
  92. static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
  93. static uint log = CONFIG_NANDSIM_LOG;
  94. static uint dbg = CONFIG_NANDSIM_DBG;
  95. static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
  96. static unsigned int parts_num;
  97. static char *badblocks = NULL;
  98. static char *weakblocks = NULL;
  99. static char *weakpages = NULL;
  100. static unsigned int bitflips = 0;
  101. static char *gravepages = NULL;
  102. static unsigned int overridesize = 0;
  103. static char *cache_file = NULL;
  104. static unsigned int bbt;
  105. static unsigned int bch;
  106. static u_char id_bytes[8] = {
  107. [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
  108. [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
  109. [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
  110. [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
  111. [4 ... 7] = 0xFF,
  112. };
  113. module_param_array(id_bytes, byte, NULL, 0400);
  114. module_param_named(first_id_byte, id_bytes[0], byte, 0400);
  115. module_param_named(second_id_byte, id_bytes[1], byte, 0400);
  116. module_param_named(third_id_byte, id_bytes[2], byte, 0400);
  117. module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
  118. module_param(access_delay, uint, 0400);
  119. module_param(programm_delay, uint, 0400);
  120. module_param(erase_delay, uint, 0400);
  121. module_param(output_cycle, uint, 0400);
  122. module_param(input_cycle, uint, 0400);
  123. module_param(bus_width, uint, 0400);
  124. module_param(do_delays, uint, 0400);
  125. module_param(log, uint, 0400);
  126. module_param(dbg, uint, 0400);
  127. module_param_array(parts, ulong, &parts_num, 0400);
  128. module_param(badblocks, charp, 0400);
  129. module_param(weakblocks, charp, 0400);
  130. module_param(weakpages, charp, 0400);
  131. module_param(bitflips, uint, 0400);
  132. module_param(gravepages, charp, 0400);
  133. module_param(overridesize, uint, 0400);
  134. module_param(cache_file, charp, 0400);
  135. module_param(bbt, uint, 0400);
  136. module_param(bch, uint, 0400);
  137. MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command");
  138. MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
  139. MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
  140. MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
  141. MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
  142. MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
  143. MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
  144. MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
  145. MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
  146. MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
  147. MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
  148. MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
  149. MODULE_PARM_DESC(log, "Perform logging if not zero");
  150. MODULE_PARM_DESC(dbg, "Output debug information if not zero");
  151. MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
  152. /* Page and erase block positions for the following parameters are independent of any partitions */
  153. MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
  154. MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
  155. " separated by commas e.g. 113:2 means eb 113"
  156. " can be erased only twice before failing");
  157. MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
  158. " separated by commas e.g. 1401:2 means page 1401"
  159. " can be written only twice before failing");
  160. MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
  161. MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
  162. " separated by commas e.g. 1401:2 means page 1401"
  163. " can be read only twice before failing");
  164. MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
  165. "The size is specified in erase blocks and as the exponent of a power of two"
  166. " e.g. 5 means a size of 32 erase blocks");
  167. MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
  168. MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
  169. MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
  170. "be correctable in 512-byte blocks");
  171. /* The largest possible page size */
  172. #define NS_LARGEST_PAGE_SIZE 4096
  173. /* The prefix for simulator output */
  174. #define NS_OUTPUT_PREFIX "[nandsim]"
  175. /* Simulator's output macros (logging, debugging, warning, error) */
  176. #define NS_LOG(args...) \
  177. do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
  178. #define NS_DBG(args...) \
  179. do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
  180. #define NS_WARN(args...) \
  181. do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
  182. #define NS_ERR(args...) \
  183. do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
  184. #define NS_INFO(args...) \
  185. do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
  186. /* Busy-wait delay macros (microseconds, milliseconds) */
  187. #define NS_UDELAY(us) \
  188. do { if (do_delays) udelay(us); } while(0)
  189. #define NS_MDELAY(us) \
  190. do { if (do_delays) mdelay(us); } while(0)
  191. /* Is the nandsim structure initialized ? */
  192. #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
  193. /* Good operation completion status */
  194. #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
  195. /* Operation failed completion status */
  196. #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
  197. /* Calculate the page offset in flash RAM image by (row, column) address */
  198. #define NS_RAW_OFFSET(ns) \
  199. (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
  200. /* Calculate the OOB offset in flash RAM image by (row, column) address */
  201. #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
  202. /* After a command is input, the simulator goes to one of the following states */
  203. #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
  204. #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
  205. #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
  206. #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
  207. #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
  208. #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
  209. #define STATE_CMD_STATUS 0x00000007 /* read status */
  210. #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
  211. #define STATE_CMD_READID 0x0000000A /* read ID */
  212. #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
  213. #define STATE_CMD_RESET 0x0000000C /* reset */
  214. #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
  215. #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
  216. #define STATE_CMD_MASK 0x0000000F /* command states mask */
  217. /* After an address is input, the simulator goes to one of these states */
  218. #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
  219. #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
  220. #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
  221. #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
  222. #define STATE_ADDR_MASK 0x00000070 /* address states mask */
  223. /* During data input/output the simulator is in these states */
  224. #define STATE_DATAIN 0x00000100 /* waiting for data input */
  225. #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
  226. #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
  227. #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
  228. #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
  229. #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
  230. /* Previous operation is done, ready to accept new requests */
  231. #define STATE_READY 0x00000000
  232. /* This state is used to mark that the next state isn't known yet */
  233. #define STATE_UNKNOWN 0x10000000
  234. /* Simulator's actions bit masks */
  235. #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
  236. #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
  237. #define ACTION_SECERASE 0x00300000 /* erase sector */
  238. #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
  239. #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
  240. #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
  241. #define ACTION_MASK 0x00700000 /* action mask */
  242. #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
  243. #define NS_OPER_STATES 6 /* Maximum number of states in operation */
  244. #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
  245. #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
  246. #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
  247. #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
  248. #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
  249. #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
  250. #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
  251. /* Remove action bits from state */
  252. #define NS_STATE(x) ((x) & ~ACTION_MASK)
  253. /*
  254. * Maximum previous states which need to be saved. Currently saving is
  255. * only needed for page program operation with preceded read command
  256. * (which is only valid for 512-byte pages).
  257. */
  258. #define NS_MAX_PREVSTATES 1
  259. /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
  260. #define NS_MAX_HELD_PAGES 16
  261. struct nandsim_debug_info {
  262. struct dentry *dfs_root;
  263. struct dentry *dfs_wear_report;
  264. };
  265. /*
  266. * A union to represent flash memory contents and flash buffer.
  267. */
  268. union ns_mem {
  269. u_char *byte; /* for byte access */
  270. uint16_t *word; /* for 16-bit word access */
  271. };
  272. /*
  273. * The structure which describes all the internal simulator data.
  274. */
  275. struct nandsim {
  276. struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
  277. unsigned int nbparts;
  278. uint busw; /* flash chip bus width (8 or 16) */
  279. u_char ids[8]; /* chip's ID bytes */
  280. uint32_t options; /* chip's characteristic bits */
  281. uint32_t state; /* current chip state */
  282. uint32_t nxstate; /* next expected state */
  283. uint32_t *op; /* current operation, NULL operations isn't known yet */
  284. uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
  285. uint16_t npstates; /* number of previous states saved */
  286. uint16_t stateidx; /* current state index */
  287. /* The simulated NAND flash pages array */
  288. union ns_mem *pages;
  289. /* Slab allocator for nand pages */
  290. struct kmem_cache *nand_pages_slab;
  291. /* Internal buffer of page + OOB size bytes */
  292. union ns_mem buf;
  293. /* NAND flash "geometry" */
  294. struct {
  295. uint64_t totsz; /* total flash size, bytes */
  296. uint32_t secsz; /* flash sector (erase block) size, bytes */
  297. uint pgsz; /* NAND flash page size, bytes */
  298. uint oobsz; /* page OOB area size, bytes */
  299. uint64_t totszoob; /* total flash size including OOB, bytes */
  300. uint pgszoob; /* page size including OOB , bytes*/
  301. uint secszoob; /* sector size including OOB, bytes */
  302. uint pgnum; /* total number of pages */
  303. uint pgsec; /* number of pages per sector */
  304. uint secshift; /* bits number in sector size */
  305. uint pgshift; /* bits number in page size */
  306. uint pgaddrbytes; /* bytes per page address */
  307. uint secaddrbytes; /* bytes per sector address */
  308. uint idbytes; /* the number ID bytes that this chip outputs */
  309. } geom;
  310. /* NAND flash internal registers */
  311. struct {
  312. unsigned command; /* the command register */
  313. u_char status; /* the status register */
  314. uint row; /* the page number */
  315. uint column; /* the offset within page */
  316. uint count; /* internal counter */
  317. uint num; /* number of bytes which must be processed */
  318. uint off; /* fixed page offset */
  319. } regs;
  320. /* NAND flash lines state */
  321. struct {
  322. int ce; /* chip Enable */
  323. int cle; /* command Latch Enable */
  324. int ale; /* address Latch Enable */
  325. int wp; /* write Protect */
  326. } lines;
  327. /* Fields needed when using a cache file */
  328. struct file *cfile; /* Open file */
  329. unsigned long *pages_written; /* Which pages have been written */
  330. void *file_buf;
  331. struct page *held_pages[NS_MAX_HELD_PAGES];
  332. int held_cnt;
  333. struct nandsim_debug_info dbg;
  334. };
  335. /*
  336. * Operations array. To perform any operation the simulator must pass
  337. * through the correspondent states chain.
  338. */
  339. static struct nandsim_operations {
  340. uint32_t reqopts; /* options which are required to perform the operation */
  341. uint32_t states[NS_OPER_STATES]; /* operation's states */
  342. } ops[NS_OPER_NUM] = {
  343. /* Read page + OOB from the beginning */
  344. {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
  345. STATE_DATAOUT, STATE_READY}},
  346. /* Read page + OOB from the second half */
  347. {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
  348. STATE_DATAOUT, STATE_READY}},
  349. /* Read OOB */
  350. {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
  351. STATE_DATAOUT, STATE_READY}},
  352. /* Program page starting from the beginning */
  353. {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
  354. STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  355. /* Program page starting from the beginning */
  356. {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
  357. STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  358. /* Program page starting from the second half */
  359. {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
  360. STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  361. /* Program OOB */
  362. {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
  363. STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  364. /* Erase sector */
  365. {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
  366. /* Read status */
  367. {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
  368. /* Read ID */
  369. {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
  370. /* Large page devices read page */
  371. {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
  372. STATE_DATAOUT, STATE_READY}},
  373. /* Large page devices random page read */
  374. {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
  375. STATE_DATAOUT, STATE_READY}},
  376. };
  377. struct weak_block {
  378. struct list_head list;
  379. unsigned int erase_block_no;
  380. unsigned int max_erases;
  381. unsigned int erases_done;
  382. };
  383. static LIST_HEAD(weak_blocks);
  384. struct weak_page {
  385. struct list_head list;
  386. unsigned int page_no;
  387. unsigned int max_writes;
  388. unsigned int writes_done;
  389. };
  390. static LIST_HEAD(weak_pages);
  391. struct grave_page {
  392. struct list_head list;
  393. unsigned int page_no;
  394. unsigned int max_reads;
  395. unsigned int reads_done;
  396. };
  397. static LIST_HEAD(grave_pages);
  398. static unsigned long *erase_block_wear = NULL;
  399. static unsigned int wear_eb_count = 0;
  400. static unsigned long total_wear = 0;
  401. /* MTD structure for NAND controller */
  402. static struct mtd_info *nsmtd;
  403. static int nandsim_debugfs_show(struct seq_file *m, void *private)
  404. {
  405. unsigned long wmin = -1, wmax = 0, avg;
  406. unsigned long deciles[10], decile_max[10], tot = 0;
  407. unsigned int i;
  408. /* Calc wear stats */
  409. for (i = 0; i < wear_eb_count; ++i) {
  410. unsigned long wear = erase_block_wear[i];
  411. if (wear < wmin)
  412. wmin = wear;
  413. if (wear > wmax)
  414. wmax = wear;
  415. tot += wear;
  416. }
  417. for (i = 0; i < 9; ++i) {
  418. deciles[i] = 0;
  419. decile_max[i] = (wmax * (i + 1) + 5) / 10;
  420. }
  421. deciles[9] = 0;
  422. decile_max[9] = wmax;
  423. for (i = 0; i < wear_eb_count; ++i) {
  424. int d;
  425. unsigned long wear = erase_block_wear[i];
  426. for (d = 0; d < 10; ++d)
  427. if (wear <= decile_max[d]) {
  428. deciles[d] += 1;
  429. break;
  430. }
  431. }
  432. avg = tot / wear_eb_count;
  433. /* Output wear report */
  434. seq_printf(m, "Total numbers of erases: %lu\n", tot);
  435. seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
  436. seq_printf(m, "Average number of erases: %lu\n", avg);
  437. seq_printf(m, "Maximum number of erases: %lu\n", wmax);
  438. seq_printf(m, "Minimum number of erases: %lu\n", wmin);
  439. for (i = 0; i < 10; ++i) {
  440. unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
  441. if (from > decile_max[i])
  442. continue;
  443. seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
  444. from,
  445. decile_max[i],
  446. deciles[i]);
  447. }
  448. return 0;
  449. }
  450. static int nandsim_debugfs_open(struct inode *inode, struct file *file)
  451. {
  452. return single_open(file, nandsim_debugfs_show, inode->i_private);
  453. }
  454. static const struct file_operations dfs_fops = {
  455. .open = nandsim_debugfs_open,
  456. .read = seq_read,
  457. .llseek = seq_lseek,
  458. .release = single_release,
  459. };
  460. /**
  461. * nandsim_debugfs_create - initialize debugfs
  462. * @dev: nandsim device description object
  463. *
  464. * This function creates all debugfs files for UBI device @ubi. Returns zero in
  465. * case of success and a negative error code in case of failure.
  466. */
  467. static int nandsim_debugfs_create(struct nandsim *dev)
  468. {
  469. struct nandsim_debug_info *dbg = &dev->dbg;
  470. struct dentry *dent;
  471. if (!IS_ENABLED(CONFIG_DEBUG_FS))
  472. return 0;
  473. dent = debugfs_create_dir("nandsim", NULL);
  474. if (!dent) {
  475. NS_ERR("cannot create \"nandsim\" debugfs directory\n");
  476. return -ENODEV;
  477. }
  478. dbg->dfs_root = dent;
  479. dent = debugfs_create_file("wear_report", S_IRUSR,
  480. dbg->dfs_root, dev, &dfs_fops);
  481. if (!dent)
  482. goto out_remove;
  483. dbg->dfs_wear_report = dent;
  484. return 0;
  485. out_remove:
  486. debugfs_remove_recursive(dbg->dfs_root);
  487. return -ENODEV;
  488. }
  489. /**
  490. * nandsim_debugfs_remove - destroy all debugfs files
  491. */
  492. static void nandsim_debugfs_remove(struct nandsim *ns)
  493. {
  494. if (IS_ENABLED(CONFIG_DEBUG_FS))
  495. debugfs_remove_recursive(ns->dbg.dfs_root);
  496. }
  497. /*
  498. * Allocate array of page pointers, create slab allocation for an array
  499. * and initialize the array by NULL pointers.
  500. *
  501. * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
  502. */
  503. static int __init alloc_device(struct nandsim *ns)
  504. {
  505. struct file *cfile;
  506. int i, err;
  507. if (cache_file) {
  508. cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
  509. if (IS_ERR(cfile))
  510. return PTR_ERR(cfile);
  511. if (!(cfile->f_mode & FMODE_CAN_READ)) {
  512. NS_ERR("alloc_device: cache file not readable\n");
  513. err = -EINVAL;
  514. goto err_close;
  515. }
  516. if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
  517. NS_ERR("alloc_device: cache file not writeable\n");
  518. err = -EINVAL;
  519. goto err_close;
  520. }
  521. ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
  522. sizeof(unsigned long));
  523. if (!ns->pages_written) {
  524. NS_ERR("alloc_device: unable to allocate pages written array\n");
  525. err = -ENOMEM;
  526. goto err_close;
  527. }
  528. ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
  529. if (!ns->file_buf) {
  530. NS_ERR("alloc_device: unable to allocate file buf\n");
  531. err = -ENOMEM;
  532. goto err_free;
  533. }
  534. ns->cfile = cfile;
  535. return 0;
  536. }
  537. ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
  538. if (!ns->pages) {
  539. NS_ERR("alloc_device: unable to allocate page array\n");
  540. return -ENOMEM;
  541. }
  542. for (i = 0; i < ns->geom.pgnum; i++) {
  543. ns->pages[i].byte = NULL;
  544. }
  545. ns->nand_pages_slab = kmem_cache_create("nandsim",
  546. ns->geom.pgszoob, 0, 0, NULL);
  547. if (!ns->nand_pages_slab) {
  548. NS_ERR("cache_create: unable to create kmem_cache\n");
  549. return -ENOMEM;
  550. }
  551. return 0;
  552. err_free:
  553. vfree(ns->pages_written);
  554. err_close:
  555. filp_close(cfile, NULL);
  556. return err;
  557. }
  558. /*
  559. * Free any allocated pages, and free the array of page pointers.
  560. */
  561. static void free_device(struct nandsim *ns)
  562. {
  563. int i;
  564. if (ns->cfile) {
  565. kfree(ns->file_buf);
  566. vfree(ns->pages_written);
  567. filp_close(ns->cfile, NULL);
  568. return;
  569. }
  570. if (ns->pages) {
  571. for (i = 0; i < ns->geom.pgnum; i++) {
  572. if (ns->pages[i].byte)
  573. kmem_cache_free(ns->nand_pages_slab,
  574. ns->pages[i].byte);
  575. }
  576. kmem_cache_destroy(ns->nand_pages_slab);
  577. vfree(ns->pages);
  578. }
  579. }
  580. static char __init *get_partition_name(int i)
  581. {
  582. return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
  583. }
  584. /*
  585. * Initialize the nandsim structure.
  586. *
  587. * RETURNS: 0 if success, -ERRNO if failure.
  588. */
  589. static int __init init_nandsim(struct mtd_info *mtd)
  590. {
  591. struct nand_chip *chip = mtd_to_nand(mtd);
  592. struct nandsim *ns = nand_get_controller_data(chip);
  593. int i, ret = 0;
  594. uint64_t remains;
  595. uint64_t next_offset;
  596. if (NS_IS_INITIALIZED(ns)) {
  597. NS_ERR("init_nandsim: nandsim is already initialized\n");
  598. return -EIO;
  599. }
  600. /* Force mtd to not do delays */
  601. chip->chip_delay = 0;
  602. /* Initialize the NAND flash parameters */
  603. ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
  604. ns->geom.totsz = mtd->size;
  605. ns->geom.pgsz = mtd->writesize;
  606. ns->geom.oobsz = mtd->oobsize;
  607. ns->geom.secsz = mtd->erasesize;
  608. ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
  609. ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
  610. ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
  611. ns->geom.secshift = ffs(ns->geom.secsz) - 1;
  612. ns->geom.pgshift = chip->page_shift;
  613. ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
  614. ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
  615. ns->options = 0;
  616. if (ns->geom.pgsz == 512) {
  617. ns->options |= OPT_PAGE512;
  618. if (ns->busw == 8)
  619. ns->options |= OPT_PAGE512_8BIT;
  620. } else if (ns->geom.pgsz == 2048) {
  621. ns->options |= OPT_PAGE2048;
  622. } else if (ns->geom.pgsz == 4096) {
  623. ns->options |= OPT_PAGE4096;
  624. } else {
  625. NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
  626. return -EIO;
  627. }
  628. if (ns->options & OPT_SMALLPAGE) {
  629. if (ns->geom.totsz <= (32 << 20)) {
  630. ns->geom.pgaddrbytes = 3;
  631. ns->geom.secaddrbytes = 2;
  632. } else {
  633. ns->geom.pgaddrbytes = 4;
  634. ns->geom.secaddrbytes = 3;
  635. }
  636. } else {
  637. if (ns->geom.totsz <= (128 << 20)) {
  638. ns->geom.pgaddrbytes = 4;
  639. ns->geom.secaddrbytes = 2;
  640. } else {
  641. ns->geom.pgaddrbytes = 5;
  642. ns->geom.secaddrbytes = 3;
  643. }
  644. }
  645. /* Fill the partition_info structure */
  646. if (parts_num > ARRAY_SIZE(ns->partitions)) {
  647. NS_ERR("too many partitions.\n");
  648. return -EINVAL;
  649. }
  650. remains = ns->geom.totsz;
  651. next_offset = 0;
  652. for (i = 0; i < parts_num; ++i) {
  653. uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
  654. if (!part_sz || part_sz > remains) {
  655. NS_ERR("bad partition size.\n");
  656. return -EINVAL;
  657. }
  658. ns->partitions[i].name = get_partition_name(i);
  659. if (!ns->partitions[i].name) {
  660. NS_ERR("unable to allocate memory.\n");
  661. return -ENOMEM;
  662. }
  663. ns->partitions[i].offset = next_offset;
  664. ns->partitions[i].size = part_sz;
  665. next_offset += ns->partitions[i].size;
  666. remains -= ns->partitions[i].size;
  667. }
  668. ns->nbparts = parts_num;
  669. if (remains) {
  670. if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
  671. NS_ERR("too many partitions.\n");
  672. return -EINVAL;
  673. }
  674. ns->partitions[i].name = get_partition_name(i);
  675. if (!ns->partitions[i].name) {
  676. NS_ERR("unable to allocate memory.\n");
  677. return -ENOMEM;
  678. }
  679. ns->partitions[i].offset = next_offset;
  680. ns->partitions[i].size = remains;
  681. ns->nbparts += 1;
  682. }
  683. if (ns->busw == 16)
  684. NS_WARN("16-bit flashes support wasn't tested\n");
  685. printk("flash size: %llu MiB\n",
  686. (unsigned long long)ns->geom.totsz >> 20);
  687. printk("page size: %u bytes\n", ns->geom.pgsz);
  688. printk("OOB area size: %u bytes\n", ns->geom.oobsz);
  689. printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
  690. printk("pages number: %u\n", ns->geom.pgnum);
  691. printk("pages per sector: %u\n", ns->geom.pgsec);
  692. printk("bus width: %u\n", ns->busw);
  693. printk("bits in sector size: %u\n", ns->geom.secshift);
  694. printk("bits in page size: %u\n", ns->geom.pgshift);
  695. printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1);
  696. printk("flash size with OOB: %llu KiB\n",
  697. (unsigned long long)ns->geom.totszoob >> 10);
  698. printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
  699. printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
  700. printk("options: %#x\n", ns->options);
  701. if ((ret = alloc_device(ns)) != 0)
  702. return ret;
  703. /* Allocate / initialize the internal buffer */
  704. ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
  705. if (!ns->buf.byte) {
  706. NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
  707. ns->geom.pgszoob);
  708. return -ENOMEM;
  709. }
  710. memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
  711. return 0;
  712. }
  713. /*
  714. * Free the nandsim structure.
  715. */
  716. static void free_nandsim(struct nandsim *ns)
  717. {
  718. kfree(ns->buf.byte);
  719. free_device(ns);
  720. return;
  721. }
  722. static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
  723. {
  724. char *w;
  725. int zero_ok;
  726. unsigned int erase_block_no;
  727. loff_t offset;
  728. if (!badblocks)
  729. return 0;
  730. w = badblocks;
  731. do {
  732. zero_ok = (*w == '0' ? 1 : 0);
  733. erase_block_no = simple_strtoul(w, &w, 0);
  734. if (!zero_ok && !erase_block_no) {
  735. NS_ERR("invalid badblocks.\n");
  736. return -EINVAL;
  737. }
  738. offset = (loff_t)erase_block_no * ns->geom.secsz;
  739. if (mtd_block_markbad(mtd, offset)) {
  740. NS_ERR("invalid badblocks.\n");
  741. return -EINVAL;
  742. }
  743. if (*w == ',')
  744. w += 1;
  745. } while (*w);
  746. return 0;
  747. }
  748. static int parse_weakblocks(void)
  749. {
  750. char *w;
  751. int zero_ok;
  752. unsigned int erase_block_no;
  753. unsigned int max_erases;
  754. struct weak_block *wb;
  755. if (!weakblocks)
  756. return 0;
  757. w = weakblocks;
  758. do {
  759. zero_ok = (*w == '0' ? 1 : 0);
  760. erase_block_no = simple_strtoul(w, &w, 0);
  761. if (!zero_ok && !erase_block_no) {
  762. NS_ERR("invalid weakblocks.\n");
  763. return -EINVAL;
  764. }
  765. max_erases = 3;
  766. if (*w == ':') {
  767. w += 1;
  768. max_erases = simple_strtoul(w, &w, 0);
  769. }
  770. if (*w == ',')
  771. w += 1;
  772. wb = kzalloc(sizeof(*wb), GFP_KERNEL);
  773. if (!wb) {
  774. NS_ERR("unable to allocate memory.\n");
  775. return -ENOMEM;
  776. }
  777. wb->erase_block_no = erase_block_no;
  778. wb->max_erases = max_erases;
  779. list_add(&wb->list, &weak_blocks);
  780. } while (*w);
  781. return 0;
  782. }
  783. static int erase_error(unsigned int erase_block_no)
  784. {
  785. struct weak_block *wb;
  786. list_for_each_entry(wb, &weak_blocks, list)
  787. if (wb->erase_block_no == erase_block_no) {
  788. if (wb->erases_done >= wb->max_erases)
  789. return 1;
  790. wb->erases_done += 1;
  791. return 0;
  792. }
  793. return 0;
  794. }
  795. static int parse_weakpages(void)
  796. {
  797. char *w;
  798. int zero_ok;
  799. unsigned int page_no;
  800. unsigned int max_writes;
  801. struct weak_page *wp;
  802. if (!weakpages)
  803. return 0;
  804. w = weakpages;
  805. do {
  806. zero_ok = (*w == '0' ? 1 : 0);
  807. page_no = simple_strtoul(w, &w, 0);
  808. if (!zero_ok && !page_no) {
  809. NS_ERR("invalid weakpagess.\n");
  810. return -EINVAL;
  811. }
  812. max_writes = 3;
  813. if (*w == ':') {
  814. w += 1;
  815. max_writes = simple_strtoul(w, &w, 0);
  816. }
  817. if (*w == ',')
  818. w += 1;
  819. wp = kzalloc(sizeof(*wp), GFP_KERNEL);
  820. if (!wp) {
  821. NS_ERR("unable to allocate memory.\n");
  822. return -ENOMEM;
  823. }
  824. wp->page_no = page_no;
  825. wp->max_writes = max_writes;
  826. list_add(&wp->list, &weak_pages);
  827. } while (*w);
  828. return 0;
  829. }
  830. static int write_error(unsigned int page_no)
  831. {
  832. struct weak_page *wp;
  833. list_for_each_entry(wp, &weak_pages, list)
  834. if (wp->page_no == page_no) {
  835. if (wp->writes_done >= wp->max_writes)
  836. return 1;
  837. wp->writes_done += 1;
  838. return 0;
  839. }
  840. return 0;
  841. }
  842. static int parse_gravepages(void)
  843. {
  844. char *g;
  845. int zero_ok;
  846. unsigned int page_no;
  847. unsigned int max_reads;
  848. struct grave_page *gp;
  849. if (!gravepages)
  850. return 0;
  851. g = gravepages;
  852. do {
  853. zero_ok = (*g == '0' ? 1 : 0);
  854. page_no = simple_strtoul(g, &g, 0);
  855. if (!zero_ok && !page_no) {
  856. NS_ERR("invalid gravepagess.\n");
  857. return -EINVAL;
  858. }
  859. max_reads = 3;
  860. if (*g == ':') {
  861. g += 1;
  862. max_reads = simple_strtoul(g, &g, 0);
  863. }
  864. if (*g == ',')
  865. g += 1;
  866. gp = kzalloc(sizeof(*gp), GFP_KERNEL);
  867. if (!gp) {
  868. NS_ERR("unable to allocate memory.\n");
  869. return -ENOMEM;
  870. }
  871. gp->page_no = page_no;
  872. gp->max_reads = max_reads;
  873. list_add(&gp->list, &grave_pages);
  874. } while (*g);
  875. return 0;
  876. }
  877. static int read_error(unsigned int page_no)
  878. {
  879. struct grave_page *gp;
  880. list_for_each_entry(gp, &grave_pages, list)
  881. if (gp->page_no == page_no) {
  882. if (gp->reads_done >= gp->max_reads)
  883. return 1;
  884. gp->reads_done += 1;
  885. return 0;
  886. }
  887. return 0;
  888. }
  889. static void free_lists(void)
  890. {
  891. struct list_head *pos, *n;
  892. list_for_each_safe(pos, n, &weak_blocks) {
  893. list_del(pos);
  894. kfree(list_entry(pos, struct weak_block, list));
  895. }
  896. list_for_each_safe(pos, n, &weak_pages) {
  897. list_del(pos);
  898. kfree(list_entry(pos, struct weak_page, list));
  899. }
  900. list_for_each_safe(pos, n, &grave_pages) {
  901. list_del(pos);
  902. kfree(list_entry(pos, struct grave_page, list));
  903. }
  904. kfree(erase_block_wear);
  905. }
  906. static int setup_wear_reporting(struct mtd_info *mtd)
  907. {
  908. size_t mem;
  909. wear_eb_count = div_u64(mtd->size, mtd->erasesize);
  910. mem = wear_eb_count * sizeof(unsigned long);
  911. if (mem / sizeof(unsigned long) != wear_eb_count) {
  912. NS_ERR("Too many erase blocks for wear reporting\n");
  913. return -ENOMEM;
  914. }
  915. erase_block_wear = kzalloc(mem, GFP_KERNEL);
  916. if (!erase_block_wear) {
  917. NS_ERR("Too many erase blocks for wear reporting\n");
  918. return -ENOMEM;
  919. }
  920. return 0;
  921. }
  922. static void update_wear(unsigned int erase_block_no)
  923. {
  924. if (!erase_block_wear)
  925. return;
  926. total_wear += 1;
  927. /*
  928. * TODO: Notify this through a debugfs entry,
  929. * instead of showing an error message.
  930. */
  931. if (total_wear == 0)
  932. NS_ERR("Erase counter total overflow\n");
  933. erase_block_wear[erase_block_no] += 1;
  934. if (erase_block_wear[erase_block_no] == 0)
  935. NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
  936. }
  937. /*
  938. * Returns the string representation of 'state' state.
  939. */
  940. static char *get_state_name(uint32_t state)
  941. {
  942. switch (NS_STATE(state)) {
  943. case STATE_CMD_READ0:
  944. return "STATE_CMD_READ0";
  945. case STATE_CMD_READ1:
  946. return "STATE_CMD_READ1";
  947. case STATE_CMD_PAGEPROG:
  948. return "STATE_CMD_PAGEPROG";
  949. case STATE_CMD_READOOB:
  950. return "STATE_CMD_READOOB";
  951. case STATE_CMD_READSTART:
  952. return "STATE_CMD_READSTART";
  953. case STATE_CMD_ERASE1:
  954. return "STATE_CMD_ERASE1";
  955. case STATE_CMD_STATUS:
  956. return "STATE_CMD_STATUS";
  957. case STATE_CMD_SEQIN:
  958. return "STATE_CMD_SEQIN";
  959. case STATE_CMD_READID:
  960. return "STATE_CMD_READID";
  961. case STATE_CMD_ERASE2:
  962. return "STATE_CMD_ERASE2";
  963. case STATE_CMD_RESET:
  964. return "STATE_CMD_RESET";
  965. case STATE_CMD_RNDOUT:
  966. return "STATE_CMD_RNDOUT";
  967. case STATE_CMD_RNDOUTSTART:
  968. return "STATE_CMD_RNDOUTSTART";
  969. case STATE_ADDR_PAGE:
  970. return "STATE_ADDR_PAGE";
  971. case STATE_ADDR_SEC:
  972. return "STATE_ADDR_SEC";
  973. case STATE_ADDR_ZERO:
  974. return "STATE_ADDR_ZERO";
  975. case STATE_ADDR_COLUMN:
  976. return "STATE_ADDR_COLUMN";
  977. case STATE_DATAIN:
  978. return "STATE_DATAIN";
  979. case STATE_DATAOUT:
  980. return "STATE_DATAOUT";
  981. case STATE_DATAOUT_ID:
  982. return "STATE_DATAOUT_ID";
  983. case STATE_DATAOUT_STATUS:
  984. return "STATE_DATAOUT_STATUS";
  985. case STATE_READY:
  986. return "STATE_READY";
  987. case STATE_UNKNOWN:
  988. return "STATE_UNKNOWN";
  989. }
  990. NS_ERR("get_state_name: unknown state, BUG\n");
  991. return NULL;
  992. }
  993. /*
  994. * Check if command is valid.
  995. *
  996. * RETURNS: 1 if wrong command, 0 if right.
  997. */
  998. static int check_command(int cmd)
  999. {
  1000. switch (cmd) {
  1001. case NAND_CMD_READ0:
  1002. case NAND_CMD_READ1:
  1003. case NAND_CMD_READSTART:
  1004. case NAND_CMD_PAGEPROG:
  1005. case NAND_CMD_READOOB:
  1006. case NAND_CMD_ERASE1:
  1007. case NAND_CMD_STATUS:
  1008. case NAND_CMD_SEQIN:
  1009. case NAND_CMD_READID:
  1010. case NAND_CMD_ERASE2:
  1011. case NAND_CMD_RESET:
  1012. case NAND_CMD_RNDOUT:
  1013. case NAND_CMD_RNDOUTSTART:
  1014. return 0;
  1015. default:
  1016. return 1;
  1017. }
  1018. }
  1019. /*
  1020. * Returns state after command is accepted by command number.
  1021. */
  1022. static uint32_t get_state_by_command(unsigned command)
  1023. {
  1024. switch (command) {
  1025. case NAND_CMD_READ0:
  1026. return STATE_CMD_READ0;
  1027. case NAND_CMD_READ1:
  1028. return STATE_CMD_READ1;
  1029. case NAND_CMD_PAGEPROG:
  1030. return STATE_CMD_PAGEPROG;
  1031. case NAND_CMD_READSTART:
  1032. return STATE_CMD_READSTART;
  1033. case NAND_CMD_READOOB:
  1034. return STATE_CMD_READOOB;
  1035. case NAND_CMD_ERASE1:
  1036. return STATE_CMD_ERASE1;
  1037. case NAND_CMD_STATUS:
  1038. return STATE_CMD_STATUS;
  1039. case NAND_CMD_SEQIN:
  1040. return STATE_CMD_SEQIN;
  1041. case NAND_CMD_READID:
  1042. return STATE_CMD_READID;
  1043. case NAND_CMD_ERASE2:
  1044. return STATE_CMD_ERASE2;
  1045. case NAND_CMD_RESET:
  1046. return STATE_CMD_RESET;
  1047. case NAND_CMD_RNDOUT:
  1048. return STATE_CMD_RNDOUT;
  1049. case NAND_CMD_RNDOUTSTART:
  1050. return STATE_CMD_RNDOUTSTART;
  1051. }
  1052. NS_ERR("get_state_by_command: unknown command, BUG\n");
  1053. return 0;
  1054. }
  1055. /*
  1056. * Move an address byte to the correspondent internal register.
  1057. */
  1058. static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
  1059. {
  1060. uint byte = (uint)bt;
  1061. if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
  1062. ns->regs.column |= (byte << 8 * ns->regs.count);
  1063. else {
  1064. ns->regs.row |= (byte << 8 * (ns->regs.count -
  1065. ns->geom.pgaddrbytes +
  1066. ns->geom.secaddrbytes));
  1067. }
  1068. return;
  1069. }
  1070. /*
  1071. * Switch to STATE_READY state.
  1072. */
  1073. static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
  1074. {
  1075. NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
  1076. ns->state = STATE_READY;
  1077. ns->nxstate = STATE_UNKNOWN;
  1078. ns->op = NULL;
  1079. ns->npstates = 0;
  1080. ns->stateidx = 0;
  1081. ns->regs.num = 0;
  1082. ns->regs.count = 0;
  1083. ns->regs.off = 0;
  1084. ns->regs.row = 0;
  1085. ns->regs.column = 0;
  1086. ns->regs.status = status;
  1087. }
  1088. /*
  1089. * If the operation isn't known yet, try to find it in the global array
  1090. * of supported operations.
  1091. *
  1092. * Operation can be unknown because of the following.
  1093. * 1. New command was accepted and this is the first call to find the
  1094. * correspondent states chain. In this case ns->npstates = 0;
  1095. * 2. There are several operations which begin with the same command(s)
  1096. * (for example program from the second half and read from the
  1097. * second half operations both begin with the READ1 command). In this
  1098. * case the ns->pstates[] array contains previous states.
  1099. *
  1100. * Thus, the function tries to find operation containing the following
  1101. * states (if the 'flag' parameter is 0):
  1102. * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
  1103. *
  1104. * If (one and only one) matching operation is found, it is accepted (
  1105. * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
  1106. * zeroed).
  1107. *
  1108. * If there are several matches, the current state is pushed to the
  1109. * ns->pstates.
  1110. *
  1111. * The operation can be unknown only while commands are input to the chip.
  1112. * As soon as address command is accepted, the operation must be known.
  1113. * In such situation the function is called with 'flag' != 0, and the
  1114. * operation is searched using the following pattern:
  1115. * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
  1116. *
  1117. * It is supposed that this pattern must either match one operation or
  1118. * none. There can't be ambiguity in that case.
  1119. *
  1120. * If no matches found, the function does the following:
  1121. * 1. if there are saved states present, try to ignore them and search
  1122. * again only using the last command. If nothing was found, switch
  1123. * to the STATE_READY state.
  1124. * 2. if there are no saved states, switch to the STATE_READY state.
  1125. *
  1126. * RETURNS: -2 - no matched operations found.
  1127. * -1 - several matches.
  1128. * 0 - operation is found.
  1129. */
  1130. static int find_operation(struct nandsim *ns, uint32_t flag)
  1131. {
  1132. int opsfound = 0;
  1133. int i, j, idx = 0;
  1134. for (i = 0; i < NS_OPER_NUM; i++) {
  1135. int found = 1;
  1136. if (!(ns->options & ops[i].reqopts))
  1137. /* Ignore operations we can't perform */
  1138. continue;
  1139. if (flag) {
  1140. if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
  1141. continue;
  1142. } else {
  1143. if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
  1144. continue;
  1145. }
  1146. for (j = 0; j < ns->npstates; j++)
  1147. if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
  1148. && (ns->options & ops[idx].reqopts)) {
  1149. found = 0;
  1150. break;
  1151. }
  1152. if (found) {
  1153. idx = i;
  1154. opsfound += 1;
  1155. }
  1156. }
  1157. if (opsfound == 1) {
  1158. /* Exact match */
  1159. ns->op = &ops[idx].states[0];
  1160. if (flag) {
  1161. /*
  1162. * In this case the find_operation function was
  1163. * called when address has just began input. But it isn't
  1164. * yet fully input and the current state must
  1165. * not be one of STATE_ADDR_*, but the STATE_ADDR_*
  1166. * state must be the next state (ns->nxstate).
  1167. */
  1168. ns->stateidx = ns->npstates - 1;
  1169. } else {
  1170. ns->stateidx = ns->npstates;
  1171. }
  1172. ns->npstates = 0;
  1173. ns->state = ns->op[ns->stateidx];
  1174. ns->nxstate = ns->op[ns->stateidx + 1];
  1175. NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
  1176. idx, get_state_name(ns->state), get_state_name(ns->nxstate));
  1177. return 0;
  1178. }
  1179. if (opsfound == 0) {
  1180. /* Nothing was found. Try to ignore previous commands (if any) and search again */
  1181. if (ns->npstates != 0) {
  1182. NS_DBG("find_operation: no operation found, try again with state %s\n",
  1183. get_state_name(ns->state));
  1184. ns->npstates = 0;
  1185. return find_operation(ns, 0);
  1186. }
  1187. NS_DBG("find_operation: no operations found\n");
  1188. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1189. return -2;
  1190. }
  1191. if (flag) {
  1192. /* This shouldn't happen */
  1193. NS_DBG("find_operation: BUG, operation must be known if address is input\n");
  1194. return -2;
  1195. }
  1196. NS_DBG("find_operation: there is still ambiguity\n");
  1197. ns->pstates[ns->npstates++] = ns->state;
  1198. return -1;
  1199. }
  1200. static void put_pages(struct nandsim *ns)
  1201. {
  1202. int i;
  1203. for (i = 0; i < ns->held_cnt; i++)
  1204. put_page(ns->held_pages[i]);
  1205. }
  1206. /* Get page cache pages in advance to provide NOFS memory allocation */
  1207. static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
  1208. {
  1209. pgoff_t index, start_index, end_index;
  1210. struct page *page;
  1211. struct address_space *mapping = file->f_mapping;
  1212. start_index = pos >> PAGE_SHIFT;
  1213. end_index = (pos + count - 1) >> PAGE_SHIFT;
  1214. if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
  1215. return -EINVAL;
  1216. ns->held_cnt = 0;
  1217. for (index = start_index; index <= end_index; index++) {
  1218. page = find_get_page(mapping, index);
  1219. if (page == NULL) {
  1220. page = find_or_create_page(mapping, index, GFP_NOFS);
  1221. if (page == NULL) {
  1222. write_inode_now(mapping->host, 1);
  1223. page = find_or_create_page(mapping, index, GFP_NOFS);
  1224. }
  1225. if (page == NULL) {
  1226. put_pages(ns);
  1227. return -ENOMEM;
  1228. }
  1229. unlock_page(page);
  1230. }
  1231. ns->held_pages[ns->held_cnt++] = page;
  1232. }
  1233. return 0;
  1234. }
  1235. static int set_memalloc(void)
  1236. {
  1237. if (current->flags & PF_MEMALLOC)
  1238. return 0;
  1239. current->flags |= PF_MEMALLOC;
  1240. return 1;
  1241. }
  1242. static void clear_memalloc(int memalloc)
  1243. {
  1244. if (memalloc)
  1245. current->flags &= ~PF_MEMALLOC;
  1246. }
  1247. static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
  1248. {
  1249. ssize_t tx;
  1250. int err, memalloc;
  1251. err = get_pages(ns, file, count, pos);
  1252. if (err)
  1253. return err;
  1254. memalloc = set_memalloc();
  1255. tx = kernel_read(file, pos, buf, count);
  1256. clear_memalloc(memalloc);
  1257. put_pages(ns);
  1258. return tx;
  1259. }
  1260. static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
  1261. {
  1262. ssize_t tx;
  1263. int err, memalloc;
  1264. err = get_pages(ns, file, count, pos);
  1265. if (err)
  1266. return err;
  1267. memalloc = set_memalloc();
  1268. tx = kernel_write(file, buf, count, pos);
  1269. clear_memalloc(memalloc);
  1270. put_pages(ns);
  1271. return tx;
  1272. }
  1273. /*
  1274. * Returns a pointer to the current page.
  1275. */
  1276. static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
  1277. {
  1278. return &(ns->pages[ns->regs.row]);
  1279. }
  1280. /*
  1281. * Retuns a pointer to the current byte, within the current page.
  1282. */
  1283. static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
  1284. {
  1285. return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
  1286. }
  1287. static int do_read_error(struct nandsim *ns, int num)
  1288. {
  1289. unsigned int page_no = ns->regs.row;
  1290. if (read_error(page_no)) {
  1291. prandom_bytes(ns->buf.byte, num);
  1292. NS_WARN("simulating read error in page %u\n", page_no);
  1293. return 1;
  1294. }
  1295. return 0;
  1296. }
  1297. static void do_bit_flips(struct nandsim *ns, int num)
  1298. {
  1299. if (bitflips && prandom_u32() < (1 << 22)) {
  1300. int flips = 1;
  1301. if (bitflips > 1)
  1302. flips = (prandom_u32() % (int) bitflips) + 1;
  1303. while (flips--) {
  1304. int pos = prandom_u32() % (num * 8);
  1305. ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
  1306. NS_WARN("read_page: flipping bit %d in page %d "
  1307. "reading from %d ecc: corrected=%u failed=%u\n",
  1308. pos, ns->regs.row, ns->regs.column + ns->regs.off,
  1309. nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
  1310. }
  1311. }
  1312. }
  1313. /*
  1314. * Fill the NAND buffer with data read from the specified page.
  1315. */
  1316. static void read_page(struct nandsim *ns, int num)
  1317. {
  1318. union ns_mem *mypage;
  1319. if (ns->cfile) {
  1320. if (!test_bit(ns->regs.row, ns->pages_written)) {
  1321. NS_DBG("read_page: page %d not written\n", ns->regs.row);
  1322. memset(ns->buf.byte, 0xFF, num);
  1323. } else {
  1324. loff_t pos;
  1325. ssize_t tx;
  1326. NS_DBG("read_page: page %d written, reading from %d\n",
  1327. ns->regs.row, ns->regs.column + ns->regs.off);
  1328. if (do_read_error(ns, num))
  1329. return;
  1330. pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
  1331. tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
  1332. if (tx != num) {
  1333. NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1334. return;
  1335. }
  1336. do_bit_flips(ns, num);
  1337. }
  1338. return;
  1339. }
  1340. mypage = NS_GET_PAGE(ns);
  1341. if (mypage->byte == NULL) {
  1342. NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
  1343. memset(ns->buf.byte, 0xFF, num);
  1344. } else {
  1345. NS_DBG("read_page: page %d allocated, reading from %d\n",
  1346. ns->regs.row, ns->regs.column + ns->regs.off);
  1347. if (do_read_error(ns, num))
  1348. return;
  1349. memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
  1350. do_bit_flips(ns, num);
  1351. }
  1352. }
  1353. /*
  1354. * Erase all pages in the specified sector.
  1355. */
  1356. static void erase_sector(struct nandsim *ns)
  1357. {
  1358. union ns_mem *mypage;
  1359. int i;
  1360. if (ns->cfile) {
  1361. for (i = 0; i < ns->geom.pgsec; i++)
  1362. if (__test_and_clear_bit(ns->regs.row + i,
  1363. ns->pages_written)) {
  1364. NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
  1365. }
  1366. return;
  1367. }
  1368. mypage = NS_GET_PAGE(ns);
  1369. for (i = 0; i < ns->geom.pgsec; i++) {
  1370. if (mypage->byte != NULL) {
  1371. NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
  1372. kmem_cache_free(ns->nand_pages_slab, mypage->byte);
  1373. mypage->byte = NULL;
  1374. }
  1375. mypage++;
  1376. }
  1377. }
  1378. /*
  1379. * Program the specified page with the contents from the NAND buffer.
  1380. */
  1381. static int prog_page(struct nandsim *ns, int num)
  1382. {
  1383. int i;
  1384. union ns_mem *mypage;
  1385. u_char *pg_off;
  1386. if (ns->cfile) {
  1387. loff_t off;
  1388. ssize_t tx;
  1389. int all;
  1390. NS_DBG("prog_page: writing page %d\n", ns->regs.row);
  1391. pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
  1392. off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
  1393. if (!test_bit(ns->regs.row, ns->pages_written)) {
  1394. all = 1;
  1395. memset(ns->file_buf, 0xff, ns->geom.pgszoob);
  1396. } else {
  1397. all = 0;
  1398. tx = read_file(ns, ns->cfile, pg_off, num, off);
  1399. if (tx != num) {
  1400. NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1401. return -1;
  1402. }
  1403. }
  1404. for (i = 0; i < num; i++)
  1405. pg_off[i] &= ns->buf.byte[i];
  1406. if (all) {
  1407. loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
  1408. tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
  1409. if (tx != ns->geom.pgszoob) {
  1410. NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1411. return -1;
  1412. }
  1413. __set_bit(ns->regs.row, ns->pages_written);
  1414. } else {
  1415. tx = write_file(ns, ns->cfile, pg_off, num, off);
  1416. if (tx != num) {
  1417. NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1418. return -1;
  1419. }
  1420. }
  1421. return 0;
  1422. }
  1423. mypage = NS_GET_PAGE(ns);
  1424. if (mypage->byte == NULL) {
  1425. NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
  1426. /*
  1427. * We allocate memory with GFP_NOFS because a flash FS may
  1428. * utilize this. If it is holding an FS lock, then gets here,
  1429. * then kernel memory alloc runs writeback which goes to the FS
  1430. * again and deadlocks. This was seen in practice.
  1431. */
  1432. mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
  1433. if (mypage->byte == NULL) {
  1434. NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
  1435. return -1;
  1436. }
  1437. memset(mypage->byte, 0xFF, ns->geom.pgszoob);
  1438. }
  1439. pg_off = NS_PAGE_BYTE_OFF(ns);
  1440. for (i = 0; i < num; i++)
  1441. pg_off[i] &= ns->buf.byte[i];
  1442. return 0;
  1443. }
  1444. /*
  1445. * If state has any action bit, perform this action.
  1446. *
  1447. * RETURNS: 0 if success, -1 if error.
  1448. */
  1449. static int do_state_action(struct nandsim *ns, uint32_t action)
  1450. {
  1451. int num;
  1452. int busdiv = ns->busw == 8 ? 1 : 2;
  1453. unsigned int erase_block_no, page_no;
  1454. action &= ACTION_MASK;
  1455. /* Check that page address input is correct */
  1456. if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
  1457. NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
  1458. return -1;
  1459. }
  1460. switch (action) {
  1461. case ACTION_CPY:
  1462. /*
  1463. * Copy page data to the internal buffer.
  1464. */
  1465. /* Column shouldn't be very large */
  1466. if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
  1467. NS_ERR("do_state_action: column number is too large\n");
  1468. break;
  1469. }
  1470. num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
  1471. read_page(ns, num);
  1472. NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
  1473. num, NS_RAW_OFFSET(ns) + ns->regs.off);
  1474. if (ns->regs.off == 0)
  1475. NS_LOG("read page %d\n", ns->regs.row);
  1476. else if (ns->regs.off < ns->geom.pgsz)
  1477. NS_LOG("read page %d (second half)\n", ns->regs.row);
  1478. else
  1479. NS_LOG("read OOB of page %d\n", ns->regs.row);
  1480. NS_UDELAY(access_delay);
  1481. NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
  1482. break;
  1483. case ACTION_SECERASE:
  1484. /*
  1485. * Erase sector.
  1486. */
  1487. if (ns->lines.wp) {
  1488. NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
  1489. return -1;
  1490. }
  1491. if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
  1492. || (ns->regs.row & ~(ns->geom.secsz - 1))) {
  1493. NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
  1494. return -1;
  1495. }
  1496. ns->regs.row = (ns->regs.row <<
  1497. 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
  1498. ns->regs.column = 0;
  1499. erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
  1500. NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
  1501. ns->regs.row, NS_RAW_OFFSET(ns));
  1502. NS_LOG("erase sector %u\n", erase_block_no);
  1503. erase_sector(ns);
  1504. NS_MDELAY(erase_delay);
  1505. if (erase_block_wear)
  1506. update_wear(erase_block_no);
  1507. if (erase_error(erase_block_no)) {
  1508. NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
  1509. return -1;
  1510. }
  1511. break;
  1512. case ACTION_PRGPAGE:
  1513. /*
  1514. * Program page - move internal buffer data to the page.
  1515. */
  1516. if (ns->lines.wp) {
  1517. NS_WARN("do_state_action: device is write-protected, programm\n");
  1518. return -1;
  1519. }
  1520. num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
  1521. if (num != ns->regs.count) {
  1522. NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
  1523. ns->regs.count, num);
  1524. return -1;
  1525. }
  1526. if (prog_page(ns, num) == -1)
  1527. return -1;
  1528. page_no = ns->regs.row;
  1529. NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
  1530. num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
  1531. NS_LOG("programm page %d\n", ns->regs.row);
  1532. NS_UDELAY(programm_delay);
  1533. NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
  1534. if (write_error(page_no)) {
  1535. NS_WARN("simulating write failure in page %u\n", page_no);
  1536. return -1;
  1537. }
  1538. break;
  1539. case ACTION_ZEROOFF:
  1540. NS_DBG("do_state_action: set internal offset to 0\n");
  1541. ns->regs.off = 0;
  1542. break;
  1543. case ACTION_HALFOFF:
  1544. if (!(ns->options & OPT_PAGE512_8BIT)) {
  1545. NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
  1546. "byte page size 8x chips\n");
  1547. return -1;
  1548. }
  1549. NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
  1550. ns->regs.off = ns->geom.pgsz/2;
  1551. break;
  1552. case ACTION_OOBOFF:
  1553. NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
  1554. ns->regs.off = ns->geom.pgsz;
  1555. break;
  1556. default:
  1557. NS_DBG("do_state_action: BUG! unknown action\n");
  1558. }
  1559. return 0;
  1560. }
  1561. /*
  1562. * Switch simulator's state.
  1563. */
  1564. static void switch_state(struct nandsim *ns)
  1565. {
  1566. if (ns->op) {
  1567. /*
  1568. * The current operation have already been identified.
  1569. * Just follow the states chain.
  1570. */
  1571. ns->stateidx += 1;
  1572. ns->state = ns->nxstate;
  1573. ns->nxstate = ns->op[ns->stateidx + 1];
  1574. NS_DBG("switch_state: operation is known, switch to the next state, "
  1575. "state: %s, nxstate: %s\n",
  1576. get_state_name(ns->state), get_state_name(ns->nxstate));
  1577. /* See, whether we need to do some action */
  1578. if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
  1579. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1580. return;
  1581. }
  1582. } else {
  1583. /*
  1584. * We don't yet know which operation we perform.
  1585. * Try to identify it.
  1586. */
  1587. /*
  1588. * The only event causing the switch_state function to
  1589. * be called with yet unknown operation is new command.
  1590. */
  1591. ns->state = get_state_by_command(ns->regs.command);
  1592. NS_DBG("switch_state: operation is unknown, try to find it\n");
  1593. if (find_operation(ns, 0) != 0)
  1594. return;
  1595. if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
  1596. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1597. return;
  1598. }
  1599. }
  1600. /* For 16x devices column means the page offset in words */
  1601. if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
  1602. NS_DBG("switch_state: double the column number for 16x device\n");
  1603. ns->regs.column <<= 1;
  1604. }
  1605. if (NS_STATE(ns->nxstate) == STATE_READY) {
  1606. /*
  1607. * The current state is the last. Return to STATE_READY
  1608. */
  1609. u_char status = NS_STATUS_OK(ns);
  1610. /* In case of data states, see if all bytes were input/output */
  1611. if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
  1612. && ns->regs.count != ns->regs.num) {
  1613. NS_WARN("switch_state: not all bytes were processed, %d left\n",
  1614. ns->regs.num - ns->regs.count);
  1615. status = NS_STATUS_FAILED(ns);
  1616. }
  1617. NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
  1618. switch_to_ready_state(ns, status);
  1619. return;
  1620. } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
  1621. /*
  1622. * If the next state is data input/output, switch to it now
  1623. */
  1624. ns->state = ns->nxstate;
  1625. ns->nxstate = ns->op[++ns->stateidx + 1];
  1626. ns->regs.num = ns->regs.count = 0;
  1627. NS_DBG("switch_state: the next state is data I/O, switch, "
  1628. "state: %s, nxstate: %s\n",
  1629. get_state_name(ns->state), get_state_name(ns->nxstate));
  1630. /*
  1631. * Set the internal register to the count of bytes which
  1632. * are expected to be input or output
  1633. */
  1634. switch (NS_STATE(ns->state)) {
  1635. case STATE_DATAIN:
  1636. case STATE_DATAOUT:
  1637. ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
  1638. break;
  1639. case STATE_DATAOUT_ID:
  1640. ns->regs.num = ns->geom.idbytes;
  1641. break;
  1642. case STATE_DATAOUT_STATUS:
  1643. ns->regs.count = ns->regs.num = 0;
  1644. break;
  1645. default:
  1646. NS_ERR("switch_state: BUG! unknown data state\n");
  1647. }
  1648. } else if (ns->nxstate & STATE_ADDR_MASK) {
  1649. /*
  1650. * If the next state is address input, set the internal
  1651. * register to the number of expected address bytes
  1652. */
  1653. ns->regs.count = 0;
  1654. switch (NS_STATE(ns->nxstate)) {
  1655. case STATE_ADDR_PAGE:
  1656. ns->regs.num = ns->geom.pgaddrbytes;
  1657. break;
  1658. case STATE_ADDR_SEC:
  1659. ns->regs.num = ns->geom.secaddrbytes;
  1660. break;
  1661. case STATE_ADDR_ZERO:
  1662. ns->regs.num = 1;
  1663. break;
  1664. case STATE_ADDR_COLUMN:
  1665. /* Column address is always 2 bytes */
  1666. ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
  1667. break;
  1668. default:
  1669. NS_ERR("switch_state: BUG! unknown address state\n");
  1670. }
  1671. } else {
  1672. /*
  1673. * Just reset internal counters.
  1674. */
  1675. ns->regs.num = 0;
  1676. ns->regs.count = 0;
  1677. }
  1678. }
  1679. static u_char ns_nand_read_byte(struct mtd_info *mtd)
  1680. {
  1681. struct nand_chip *chip = mtd_to_nand(mtd);
  1682. struct nandsim *ns = nand_get_controller_data(chip);
  1683. u_char outb = 0x00;
  1684. /* Sanity and correctness checks */
  1685. if (!ns->lines.ce) {
  1686. NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
  1687. return outb;
  1688. }
  1689. if (ns->lines.ale || ns->lines.cle) {
  1690. NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
  1691. return outb;
  1692. }
  1693. if (!(ns->state & STATE_DATAOUT_MASK)) {
  1694. NS_WARN("read_byte: unexpected data output cycle, state is %s "
  1695. "return %#x\n", get_state_name(ns->state), (uint)outb);
  1696. return outb;
  1697. }
  1698. /* Status register may be read as many times as it is wanted */
  1699. if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
  1700. NS_DBG("read_byte: return %#x status\n", ns->regs.status);
  1701. return ns->regs.status;
  1702. }
  1703. /* Check if there is any data in the internal buffer which may be read */
  1704. if (ns->regs.count == ns->regs.num) {
  1705. NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
  1706. return outb;
  1707. }
  1708. switch (NS_STATE(ns->state)) {
  1709. case STATE_DATAOUT:
  1710. if (ns->busw == 8) {
  1711. outb = ns->buf.byte[ns->regs.count];
  1712. ns->regs.count += 1;
  1713. } else {
  1714. outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
  1715. ns->regs.count += 2;
  1716. }
  1717. break;
  1718. case STATE_DATAOUT_ID:
  1719. NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
  1720. outb = ns->ids[ns->regs.count];
  1721. ns->regs.count += 1;
  1722. break;
  1723. default:
  1724. BUG();
  1725. }
  1726. if (ns->regs.count == ns->regs.num) {
  1727. NS_DBG("read_byte: all bytes were read\n");
  1728. if (NS_STATE(ns->nxstate) == STATE_READY)
  1729. switch_state(ns);
  1730. }
  1731. return outb;
  1732. }
  1733. static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
  1734. {
  1735. struct nand_chip *chip = mtd_to_nand(mtd);
  1736. struct nandsim *ns = nand_get_controller_data(chip);
  1737. /* Sanity and correctness checks */
  1738. if (!ns->lines.ce) {
  1739. NS_ERR("write_byte: chip is disabled, ignore write\n");
  1740. return;
  1741. }
  1742. if (ns->lines.ale && ns->lines.cle) {
  1743. NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
  1744. return;
  1745. }
  1746. if (ns->lines.cle == 1) {
  1747. /*
  1748. * The byte written is a command.
  1749. */
  1750. if (byte == NAND_CMD_RESET) {
  1751. NS_LOG("reset chip\n");
  1752. switch_to_ready_state(ns, NS_STATUS_OK(ns));
  1753. return;
  1754. }
  1755. /* Check that the command byte is correct */
  1756. if (check_command(byte)) {
  1757. NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
  1758. return;
  1759. }
  1760. if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
  1761. || NS_STATE(ns->state) == STATE_DATAOUT) {
  1762. int row = ns->regs.row;
  1763. switch_state(ns);
  1764. if (byte == NAND_CMD_RNDOUT)
  1765. ns->regs.row = row;
  1766. }
  1767. /* Check if chip is expecting command */
  1768. if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
  1769. /* Do not warn if only 2 id bytes are read */
  1770. if (!(ns->regs.command == NAND_CMD_READID &&
  1771. NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
  1772. /*
  1773. * We are in situation when something else (not command)
  1774. * was expected but command was input. In this case ignore
  1775. * previous command(s)/state(s) and accept the last one.
  1776. */
  1777. NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
  1778. "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
  1779. }
  1780. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1781. }
  1782. NS_DBG("command byte corresponding to %s state accepted\n",
  1783. get_state_name(get_state_by_command(byte)));
  1784. ns->regs.command = byte;
  1785. switch_state(ns);
  1786. } else if (ns->lines.ale == 1) {
  1787. /*
  1788. * The byte written is an address.
  1789. */
  1790. if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
  1791. NS_DBG("write_byte: operation isn't known yet, identify it\n");
  1792. if (find_operation(ns, 1) < 0)
  1793. return;
  1794. if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
  1795. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1796. return;
  1797. }
  1798. ns->regs.count = 0;
  1799. switch (NS_STATE(ns->nxstate)) {
  1800. case STATE_ADDR_PAGE:
  1801. ns->regs.num = ns->geom.pgaddrbytes;
  1802. break;
  1803. case STATE_ADDR_SEC:
  1804. ns->regs.num = ns->geom.secaddrbytes;
  1805. break;
  1806. case STATE_ADDR_ZERO:
  1807. ns->regs.num = 1;
  1808. break;
  1809. default:
  1810. BUG();
  1811. }
  1812. }
  1813. /* Check that chip is expecting address */
  1814. if (!(ns->nxstate & STATE_ADDR_MASK)) {
  1815. NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
  1816. "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
  1817. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1818. return;
  1819. }
  1820. /* Check if this is expected byte */
  1821. if (ns->regs.count == ns->regs.num) {
  1822. NS_ERR("write_byte: no more address bytes expected\n");
  1823. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1824. return;
  1825. }
  1826. accept_addr_byte(ns, byte);
  1827. ns->regs.count += 1;
  1828. NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
  1829. (uint)byte, ns->regs.count, ns->regs.num);
  1830. if (ns->regs.count == ns->regs.num) {
  1831. NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
  1832. switch_state(ns);
  1833. }
  1834. } else {
  1835. /*
  1836. * The byte written is an input data.
  1837. */
  1838. /* Check that chip is expecting data input */
  1839. if (!(ns->state & STATE_DATAIN_MASK)) {
  1840. NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
  1841. "switch to %s\n", (uint)byte,
  1842. get_state_name(ns->state), get_state_name(STATE_READY));
  1843. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1844. return;
  1845. }
  1846. /* Check if this is expected byte */
  1847. if (ns->regs.count == ns->regs.num) {
  1848. NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
  1849. ns->regs.num);
  1850. return;
  1851. }
  1852. if (ns->busw == 8) {
  1853. ns->buf.byte[ns->regs.count] = byte;
  1854. ns->regs.count += 1;
  1855. } else {
  1856. ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
  1857. ns->regs.count += 2;
  1858. }
  1859. }
  1860. return;
  1861. }
  1862. static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
  1863. {
  1864. struct nand_chip *chip = mtd_to_nand(mtd);
  1865. struct nandsim *ns = nand_get_controller_data(chip);
  1866. ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
  1867. ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
  1868. ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
  1869. if (cmd != NAND_CMD_NONE)
  1870. ns_nand_write_byte(mtd, cmd);
  1871. }
  1872. static int ns_device_ready(struct mtd_info *mtd)
  1873. {
  1874. NS_DBG("device_ready\n");
  1875. return 1;
  1876. }
  1877. static uint16_t ns_nand_read_word(struct mtd_info *mtd)
  1878. {
  1879. struct nand_chip *chip = mtd_to_nand(mtd);
  1880. NS_DBG("read_word\n");
  1881. return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
  1882. }
  1883. static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
  1884. {
  1885. struct nand_chip *chip = mtd_to_nand(mtd);
  1886. struct nandsim *ns = nand_get_controller_data(chip);
  1887. /* Check that chip is expecting data input */
  1888. if (!(ns->state & STATE_DATAIN_MASK)) {
  1889. NS_ERR("write_buf: data input isn't expected, state is %s, "
  1890. "switch to STATE_READY\n", get_state_name(ns->state));
  1891. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1892. return;
  1893. }
  1894. /* Check if these are expected bytes */
  1895. if (ns->regs.count + len > ns->regs.num) {
  1896. NS_ERR("write_buf: too many input bytes\n");
  1897. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1898. return;
  1899. }
  1900. memcpy(ns->buf.byte + ns->regs.count, buf, len);
  1901. ns->regs.count += len;
  1902. if (ns->regs.count == ns->regs.num) {
  1903. NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
  1904. }
  1905. }
  1906. static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  1907. {
  1908. struct nand_chip *chip = mtd_to_nand(mtd);
  1909. struct nandsim *ns = nand_get_controller_data(chip);
  1910. /* Sanity and correctness checks */
  1911. if (!ns->lines.ce) {
  1912. NS_ERR("read_buf: chip is disabled\n");
  1913. return;
  1914. }
  1915. if (ns->lines.ale || ns->lines.cle) {
  1916. NS_ERR("read_buf: ALE or CLE pin is high\n");
  1917. return;
  1918. }
  1919. if (!(ns->state & STATE_DATAOUT_MASK)) {
  1920. NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
  1921. get_state_name(ns->state));
  1922. return;
  1923. }
  1924. if (NS_STATE(ns->state) != STATE_DATAOUT) {
  1925. int i;
  1926. for (i = 0; i < len; i++)
  1927. buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
  1928. return;
  1929. }
  1930. /* Check if these are expected bytes */
  1931. if (ns->regs.count + len > ns->regs.num) {
  1932. NS_ERR("read_buf: too many bytes to read\n");
  1933. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1934. return;
  1935. }
  1936. memcpy(buf, ns->buf.byte + ns->regs.count, len);
  1937. ns->regs.count += len;
  1938. if (ns->regs.count == ns->regs.num) {
  1939. if (NS_STATE(ns->nxstate) == STATE_READY)
  1940. switch_state(ns);
  1941. }
  1942. return;
  1943. }
  1944. /*
  1945. * Module initialization function
  1946. */
  1947. static int __init ns_init_module(void)
  1948. {
  1949. struct nand_chip *chip;
  1950. struct nandsim *nand;
  1951. int retval = -ENOMEM, i;
  1952. if (bus_width != 8 && bus_width != 16) {
  1953. NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
  1954. return -EINVAL;
  1955. }
  1956. /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
  1957. chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
  1958. GFP_KERNEL);
  1959. if (!chip) {
  1960. NS_ERR("unable to allocate core structures.\n");
  1961. return -ENOMEM;
  1962. }
  1963. nsmtd = nand_to_mtd(chip);
  1964. nand = (struct nandsim *)(chip + 1);
  1965. nand_set_controller_data(chip, (void *)nand);
  1966. /*
  1967. * Register simulator's callbacks.
  1968. */
  1969. chip->cmd_ctrl = ns_hwcontrol;
  1970. chip->read_byte = ns_nand_read_byte;
  1971. chip->dev_ready = ns_device_ready;
  1972. chip->write_buf = ns_nand_write_buf;
  1973. chip->read_buf = ns_nand_read_buf;
  1974. chip->read_word = ns_nand_read_word;
  1975. chip->ecc.mode = NAND_ECC_SOFT;
  1976. chip->ecc.algo = NAND_ECC_HAMMING;
  1977. /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
  1978. /* and 'badblocks' parameters to work */
  1979. chip->options |= NAND_SKIP_BBTSCAN;
  1980. switch (bbt) {
  1981. case 2:
  1982. chip->bbt_options |= NAND_BBT_NO_OOB;
  1983. case 1:
  1984. chip->bbt_options |= NAND_BBT_USE_FLASH;
  1985. case 0:
  1986. break;
  1987. default:
  1988. NS_ERR("bbt has to be 0..2\n");
  1989. retval = -EINVAL;
  1990. goto error;
  1991. }
  1992. /*
  1993. * Perform minimum nandsim structure initialization to handle
  1994. * the initial ID read command correctly
  1995. */
  1996. if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
  1997. nand->geom.idbytes = 8;
  1998. else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
  1999. nand->geom.idbytes = 6;
  2000. else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
  2001. nand->geom.idbytes = 4;
  2002. else
  2003. nand->geom.idbytes = 2;
  2004. nand->regs.status = NS_STATUS_OK(nand);
  2005. nand->nxstate = STATE_UNKNOWN;
  2006. nand->options |= OPT_PAGE512; /* temporary value */
  2007. memcpy(nand->ids, id_bytes, sizeof(nand->ids));
  2008. if (bus_width == 16) {
  2009. nand->busw = 16;
  2010. chip->options |= NAND_BUSWIDTH_16;
  2011. }
  2012. nsmtd->owner = THIS_MODULE;
  2013. if ((retval = parse_weakblocks()) != 0)
  2014. goto error;
  2015. if ((retval = parse_weakpages()) != 0)
  2016. goto error;
  2017. if ((retval = parse_gravepages()) != 0)
  2018. goto error;
  2019. retval = nand_scan_ident(nsmtd, 1, NULL);
  2020. if (retval) {
  2021. NS_ERR("cannot scan NAND Simulator device\n");
  2022. goto error;
  2023. }
  2024. if (bch) {
  2025. unsigned int eccsteps, eccbytes;
  2026. if (!mtd_nand_has_bch()) {
  2027. NS_ERR("BCH ECC support is disabled\n");
  2028. retval = -EINVAL;
  2029. goto error;
  2030. }
  2031. /* use 512-byte ecc blocks */
  2032. eccsteps = nsmtd->writesize/512;
  2033. eccbytes = (bch*13+7)/8;
  2034. /* do not bother supporting small page devices */
  2035. if ((nsmtd->oobsize < 64) || !eccsteps) {
  2036. NS_ERR("bch not available on small page devices\n");
  2037. retval = -EINVAL;
  2038. goto error;
  2039. }
  2040. if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
  2041. NS_ERR("invalid bch value %u\n", bch);
  2042. retval = -EINVAL;
  2043. goto error;
  2044. }
  2045. chip->ecc.mode = NAND_ECC_SOFT;
  2046. chip->ecc.algo = NAND_ECC_BCH;
  2047. chip->ecc.size = 512;
  2048. chip->ecc.strength = bch;
  2049. chip->ecc.bytes = eccbytes;
  2050. NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
  2051. }
  2052. retval = nand_scan_tail(nsmtd);
  2053. if (retval) {
  2054. NS_ERR("can't register NAND Simulator\n");
  2055. goto error;
  2056. }
  2057. if (overridesize) {
  2058. uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
  2059. if (new_size >> overridesize != nsmtd->erasesize) {
  2060. NS_ERR("overridesize is too big\n");
  2061. retval = -EINVAL;
  2062. goto err_exit;
  2063. }
  2064. /* N.B. This relies on nand_scan not doing anything with the size before we change it */
  2065. nsmtd->size = new_size;
  2066. chip->chipsize = new_size;
  2067. chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
  2068. chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
  2069. }
  2070. if ((retval = setup_wear_reporting(nsmtd)) != 0)
  2071. goto err_exit;
  2072. if ((retval = nandsim_debugfs_create(nand)) != 0)
  2073. goto err_exit;
  2074. if ((retval = init_nandsim(nsmtd)) != 0)
  2075. goto err_exit;
  2076. if ((retval = chip->scan_bbt(nsmtd)) != 0)
  2077. goto err_exit;
  2078. if ((retval = parse_badblocks(nand, nsmtd)) != 0)
  2079. goto err_exit;
  2080. /* Register NAND partitions */
  2081. retval = mtd_device_register(nsmtd, &nand->partitions[0],
  2082. nand->nbparts);
  2083. if (retval != 0)
  2084. goto err_exit;
  2085. return 0;
  2086. err_exit:
  2087. free_nandsim(nand);
  2088. nand_release(nsmtd);
  2089. for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
  2090. kfree(nand->partitions[i].name);
  2091. error:
  2092. kfree(chip);
  2093. free_lists();
  2094. return retval;
  2095. }
  2096. module_init(ns_init_module);
  2097. /*
  2098. * Module clean-up function
  2099. */
  2100. static void __exit ns_cleanup_module(void)
  2101. {
  2102. struct nand_chip *chip = mtd_to_nand(nsmtd);
  2103. struct nandsim *ns = nand_get_controller_data(chip);
  2104. int i;
  2105. nandsim_debugfs_remove(ns);
  2106. free_nandsim(ns); /* Free nandsim private resources */
  2107. nand_release(nsmtd); /* Unregister driver */
  2108. for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
  2109. kfree(ns->partitions[i].name);
  2110. kfree(mtd_to_nand(nsmtd)); /* Free other structures */
  2111. free_lists();
  2112. }
  2113. module_exit(ns_cleanup_module);
  2114. MODULE_LICENSE ("GPL");
  2115. MODULE_AUTHOR ("Artem B. Bityuckiy");
  2116. MODULE_DESCRIPTION ("The NAND flash simulator");