amd_iommu.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <jroedel@suse.de>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/acpi.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pci-ats.h>
  25. #include <linux/bitmap.h>
  26. #include <linux/slab.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/iommu-helper.h>
  31. #include <linux/iommu.h>
  32. #include <linux/delay.h>
  33. #include <linux/amd-iommu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/export.h>
  36. #include <linux/irq.h>
  37. #include <linux/msi.h>
  38. #include <linux/dma-contiguous.h>
  39. #include <linux/irqdomain.h>
  40. #include <linux/percpu.h>
  41. #include <linux/iova.h>
  42. #include <asm/irq_remapping.h>
  43. #include <asm/io_apic.h>
  44. #include <asm/apic.h>
  45. #include <asm/hw_irq.h>
  46. #include <asm/msidef.h>
  47. #include <asm/proto.h>
  48. #include <asm/iommu.h>
  49. #include <asm/gart.h>
  50. #include <asm/dma.h>
  51. #include "amd_iommu_proto.h"
  52. #include "amd_iommu_types.h"
  53. #include "irq_remapping.h"
  54. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  55. #define LOOP_TIMEOUT 100000
  56. /* IO virtual address start page frame number */
  57. #define IOVA_START_PFN (1)
  58. #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
  59. #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
  60. /* Reserved IOVA ranges */
  61. #define MSI_RANGE_START (0xfee00000)
  62. #define MSI_RANGE_END (0xfeefffff)
  63. #define HT_RANGE_START (0xfd00000000ULL)
  64. #define HT_RANGE_END (0xffffffffffULL)
  65. /*
  66. * This bitmap is used to advertise the page sizes our hardware support
  67. * to the IOMMU core, which will then use this information to split
  68. * physically contiguous memory regions it is mapping into page sizes
  69. * that we support.
  70. *
  71. * 512GB Pages are not supported due to a hardware bug
  72. */
  73. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  74. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  75. /* List of all available dev_data structures */
  76. static LIST_HEAD(dev_data_list);
  77. static DEFINE_SPINLOCK(dev_data_list_lock);
  78. LIST_HEAD(ioapic_map);
  79. LIST_HEAD(hpet_map);
  80. LIST_HEAD(acpihid_map);
  81. #define FLUSH_QUEUE_SIZE 256
  82. struct flush_queue_entry {
  83. unsigned long iova_pfn;
  84. unsigned long pages;
  85. struct dma_ops_domain *dma_dom;
  86. };
  87. struct flush_queue {
  88. spinlock_t lock;
  89. unsigned next;
  90. struct flush_queue_entry *entries;
  91. };
  92. static DEFINE_PER_CPU(struct flush_queue, flush_queue);
  93. static atomic_t queue_timer_on;
  94. static struct timer_list queue_timer;
  95. /*
  96. * Domain for untranslated devices - only allocated
  97. * if iommu=pt passed on kernel cmd line.
  98. */
  99. static const struct iommu_ops amd_iommu_ops;
  100. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  101. int amd_iommu_max_glx_val = -1;
  102. static struct dma_map_ops amd_iommu_dma_ops;
  103. /*
  104. * This struct contains device specific data for the IOMMU
  105. */
  106. struct iommu_dev_data {
  107. struct list_head list; /* For domain->dev_list */
  108. struct list_head dev_data_list; /* For global dev_data_list */
  109. struct protection_domain *domain; /* Domain the device is bound to */
  110. u16 devid; /* PCI Device ID */
  111. u16 alias; /* Alias Device ID */
  112. bool iommu_v2; /* Device can make use of IOMMUv2 */
  113. bool passthrough; /* Device is identity mapped */
  114. struct {
  115. bool enabled;
  116. int qdep;
  117. } ats; /* ATS state */
  118. bool pri_tlp; /* PASID TLB required for
  119. PPR completions */
  120. u32 errata; /* Bitmap for errata to apply */
  121. bool use_vapic; /* Enable device to use vapic mode */
  122. };
  123. /*
  124. * general struct to manage commands send to an IOMMU
  125. */
  126. struct iommu_cmd {
  127. u32 data[4];
  128. };
  129. struct kmem_cache *amd_iommu_irq_cache;
  130. static void update_domain(struct protection_domain *domain);
  131. static int protection_domain_init(struct protection_domain *domain);
  132. static void detach_device(struct device *dev);
  133. /*
  134. * Data container for a dma_ops specific protection domain
  135. */
  136. struct dma_ops_domain {
  137. /* generic protection domain information */
  138. struct protection_domain domain;
  139. /* IOVA RB-Tree */
  140. struct iova_domain iovad;
  141. };
  142. static struct iova_domain reserved_iova_ranges;
  143. static struct lock_class_key reserved_rbtree_key;
  144. /****************************************************************************
  145. *
  146. * Helper functions
  147. *
  148. ****************************************************************************/
  149. static inline int match_hid_uid(struct device *dev,
  150. struct acpihid_map_entry *entry)
  151. {
  152. const char *hid, *uid;
  153. hid = acpi_device_hid(ACPI_COMPANION(dev));
  154. uid = acpi_device_uid(ACPI_COMPANION(dev));
  155. if (!hid || !(*hid))
  156. return -ENODEV;
  157. if (!uid || !(*uid))
  158. return strcmp(hid, entry->hid);
  159. if (!(*entry->uid))
  160. return strcmp(hid, entry->hid);
  161. return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
  162. }
  163. static inline u16 get_pci_device_id(struct device *dev)
  164. {
  165. struct pci_dev *pdev = to_pci_dev(dev);
  166. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  167. }
  168. static inline int get_acpihid_device_id(struct device *dev,
  169. struct acpihid_map_entry **entry)
  170. {
  171. struct acpihid_map_entry *p;
  172. list_for_each_entry(p, &acpihid_map, list) {
  173. if (!match_hid_uid(dev, p)) {
  174. if (entry)
  175. *entry = p;
  176. return p->devid;
  177. }
  178. }
  179. return -EINVAL;
  180. }
  181. static inline int get_device_id(struct device *dev)
  182. {
  183. int devid;
  184. if (dev_is_pci(dev))
  185. devid = get_pci_device_id(dev);
  186. else
  187. devid = get_acpihid_device_id(dev, NULL);
  188. return devid;
  189. }
  190. static struct protection_domain *to_pdomain(struct iommu_domain *dom)
  191. {
  192. return container_of(dom, struct protection_domain, domain);
  193. }
  194. static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
  195. {
  196. BUG_ON(domain->flags != PD_DMA_OPS_MASK);
  197. return container_of(domain, struct dma_ops_domain, domain);
  198. }
  199. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  200. {
  201. struct iommu_dev_data *dev_data;
  202. unsigned long flags;
  203. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  204. if (!dev_data)
  205. return NULL;
  206. dev_data->devid = devid;
  207. spin_lock_irqsave(&dev_data_list_lock, flags);
  208. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  209. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  210. return dev_data;
  211. }
  212. static struct iommu_dev_data *search_dev_data(u16 devid)
  213. {
  214. struct iommu_dev_data *dev_data;
  215. unsigned long flags;
  216. spin_lock_irqsave(&dev_data_list_lock, flags);
  217. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  218. if (dev_data->devid == devid)
  219. goto out_unlock;
  220. }
  221. dev_data = NULL;
  222. out_unlock:
  223. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  224. return dev_data;
  225. }
  226. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  227. {
  228. *(u16 *)data = alias;
  229. return 0;
  230. }
  231. static u16 get_alias(struct device *dev)
  232. {
  233. struct pci_dev *pdev = to_pci_dev(dev);
  234. u16 devid, ivrs_alias, pci_alias;
  235. /* The callers make sure that get_device_id() does not fail here */
  236. devid = get_device_id(dev);
  237. ivrs_alias = amd_iommu_alias_table[devid];
  238. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  239. if (ivrs_alias == pci_alias)
  240. return ivrs_alias;
  241. /*
  242. * DMA alias showdown
  243. *
  244. * The IVRS is fairly reliable in telling us about aliases, but it
  245. * can't know about every screwy device. If we don't have an IVRS
  246. * reported alias, use the PCI reported alias. In that case we may
  247. * still need to initialize the rlookup and dev_table entries if the
  248. * alias is to a non-existent device.
  249. */
  250. if (ivrs_alias == devid) {
  251. if (!amd_iommu_rlookup_table[pci_alias]) {
  252. amd_iommu_rlookup_table[pci_alias] =
  253. amd_iommu_rlookup_table[devid];
  254. memcpy(amd_iommu_dev_table[pci_alias].data,
  255. amd_iommu_dev_table[devid].data,
  256. sizeof(amd_iommu_dev_table[pci_alias].data));
  257. }
  258. return pci_alias;
  259. }
  260. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  261. "for device %s[%04x:%04x], kernel reported alias "
  262. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  263. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  264. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  265. PCI_FUNC(pci_alias));
  266. /*
  267. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  268. * bus, then the IVRS table may know about a quirk that we don't.
  269. */
  270. if (pci_alias == devid &&
  271. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  272. pci_add_dma_alias(pdev, ivrs_alias & 0xff);
  273. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  274. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  275. dev_name(dev));
  276. }
  277. return ivrs_alias;
  278. }
  279. static struct iommu_dev_data *find_dev_data(u16 devid)
  280. {
  281. struct iommu_dev_data *dev_data;
  282. dev_data = search_dev_data(devid);
  283. if (dev_data == NULL)
  284. dev_data = alloc_dev_data(devid);
  285. return dev_data;
  286. }
  287. static struct iommu_dev_data *get_dev_data(struct device *dev)
  288. {
  289. return dev->archdata.iommu;
  290. }
  291. /*
  292. * Find or create an IOMMU group for a acpihid device.
  293. */
  294. static struct iommu_group *acpihid_device_group(struct device *dev)
  295. {
  296. struct acpihid_map_entry *p, *entry = NULL;
  297. int devid;
  298. devid = get_acpihid_device_id(dev, &entry);
  299. if (devid < 0)
  300. return ERR_PTR(devid);
  301. list_for_each_entry(p, &acpihid_map, list) {
  302. if ((devid == p->devid) && p->group)
  303. entry->group = p->group;
  304. }
  305. if (!entry->group)
  306. entry->group = generic_device_group(dev);
  307. else
  308. iommu_group_ref_get(entry->group);
  309. return entry->group;
  310. }
  311. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  312. {
  313. static const int caps[] = {
  314. PCI_EXT_CAP_ID_ATS,
  315. PCI_EXT_CAP_ID_PRI,
  316. PCI_EXT_CAP_ID_PASID,
  317. };
  318. int i, pos;
  319. for (i = 0; i < 3; ++i) {
  320. pos = pci_find_ext_capability(pdev, caps[i]);
  321. if (pos == 0)
  322. return false;
  323. }
  324. return true;
  325. }
  326. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  327. {
  328. struct iommu_dev_data *dev_data;
  329. dev_data = get_dev_data(&pdev->dev);
  330. return dev_data->errata & (1 << erratum) ? true : false;
  331. }
  332. /*
  333. * This function checks if the driver got a valid device from the caller to
  334. * avoid dereferencing invalid pointers.
  335. */
  336. static bool check_device(struct device *dev)
  337. {
  338. int devid;
  339. if (!dev || !dev->dma_mask)
  340. return false;
  341. devid = get_device_id(dev);
  342. if (devid < 0)
  343. return false;
  344. /* Out of our scope? */
  345. if (devid > amd_iommu_last_bdf)
  346. return false;
  347. if (amd_iommu_rlookup_table[devid] == NULL)
  348. return false;
  349. return true;
  350. }
  351. static void init_iommu_group(struct device *dev)
  352. {
  353. struct iommu_group *group;
  354. group = iommu_group_get_for_dev(dev);
  355. if (IS_ERR(group))
  356. return;
  357. iommu_group_put(group);
  358. }
  359. static int iommu_init_device(struct device *dev)
  360. {
  361. struct iommu_dev_data *dev_data;
  362. int devid;
  363. if (dev->archdata.iommu)
  364. return 0;
  365. devid = get_device_id(dev);
  366. if (devid < 0)
  367. return devid;
  368. dev_data = find_dev_data(devid);
  369. if (!dev_data)
  370. return -ENOMEM;
  371. dev_data->alias = get_alias(dev);
  372. if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
  373. struct amd_iommu *iommu;
  374. iommu = amd_iommu_rlookup_table[dev_data->devid];
  375. dev_data->iommu_v2 = iommu->is_iommu_v2;
  376. }
  377. dev->archdata.iommu = dev_data;
  378. iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  379. dev);
  380. return 0;
  381. }
  382. static void iommu_ignore_device(struct device *dev)
  383. {
  384. u16 alias;
  385. int devid;
  386. devid = get_device_id(dev);
  387. if (devid < 0)
  388. return;
  389. alias = get_alias(dev);
  390. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  391. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  392. amd_iommu_rlookup_table[devid] = NULL;
  393. amd_iommu_rlookup_table[alias] = NULL;
  394. }
  395. static void iommu_uninit_device(struct device *dev)
  396. {
  397. int devid;
  398. struct iommu_dev_data *dev_data;
  399. devid = get_device_id(dev);
  400. if (devid < 0)
  401. return;
  402. dev_data = search_dev_data(devid);
  403. if (!dev_data)
  404. return;
  405. if (dev_data->domain)
  406. detach_device(dev);
  407. iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  408. dev);
  409. iommu_group_remove_device(dev);
  410. /* Remove dma-ops */
  411. dev->archdata.dma_ops = NULL;
  412. /*
  413. * We keep dev_data around for unplugged devices and reuse it when the
  414. * device is re-plugged - not doing so would introduce a ton of races.
  415. */
  416. }
  417. /****************************************************************************
  418. *
  419. * Interrupt handling functions
  420. *
  421. ****************************************************************************/
  422. static void dump_dte_entry(u16 devid)
  423. {
  424. int i;
  425. for (i = 0; i < 4; ++i)
  426. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  427. amd_iommu_dev_table[devid].data[i]);
  428. }
  429. static void dump_command(unsigned long phys_addr)
  430. {
  431. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  432. int i;
  433. for (i = 0; i < 4; ++i)
  434. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  435. }
  436. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  437. {
  438. int type, devid, domid, flags;
  439. volatile u32 *event = __evt;
  440. int count = 0;
  441. u64 address;
  442. retry:
  443. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  444. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  445. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  446. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  447. address = (u64)(((u64)event[3]) << 32) | event[2];
  448. if (type == 0) {
  449. /* Did we hit the erratum? */
  450. if (++count == LOOP_TIMEOUT) {
  451. pr_err("AMD-Vi: No event written to event log\n");
  452. return;
  453. }
  454. udelay(1);
  455. goto retry;
  456. }
  457. printk(KERN_ERR "AMD-Vi: Event logged [");
  458. switch (type) {
  459. case EVENT_TYPE_ILL_DEV:
  460. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  461. "address=0x%016llx flags=0x%04x]\n",
  462. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  463. address, flags);
  464. dump_dte_entry(devid);
  465. break;
  466. case EVENT_TYPE_IO_FAULT:
  467. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  468. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  469. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  470. domid, address, flags);
  471. break;
  472. case EVENT_TYPE_DEV_TAB_ERR:
  473. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  474. "address=0x%016llx flags=0x%04x]\n",
  475. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  476. address, flags);
  477. break;
  478. case EVENT_TYPE_PAGE_TAB_ERR:
  479. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  480. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  481. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  482. domid, address, flags);
  483. break;
  484. case EVENT_TYPE_ILL_CMD:
  485. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  486. dump_command(address);
  487. break;
  488. case EVENT_TYPE_CMD_HARD_ERR:
  489. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  490. "flags=0x%04x]\n", address, flags);
  491. break;
  492. case EVENT_TYPE_IOTLB_INV_TO:
  493. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  494. "address=0x%016llx]\n",
  495. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  496. address);
  497. break;
  498. case EVENT_TYPE_INV_DEV_REQ:
  499. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  500. "address=0x%016llx flags=0x%04x]\n",
  501. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  502. address, flags);
  503. break;
  504. default:
  505. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  506. }
  507. memset(__evt, 0, 4 * sizeof(u32));
  508. }
  509. static void iommu_poll_events(struct amd_iommu *iommu)
  510. {
  511. u32 head, tail;
  512. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  513. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  514. while (head != tail) {
  515. iommu_print_event(iommu, iommu->evt_buf + head);
  516. head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
  517. }
  518. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  519. }
  520. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  521. {
  522. struct amd_iommu_fault fault;
  523. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  524. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  525. return;
  526. }
  527. fault.address = raw[1];
  528. fault.pasid = PPR_PASID(raw[0]);
  529. fault.device_id = PPR_DEVID(raw[0]);
  530. fault.tag = PPR_TAG(raw[0]);
  531. fault.flags = PPR_FLAGS(raw[0]);
  532. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  533. }
  534. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  535. {
  536. u32 head, tail;
  537. if (iommu->ppr_log == NULL)
  538. return;
  539. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  540. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  541. while (head != tail) {
  542. volatile u64 *raw;
  543. u64 entry[2];
  544. int i;
  545. raw = (u64 *)(iommu->ppr_log + head);
  546. /*
  547. * Hardware bug: Interrupt may arrive before the entry is
  548. * written to memory. If this happens we need to wait for the
  549. * entry to arrive.
  550. */
  551. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  552. if (PPR_REQ_TYPE(raw[0]) != 0)
  553. break;
  554. udelay(1);
  555. }
  556. /* Avoid memcpy function-call overhead */
  557. entry[0] = raw[0];
  558. entry[1] = raw[1];
  559. /*
  560. * To detect the hardware bug we need to clear the entry
  561. * back to zero.
  562. */
  563. raw[0] = raw[1] = 0UL;
  564. /* Update head pointer of hardware ring-buffer */
  565. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  566. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  567. /* Handle PPR entry */
  568. iommu_handle_ppr_entry(iommu, entry);
  569. /* Refresh ring-buffer information */
  570. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  571. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  572. }
  573. }
  574. #ifdef CONFIG_IRQ_REMAP
  575. static int (*iommu_ga_log_notifier)(u32);
  576. int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
  577. {
  578. iommu_ga_log_notifier = notifier;
  579. return 0;
  580. }
  581. EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
  582. static void iommu_poll_ga_log(struct amd_iommu *iommu)
  583. {
  584. u32 head, tail, cnt = 0;
  585. if (iommu->ga_log == NULL)
  586. return;
  587. head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  588. tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
  589. while (head != tail) {
  590. volatile u64 *raw;
  591. u64 log_entry;
  592. raw = (u64 *)(iommu->ga_log + head);
  593. cnt++;
  594. /* Avoid memcpy function-call overhead */
  595. log_entry = *raw;
  596. /* Update head pointer of hardware ring-buffer */
  597. head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
  598. writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  599. /* Handle GA entry */
  600. switch (GA_REQ_TYPE(log_entry)) {
  601. case GA_GUEST_NR:
  602. if (!iommu_ga_log_notifier)
  603. break;
  604. pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
  605. __func__, GA_DEVID(log_entry),
  606. GA_TAG(log_entry));
  607. if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
  608. pr_err("AMD-Vi: GA log notifier failed.\n");
  609. break;
  610. default:
  611. break;
  612. }
  613. }
  614. }
  615. #endif /* CONFIG_IRQ_REMAP */
  616. #define AMD_IOMMU_INT_MASK \
  617. (MMIO_STATUS_EVT_INT_MASK | \
  618. MMIO_STATUS_PPR_INT_MASK | \
  619. MMIO_STATUS_GALOG_INT_MASK)
  620. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  621. {
  622. struct amd_iommu *iommu = (struct amd_iommu *) data;
  623. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  624. while (status & AMD_IOMMU_INT_MASK) {
  625. /* Enable EVT and PPR and GA interrupts again */
  626. writel(AMD_IOMMU_INT_MASK,
  627. iommu->mmio_base + MMIO_STATUS_OFFSET);
  628. if (status & MMIO_STATUS_EVT_INT_MASK) {
  629. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  630. iommu_poll_events(iommu);
  631. }
  632. if (status & MMIO_STATUS_PPR_INT_MASK) {
  633. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  634. iommu_poll_ppr_log(iommu);
  635. }
  636. #ifdef CONFIG_IRQ_REMAP
  637. if (status & MMIO_STATUS_GALOG_INT_MASK) {
  638. pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
  639. iommu_poll_ga_log(iommu);
  640. }
  641. #endif
  642. /*
  643. * Hardware bug: ERBT1312
  644. * When re-enabling interrupt (by writing 1
  645. * to clear the bit), the hardware might also try to set
  646. * the interrupt bit in the event status register.
  647. * In this scenario, the bit will be set, and disable
  648. * subsequent interrupts.
  649. *
  650. * Workaround: The IOMMU driver should read back the
  651. * status register and check if the interrupt bits are cleared.
  652. * If not, driver will need to go through the interrupt handler
  653. * again and re-clear the bits
  654. */
  655. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  656. }
  657. return IRQ_HANDLED;
  658. }
  659. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  660. {
  661. return IRQ_WAKE_THREAD;
  662. }
  663. /****************************************************************************
  664. *
  665. * IOMMU command queuing functions
  666. *
  667. ****************************************************************************/
  668. static int wait_on_sem(volatile u64 *sem)
  669. {
  670. int i = 0;
  671. while (*sem == 0 && i < LOOP_TIMEOUT) {
  672. udelay(1);
  673. i += 1;
  674. }
  675. if (i == LOOP_TIMEOUT) {
  676. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  677. return -EIO;
  678. }
  679. return 0;
  680. }
  681. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  682. struct iommu_cmd *cmd,
  683. u32 tail)
  684. {
  685. u8 *target;
  686. target = iommu->cmd_buf + tail;
  687. tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  688. /* Copy command to buffer */
  689. memcpy(target, cmd, sizeof(*cmd));
  690. /* Tell the IOMMU about it */
  691. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  692. }
  693. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  694. {
  695. WARN_ON(address & 0x7ULL);
  696. memset(cmd, 0, sizeof(*cmd));
  697. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  698. cmd->data[1] = upper_32_bits(__pa(address));
  699. cmd->data[2] = 1;
  700. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  701. }
  702. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  703. {
  704. memset(cmd, 0, sizeof(*cmd));
  705. cmd->data[0] = devid;
  706. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  707. }
  708. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  709. size_t size, u16 domid, int pde)
  710. {
  711. u64 pages;
  712. bool s;
  713. pages = iommu_num_pages(address, size, PAGE_SIZE);
  714. s = false;
  715. if (pages > 1) {
  716. /*
  717. * If we have to flush more than one page, flush all
  718. * TLB entries for this domain
  719. */
  720. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  721. s = true;
  722. }
  723. address &= PAGE_MASK;
  724. memset(cmd, 0, sizeof(*cmd));
  725. cmd->data[1] |= domid;
  726. cmd->data[2] = lower_32_bits(address);
  727. cmd->data[3] = upper_32_bits(address);
  728. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  729. if (s) /* size bit - we flush more than one 4kb page */
  730. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  731. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  732. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  733. }
  734. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  735. u64 address, size_t size)
  736. {
  737. u64 pages;
  738. bool s;
  739. pages = iommu_num_pages(address, size, PAGE_SIZE);
  740. s = false;
  741. if (pages > 1) {
  742. /*
  743. * If we have to flush more than one page, flush all
  744. * TLB entries for this domain
  745. */
  746. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  747. s = true;
  748. }
  749. address &= PAGE_MASK;
  750. memset(cmd, 0, sizeof(*cmd));
  751. cmd->data[0] = devid;
  752. cmd->data[0] |= (qdep & 0xff) << 24;
  753. cmd->data[1] = devid;
  754. cmd->data[2] = lower_32_bits(address);
  755. cmd->data[3] = upper_32_bits(address);
  756. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  757. if (s)
  758. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  759. }
  760. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  761. u64 address, bool size)
  762. {
  763. memset(cmd, 0, sizeof(*cmd));
  764. address &= ~(0xfffULL);
  765. cmd->data[0] = pasid;
  766. cmd->data[1] = domid;
  767. cmd->data[2] = lower_32_bits(address);
  768. cmd->data[3] = upper_32_bits(address);
  769. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  770. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  771. if (size)
  772. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  773. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  774. }
  775. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  776. int qdep, u64 address, bool size)
  777. {
  778. memset(cmd, 0, sizeof(*cmd));
  779. address &= ~(0xfffULL);
  780. cmd->data[0] = devid;
  781. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  782. cmd->data[0] |= (qdep & 0xff) << 24;
  783. cmd->data[1] = devid;
  784. cmd->data[1] |= (pasid & 0xff) << 16;
  785. cmd->data[2] = lower_32_bits(address);
  786. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  787. cmd->data[3] = upper_32_bits(address);
  788. if (size)
  789. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  790. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  791. }
  792. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  793. int status, int tag, bool gn)
  794. {
  795. memset(cmd, 0, sizeof(*cmd));
  796. cmd->data[0] = devid;
  797. if (gn) {
  798. cmd->data[1] = pasid;
  799. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  800. }
  801. cmd->data[3] = tag & 0x1ff;
  802. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  803. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  804. }
  805. static void build_inv_all(struct iommu_cmd *cmd)
  806. {
  807. memset(cmd, 0, sizeof(*cmd));
  808. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  809. }
  810. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  811. {
  812. memset(cmd, 0, sizeof(*cmd));
  813. cmd->data[0] = devid;
  814. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  815. }
  816. /*
  817. * Writes the command to the IOMMUs command buffer and informs the
  818. * hardware about the new command.
  819. */
  820. static int __iommu_queue_command_sync(struct amd_iommu *iommu,
  821. struct iommu_cmd *cmd,
  822. bool sync)
  823. {
  824. u32 left, tail, head, next_tail;
  825. again:
  826. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  827. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  828. next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  829. left = (head - next_tail) % CMD_BUFFER_SIZE;
  830. if (left <= 0x20) {
  831. struct iommu_cmd sync_cmd;
  832. int ret;
  833. iommu->cmd_sem = 0;
  834. build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
  835. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  836. if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
  837. return ret;
  838. goto again;
  839. }
  840. copy_cmd_to_buffer(iommu, cmd, tail);
  841. /* We need to sync now to make sure all commands are processed */
  842. iommu->need_sync = sync;
  843. return 0;
  844. }
  845. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  846. struct iommu_cmd *cmd,
  847. bool sync)
  848. {
  849. unsigned long flags;
  850. int ret;
  851. spin_lock_irqsave(&iommu->lock, flags);
  852. ret = __iommu_queue_command_sync(iommu, cmd, sync);
  853. spin_unlock_irqrestore(&iommu->lock, flags);
  854. return ret;
  855. }
  856. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  857. {
  858. return iommu_queue_command_sync(iommu, cmd, true);
  859. }
  860. /*
  861. * This function queues a completion wait command into the command
  862. * buffer of an IOMMU
  863. */
  864. static int iommu_completion_wait(struct amd_iommu *iommu)
  865. {
  866. struct iommu_cmd cmd;
  867. unsigned long flags;
  868. int ret;
  869. if (!iommu->need_sync)
  870. return 0;
  871. build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
  872. spin_lock_irqsave(&iommu->lock, flags);
  873. iommu->cmd_sem = 0;
  874. ret = __iommu_queue_command_sync(iommu, &cmd, false);
  875. if (ret)
  876. goto out_unlock;
  877. ret = wait_on_sem(&iommu->cmd_sem);
  878. out_unlock:
  879. spin_unlock_irqrestore(&iommu->lock, flags);
  880. return ret;
  881. }
  882. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  883. {
  884. struct iommu_cmd cmd;
  885. build_inv_dte(&cmd, devid);
  886. return iommu_queue_command(iommu, &cmd);
  887. }
  888. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  889. {
  890. u32 devid;
  891. for (devid = 0; devid <= 0xffff; ++devid)
  892. iommu_flush_dte(iommu, devid);
  893. iommu_completion_wait(iommu);
  894. }
  895. /*
  896. * This function uses heavy locking and may disable irqs for some time. But
  897. * this is no issue because it is only called during resume.
  898. */
  899. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  900. {
  901. u32 dom_id;
  902. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  903. struct iommu_cmd cmd;
  904. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  905. dom_id, 1);
  906. iommu_queue_command(iommu, &cmd);
  907. }
  908. iommu_completion_wait(iommu);
  909. }
  910. static void iommu_flush_all(struct amd_iommu *iommu)
  911. {
  912. struct iommu_cmd cmd;
  913. build_inv_all(&cmd);
  914. iommu_queue_command(iommu, &cmd);
  915. iommu_completion_wait(iommu);
  916. }
  917. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  918. {
  919. struct iommu_cmd cmd;
  920. build_inv_irt(&cmd, devid);
  921. iommu_queue_command(iommu, &cmd);
  922. }
  923. static void iommu_flush_irt_all(struct amd_iommu *iommu)
  924. {
  925. u32 devid;
  926. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  927. iommu_flush_irt(iommu, devid);
  928. iommu_completion_wait(iommu);
  929. }
  930. void iommu_flush_all_caches(struct amd_iommu *iommu)
  931. {
  932. if (iommu_feature(iommu, FEATURE_IA)) {
  933. iommu_flush_all(iommu);
  934. } else {
  935. iommu_flush_dte_all(iommu);
  936. iommu_flush_irt_all(iommu);
  937. iommu_flush_tlb_all(iommu);
  938. }
  939. }
  940. /*
  941. * Command send function for flushing on-device TLB
  942. */
  943. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  944. u64 address, size_t size)
  945. {
  946. struct amd_iommu *iommu;
  947. struct iommu_cmd cmd;
  948. int qdep;
  949. qdep = dev_data->ats.qdep;
  950. iommu = amd_iommu_rlookup_table[dev_data->devid];
  951. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  952. return iommu_queue_command(iommu, &cmd);
  953. }
  954. /*
  955. * Command send function for invalidating a device table entry
  956. */
  957. static int device_flush_dte(struct iommu_dev_data *dev_data)
  958. {
  959. struct amd_iommu *iommu;
  960. u16 alias;
  961. int ret;
  962. iommu = amd_iommu_rlookup_table[dev_data->devid];
  963. alias = dev_data->alias;
  964. ret = iommu_flush_dte(iommu, dev_data->devid);
  965. if (!ret && alias != dev_data->devid)
  966. ret = iommu_flush_dte(iommu, alias);
  967. if (ret)
  968. return ret;
  969. if (dev_data->ats.enabled)
  970. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  971. return ret;
  972. }
  973. /*
  974. * TLB invalidation function which is called from the mapping functions.
  975. * It invalidates a single PTE if the range to flush is within a single
  976. * page. Otherwise it flushes the whole TLB of the IOMMU.
  977. */
  978. static void __domain_flush_pages(struct protection_domain *domain,
  979. u64 address, size_t size, int pde)
  980. {
  981. struct iommu_dev_data *dev_data;
  982. struct iommu_cmd cmd;
  983. int ret = 0, i;
  984. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  985. for (i = 0; i < amd_iommus_present; ++i) {
  986. if (!domain->dev_iommu[i])
  987. continue;
  988. /*
  989. * Devices of this domain are behind this IOMMU
  990. * We need a TLB flush
  991. */
  992. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  993. }
  994. list_for_each_entry(dev_data, &domain->dev_list, list) {
  995. if (!dev_data->ats.enabled)
  996. continue;
  997. ret |= device_flush_iotlb(dev_data, address, size);
  998. }
  999. WARN_ON(ret);
  1000. }
  1001. static void domain_flush_pages(struct protection_domain *domain,
  1002. u64 address, size_t size)
  1003. {
  1004. __domain_flush_pages(domain, address, size, 0);
  1005. }
  1006. /* Flush the whole IO/TLB for a given protection domain */
  1007. static void domain_flush_tlb(struct protection_domain *domain)
  1008. {
  1009. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  1010. }
  1011. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  1012. static void domain_flush_tlb_pde(struct protection_domain *domain)
  1013. {
  1014. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  1015. }
  1016. static void domain_flush_complete(struct protection_domain *domain)
  1017. {
  1018. int i;
  1019. for (i = 0; i < amd_iommus_present; ++i) {
  1020. if (domain && !domain->dev_iommu[i])
  1021. continue;
  1022. /*
  1023. * Devices of this domain are behind this IOMMU
  1024. * We need to wait for completion of all commands.
  1025. */
  1026. iommu_completion_wait(amd_iommus[i]);
  1027. }
  1028. }
  1029. /*
  1030. * This function flushes the DTEs for all devices in domain
  1031. */
  1032. static void domain_flush_devices(struct protection_domain *domain)
  1033. {
  1034. struct iommu_dev_data *dev_data;
  1035. list_for_each_entry(dev_data, &domain->dev_list, list)
  1036. device_flush_dte(dev_data);
  1037. }
  1038. /****************************************************************************
  1039. *
  1040. * The functions below are used the create the page table mappings for
  1041. * unity mapped regions.
  1042. *
  1043. ****************************************************************************/
  1044. /*
  1045. * This function is used to add another level to an IO page table. Adding
  1046. * another level increases the size of the address space by 9 bits to a size up
  1047. * to 64 bits.
  1048. */
  1049. static bool increase_address_space(struct protection_domain *domain,
  1050. gfp_t gfp)
  1051. {
  1052. u64 *pte;
  1053. if (domain->mode == PAGE_MODE_6_LEVEL)
  1054. /* address space already 64 bit large */
  1055. return false;
  1056. pte = (void *)get_zeroed_page(gfp);
  1057. if (!pte)
  1058. return false;
  1059. *pte = PM_LEVEL_PDE(domain->mode,
  1060. virt_to_phys(domain->pt_root));
  1061. domain->pt_root = pte;
  1062. domain->mode += 1;
  1063. domain->updated = true;
  1064. return true;
  1065. }
  1066. static u64 *alloc_pte(struct protection_domain *domain,
  1067. unsigned long address,
  1068. unsigned long page_size,
  1069. u64 **pte_page,
  1070. gfp_t gfp)
  1071. {
  1072. int level, end_lvl;
  1073. u64 *pte, *page;
  1074. BUG_ON(!is_power_of_2(page_size));
  1075. while (address > PM_LEVEL_SIZE(domain->mode))
  1076. increase_address_space(domain, gfp);
  1077. level = domain->mode - 1;
  1078. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1079. address = PAGE_SIZE_ALIGN(address, page_size);
  1080. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1081. while (level > end_lvl) {
  1082. u64 __pte, __npte;
  1083. __pte = *pte;
  1084. if (!IOMMU_PTE_PRESENT(__pte)) {
  1085. page = (u64 *)get_zeroed_page(gfp);
  1086. if (!page)
  1087. return NULL;
  1088. __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
  1089. /* pte could have been changed somewhere. */
  1090. if (cmpxchg64(pte, __pte, __npte) != __pte) {
  1091. free_page((unsigned long)page);
  1092. continue;
  1093. }
  1094. }
  1095. /* No level skipping support yet */
  1096. if (PM_PTE_LEVEL(*pte) != level)
  1097. return NULL;
  1098. level -= 1;
  1099. pte = IOMMU_PTE_PAGE(*pte);
  1100. if (pte_page && level == end_lvl)
  1101. *pte_page = pte;
  1102. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1103. }
  1104. return pte;
  1105. }
  1106. /*
  1107. * This function checks if there is a PTE for a given dma address. If
  1108. * there is one, it returns the pointer to it.
  1109. */
  1110. static u64 *fetch_pte(struct protection_domain *domain,
  1111. unsigned long address,
  1112. unsigned long *page_size)
  1113. {
  1114. int level;
  1115. u64 *pte;
  1116. if (address > PM_LEVEL_SIZE(domain->mode))
  1117. return NULL;
  1118. level = domain->mode - 1;
  1119. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1120. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1121. while (level > 0) {
  1122. /* Not Present */
  1123. if (!IOMMU_PTE_PRESENT(*pte))
  1124. return NULL;
  1125. /* Large PTE */
  1126. if (PM_PTE_LEVEL(*pte) == 7 ||
  1127. PM_PTE_LEVEL(*pte) == 0)
  1128. break;
  1129. /* No level skipping support yet */
  1130. if (PM_PTE_LEVEL(*pte) != level)
  1131. return NULL;
  1132. level -= 1;
  1133. /* Walk to the next level */
  1134. pte = IOMMU_PTE_PAGE(*pte);
  1135. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1136. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1137. }
  1138. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1139. unsigned long pte_mask;
  1140. /*
  1141. * If we have a series of large PTEs, make
  1142. * sure to return a pointer to the first one.
  1143. */
  1144. *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
  1145. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1146. pte = (u64 *)(((unsigned long)pte) & pte_mask);
  1147. }
  1148. return pte;
  1149. }
  1150. /*
  1151. * Generic mapping functions. It maps a physical address into a DMA
  1152. * address space. It allocates the page table pages if necessary.
  1153. * In the future it can be extended to a generic mapping function
  1154. * supporting all features of AMD IOMMU page tables like level skipping
  1155. * and full 64 bit address spaces.
  1156. */
  1157. static int iommu_map_page(struct protection_domain *dom,
  1158. unsigned long bus_addr,
  1159. unsigned long phys_addr,
  1160. unsigned long page_size,
  1161. int prot,
  1162. gfp_t gfp)
  1163. {
  1164. u64 __pte, *pte;
  1165. int i, count;
  1166. BUG_ON(!IS_ALIGNED(bus_addr, page_size));
  1167. BUG_ON(!IS_ALIGNED(phys_addr, page_size));
  1168. if (!(prot & IOMMU_PROT_MASK))
  1169. return -EINVAL;
  1170. count = PAGE_SIZE_PTE_COUNT(page_size);
  1171. pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
  1172. if (!pte)
  1173. return -ENOMEM;
  1174. for (i = 0; i < count; ++i)
  1175. if (IOMMU_PTE_PRESENT(pte[i]))
  1176. return -EBUSY;
  1177. if (count > 1) {
  1178. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1179. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1180. } else
  1181. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1182. if (prot & IOMMU_PROT_IR)
  1183. __pte |= IOMMU_PTE_IR;
  1184. if (prot & IOMMU_PROT_IW)
  1185. __pte |= IOMMU_PTE_IW;
  1186. for (i = 0; i < count; ++i)
  1187. pte[i] = __pte;
  1188. update_domain(dom);
  1189. return 0;
  1190. }
  1191. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1192. unsigned long bus_addr,
  1193. unsigned long page_size)
  1194. {
  1195. unsigned long long unmapped;
  1196. unsigned long unmap_size;
  1197. u64 *pte;
  1198. BUG_ON(!is_power_of_2(page_size));
  1199. unmapped = 0;
  1200. while (unmapped < page_size) {
  1201. pte = fetch_pte(dom, bus_addr, &unmap_size);
  1202. if (pte) {
  1203. int i, count;
  1204. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1205. for (i = 0; i < count; i++)
  1206. pte[i] = 0ULL;
  1207. }
  1208. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1209. unmapped += unmap_size;
  1210. }
  1211. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1212. return unmapped;
  1213. }
  1214. /****************************************************************************
  1215. *
  1216. * The next functions belong to the address allocator for the dma_ops
  1217. * interface functions.
  1218. *
  1219. ****************************************************************************/
  1220. static unsigned long dma_ops_alloc_iova(struct device *dev,
  1221. struct dma_ops_domain *dma_dom,
  1222. unsigned int pages, u64 dma_mask)
  1223. {
  1224. unsigned long pfn = 0;
  1225. pages = __roundup_pow_of_two(pages);
  1226. if (dma_mask > DMA_BIT_MASK(32))
  1227. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1228. IOVA_PFN(DMA_BIT_MASK(32)));
  1229. if (!pfn)
  1230. pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
  1231. return (pfn << PAGE_SHIFT);
  1232. }
  1233. static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
  1234. unsigned long address,
  1235. unsigned int pages)
  1236. {
  1237. pages = __roundup_pow_of_two(pages);
  1238. address >>= PAGE_SHIFT;
  1239. free_iova_fast(&dma_dom->iovad, address, pages);
  1240. }
  1241. /****************************************************************************
  1242. *
  1243. * The next functions belong to the domain allocation. A domain is
  1244. * allocated for every IOMMU as the default domain. If device isolation
  1245. * is enabled, every device get its own domain. The most important thing
  1246. * about domains is the page table mapping the DMA address space they
  1247. * contain.
  1248. *
  1249. ****************************************************************************/
  1250. /*
  1251. * This function adds a protection domain to the global protection domain list
  1252. */
  1253. static void add_domain_to_list(struct protection_domain *domain)
  1254. {
  1255. unsigned long flags;
  1256. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1257. list_add(&domain->list, &amd_iommu_pd_list);
  1258. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1259. }
  1260. /*
  1261. * This function removes a protection domain to the global
  1262. * protection domain list
  1263. */
  1264. static void del_domain_from_list(struct protection_domain *domain)
  1265. {
  1266. unsigned long flags;
  1267. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1268. list_del(&domain->list);
  1269. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1270. }
  1271. static u16 domain_id_alloc(void)
  1272. {
  1273. unsigned long flags;
  1274. int id;
  1275. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1276. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1277. BUG_ON(id == 0);
  1278. if (id > 0 && id < MAX_DOMAIN_ID)
  1279. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1280. else
  1281. id = 0;
  1282. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1283. return id;
  1284. }
  1285. static void domain_id_free(int id)
  1286. {
  1287. unsigned long flags;
  1288. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1289. if (id > 0 && id < MAX_DOMAIN_ID)
  1290. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1291. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1292. }
  1293. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1294. static void free_pt_##LVL (unsigned long __pt) \
  1295. { \
  1296. unsigned long p; \
  1297. u64 *pt; \
  1298. int i; \
  1299. \
  1300. pt = (u64 *)__pt; \
  1301. \
  1302. for (i = 0; i < 512; ++i) { \
  1303. /* PTE present? */ \
  1304. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1305. continue; \
  1306. \
  1307. /* Large PTE? */ \
  1308. if (PM_PTE_LEVEL(pt[i]) == 0 || \
  1309. PM_PTE_LEVEL(pt[i]) == 7) \
  1310. continue; \
  1311. \
  1312. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1313. FN(p); \
  1314. } \
  1315. free_page((unsigned long)pt); \
  1316. }
  1317. DEFINE_FREE_PT_FN(l2, free_page)
  1318. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1319. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1320. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1321. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1322. static void free_pagetable(struct protection_domain *domain)
  1323. {
  1324. unsigned long root = (unsigned long)domain->pt_root;
  1325. switch (domain->mode) {
  1326. case PAGE_MODE_NONE:
  1327. break;
  1328. case PAGE_MODE_1_LEVEL:
  1329. free_page(root);
  1330. break;
  1331. case PAGE_MODE_2_LEVEL:
  1332. free_pt_l2(root);
  1333. break;
  1334. case PAGE_MODE_3_LEVEL:
  1335. free_pt_l3(root);
  1336. break;
  1337. case PAGE_MODE_4_LEVEL:
  1338. free_pt_l4(root);
  1339. break;
  1340. case PAGE_MODE_5_LEVEL:
  1341. free_pt_l5(root);
  1342. break;
  1343. case PAGE_MODE_6_LEVEL:
  1344. free_pt_l6(root);
  1345. break;
  1346. default:
  1347. BUG();
  1348. }
  1349. }
  1350. static void free_gcr3_tbl_level1(u64 *tbl)
  1351. {
  1352. u64 *ptr;
  1353. int i;
  1354. for (i = 0; i < 512; ++i) {
  1355. if (!(tbl[i] & GCR3_VALID))
  1356. continue;
  1357. ptr = __va(tbl[i] & PAGE_MASK);
  1358. free_page((unsigned long)ptr);
  1359. }
  1360. }
  1361. static void free_gcr3_tbl_level2(u64 *tbl)
  1362. {
  1363. u64 *ptr;
  1364. int i;
  1365. for (i = 0; i < 512; ++i) {
  1366. if (!(tbl[i] & GCR3_VALID))
  1367. continue;
  1368. ptr = __va(tbl[i] & PAGE_MASK);
  1369. free_gcr3_tbl_level1(ptr);
  1370. }
  1371. }
  1372. static void free_gcr3_table(struct protection_domain *domain)
  1373. {
  1374. if (domain->glx == 2)
  1375. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1376. else if (domain->glx == 1)
  1377. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1378. else
  1379. BUG_ON(domain->glx != 0);
  1380. free_page((unsigned long)domain->gcr3_tbl);
  1381. }
  1382. /*
  1383. * Free a domain, only used if something went wrong in the
  1384. * allocation path and we need to free an already allocated page table
  1385. */
  1386. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1387. {
  1388. if (!dom)
  1389. return;
  1390. del_domain_from_list(&dom->domain);
  1391. put_iova_domain(&dom->iovad);
  1392. free_pagetable(&dom->domain);
  1393. if (dom->domain.id)
  1394. domain_id_free(dom->domain.id);
  1395. kfree(dom);
  1396. }
  1397. /*
  1398. * Allocates a new protection domain usable for the dma_ops functions.
  1399. * It also initializes the page table and the address allocator data
  1400. * structures required for the dma_ops interface
  1401. */
  1402. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1403. {
  1404. struct dma_ops_domain *dma_dom;
  1405. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1406. if (!dma_dom)
  1407. return NULL;
  1408. if (protection_domain_init(&dma_dom->domain))
  1409. goto free_dma_dom;
  1410. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  1411. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1412. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1413. if (!dma_dom->domain.pt_root)
  1414. goto free_dma_dom;
  1415. init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
  1416. IOVA_START_PFN, DMA_32BIT_PFN);
  1417. /* Initialize reserved ranges */
  1418. copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
  1419. add_domain_to_list(&dma_dom->domain);
  1420. return dma_dom;
  1421. free_dma_dom:
  1422. dma_ops_domain_free(dma_dom);
  1423. return NULL;
  1424. }
  1425. /*
  1426. * little helper function to check whether a given protection domain is a
  1427. * dma_ops domain
  1428. */
  1429. static bool dma_ops_domain(struct protection_domain *domain)
  1430. {
  1431. return domain->flags & PD_DMA_OPS_MASK;
  1432. }
  1433. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1434. {
  1435. u64 pte_root = 0;
  1436. u64 flags = 0;
  1437. if (domain->mode != PAGE_MODE_NONE)
  1438. pte_root = virt_to_phys(domain->pt_root);
  1439. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1440. << DEV_ENTRY_MODE_SHIFT;
  1441. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1442. flags = amd_iommu_dev_table[devid].data[1];
  1443. if (ats)
  1444. flags |= DTE_FLAG_IOTLB;
  1445. if (domain->flags & PD_IOMMUV2_MASK) {
  1446. u64 gcr3 = __pa(domain->gcr3_tbl);
  1447. u64 glx = domain->glx;
  1448. u64 tmp;
  1449. pte_root |= DTE_FLAG_GV;
  1450. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1451. /* First mask out possible old values for GCR3 table */
  1452. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1453. flags &= ~tmp;
  1454. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1455. flags &= ~tmp;
  1456. /* Encode GCR3 table into DTE */
  1457. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1458. pte_root |= tmp;
  1459. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1460. flags |= tmp;
  1461. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1462. flags |= tmp;
  1463. }
  1464. flags &= ~(0xffffUL);
  1465. flags |= domain->id;
  1466. amd_iommu_dev_table[devid].data[1] = flags;
  1467. amd_iommu_dev_table[devid].data[0] = pte_root;
  1468. }
  1469. static void clear_dte_entry(u16 devid)
  1470. {
  1471. /* remove entry from the device table seen by the hardware */
  1472. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1473. amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
  1474. amd_iommu_apply_erratum_63(devid);
  1475. }
  1476. static void do_attach(struct iommu_dev_data *dev_data,
  1477. struct protection_domain *domain)
  1478. {
  1479. struct amd_iommu *iommu;
  1480. u16 alias;
  1481. bool ats;
  1482. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1483. alias = dev_data->alias;
  1484. ats = dev_data->ats.enabled;
  1485. /* Update data structures */
  1486. dev_data->domain = domain;
  1487. list_add(&dev_data->list, &domain->dev_list);
  1488. /* Do reference counting */
  1489. domain->dev_iommu[iommu->index] += 1;
  1490. domain->dev_cnt += 1;
  1491. /* Update device table */
  1492. set_dte_entry(dev_data->devid, domain, ats);
  1493. if (alias != dev_data->devid)
  1494. set_dte_entry(alias, domain, ats);
  1495. device_flush_dte(dev_data);
  1496. }
  1497. static void do_detach(struct iommu_dev_data *dev_data)
  1498. {
  1499. struct amd_iommu *iommu;
  1500. u16 alias;
  1501. /*
  1502. * First check if the device is still attached. It might already
  1503. * be detached from its domain because the generic
  1504. * iommu_detach_group code detached it and we try again here in
  1505. * our alias handling.
  1506. */
  1507. if (!dev_data->domain)
  1508. return;
  1509. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1510. alias = dev_data->alias;
  1511. /* decrease reference counters */
  1512. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1513. dev_data->domain->dev_cnt -= 1;
  1514. /* Update data structures */
  1515. dev_data->domain = NULL;
  1516. list_del(&dev_data->list);
  1517. clear_dte_entry(dev_data->devid);
  1518. if (alias != dev_data->devid)
  1519. clear_dte_entry(alias);
  1520. /* Flush the DTE entry */
  1521. device_flush_dte(dev_data);
  1522. }
  1523. /*
  1524. * If a device is not yet associated with a domain, this function does
  1525. * assigns it visible for the hardware
  1526. */
  1527. static int __attach_device(struct iommu_dev_data *dev_data,
  1528. struct protection_domain *domain)
  1529. {
  1530. int ret;
  1531. /*
  1532. * Must be called with IRQs disabled. Warn here to detect early
  1533. * when its not.
  1534. */
  1535. WARN_ON(!irqs_disabled());
  1536. /* lock domain */
  1537. spin_lock(&domain->lock);
  1538. ret = -EBUSY;
  1539. if (dev_data->domain != NULL)
  1540. goto out_unlock;
  1541. /* Attach alias group root */
  1542. do_attach(dev_data, domain);
  1543. ret = 0;
  1544. out_unlock:
  1545. /* ready */
  1546. spin_unlock(&domain->lock);
  1547. return ret;
  1548. }
  1549. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1550. {
  1551. pci_disable_ats(pdev);
  1552. pci_disable_pri(pdev);
  1553. pci_disable_pasid(pdev);
  1554. }
  1555. /* FIXME: Change generic reset-function to do the same */
  1556. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1557. {
  1558. u16 control;
  1559. int pos;
  1560. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1561. if (!pos)
  1562. return -EINVAL;
  1563. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1564. control |= PCI_PRI_CTRL_RESET;
  1565. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1566. return 0;
  1567. }
  1568. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1569. {
  1570. bool reset_enable;
  1571. int reqs, ret;
  1572. /* FIXME: Hardcode number of outstanding requests for now */
  1573. reqs = 32;
  1574. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1575. reqs = 1;
  1576. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1577. /* Only allow access to user-accessible pages */
  1578. ret = pci_enable_pasid(pdev, 0);
  1579. if (ret)
  1580. goto out_err;
  1581. /* First reset the PRI state of the device */
  1582. ret = pci_reset_pri(pdev);
  1583. if (ret)
  1584. goto out_err;
  1585. /* Enable PRI */
  1586. ret = pci_enable_pri(pdev, reqs);
  1587. if (ret)
  1588. goto out_err;
  1589. if (reset_enable) {
  1590. ret = pri_reset_while_enabled(pdev);
  1591. if (ret)
  1592. goto out_err;
  1593. }
  1594. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1595. if (ret)
  1596. goto out_err;
  1597. return 0;
  1598. out_err:
  1599. pci_disable_pri(pdev);
  1600. pci_disable_pasid(pdev);
  1601. return ret;
  1602. }
  1603. /* FIXME: Move this to PCI code */
  1604. #define PCI_PRI_TLP_OFF (1 << 15)
  1605. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1606. {
  1607. u16 status;
  1608. int pos;
  1609. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1610. if (!pos)
  1611. return false;
  1612. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1613. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1614. }
  1615. /*
  1616. * If a device is not yet associated with a domain, this function
  1617. * assigns it visible for the hardware
  1618. */
  1619. static int attach_device(struct device *dev,
  1620. struct protection_domain *domain)
  1621. {
  1622. struct pci_dev *pdev;
  1623. struct iommu_dev_data *dev_data;
  1624. unsigned long flags;
  1625. int ret;
  1626. dev_data = get_dev_data(dev);
  1627. if (!dev_is_pci(dev))
  1628. goto skip_ats_check;
  1629. pdev = to_pci_dev(dev);
  1630. if (domain->flags & PD_IOMMUV2_MASK) {
  1631. if (!dev_data->passthrough)
  1632. return -EINVAL;
  1633. if (dev_data->iommu_v2) {
  1634. if (pdev_iommuv2_enable(pdev) != 0)
  1635. return -EINVAL;
  1636. dev_data->ats.enabled = true;
  1637. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1638. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1639. }
  1640. } else if (amd_iommu_iotlb_sup &&
  1641. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1642. dev_data->ats.enabled = true;
  1643. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1644. }
  1645. skip_ats_check:
  1646. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1647. ret = __attach_device(dev_data, domain);
  1648. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1649. /*
  1650. * We might boot into a crash-kernel here. The crashed kernel
  1651. * left the caches in the IOMMU dirty. So we have to flush
  1652. * here to evict all dirty stuff.
  1653. */
  1654. domain_flush_tlb_pde(domain);
  1655. return ret;
  1656. }
  1657. /*
  1658. * Removes a device from a protection domain (unlocked)
  1659. */
  1660. static void __detach_device(struct iommu_dev_data *dev_data)
  1661. {
  1662. struct protection_domain *domain;
  1663. /*
  1664. * Must be called with IRQs disabled. Warn here to detect early
  1665. * when its not.
  1666. */
  1667. WARN_ON(!irqs_disabled());
  1668. if (WARN_ON(!dev_data->domain))
  1669. return;
  1670. domain = dev_data->domain;
  1671. spin_lock(&domain->lock);
  1672. do_detach(dev_data);
  1673. spin_unlock(&domain->lock);
  1674. }
  1675. /*
  1676. * Removes a device from a protection domain (with devtable_lock held)
  1677. */
  1678. static void detach_device(struct device *dev)
  1679. {
  1680. struct protection_domain *domain;
  1681. struct iommu_dev_data *dev_data;
  1682. unsigned long flags;
  1683. dev_data = get_dev_data(dev);
  1684. domain = dev_data->domain;
  1685. /* lock device table */
  1686. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1687. __detach_device(dev_data);
  1688. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1689. if (!dev_is_pci(dev))
  1690. return;
  1691. if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
  1692. pdev_iommuv2_disable(to_pci_dev(dev));
  1693. else if (dev_data->ats.enabled)
  1694. pci_disable_ats(to_pci_dev(dev));
  1695. dev_data->ats.enabled = false;
  1696. }
  1697. static int amd_iommu_add_device(struct device *dev)
  1698. {
  1699. struct iommu_dev_data *dev_data;
  1700. struct iommu_domain *domain;
  1701. struct amd_iommu *iommu;
  1702. int ret, devid;
  1703. if (!check_device(dev) || get_dev_data(dev))
  1704. return 0;
  1705. devid = get_device_id(dev);
  1706. if (devid < 0)
  1707. return devid;
  1708. iommu = amd_iommu_rlookup_table[devid];
  1709. ret = iommu_init_device(dev);
  1710. if (ret) {
  1711. if (ret != -ENOTSUPP)
  1712. pr_err("Failed to initialize device %s - trying to proceed anyway\n",
  1713. dev_name(dev));
  1714. iommu_ignore_device(dev);
  1715. dev->archdata.dma_ops = &nommu_dma_ops;
  1716. goto out;
  1717. }
  1718. init_iommu_group(dev);
  1719. dev_data = get_dev_data(dev);
  1720. BUG_ON(!dev_data);
  1721. if (iommu_pass_through || dev_data->iommu_v2)
  1722. iommu_request_dm_for_dev(dev);
  1723. /* Domains are initialized for this device - have a look what we ended up with */
  1724. domain = iommu_get_domain_for_dev(dev);
  1725. if (domain->type == IOMMU_DOMAIN_IDENTITY)
  1726. dev_data->passthrough = true;
  1727. else
  1728. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1729. out:
  1730. iommu_completion_wait(iommu);
  1731. return 0;
  1732. }
  1733. static void amd_iommu_remove_device(struct device *dev)
  1734. {
  1735. struct amd_iommu *iommu;
  1736. int devid;
  1737. if (!check_device(dev))
  1738. return;
  1739. devid = get_device_id(dev);
  1740. if (devid < 0)
  1741. return;
  1742. iommu = amd_iommu_rlookup_table[devid];
  1743. iommu_uninit_device(dev);
  1744. iommu_completion_wait(iommu);
  1745. }
  1746. static struct iommu_group *amd_iommu_device_group(struct device *dev)
  1747. {
  1748. if (dev_is_pci(dev))
  1749. return pci_device_group(dev);
  1750. return acpihid_device_group(dev);
  1751. }
  1752. /*****************************************************************************
  1753. *
  1754. * The next functions belong to the dma_ops mapping/unmapping code.
  1755. *
  1756. *****************************************************************************/
  1757. static void __queue_flush(struct flush_queue *queue)
  1758. {
  1759. struct protection_domain *domain;
  1760. unsigned long flags;
  1761. int idx;
  1762. /* First flush TLB of all known domains */
  1763. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1764. list_for_each_entry(domain, &amd_iommu_pd_list, list)
  1765. domain_flush_tlb(domain);
  1766. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1767. /* Wait until flushes have completed */
  1768. domain_flush_complete(NULL);
  1769. for (idx = 0; idx < queue->next; ++idx) {
  1770. struct flush_queue_entry *entry;
  1771. entry = queue->entries + idx;
  1772. free_iova_fast(&entry->dma_dom->iovad,
  1773. entry->iova_pfn,
  1774. entry->pages);
  1775. /* Not really necessary, just to make sure we catch any bugs */
  1776. entry->dma_dom = NULL;
  1777. }
  1778. queue->next = 0;
  1779. }
  1780. static void queue_flush_all(void)
  1781. {
  1782. int cpu;
  1783. for_each_possible_cpu(cpu) {
  1784. struct flush_queue *queue;
  1785. unsigned long flags;
  1786. queue = per_cpu_ptr(&flush_queue, cpu);
  1787. spin_lock_irqsave(&queue->lock, flags);
  1788. if (queue->next > 0)
  1789. __queue_flush(queue);
  1790. spin_unlock_irqrestore(&queue->lock, flags);
  1791. }
  1792. }
  1793. static void queue_flush_timeout(unsigned long unsused)
  1794. {
  1795. atomic_set(&queue_timer_on, 0);
  1796. queue_flush_all();
  1797. }
  1798. static void queue_add(struct dma_ops_domain *dma_dom,
  1799. unsigned long address, unsigned long pages)
  1800. {
  1801. struct flush_queue_entry *entry;
  1802. struct flush_queue *queue;
  1803. unsigned long flags;
  1804. int idx;
  1805. pages = __roundup_pow_of_two(pages);
  1806. address >>= PAGE_SHIFT;
  1807. queue = get_cpu_ptr(&flush_queue);
  1808. spin_lock_irqsave(&queue->lock, flags);
  1809. if (queue->next == FLUSH_QUEUE_SIZE)
  1810. __queue_flush(queue);
  1811. idx = queue->next++;
  1812. entry = queue->entries + idx;
  1813. entry->iova_pfn = address;
  1814. entry->pages = pages;
  1815. entry->dma_dom = dma_dom;
  1816. spin_unlock_irqrestore(&queue->lock, flags);
  1817. if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
  1818. mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));
  1819. put_cpu_ptr(&flush_queue);
  1820. }
  1821. /*
  1822. * In the dma_ops path we only have the struct device. This function
  1823. * finds the corresponding IOMMU, the protection domain and the
  1824. * requestor id for a given device.
  1825. * If the device is not yet associated with a domain this is also done
  1826. * in this function.
  1827. */
  1828. static struct protection_domain *get_domain(struct device *dev)
  1829. {
  1830. struct protection_domain *domain;
  1831. if (!check_device(dev))
  1832. return ERR_PTR(-EINVAL);
  1833. domain = get_dev_data(dev)->domain;
  1834. if (!dma_ops_domain(domain))
  1835. return ERR_PTR(-EBUSY);
  1836. return domain;
  1837. }
  1838. static void update_device_table(struct protection_domain *domain)
  1839. {
  1840. struct iommu_dev_data *dev_data;
  1841. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1842. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1843. if (dev_data->devid == dev_data->alias)
  1844. continue;
  1845. /* There is an alias, update device table entry for it */
  1846. set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
  1847. }
  1848. }
  1849. static void update_domain(struct protection_domain *domain)
  1850. {
  1851. if (!domain->updated)
  1852. return;
  1853. update_device_table(domain);
  1854. domain_flush_devices(domain);
  1855. domain_flush_tlb_pde(domain);
  1856. domain->updated = false;
  1857. }
  1858. static int dir2prot(enum dma_data_direction direction)
  1859. {
  1860. if (direction == DMA_TO_DEVICE)
  1861. return IOMMU_PROT_IR;
  1862. else if (direction == DMA_FROM_DEVICE)
  1863. return IOMMU_PROT_IW;
  1864. else if (direction == DMA_BIDIRECTIONAL)
  1865. return IOMMU_PROT_IW | IOMMU_PROT_IR;
  1866. else
  1867. return 0;
  1868. }
  1869. /*
  1870. * This function contains common code for mapping of a physically
  1871. * contiguous memory region into DMA address space. It is used by all
  1872. * mapping functions provided with this IOMMU driver.
  1873. * Must be called with the domain lock held.
  1874. */
  1875. static dma_addr_t __map_single(struct device *dev,
  1876. struct dma_ops_domain *dma_dom,
  1877. phys_addr_t paddr,
  1878. size_t size,
  1879. enum dma_data_direction direction,
  1880. u64 dma_mask)
  1881. {
  1882. dma_addr_t offset = paddr & ~PAGE_MASK;
  1883. dma_addr_t address, start, ret;
  1884. unsigned int pages;
  1885. int prot = 0;
  1886. int i;
  1887. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1888. paddr &= PAGE_MASK;
  1889. address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
  1890. if (address == DMA_ERROR_CODE)
  1891. goto out;
  1892. prot = dir2prot(direction);
  1893. start = address;
  1894. for (i = 0; i < pages; ++i) {
  1895. ret = iommu_map_page(&dma_dom->domain, start, paddr,
  1896. PAGE_SIZE, prot, GFP_ATOMIC);
  1897. if (ret)
  1898. goto out_unmap;
  1899. paddr += PAGE_SIZE;
  1900. start += PAGE_SIZE;
  1901. }
  1902. address += offset;
  1903. if (unlikely(amd_iommu_np_cache)) {
  1904. domain_flush_pages(&dma_dom->domain, address, size);
  1905. domain_flush_complete(&dma_dom->domain);
  1906. }
  1907. out:
  1908. return address;
  1909. out_unmap:
  1910. for (--i; i >= 0; --i) {
  1911. start -= PAGE_SIZE;
  1912. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1913. }
  1914. domain_flush_tlb(&dma_dom->domain);
  1915. domain_flush_complete(&dma_dom->domain);
  1916. dma_ops_free_iova(dma_dom, address, pages);
  1917. return DMA_ERROR_CODE;
  1918. }
  1919. /*
  1920. * Does the reverse of the __map_single function. Must be called with
  1921. * the domain lock held too
  1922. */
  1923. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1924. dma_addr_t dma_addr,
  1925. size_t size,
  1926. int dir)
  1927. {
  1928. dma_addr_t flush_addr;
  1929. dma_addr_t i, start;
  1930. unsigned int pages;
  1931. flush_addr = dma_addr;
  1932. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1933. dma_addr &= PAGE_MASK;
  1934. start = dma_addr;
  1935. for (i = 0; i < pages; ++i) {
  1936. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1937. start += PAGE_SIZE;
  1938. }
  1939. if (amd_iommu_unmap_flush) {
  1940. dma_ops_free_iova(dma_dom, dma_addr, pages);
  1941. domain_flush_tlb(&dma_dom->domain);
  1942. domain_flush_complete(&dma_dom->domain);
  1943. } else {
  1944. queue_add(dma_dom, dma_addr, pages);
  1945. }
  1946. }
  1947. /*
  1948. * The exported map_single function for dma_ops.
  1949. */
  1950. static dma_addr_t map_page(struct device *dev, struct page *page,
  1951. unsigned long offset, size_t size,
  1952. enum dma_data_direction dir,
  1953. unsigned long attrs)
  1954. {
  1955. phys_addr_t paddr = page_to_phys(page) + offset;
  1956. struct protection_domain *domain;
  1957. struct dma_ops_domain *dma_dom;
  1958. u64 dma_mask;
  1959. domain = get_domain(dev);
  1960. if (PTR_ERR(domain) == -EINVAL)
  1961. return (dma_addr_t)paddr;
  1962. else if (IS_ERR(domain))
  1963. return DMA_ERROR_CODE;
  1964. dma_mask = *dev->dma_mask;
  1965. dma_dom = to_dma_ops_domain(domain);
  1966. return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
  1967. }
  1968. /*
  1969. * The exported unmap_single function for dma_ops.
  1970. */
  1971. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1972. enum dma_data_direction dir, unsigned long attrs)
  1973. {
  1974. struct protection_domain *domain;
  1975. struct dma_ops_domain *dma_dom;
  1976. domain = get_domain(dev);
  1977. if (IS_ERR(domain))
  1978. return;
  1979. dma_dom = to_dma_ops_domain(domain);
  1980. __unmap_single(dma_dom, dma_addr, size, dir);
  1981. }
  1982. static int sg_num_pages(struct device *dev,
  1983. struct scatterlist *sglist,
  1984. int nelems)
  1985. {
  1986. unsigned long mask, boundary_size;
  1987. struct scatterlist *s;
  1988. int i, npages = 0;
  1989. mask = dma_get_seg_boundary(dev);
  1990. boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
  1991. 1UL << (BITS_PER_LONG - PAGE_SHIFT);
  1992. for_each_sg(sglist, s, nelems, i) {
  1993. int p, n;
  1994. s->dma_address = npages << PAGE_SHIFT;
  1995. p = npages % boundary_size;
  1996. n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1997. if (p + n > boundary_size)
  1998. npages += boundary_size - p;
  1999. npages += n;
  2000. }
  2001. return npages;
  2002. }
  2003. /*
  2004. * The exported map_sg function for dma_ops (handles scatter-gather
  2005. * lists).
  2006. */
  2007. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2008. int nelems, enum dma_data_direction direction,
  2009. unsigned long attrs)
  2010. {
  2011. int mapped_pages = 0, npages = 0, prot = 0, i;
  2012. struct protection_domain *domain;
  2013. struct dma_ops_domain *dma_dom;
  2014. struct scatterlist *s;
  2015. unsigned long address;
  2016. u64 dma_mask;
  2017. domain = get_domain(dev);
  2018. if (IS_ERR(domain))
  2019. return 0;
  2020. dma_dom = to_dma_ops_domain(domain);
  2021. dma_mask = *dev->dma_mask;
  2022. npages = sg_num_pages(dev, sglist, nelems);
  2023. address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
  2024. if (address == DMA_ERROR_CODE)
  2025. goto out_err;
  2026. prot = dir2prot(direction);
  2027. /* Map all sg entries */
  2028. for_each_sg(sglist, s, nelems, i) {
  2029. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2030. for (j = 0; j < pages; ++j) {
  2031. unsigned long bus_addr, phys_addr;
  2032. int ret;
  2033. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2034. phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
  2035. ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
  2036. if (ret)
  2037. goto out_unmap;
  2038. mapped_pages += 1;
  2039. }
  2040. }
  2041. /* Everything is mapped - write the right values into s->dma_address */
  2042. for_each_sg(sglist, s, nelems, i) {
  2043. s->dma_address += address + s->offset;
  2044. s->dma_length = s->length;
  2045. }
  2046. return nelems;
  2047. out_unmap:
  2048. pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
  2049. dev_name(dev), npages);
  2050. for_each_sg(sglist, s, nelems, i) {
  2051. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2052. for (j = 0; j < pages; ++j) {
  2053. unsigned long bus_addr;
  2054. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2055. iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
  2056. if (--mapped_pages)
  2057. goto out_free_iova;
  2058. }
  2059. }
  2060. out_free_iova:
  2061. free_iova_fast(&dma_dom->iovad, address, npages);
  2062. out_err:
  2063. return 0;
  2064. }
  2065. /*
  2066. * The exported map_sg function for dma_ops (handles scatter-gather
  2067. * lists).
  2068. */
  2069. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2070. int nelems, enum dma_data_direction dir,
  2071. unsigned long attrs)
  2072. {
  2073. struct protection_domain *domain;
  2074. struct dma_ops_domain *dma_dom;
  2075. unsigned long startaddr;
  2076. int npages = 2;
  2077. domain = get_domain(dev);
  2078. if (IS_ERR(domain))
  2079. return;
  2080. startaddr = sg_dma_address(sglist) & PAGE_MASK;
  2081. dma_dom = to_dma_ops_domain(domain);
  2082. npages = sg_num_pages(dev, sglist, nelems);
  2083. __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
  2084. }
  2085. /*
  2086. * The exported alloc_coherent function for dma_ops.
  2087. */
  2088. static void *alloc_coherent(struct device *dev, size_t size,
  2089. dma_addr_t *dma_addr, gfp_t flag,
  2090. unsigned long attrs)
  2091. {
  2092. u64 dma_mask = dev->coherent_dma_mask;
  2093. struct protection_domain *domain;
  2094. struct dma_ops_domain *dma_dom;
  2095. struct page *page;
  2096. domain = get_domain(dev);
  2097. if (PTR_ERR(domain) == -EINVAL) {
  2098. page = alloc_pages(flag, get_order(size));
  2099. *dma_addr = page_to_phys(page);
  2100. return page_address(page);
  2101. } else if (IS_ERR(domain))
  2102. return NULL;
  2103. dma_dom = to_dma_ops_domain(domain);
  2104. size = PAGE_ALIGN(size);
  2105. dma_mask = dev->coherent_dma_mask;
  2106. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2107. flag |= __GFP_ZERO;
  2108. page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
  2109. if (!page) {
  2110. if (!gfpflags_allow_blocking(flag))
  2111. return NULL;
  2112. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  2113. get_order(size));
  2114. if (!page)
  2115. return NULL;
  2116. }
  2117. if (!dma_mask)
  2118. dma_mask = *dev->dma_mask;
  2119. *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
  2120. size, DMA_BIDIRECTIONAL, dma_mask);
  2121. if (*dma_addr == DMA_ERROR_CODE)
  2122. goto out_free;
  2123. return page_address(page);
  2124. out_free:
  2125. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2126. __free_pages(page, get_order(size));
  2127. return NULL;
  2128. }
  2129. /*
  2130. * The exported free_coherent function for dma_ops.
  2131. */
  2132. static void free_coherent(struct device *dev, size_t size,
  2133. void *virt_addr, dma_addr_t dma_addr,
  2134. unsigned long attrs)
  2135. {
  2136. struct protection_domain *domain;
  2137. struct dma_ops_domain *dma_dom;
  2138. struct page *page;
  2139. page = virt_to_page(virt_addr);
  2140. size = PAGE_ALIGN(size);
  2141. domain = get_domain(dev);
  2142. if (IS_ERR(domain))
  2143. goto free_mem;
  2144. dma_dom = to_dma_ops_domain(domain);
  2145. __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
  2146. free_mem:
  2147. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2148. __free_pages(page, get_order(size));
  2149. }
  2150. /*
  2151. * This function is called by the DMA layer to find out if we can handle a
  2152. * particular device. It is part of the dma_ops.
  2153. */
  2154. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2155. {
  2156. return check_device(dev);
  2157. }
  2158. static struct dma_map_ops amd_iommu_dma_ops = {
  2159. .alloc = alloc_coherent,
  2160. .free = free_coherent,
  2161. .map_page = map_page,
  2162. .unmap_page = unmap_page,
  2163. .map_sg = map_sg,
  2164. .unmap_sg = unmap_sg,
  2165. .dma_supported = amd_iommu_dma_supported,
  2166. };
  2167. static int init_reserved_iova_ranges(void)
  2168. {
  2169. struct pci_dev *pdev = NULL;
  2170. struct iova *val;
  2171. init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
  2172. IOVA_START_PFN, DMA_32BIT_PFN);
  2173. lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
  2174. &reserved_rbtree_key);
  2175. /* MSI memory range */
  2176. val = reserve_iova(&reserved_iova_ranges,
  2177. IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
  2178. if (!val) {
  2179. pr_err("Reserving MSI range failed\n");
  2180. return -ENOMEM;
  2181. }
  2182. /* HT memory range */
  2183. val = reserve_iova(&reserved_iova_ranges,
  2184. IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
  2185. if (!val) {
  2186. pr_err("Reserving HT range failed\n");
  2187. return -ENOMEM;
  2188. }
  2189. /*
  2190. * Memory used for PCI resources
  2191. * FIXME: Check whether we can reserve the PCI-hole completly
  2192. */
  2193. for_each_pci_dev(pdev) {
  2194. int i;
  2195. for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
  2196. struct resource *r = &pdev->resource[i];
  2197. if (!(r->flags & IORESOURCE_MEM))
  2198. continue;
  2199. val = reserve_iova(&reserved_iova_ranges,
  2200. IOVA_PFN(r->start),
  2201. IOVA_PFN(r->end));
  2202. if (!val) {
  2203. pr_err("Reserve pci-resource range failed\n");
  2204. return -ENOMEM;
  2205. }
  2206. }
  2207. }
  2208. return 0;
  2209. }
  2210. int __init amd_iommu_init_api(void)
  2211. {
  2212. int ret, cpu, err = 0;
  2213. ret = iova_cache_get();
  2214. if (ret)
  2215. return ret;
  2216. ret = init_reserved_iova_ranges();
  2217. if (ret)
  2218. return ret;
  2219. for_each_possible_cpu(cpu) {
  2220. struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);
  2221. queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
  2222. sizeof(*queue->entries),
  2223. GFP_KERNEL);
  2224. if (!queue->entries)
  2225. goto out_put_iova;
  2226. spin_lock_init(&queue->lock);
  2227. }
  2228. err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2229. if (err)
  2230. return err;
  2231. #ifdef CONFIG_ARM_AMBA
  2232. err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
  2233. if (err)
  2234. return err;
  2235. #endif
  2236. err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
  2237. if (err)
  2238. return err;
  2239. return 0;
  2240. out_put_iova:
  2241. for_each_possible_cpu(cpu) {
  2242. struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);
  2243. kfree(queue->entries);
  2244. }
  2245. return -ENOMEM;
  2246. }
  2247. int __init amd_iommu_init_dma_ops(void)
  2248. {
  2249. setup_timer(&queue_timer, queue_flush_timeout, 0);
  2250. atomic_set(&queue_timer_on, 0);
  2251. swiotlb = iommu_pass_through ? 1 : 0;
  2252. iommu_detected = 1;
  2253. /*
  2254. * In case we don't initialize SWIOTLB (actually the common case
  2255. * when AMD IOMMU is enabled), make sure there are global
  2256. * dma_ops set as a fall-back for devices not handled by this
  2257. * driver (for example non-PCI devices).
  2258. */
  2259. if (!swiotlb)
  2260. dma_ops = &nommu_dma_ops;
  2261. if (amd_iommu_unmap_flush)
  2262. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2263. else
  2264. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2265. return 0;
  2266. }
  2267. /*****************************************************************************
  2268. *
  2269. * The following functions belong to the exported interface of AMD IOMMU
  2270. *
  2271. * This interface allows access to lower level functions of the IOMMU
  2272. * like protection domain handling and assignement of devices to domains
  2273. * which is not possible with the dma_ops interface.
  2274. *
  2275. *****************************************************************************/
  2276. static void cleanup_domain(struct protection_domain *domain)
  2277. {
  2278. struct iommu_dev_data *entry;
  2279. unsigned long flags;
  2280. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2281. while (!list_empty(&domain->dev_list)) {
  2282. entry = list_first_entry(&domain->dev_list,
  2283. struct iommu_dev_data, list);
  2284. __detach_device(entry);
  2285. }
  2286. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2287. }
  2288. static void protection_domain_free(struct protection_domain *domain)
  2289. {
  2290. if (!domain)
  2291. return;
  2292. del_domain_from_list(domain);
  2293. if (domain->id)
  2294. domain_id_free(domain->id);
  2295. kfree(domain);
  2296. }
  2297. static int protection_domain_init(struct protection_domain *domain)
  2298. {
  2299. spin_lock_init(&domain->lock);
  2300. mutex_init(&domain->api_lock);
  2301. domain->id = domain_id_alloc();
  2302. if (!domain->id)
  2303. return -ENOMEM;
  2304. INIT_LIST_HEAD(&domain->dev_list);
  2305. return 0;
  2306. }
  2307. static struct protection_domain *protection_domain_alloc(void)
  2308. {
  2309. struct protection_domain *domain;
  2310. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2311. if (!domain)
  2312. return NULL;
  2313. if (protection_domain_init(domain))
  2314. goto out_err;
  2315. add_domain_to_list(domain);
  2316. return domain;
  2317. out_err:
  2318. kfree(domain);
  2319. return NULL;
  2320. }
  2321. static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
  2322. {
  2323. struct protection_domain *pdomain;
  2324. struct dma_ops_domain *dma_domain;
  2325. switch (type) {
  2326. case IOMMU_DOMAIN_UNMANAGED:
  2327. pdomain = protection_domain_alloc();
  2328. if (!pdomain)
  2329. return NULL;
  2330. pdomain->mode = PAGE_MODE_3_LEVEL;
  2331. pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2332. if (!pdomain->pt_root) {
  2333. protection_domain_free(pdomain);
  2334. return NULL;
  2335. }
  2336. pdomain->domain.geometry.aperture_start = 0;
  2337. pdomain->domain.geometry.aperture_end = ~0ULL;
  2338. pdomain->domain.geometry.force_aperture = true;
  2339. break;
  2340. case IOMMU_DOMAIN_DMA:
  2341. dma_domain = dma_ops_domain_alloc();
  2342. if (!dma_domain) {
  2343. pr_err("AMD-Vi: Failed to allocate\n");
  2344. return NULL;
  2345. }
  2346. pdomain = &dma_domain->domain;
  2347. break;
  2348. case IOMMU_DOMAIN_IDENTITY:
  2349. pdomain = protection_domain_alloc();
  2350. if (!pdomain)
  2351. return NULL;
  2352. pdomain->mode = PAGE_MODE_NONE;
  2353. break;
  2354. default:
  2355. return NULL;
  2356. }
  2357. return &pdomain->domain;
  2358. }
  2359. static void amd_iommu_domain_free(struct iommu_domain *dom)
  2360. {
  2361. struct protection_domain *domain;
  2362. struct dma_ops_domain *dma_dom;
  2363. domain = to_pdomain(dom);
  2364. if (domain->dev_cnt > 0)
  2365. cleanup_domain(domain);
  2366. BUG_ON(domain->dev_cnt != 0);
  2367. if (!dom)
  2368. return;
  2369. switch (dom->type) {
  2370. case IOMMU_DOMAIN_DMA:
  2371. /*
  2372. * First make sure the domain is no longer referenced from the
  2373. * flush queue
  2374. */
  2375. queue_flush_all();
  2376. /* Now release the domain */
  2377. dma_dom = to_dma_ops_domain(domain);
  2378. dma_ops_domain_free(dma_dom);
  2379. break;
  2380. default:
  2381. if (domain->mode != PAGE_MODE_NONE)
  2382. free_pagetable(domain);
  2383. if (domain->flags & PD_IOMMUV2_MASK)
  2384. free_gcr3_table(domain);
  2385. protection_domain_free(domain);
  2386. break;
  2387. }
  2388. }
  2389. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2390. struct device *dev)
  2391. {
  2392. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2393. struct amd_iommu *iommu;
  2394. int devid;
  2395. if (!check_device(dev))
  2396. return;
  2397. devid = get_device_id(dev);
  2398. if (devid < 0)
  2399. return;
  2400. if (dev_data->domain != NULL)
  2401. detach_device(dev);
  2402. iommu = amd_iommu_rlookup_table[devid];
  2403. if (!iommu)
  2404. return;
  2405. #ifdef CONFIG_IRQ_REMAP
  2406. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
  2407. (dom->type == IOMMU_DOMAIN_UNMANAGED))
  2408. dev_data->use_vapic = 0;
  2409. #endif
  2410. iommu_completion_wait(iommu);
  2411. }
  2412. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2413. struct device *dev)
  2414. {
  2415. struct protection_domain *domain = to_pdomain(dom);
  2416. struct iommu_dev_data *dev_data;
  2417. struct amd_iommu *iommu;
  2418. int ret;
  2419. if (!check_device(dev))
  2420. return -EINVAL;
  2421. dev_data = dev->archdata.iommu;
  2422. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2423. if (!iommu)
  2424. return -EINVAL;
  2425. if (dev_data->domain)
  2426. detach_device(dev);
  2427. ret = attach_device(dev, domain);
  2428. #ifdef CONFIG_IRQ_REMAP
  2429. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  2430. if (dom->type == IOMMU_DOMAIN_UNMANAGED)
  2431. dev_data->use_vapic = 1;
  2432. else
  2433. dev_data->use_vapic = 0;
  2434. }
  2435. #endif
  2436. iommu_completion_wait(iommu);
  2437. return ret;
  2438. }
  2439. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2440. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2441. {
  2442. struct protection_domain *domain = to_pdomain(dom);
  2443. int prot = 0;
  2444. int ret;
  2445. if (domain->mode == PAGE_MODE_NONE)
  2446. return -EINVAL;
  2447. if (iommu_prot & IOMMU_READ)
  2448. prot |= IOMMU_PROT_IR;
  2449. if (iommu_prot & IOMMU_WRITE)
  2450. prot |= IOMMU_PROT_IW;
  2451. mutex_lock(&domain->api_lock);
  2452. ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
  2453. mutex_unlock(&domain->api_lock);
  2454. return ret;
  2455. }
  2456. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2457. size_t page_size)
  2458. {
  2459. struct protection_domain *domain = to_pdomain(dom);
  2460. size_t unmap_size;
  2461. if (domain->mode == PAGE_MODE_NONE)
  2462. return -EINVAL;
  2463. mutex_lock(&domain->api_lock);
  2464. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2465. mutex_unlock(&domain->api_lock);
  2466. domain_flush_tlb_pde(domain);
  2467. return unmap_size;
  2468. }
  2469. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2470. dma_addr_t iova)
  2471. {
  2472. struct protection_domain *domain = to_pdomain(dom);
  2473. unsigned long offset_mask, pte_pgsize;
  2474. u64 *pte, __pte;
  2475. if (domain->mode == PAGE_MODE_NONE)
  2476. return iova;
  2477. pte = fetch_pte(domain, iova, &pte_pgsize);
  2478. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2479. return 0;
  2480. offset_mask = pte_pgsize - 1;
  2481. __pte = *pte & PM_ADDR_MASK;
  2482. return (__pte & ~offset_mask) | (iova & offset_mask);
  2483. }
  2484. static bool amd_iommu_capable(enum iommu_cap cap)
  2485. {
  2486. switch (cap) {
  2487. case IOMMU_CAP_CACHE_COHERENCY:
  2488. return true;
  2489. case IOMMU_CAP_INTR_REMAP:
  2490. return (irq_remapping_enabled == 1);
  2491. case IOMMU_CAP_NOEXEC:
  2492. return false;
  2493. }
  2494. return false;
  2495. }
  2496. static void amd_iommu_get_dm_regions(struct device *dev,
  2497. struct list_head *head)
  2498. {
  2499. struct unity_map_entry *entry;
  2500. int devid;
  2501. devid = get_device_id(dev);
  2502. if (devid < 0)
  2503. return;
  2504. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  2505. struct iommu_dm_region *region;
  2506. if (devid < entry->devid_start || devid > entry->devid_end)
  2507. continue;
  2508. region = kzalloc(sizeof(*region), GFP_KERNEL);
  2509. if (!region) {
  2510. pr_err("Out of memory allocating dm-regions for %s\n",
  2511. dev_name(dev));
  2512. return;
  2513. }
  2514. region->start = entry->address_start;
  2515. region->length = entry->address_end - entry->address_start;
  2516. if (entry->prot & IOMMU_PROT_IR)
  2517. region->prot |= IOMMU_READ;
  2518. if (entry->prot & IOMMU_PROT_IW)
  2519. region->prot |= IOMMU_WRITE;
  2520. list_add_tail(&region->list, head);
  2521. }
  2522. }
  2523. static void amd_iommu_put_dm_regions(struct device *dev,
  2524. struct list_head *head)
  2525. {
  2526. struct iommu_dm_region *entry, *next;
  2527. list_for_each_entry_safe(entry, next, head, list)
  2528. kfree(entry);
  2529. }
  2530. static void amd_iommu_apply_dm_region(struct device *dev,
  2531. struct iommu_domain *domain,
  2532. struct iommu_dm_region *region)
  2533. {
  2534. struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
  2535. unsigned long start, end;
  2536. start = IOVA_PFN(region->start);
  2537. end = IOVA_PFN(region->start + region->length);
  2538. WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
  2539. }
  2540. static const struct iommu_ops amd_iommu_ops = {
  2541. .capable = amd_iommu_capable,
  2542. .domain_alloc = amd_iommu_domain_alloc,
  2543. .domain_free = amd_iommu_domain_free,
  2544. .attach_dev = amd_iommu_attach_device,
  2545. .detach_dev = amd_iommu_detach_device,
  2546. .map = amd_iommu_map,
  2547. .unmap = amd_iommu_unmap,
  2548. .map_sg = default_iommu_map_sg,
  2549. .iova_to_phys = amd_iommu_iova_to_phys,
  2550. .add_device = amd_iommu_add_device,
  2551. .remove_device = amd_iommu_remove_device,
  2552. .device_group = amd_iommu_device_group,
  2553. .get_dm_regions = amd_iommu_get_dm_regions,
  2554. .put_dm_regions = amd_iommu_put_dm_regions,
  2555. .apply_dm_region = amd_iommu_apply_dm_region,
  2556. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2557. };
  2558. /*****************************************************************************
  2559. *
  2560. * The next functions do a basic initialization of IOMMU for pass through
  2561. * mode
  2562. *
  2563. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2564. * DMA-API translation.
  2565. *
  2566. *****************************************************************************/
  2567. /* IOMMUv2 specific functions */
  2568. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2569. {
  2570. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2571. }
  2572. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2573. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2574. {
  2575. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2576. }
  2577. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2578. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2579. {
  2580. struct protection_domain *domain = to_pdomain(dom);
  2581. unsigned long flags;
  2582. spin_lock_irqsave(&domain->lock, flags);
  2583. /* Update data structure */
  2584. domain->mode = PAGE_MODE_NONE;
  2585. domain->updated = true;
  2586. /* Make changes visible to IOMMUs */
  2587. update_domain(domain);
  2588. /* Page-table is not visible to IOMMU anymore, so free it */
  2589. free_pagetable(domain);
  2590. spin_unlock_irqrestore(&domain->lock, flags);
  2591. }
  2592. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2593. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2594. {
  2595. struct protection_domain *domain = to_pdomain(dom);
  2596. unsigned long flags;
  2597. int levels, ret;
  2598. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2599. return -EINVAL;
  2600. /* Number of GCR3 table levels required */
  2601. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2602. levels += 1;
  2603. if (levels > amd_iommu_max_glx_val)
  2604. return -EINVAL;
  2605. spin_lock_irqsave(&domain->lock, flags);
  2606. /*
  2607. * Save us all sanity checks whether devices already in the
  2608. * domain support IOMMUv2. Just force that the domain has no
  2609. * devices attached when it is switched into IOMMUv2 mode.
  2610. */
  2611. ret = -EBUSY;
  2612. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2613. goto out;
  2614. ret = -ENOMEM;
  2615. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2616. if (domain->gcr3_tbl == NULL)
  2617. goto out;
  2618. domain->glx = levels;
  2619. domain->flags |= PD_IOMMUV2_MASK;
  2620. domain->updated = true;
  2621. update_domain(domain);
  2622. ret = 0;
  2623. out:
  2624. spin_unlock_irqrestore(&domain->lock, flags);
  2625. return ret;
  2626. }
  2627. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2628. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2629. u64 address, bool size)
  2630. {
  2631. struct iommu_dev_data *dev_data;
  2632. struct iommu_cmd cmd;
  2633. int i, ret;
  2634. if (!(domain->flags & PD_IOMMUV2_MASK))
  2635. return -EINVAL;
  2636. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2637. /*
  2638. * IOMMU TLB needs to be flushed before Device TLB to
  2639. * prevent device TLB refill from IOMMU TLB
  2640. */
  2641. for (i = 0; i < amd_iommus_present; ++i) {
  2642. if (domain->dev_iommu[i] == 0)
  2643. continue;
  2644. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2645. if (ret != 0)
  2646. goto out;
  2647. }
  2648. /* Wait until IOMMU TLB flushes are complete */
  2649. domain_flush_complete(domain);
  2650. /* Now flush device TLBs */
  2651. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2652. struct amd_iommu *iommu;
  2653. int qdep;
  2654. /*
  2655. There might be non-IOMMUv2 capable devices in an IOMMUv2
  2656. * domain.
  2657. */
  2658. if (!dev_data->ats.enabled)
  2659. continue;
  2660. qdep = dev_data->ats.qdep;
  2661. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2662. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2663. qdep, address, size);
  2664. ret = iommu_queue_command(iommu, &cmd);
  2665. if (ret != 0)
  2666. goto out;
  2667. }
  2668. /* Wait until all device TLBs are flushed */
  2669. domain_flush_complete(domain);
  2670. ret = 0;
  2671. out:
  2672. return ret;
  2673. }
  2674. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2675. u64 address)
  2676. {
  2677. return __flush_pasid(domain, pasid, address, false);
  2678. }
  2679. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2680. u64 address)
  2681. {
  2682. struct protection_domain *domain = to_pdomain(dom);
  2683. unsigned long flags;
  2684. int ret;
  2685. spin_lock_irqsave(&domain->lock, flags);
  2686. ret = __amd_iommu_flush_page(domain, pasid, address);
  2687. spin_unlock_irqrestore(&domain->lock, flags);
  2688. return ret;
  2689. }
  2690. EXPORT_SYMBOL(amd_iommu_flush_page);
  2691. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2692. {
  2693. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2694. true);
  2695. }
  2696. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2697. {
  2698. struct protection_domain *domain = to_pdomain(dom);
  2699. unsigned long flags;
  2700. int ret;
  2701. spin_lock_irqsave(&domain->lock, flags);
  2702. ret = __amd_iommu_flush_tlb(domain, pasid);
  2703. spin_unlock_irqrestore(&domain->lock, flags);
  2704. return ret;
  2705. }
  2706. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2707. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2708. {
  2709. int index;
  2710. u64 *pte;
  2711. while (true) {
  2712. index = (pasid >> (9 * level)) & 0x1ff;
  2713. pte = &root[index];
  2714. if (level == 0)
  2715. break;
  2716. if (!(*pte & GCR3_VALID)) {
  2717. if (!alloc)
  2718. return NULL;
  2719. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2720. if (root == NULL)
  2721. return NULL;
  2722. *pte = __pa(root) | GCR3_VALID;
  2723. }
  2724. root = __va(*pte & PAGE_MASK);
  2725. level -= 1;
  2726. }
  2727. return pte;
  2728. }
  2729. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2730. unsigned long cr3)
  2731. {
  2732. u64 *pte;
  2733. if (domain->mode != PAGE_MODE_NONE)
  2734. return -EINVAL;
  2735. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2736. if (pte == NULL)
  2737. return -ENOMEM;
  2738. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2739. return __amd_iommu_flush_tlb(domain, pasid);
  2740. }
  2741. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2742. {
  2743. u64 *pte;
  2744. if (domain->mode != PAGE_MODE_NONE)
  2745. return -EINVAL;
  2746. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2747. if (pte == NULL)
  2748. return 0;
  2749. *pte = 0;
  2750. return __amd_iommu_flush_tlb(domain, pasid);
  2751. }
  2752. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2753. unsigned long cr3)
  2754. {
  2755. struct protection_domain *domain = to_pdomain(dom);
  2756. unsigned long flags;
  2757. int ret;
  2758. spin_lock_irqsave(&domain->lock, flags);
  2759. ret = __set_gcr3(domain, pasid, cr3);
  2760. spin_unlock_irqrestore(&domain->lock, flags);
  2761. return ret;
  2762. }
  2763. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2764. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2765. {
  2766. struct protection_domain *domain = to_pdomain(dom);
  2767. unsigned long flags;
  2768. int ret;
  2769. spin_lock_irqsave(&domain->lock, flags);
  2770. ret = __clear_gcr3(domain, pasid);
  2771. spin_unlock_irqrestore(&domain->lock, flags);
  2772. return ret;
  2773. }
  2774. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2775. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2776. int status, int tag)
  2777. {
  2778. struct iommu_dev_data *dev_data;
  2779. struct amd_iommu *iommu;
  2780. struct iommu_cmd cmd;
  2781. dev_data = get_dev_data(&pdev->dev);
  2782. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2783. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2784. tag, dev_data->pri_tlp);
  2785. return iommu_queue_command(iommu, &cmd);
  2786. }
  2787. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2788. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2789. {
  2790. struct protection_domain *pdomain;
  2791. pdomain = get_domain(&pdev->dev);
  2792. if (IS_ERR(pdomain))
  2793. return NULL;
  2794. /* Only return IOMMUv2 domains */
  2795. if (!(pdomain->flags & PD_IOMMUV2_MASK))
  2796. return NULL;
  2797. return &pdomain->domain;
  2798. }
  2799. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2800. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2801. {
  2802. struct iommu_dev_data *dev_data;
  2803. if (!amd_iommu_v2_supported())
  2804. return;
  2805. dev_data = get_dev_data(&pdev->dev);
  2806. dev_data->errata |= (1 << erratum);
  2807. }
  2808. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2809. int amd_iommu_device_info(struct pci_dev *pdev,
  2810. struct amd_iommu_device_info *info)
  2811. {
  2812. int max_pasids;
  2813. int pos;
  2814. if (pdev == NULL || info == NULL)
  2815. return -EINVAL;
  2816. if (!amd_iommu_v2_supported())
  2817. return -EINVAL;
  2818. memset(info, 0, sizeof(*info));
  2819. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2820. if (pos)
  2821. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2822. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2823. if (pos)
  2824. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2825. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2826. if (pos) {
  2827. int features;
  2828. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2829. max_pasids = min(max_pasids, (1 << 20));
  2830. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2831. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2832. features = pci_pasid_features(pdev);
  2833. if (features & PCI_PASID_CAP_EXEC)
  2834. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2835. if (features & PCI_PASID_CAP_PRIV)
  2836. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2837. }
  2838. return 0;
  2839. }
  2840. EXPORT_SYMBOL(amd_iommu_device_info);
  2841. #ifdef CONFIG_IRQ_REMAP
  2842. /*****************************************************************************
  2843. *
  2844. * Interrupt Remapping Implementation
  2845. *
  2846. *****************************************************************************/
  2847. static struct irq_chip amd_ir_chip;
  2848. #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
  2849. #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
  2850. #define DTE_IRQ_TABLE_LEN (8ULL << 1)
  2851. #define DTE_IRQ_REMAP_ENABLE 1ULL
  2852. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2853. {
  2854. u64 dte;
  2855. dte = amd_iommu_dev_table[devid].data[2];
  2856. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2857. dte |= virt_to_phys(table->table);
  2858. dte |= DTE_IRQ_REMAP_INTCTL;
  2859. dte |= DTE_IRQ_TABLE_LEN;
  2860. dte |= DTE_IRQ_REMAP_ENABLE;
  2861. amd_iommu_dev_table[devid].data[2] = dte;
  2862. }
  2863. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  2864. {
  2865. struct irq_remap_table *table = NULL;
  2866. struct amd_iommu *iommu;
  2867. unsigned long flags;
  2868. u16 alias;
  2869. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2870. iommu = amd_iommu_rlookup_table[devid];
  2871. if (!iommu)
  2872. goto out_unlock;
  2873. table = irq_lookup_table[devid];
  2874. if (table)
  2875. goto out_unlock;
  2876. alias = amd_iommu_alias_table[devid];
  2877. table = irq_lookup_table[alias];
  2878. if (table) {
  2879. irq_lookup_table[devid] = table;
  2880. set_dte_irq_entry(devid, table);
  2881. iommu_flush_dte(iommu, devid);
  2882. goto out;
  2883. }
  2884. /* Nothing there yet, allocate new irq remapping table */
  2885. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  2886. if (!table)
  2887. goto out_unlock;
  2888. /* Initialize table spin-lock */
  2889. spin_lock_init(&table->lock);
  2890. if (ioapic)
  2891. /* Keep the first 32 indexes free for IOAPIC interrupts */
  2892. table->min_index = 32;
  2893. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  2894. if (!table->table) {
  2895. kfree(table);
  2896. table = NULL;
  2897. goto out_unlock;
  2898. }
  2899. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  2900. memset(table->table, 0,
  2901. MAX_IRQS_PER_TABLE * sizeof(u32));
  2902. else
  2903. memset(table->table, 0,
  2904. (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
  2905. if (ioapic) {
  2906. int i;
  2907. for (i = 0; i < 32; ++i)
  2908. iommu->irte_ops->set_allocated(table, i);
  2909. }
  2910. irq_lookup_table[devid] = table;
  2911. set_dte_irq_entry(devid, table);
  2912. iommu_flush_dte(iommu, devid);
  2913. if (devid != alias) {
  2914. irq_lookup_table[alias] = table;
  2915. set_dte_irq_entry(alias, table);
  2916. iommu_flush_dte(iommu, alias);
  2917. }
  2918. out:
  2919. iommu_completion_wait(iommu);
  2920. out_unlock:
  2921. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2922. return table;
  2923. }
  2924. static int alloc_irq_index(u16 devid, int count)
  2925. {
  2926. struct irq_remap_table *table;
  2927. unsigned long flags;
  2928. int index, c;
  2929. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  2930. if (!iommu)
  2931. return -ENODEV;
  2932. table = get_irq_table(devid, false);
  2933. if (!table)
  2934. return -ENODEV;
  2935. spin_lock_irqsave(&table->lock, flags);
  2936. /* Scan table for free entries */
  2937. for (c = 0, index = table->min_index;
  2938. index < MAX_IRQS_PER_TABLE;
  2939. ++index) {
  2940. if (!iommu->irte_ops->is_allocated(table, index))
  2941. c += 1;
  2942. else
  2943. c = 0;
  2944. if (c == count) {
  2945. for (; c != 0; --c)
  2946. iommu->irte_ops->set_allocated(table, index - c + 1);
  2947. index -= count - 1;
  2948. goto out;
  2949. }
  2950. }
  2951. index = -ENOSPC;
  2952. out:
  2953. spin_unlock_irqrestore(&table->lock, flags);
  2954. return index;
  2955. }
  2956. static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
  2957. struct amd_ir_data *data)
  2958. {
  2959. struct irq_remap_table *table;
  2960. struct amd_iommu *iommu;
  2961. unsigned long flags;
  2962. struct irte_ga *entry;
  2963. iommu = amd_iommu_rlookup_table[devid];
  2964. if (iommu == NULL)
  2965. return -EINVAL;
  2966. table = get_irq_table(devid, false);
  2967. if (!table)
  2968. return -ENOMEM;
  2969. spin_lock_irqsave(&table->lock, flags);
  2970. entry = (struct irte_ga *)table->table;
  2971. entry = &entry[index];
  2972. entry->lo.fields_remap.valid = 0;
  2973. entry->hi.val = irte->hi.val;
  2974. entry->lo.val = irte->lo.val;
  2975. entry->lo.fields_remap.valid = 1;
  2976. if (data)
  2977. data->ref = entry;
  2978. spin_unlock_irqrestore(&table->lock, flags);
  2979. iommu_flush_irt(iommu, devid);
  2980. iommu_completion_wait(iommu);
  2981. return 0;
  2982. }
  2983. static int modify_irte(u16 devid, int index, union irte *irte)
  2984. {
  2985. struct irq_remap_table *table;
  2986. struct amd_iommu *iommu;
  2987. unsigned long flags;
  2988. iommu = amd_iommu_rlookup_table[devid];
  2989. if (iommu == NULL)
  2990. return -EINVAL;
  2991. table = get_irq_table(devid, false);
  2992. if (!table)
  2993. return -ENOMEM;
  2994. spin_lock_irqsave(&table->lock, flags);
  2995. table->table[index] = irte->val;
  2996. spin_unlock_irqrestore(&table->lock, flags);
  2997. iommu_flush_irt(iommu, devid);
  2998. iommu_completion_wait(iommu);
  2999. return 0;
  3000. }
  3001. static void free_irte(u16 devid, int index)
  3002. {
  3003. struct irq_remap_table *table;
  3004. struct amd_iommu *iommu;
  3005. unsigned long flags;
  3006. iommu = amd_iommu_rlookup_table[devid];
  3007. if (iommu == NULL)
  3008. return;
  3009. table = get_irq_table(devid, false);
  3010. if (!table)
  3011. return;
  3012. spin_lock_irqsave(&table->lock, flags);
  3013. iommu->irte_ops->clear_allocated(table, index);
  3014. spin_unlock_irqrestore(&table->lock, flags);
  3015. iommu_flush_irt(iommu, devid);
  3016. iommu_completion_wait(iommu);
  3017. }
  3018. static void irte_prepare(void *entry,
  3019. u32 delivery_mode, u32 dest_mode,
  3020. u8 vector, u32 dest_apicid, int devid)
  3021. {
  3022. union irte *irte = (union irte *) entry;
  3023. irte->val = 0;
  3024. irte->fields.vector = vector;
  3025. irte->fields.int_type = delivery_mode;
  3026. irte->fields.destination = dest_apicid;
  3027. irte->fields.dm = dest_mode;
  3028. irte->fields.valid = 1;
  3029. }
  3030. static void irte_ga_prepare(void *entry,
  3031. u32 delivery_mode, u32 dest_mode,
  3032. u8 vector, u32 dest_apicid, int devid)
  3033. {
  3034. struct irte_ga *irte = (struct irte_ga *) entry;
  3035. struct iommu_dev_data *dev_data = search_dev_data(devid);
  3036. irte->lo.val = 0;
  3037. irte->hi.val = 0;
  3038. irte->lo.fields_remap.guest_mode = dev_data ? dev_data->use_vapic : 0;
  3039. irte->lo.fields_remap.int_type = delivery_mode;
  3040. irte->lo.fields_remap.dm = dest_mode;
  3041. irte->hi.fields.vector = vector;
  3042. irte->lo.fields_remap.destination = dest_apicid;
  3043. irte->lo.fields_remap.valid = 1;
  3044. }
  3045. static void irte_activate(void *entry, u16 devid, u16 index)
  3046. {
  3047. union irte *irte = (union irte *) entry;
  3048. irte->fields.valid = 1;
  3049. modify_irte(devid, index, irte);
  3050. }
  3051. static void irte_ga_activate(void *entry, u16 devid, u16 index)
  3052. {
  3053. struct irte_ga *irte = (struct irte_ga *) entry;
  3054. irte->lo.fields_remap.valid = 1;
  3055. modify_irte_ga(devid, index, irte, NULL);
  3056. }
  3057. static void irte_deactivate(void *entry, u16 devid, u16 index)
  3058. {
  3059. union irte *irte = (union irte *) entry;
  3060. irte->fields.valid = 0;
  3061. modify_irte(devid, index, irte);
  3062. }
  3063. static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
  3064. {
  3065. struct irte_ga *irte = (struct irte_ga *) entry;
  3066. irte->lo.fields_remap.valid = 0;
  3067. modify_irte_ga(devid, index, irte, NULL);
  3068. }
  3069. static void irte_set_affinity(void *entry, u16 devid, u16 index,
  3070. u8 vector, u32 dest_apicid)
  3071. {
  3072. union irte *irte = (union irte *) entry;
  3073. irte->fields.vector = vector;
  3074. irte->fields.destination = dest_apicid;
  3075. modify_irte(devid, index, irte);
  3076. }
  3077. static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
  3078. u8 vector, u32 dest_apicid)
  3079. {
  3080. struct irte_ga *irte = (struct irte_ga *) entry;
  3081. struct iommu_dev_data *dev_data = search_dev_data(devid);
  3082. if (!dev_data || !dev_data->use_vapic) {
  3083. irte->hi.fields.vector = vector;
  3084. irte->lo.fields_remap.destination = dest_apicid;
  3085. irte->lo.fields_remap.guest_mode = 0;
  3086. modify_irte_ga(devid, index, irte, NULL);
  3087. }
  3088. }
  3089. #define IRTE_ALLOCATED (~1U)
  3090. static void irte_set_allocated(struct irq_remap_table *table, int index)
  3091. {
  3092. table->table[index] = IRTE_ALLOCATED;
  3093. }
  3094. static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
  3095. {
  3096. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3097. struct irte_ga *irte = &ptr[index];
  3098. memset(&irte->lo.val, 0, sizeof(u64));
  3099. memset(&irte->hi.val, 0, sizeof(u64));
  3100. irte->hi.fields.vector = 0xff;
  3101. }
  3102. static bool irte_is_allocated(struct irq_remap_table *table, int index)
  3103. {
  3104. union irte *ptr = (union irte *)table->table;
  3105. union irte *irte = &ptr[index];
  3106. return irte->val != 0;
  3107. }
  3108. static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
  3109. {
  3110. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3111. struct irte_ga *irte = &ptr[index];
  3112. return irte->hi.fields.vector != 0;
  3113. }
  3114. static void irte_clear_allocated(struct irq_remap_table *table, int index)
  3115. {
  3116. table->table[index] = 0;
  3117. }
  3118. static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
  3119. {
  3120. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3121. struct irte_ga *irte = &ptr[index];
  3122. memset(&irte->lo.val, 0, sizeof(u64));
  3123. memset(&irte->hi.val, 0, sizeof(u64));
  3124. }
  3125. static int get_devid(struct irq_alloc_info *info)
  3126. {
  3127. int devid = -1;
  3128. switch (info->type) {
  3129. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3130. devid = get_ioapic_devid(info->ioapic_id);
  3131. break;
  3132. case X86_IRQ_ALLOC_TYPE_HPET:
  3133. devid = get_hpet_devid(info->hpet_id);
  3134. break;
  3135. case X86_IRQ_ALLOC_TYPE_MSI:
  3136. case X86_IRQ_ALLOC_TYPE_MSIX:
  3137. devid = get_device_id(&info->msi_dev->dev);
  3138. break;
  3139. default:
  3140. BUG_ON(1);
  3141. break;
  3142. }
  3143. return devid;
  3144. }
  3145. static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
  3146. {
  3147. struct amd_iommu *iommu;
  3148. int devid;
  3149. if (!info)
  3150. return NULL;
  3151. devid = get_devid(info);
  3152. if (devid >= 0) {
  3153. iommu = amd_iommu_rlookup_table[devid];
  3154. if (iommu)
  3155. return iommu->ir_domain;
  3156. }
  3157. return NULL;
  3158. }
  3159. static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
  3160. {
  3161. struct amd_iommu *iommu;
  3162. int devid;
  3163. if (!info)
  3164. return NULL;
  3165. switch (info->type) {
  3166. case X86_IRQ_ALLOC_TYPE_MSI:
  3167. case X86_IRQ_ALLOC_TYPE_MSIX:
  3168. devid = get_device_id(&info->msi_dev->dev);
  3169. if (devid < 0)
  3170. return NULL;
  3171. iommu = amd_iommu_rlookup_table[devid];
  3172. if (iommu)
  3173. return iommu->msi_domain;
  3174. break;
  3175. default:
  3176. break;
  3177. }
  3178. return NULL;
  3179. }
  3180. struct irq_remap_ops amd_iommu_irq_ops = {
  3181. .prepare = amd_iommu_prepare,
  3182. .enable = amd_iommu_enable,
  3183. .disable = amd_iommu_disable,
  3184. .reenable = amd_iommu_reenable,
  3185. .enable_faulting = amd_iommu_enable_faulting,
  3186. .get_ir_irq_domain = get_ir_irq_domain,
  3187. .get_irq_domain = get_irq_domain,
  3188. };
  3189. static void irq_remapping_prepare_irte(struct amd_ir_data *data,
  3190. struct irq_cfg *irq_cfg,
  3191. struct irq_alloc_info *info,
  3192. int devid, int index, int sub_handle)
  3193. {
  3194. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3195. struct msi_msg *msg = &data->msi_entry;
  3196. struct IO_APIC_route_entry *entry;
  3197. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  3198. if (!iommu)
  3199. return;
  3200. data->irq_2_irte.devid = devid;
  3201. data->irq_2_irte.index = index + sub_handle;
  3202. iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
  3203. apic->irq_dest_mode, irq_cfg->vector,
  3204. irq_cfg->dest_apicid, devid);
  3205. switch (info->type) {
  3206. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3207. /* Setup IOAPIC entry */
  3208. entry = info->ioapic_entry;
  3209. info->ioapic_entry = NULL;
  3210. memset(entry, 0, sizeof(*entry));
  3211. entry->vector = index;
  3212. entry->mask = 0;
  3213. entry->trigger = info->ioapic_trigger;
  3214. entry->polarity = info->ioapic_polarity;
  3215. /* Mask level triggered irqs. */
  3216. if (info->ioapic_trigger)
  3217. entry->mask = 1;
  3218. break;
  3219. case X86_IRQ_ALLOC_TYPE_HPET:
  3220. case X86_IRQ_ALLOC_TYPE_MSI:
  3221. case X86_IRQ_ALLOC_TYPE_MSIX:
  3222. msg->address_hi = MSI_ADDR_BASE_HI;
  3223. msg->address_lo = MSI_ADDR_BASE_LO;
  3224. msg->data = irte_info->index;
  3225. break;
  3226. default:
  3227. BUG_ON(1);
  3228. break;
  3229. }
  3230. }
  3231. struct amd_irte_ops irte_32_ops = {
  3232. .prepare = irte_prepare,
  3233. .activate = irte_activate,
  3234. .deactivate = irte_deactivate,
  3235. .set_affinity = irte_set_affinity,
  3236. .set_allocated = irte_set_allocated,
  3237. .is_allocated = irte_is_allocated,
  3238. .clear_allocated = irte_clear_allocated,
  3239. };
  3240. struct amd_irte_ops irte_128_ops = {
  3241. .prepare = irte_ga_prepare,
  3242. .activate = irte_ga_activate,
  3243. .deactivate = irte_ga_deactivate,
  3244. .set_affinity = irte_ga_set_affinity,
  3245. .set_allocated = irte_ga_set_allocated,
  3246. .is_allocated = irte_ga_is_allocated,
  3247. .clear_allocated = irte_ga_clear_allocated,
  3248. };
  3249. static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
  3250. unsigned int nr_irqs, void *arg)
  3251. {
  3252. struct irq_alloc_info *info = arg;
  3253. struct irq_data *irq_data;
  3254. struct amd_ir_data *data = NULL;
  3255. struct irq_cfg *cfg;
  3256. int i, ret, devid;
  3257. int index = -1;
  3258. if (!info)
  3259. return -EINVAL;
  3260. if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
  3261. info->type != X86_IRQ_ALLOC_TYPE_MSIX)
  3262. return -EINVAL;
  3263. /*
  3264. * With IRQ remapping enabled, don't need contiguous CPU vectors
  3265. * to support multiple MSI interrupts.
  3266. */
  3267. if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
  3268. info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
  3269. devid = get_devid(info);
  3270. if (devid < 0)
  3271. return -EINVAL;
  3272. ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
  3273. if (ret < 0)
  3274. return ret;
  3275. if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
  3276. if (get_irq_table(devid, true))
  3277. index = info->ioapic_pin;
  3278. else
  3279. ret = -ENOMEM;
  3280. } else {
  3281. index = alloc_irq_index(devid, nr_irqs);
  3282. }
  3283. if (index < 0) {
  3284. pr_warn("Failed to allocate IRTE\n");
  3285. ret = index;
  3286. goto out_free_parent;
  3287. }
  3288. for (i = 0; i < nr_irqs; i++) {
  3289. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3290. cfg = irqd_cfg(irq_data);
  3291. if (!irq_data || !cfg) {
  3292. ret = -EINVAL;
  3293. goto out_free_data;
  3294. }
  3295. ret = -ENOMEM;
  3296. data = kzalloc(sizeof(*data), GFP_KERNEL);
  3297. if (!data)
  3298. goto out_free_data;
  3299. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  3300. data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
  3301. else
  3302. data->entry = kzalloc(sizeof(struct irte_ga),
  3303. GFP_KERNEL);
  3304. if (!data->entry) {
  3305. kfree(data);
  3306. goto out_free_data;
  3307. }
  3308. irq_data->hwirq = (devid << 16) + i;
  3309. irq_data->chip_data = data;
  3310. irq_data->chip = &amd_ir_chip;
  3311. irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
  3312. irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
  3313. }
  3314. return 0;
  3315. out_free_data:
  3316. for (i--; i >= 0; i--) {
  3317. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3318. if (irq_data)
  3319. kfree(irq_data->chip_data);
  3320. }
  3321. for (i = 0; i < nr_irqs; i++)
  3322. free_irte(devid, index + i);
  3323. out_free_parent:
  3324. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3325. return ret;
  3326. }
  3327. static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
  3328. unsigned int nr_irqs)
  3329. {
  3330. struct irq_2_irte *irte_info;
  3331. struct irq_data *irq_data;
  3332. struct amd_ir_data *data;
  3333. int i;
  3334. for (i = 0; i < nr_irqs; i++) {
  3335. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3336. if (irq_data && irq_data->chip_data) {
  3337. data = irq_data->chip_data;
  3338. irte_info = &data->irq_2_irte;
  3339. free_irte(irte_info->devid, irte_info->index);
  3340. kfree(data->entry);
  3341. kfree(data);
  3342. }
  3343. }
  3344. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3345. }
  3346. static void irq_remapping_activate(struct irq_domain *domain,
  3347. struct irq_data *irq_data)
  3348. {
  3349. struct amd_ir_data *data = irq_data->chip_data;
  3350. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3351. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3352. if (iommu)
  3353. iommu->irte_ops->activate(data->entry, irte_info->devid,
  3354. irte_info->index);
  3355. }
  3356. static void irq_remapping_deactivate(struct irq_domain *domain,
  3357. struct irq_data *irq_data)
  3358. {
  3359. struct amd_ir_data *data = irq_data->chip_data;
  3360. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3361. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3362. if (iommu)
  3363. iommu->irte_ops->deactivate(data->entry, irte_info->devid,
  3364. irte_info->index);
  3365. }
  3366. static struct irq_domain_ops amd_ir_domain_ops = {
  3367. .alloc = irq_remapping_alloc,
  3368. .free = irq_remapping_free,
  3369. .activate = irq_remapping_activate,
  3370. .deactivate = irq_remapping_deactivate,
  3371. };
  3372. static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
  3373. {
  3374. struct amd_iommu *iommu;
  3375. struct amd_iommu_pi_data *pi_data = vcpu_info;
  3376. struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
  3377. struct amd_ir_data *ir_data = data->chip_data;
  3378. struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
  3379. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3380. struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
  3381. /* Note:
  3382. * This device has never been set up for guest mode.
  3383. * we should not modify the IRTE
  3384. */
  3385. if (!dev_data || !dev_data->use_vapic)
  3386. return 0;
  3387. pi_data->ir_data = ir_data;
  3388. /* Note:
  3389. * SVM tries to set up for VAPIC mode, but we are in
  3390. * legacy mode. So, we force legacy mode instead.
  3391. */
  3392. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  3393. pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
  3394. __func__);
  3395. pi_data->is_guest_mode = false;
  3396. }
  3397. iommu = amd_iommu_rlookup_table[irte_info->devid];
  3398. if (iommu == NULL)
  3399. return -EINVAL;
  3400. pi_data->prev_ga_tag = ir_data->cached_ga_tag;
  3401. if (pi_data->is_guest_mode) {
  3402. /* Setting */
  3403. irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
  3404. irte->hi.fields.vector = vcpu_pi_info->vector;
  3405. irte->lo.fields_vapic.guest_mode = 1;
  3406. irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
  3407. ir_data->cached_ga_tag = pi_data->ga_tag;
  3408. } else {
  3409. /* Un-Setting */
  3410. struct irq_cfg *cfg = irqd_cfg(data);
  3411. irte->hi.val = 0;
  3412. irte->lo.val = 0;
  3413. irte->hi.fields.vector = cfg->vector;
  3414. irte->lo.fields_remap.guest_mode = 0;
  3415. irte->lo.fields_remap.destination = cfg->dest_apicid;
  3416. irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
  3417. irte->lo.fields_remap.dm = apic->irq_dest_mode;
  3418. /*
  3419. * This communicates the ga_tag back to the caller
  3420. * so that it can do all the necessary clean up.
  3421. */
  3422. ir_data->cached_ga_tag = 0;
  3423. }
  3424. return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
  3425. }
  3426. static int amd_ir_set_affinity(struct irq_data *data,
  3427. const struct cpumask *mask, bool force)
  3428. {
  3429. struct amd_ir_data *ir_data = data->chip_data;
  3430. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3431. struct irq_cfg *cfg = irqd_cfg(data);
  3432. struct irq_data *parent = data->parent_data;
  3433. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3434. int ret;
  3435. if (!iommu)
  3436. return -ENODEV;
  3437. ret = parent->chip->irq_set_affinity(parent, mask, force);
  3438. if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  3439. return ret;
  3440. /*
  3441. * Atomically updates the IRTE with the new destination, vector
  3442. * and flushes the interrupt entry cache.
  3443. */
  3444. iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
  3445. irte_info->index, cfg->vector, cfg->dest_apicid);
  3446. /*
  3447. * After this point, all the interrupts will start arriving
  3448. * at the new destination. So, time to cleanup the previous
  3449. * vector allocation.
  3450. */
  3451. send_cleanup_vector(cfg);
  3452. return IRQ_SET_MASK_OK_DONE;
  3453. }
  3454. static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
  3455. {
  3456. struct amd_ir_data *ir_data = irq_data->chip_data;
  3457. *msg = ir_data->msi_entry;
  3458. }
  3459. static struct irq_chip amd_ir_chip = {
  3460. .irq_ack = ir_ack_apic_edge,
  3461. .irq_set_affinity = amd_ir_set_affinity,
  3462. .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
  3463. .irq_compose_msi_msg = ir_compose_msi_msg,
  3464. };
  3465. int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
  3466. {
  3467. iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
  3468. if (!iommu->ir_domain)
  3469. return -ENOMEM;
  3470. iommu->ir_domain->parent = arch_get_ir_parent_domain();
  3471. iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
  3472. return 0;
  3473. }
  3474. int amd_iommu_update_ga(int cpu, bool is_run, void *data)
  3475. {
  3476. unsigned long flags;
  3477. struct amd_iommu *iommu;
  3478. struct irq_remap_table *irt;
  3479. struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
  3480. int devid = ir_data->irq_2_irte.devid;
  3481. struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
  3482. struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
  3483. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
  3484. !ref || !entry || !entry->lo.fields_vapic.guest_mode)
  3485. return 0;
  3486. iommu = amd_iommu_rlookup_table[devid];
  3487. if (!iommu)
  3488. return -ENODEV;
  3489. irt = get_irq_table(devid, false);
  3490. if (!irt)
  3491. return -ENODEV;
  3492. spin_lock_irqsave(&irt->lock, flags);
  3493. if (ref->lo.fields_vapic.guest_mode) {
  3494. if (cpu >= 0)
  3495. ref->lo.fields_vapic.destination = cpu;
  3496. ref->lo.fields_vapic.is_run = is_run;
  3497. barrier();
  3498. }
  3499. spin_unlock_irqrestore(&irt->lock, flags);
  3500. iommu_flush_irt(iommu, devid);
  3501. iommu_completion_wait(iommu);
  3502. return 0;
  3503. }
  3504. EXPORT_SYMBOL(amd_iommu_update_ga);
  3505. #endif