t4.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. * - Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials
  20. * provided with the distribution.
  21. *
  22. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29. * SOFTWARE.
  30. */
  31. #ifndef __T4_H__
  32. #define __T4_H__
  33. #include "t4_hw.h"
  34. #include "t4_regs.h"
  35. #include "t4_values.h"
  36. #include "t4_msg.h"
  37. #include "t4fw_ri_api.h"
  38. #define T4_MAX_NUM_PD 65536
  39. #define T4_MAX_MR_SIZE (~0ULL)
  40. #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
  41. #define T4_STAG_UNSET 0xffffffff
  42. #define T4_FW_MAJ 0
  43. #define PCIE_MA_SYNC_A 0x30b4
  44. struct t4_status_page {
  45. __be32 rsvd1; /* flit 0 - hw owns */
  46. __be16 rsvd2;
  47. __be16 qid;
  48. __be16 cidx;
  49. __be16 pidx;
  50. u8 qp_err; /* flit 1 - sw owns */
  51. u8 db_off;
  52. u8 pad;
  53. u16 host_wq_pidx;
  54. u16 host_cidx;
  55. u16 host_pidx;
  56. };
  57. #define T4_EQ_ENTRY_SIZE 64
  58. #define T4_SQ_NUM_SLOTS 5
  59. #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  60. #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  61. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  62. #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  63. sizeof(struct fw_ri_immd)))
  64. #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  65. sizeof(struct fw_ri_rdma_write_wr) - \
  66. sizeof(struct fw_ri_immd)))
  67. #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  68. sizeof(struct fw_ri_rdma_write_wr) - \
  69. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  70. #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  71. sizeof(struct fw_ri_immd)) & ~31UL)
  72. #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  73. #define T4_MAX_FR_DSGL 1024
  74. #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  75. static inline int t4_max_fr_depth(int use_dsgl)
  76. {
  77. return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
  78. }
  79. #define T4_RQ_NUM_SLOTS 2
  80. #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  81. #define T4_MAX_RECV_SGE 4
  82. union t4_wr {
  83. struct fw_ri_res_wr res;
  84. struct fw_ri_wr ri;
  85. struct fw_ri_rdma_write_wr write;
  86. struct fw_ri_send_wr send;
  87. struct fw_ri_rdma_read_wr read;
  88. struct fw_ri_bind_mw_wr bind;
  89. struct fw_ri_fr_nsmr_wr fr;
  90. struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
  91. struct fw_ri_inv_lstag_wr inv;
  92. struct t4_status_page status;
  93. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
  94. };
  95. union t4_recv_wr {
  96. struct fw_ri_recv_wr recv;
  97. struct t4_status_page status;
  98. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
  99. };
  100. static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
  101. enum fw_wr_opcodes opcode, u8 flags, u8 len16)
  102. {
  103. wqe->send.opcode = (u8)opcode;
  104. wqe->send.flags = flags;
  105. wqe->send.wrid = wrid;
  106. wqe->send.r1[0] = 0;
  107. wqe->send.r1[1] = 0;
  108. wqe->send.r1[2] = 0;
  109. wqe->send.len16 = len16;
  110. }
  111. /* CQE/AE status codes */
  112. #define T4_ERR_SUCCESS 0x0
  113. #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
  114. /* STAG is offlimt, being 0, */
  115. /* or STAG_key mismatch */
  116. #define T4_ERR_PDID 0x2 /* PDID mismatch */
  117. #define T4_ERR_QPID 0x3 /* QPID mismatch */
  118. #define T4_ERR_ACCESS 0x4 /* Invalid access right */
  119. #define T4_ERR_WRAP 0x5 /* Wrap error */
  120. #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
  121. #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
  122. /* shared memory region */
  123. #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
  124. /* shared memory region */
  125. #define T4_ERR_ECC 0x9 /* ECC error detected */
  126. #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
  127. /* reading PSTAG for a MW */
  128. /* Invalidate */
  129. #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
  130. /* software error */
  131. #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
  132. #define T4_ERR_CRC 0x10 /* CRC error */
  133. #define T4_ERR_MARKER 0x11 /* Marker error */
  134. #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
  135. #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
  136. #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
  137. #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
  138. #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
  139. #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
  140. #define T4_ERR_MSN 0x18 /* MSN error */
  141. #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
  142. #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
  143. /* or READ_REQ */
  144. #define T4_ERR_MSN_GAP 0x1B
  145. #define T4_ERR_MSN_RANGE 0x1C
  146. #define T4_ERR_IRD_OVERFLOW 0x1D
  147. #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
  148. /* software error */
  149. #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
  150. /* mismatch) */
  151. /*
  152. * CQE defs
  153. */
  154. struct t4_cqe {
  155. __be32 header;
  156. __be32 len;
  157. union {
  158. struct {
  159. __be32 stag;
  160. __be32 msn;
  161. } rcqe;
  162. struct {
  163. u32 stag;
  164. u16 nada2;
  165. u16 cidx;
  166. } scqe;
  167. struct {
  168. __be32 wrid_hi;
  169. __be32 wrid_low;
  170. } gen;
  171. } u;
  172. __be64 reserved;
  173. __be64 bits_type_ts;
  174. };
  175. /* macros for flit 0 of the cqe */
  176. #define CQE_QPID_S 12
  177. #define CQE_QPID_M 0xFFFFF
  178. #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
  179. #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
  180. #define CQE_SWCQE_S 11
  181. #define CQE_SWCQE_M 0x1
  182. #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
  183. #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
  184. #define CQE_STATUS_S 5
  185. #define CQE_STATUS_M 0x1F
  186. #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
  187. #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
  188. #define CQE_TYPE_S 4
  189. #define CQE_TYPE_M 0x1
  190. #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
  191. #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
  192. #define CQE_OPCODE_S 0
  193. #define CQE_OPCODE_M 0xF
  194. #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
  195. #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
  196. #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
  197. #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
  198. #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
  199. #define SQ_TYPE(x) (CQE_TYPE((x)))
  200. #define RQ_TYPE(x) (!CQE_TYPE((x)))
  201. #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
  202. #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
  203. #define CQE_SEND_OPCODE(x)( \
  204. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
  205. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
  206. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
  207. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
  208. #define CQE_LEN(x) (be32_to_cpu((x)->len))
  209. /* used for RQ completion processing */
  210. #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
  211. #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
  212. /* used for SQ completion processing */
  213. #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
  214. #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
  215. /* generic accessor macros */
  216. #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
  217. #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
  218. /* macros for flit 3 of the cqe */
  219. #define CQE_GENBIT_S 63
  220. #define CQE_GENBIT_M 0x1
  221. #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
  222. #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
  223. #define CQE_OVFBIT_S 62
  224. #define CQE_OVFBIT_M 0x1
  225. #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
  226. #define CQE_IQTYPE_S 60
  227. #define CQE_IQTYPE_M 0x3
  228. #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
  229. #define CQE_TS_M 0x0fffffffffffffffULL
  230. #define CQE_TS_G(x) ((x) & CQE_TS_M)
  231. #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
  232. #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
  233. #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
  234. struct t4_swsqe {
  235. u64 wr_id;
  236. struct t4_cqe cqe;
  237. int read_len;
  238. int opcode;
  239. int complete;
  240. int signaled;
  241. u16 idx;
  242. int flushed;
  243. struct timespec host_ts;
  244. u64 sge_ts;
  245. };
  246. static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
  247. {
  248. #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  249. return pgprot_writecombine(prot);
  250. #else
  251. return pgprot_noncached(prot);
  252. #endif
  253. }
  254. enum {
  255. T4_SQ_ONCHIP = (1<<0),
  256. };
  257. struct t4_sq {
  258. union t4_wr *queue;
  259. dma_addr_t dma_addr;
  260. DEFINE_DMA_UNMAP_ADDR(mapping);
  261. unsigned long phys_addr;
  262. struct t4_swsqe *sw_sq;
  263. struct t4_swsqe *oldest_read;
  264. void __iomem *bar2_va;
  265. u64 bar2_pa;
  266. size_t memsize;
  267. u32 bar2_qid;
  268. u32 qid;
  269. u16 in_use;
  270. u16 size;
  271. u16 cidx;
  272. u16 pidx;
  273. u16 wq_pidx;
  274. u16 wq_pidx_inc;
  275. u16 flags;
  276. short flush_cidx;
  277. };
  278. struct t4_swrqe {
  279. u64 wr_id;
  280. struct timespec host_ts;
  281. u64 sge_ts;
  282. };
  283. struct t4_rq {
  284. union t4_recv_wr *queue;
  285. dma_addr_t dma_addr;
  286. DEFINE_DMA_UNMAP_ADDR(mapping);
  287. struct t4_swrqe *sw_rq;
  288. void __iomem *bar2_va;
  289. u64 bar2_pa;
  290. size_t memsize;
  291. u32 bar2_qid;
  292. u32 qid;
  293. u32 msn;
  294. u32 rqt_hwaddr;
  295. u16 rqt_size;
  296. u16 in_use;
  297. u16 size;
  298. u16 cidx;
  299. u16 pidx;
  300. u16 wq_pidx;
  301. u16 wq_pidx_inc;
  302. };
  303. struct t4_wq {
  304. struct t4_sq sq;
  305. struct t4_rq rq;
  306. void __iomem *db;
  307. struct c4iw_rdev *rdev;
  308. int flushed;
  309. };
  310. static inline int t4_rqes_posted(struct t4_wq *wq)
  311. {
  312. return wq->rq.in_use;
  313. }
  314. static inline int t4_rq_empty(struct t4_wq *wq)
  315. {
  316. return wq->rq.in_use == 0;
  317. }
  318. static inline int t4_rq_full(struct t4_wq *wq)
  319. {
  320. return wq->rq.in_use == (wq->rq.size - 1);
  321. }
  322. static inline u32 t4_rq_avail(struct t4_wq *wq)
  323. {
  324. return wq->rq.size - 1 - wq->rq.in_use;
  325. }
  326. static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
  327. {
  328. wq->rq.in_use++;
  329. if (++wq->rq.pidx == wq->rq.size)
  330. wq->rq.pidx = 0;
  331. wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  332. if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
  333. wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
  334. }
  335. static inline void t4_rq_consume(struct t4_wq *wq)
  336. {
  337. wq->rq.in_use--;
  338. wq->rq.msn++;
  339. if (++wq->rq.cidx == wq->rq.size)
  340. wq->rq.cidx = 0;
  341. }
  342. static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
  343. {
  344. return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
  345. }
  346. static inline u16 t4_rq_wq_size(struct t4_wq *wq)
  347. {
  348. return wq->rq.size * T4_RQ_NUM_SLOTS;
  349. }
  350. static inline int t4_sq_onchip(struct t4_sq *sq)
  351. {
  352. return sq->flags & T4_SQ_ONCHIP;
  353. }
  354. static inline int t4_sq_empty(struct t4_wq *wq)
  355. {
  356. return wq->sq.in_use == 0;
  357. }
  358. static inline int t4_sq_full(struct t4_wq *wq)
  359. {
  360. return wq->sq.in_use == (wq->sq.size - 1);
  361. }
  362. static inline u32 t4_sq_avail(struct t4_wq *wq)
  363. {
  364. return wq->sq.size - 1 - wq->sq.in_use;
  365. }
  366. static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
  367. {
  368. wq->sq.in_use++;
  369. if (++wq->sq.pidx == wq->sq.size)
  370. wq->sq.pidx = 0;
  371. wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  372. if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
  373. wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
  374. }
  375. static inline void t4_sq_consume(struct t4_wq *wq)
  376. {
  377. BUG_ON(wq->sq.in_use < 1);
  378. if (wq->sq.cidx == wq->sq.flush_cidx)
  379. wq->sq.flush_cidx = -1;
  380. wq->sq.in_use--;
  381. if (++wq->sq.cidx == wq->sq.size)
  382. wq->sq.cidx = 0;
  383. }
  384. static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
  385. {
  386. return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
  387. }
  388. static inline u16 t4_sq_wq_size(struct t4_wq *wq)
  389. {
  390. return wq->sq.size * T4_SQ_NUM_SLOTS;
  391. }
  392. /* This function copies 64 byte coalesced work request to memory
  393. * mapped BAR2 space. For coalesced WRs, the SGE fetches data
  394. * from the FIFO instead of from Host.
  395. */
  396. static inline void pio_copy(u64 __iomem *dst, u64 *src)
  397. {
  398. int count = 8;
  399. while (count) {
  400. writeq(*src, dst);
  401. src++;
  402. dst++;
  403. count--;
  404. }
  405. }
  406. static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
  407. {
  408. /* Flush host queue memory writes. */
  409. wmb();
  410. if (wq->sq.bar2_va) {
  411. if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
  412. PDBG("%s: WC wq->sq.pidx = %d\n",
  413. __func__, wq->sq.pidx);
  414. pio_copy((u64 __iomem *)
  415. (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
  416. (u64 *)wqe);
  417. } else {
  418. PDBG("%s: DB wq->sq.pidx = %d\n",
  419. __func__, wq->sq.pidx);
  420. writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
  421. wq->sq.bar2_va + SGE_UDB_KDOORBELL);
  422. }
  423. /* Flush user doorbell area writes. */
  424. wmb();
  425. return;
  426. }
  427. writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
  428. }
  429. static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
  430. union t4_recv_wr *wqe)
  431. {
  432. /* Flush host queue memory writes. */
  433. wmb();
  434. if (wq->rq.bar2_va) {
  435. if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
  436. PDBG("%s: WC wq->rq.pidx = %d\n",
  437. __func__, wq->rq.pidx);
  438. pio_copy((u64 __iomem *)
  439. (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
  440. (void *)wqe);
  441. } else {
  442. PDBG("%s: DB wq->rq.pidx = %d\n",
  443. __func__, wq->rq.pidx);
  444. writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
  445. wq->rq.bar2_va + SGE_UDB_KDOORBELL);
  446. }
  447. /* Flush user doorbell area writes. */
  448. wmb();
  449. return;
  450. }
  451. writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
  452. }
  453. static inline int t4_wq_in_error(struct t4_wq *wq)
  454. {
  455. return wq->rq.queue[wq->rq.size].status.qp_err;
  456. }
  457. static inline void t4_set_wq_in_error(struct t4_wq *wq)
  458. {
  459. wq->rq.queue[wq->rq.size].status.qp_err = 1;
  460. }
  461. static inline void t4_disable_wq_db(struct t4_wq *wq)
  462. {
  463. wq->rq.queue[wq->rq.size].status.db_off = 1;
  464. }
  465. static inline void t4_enable_wq_db(struct t4_wq *wq)
  466. {
  467. wq->rq.queue[wq->rq.size].status.db_off = 0;
  468. }
  469. static inline int t4_wq_db_enabled(struct t4_wq *wq)
  470. {
  471. return !wq->rq.queue[wq->rq.size].status.db_off;
  472. }
  473. enum t4_cq_flags {
  474. CQ_ARMED = 1,
  475. };
  476. struct t4_cq {
  477. struct t4_cqe *queue;
  478. dma_addr_t dma_addr;
  479. DEFINE_DMA_UNMAP_ADDR(mapping);
  480. struct t4_cqe *sw_queue;
  481. void __iomem *gts;
  482. void __iomem *bar2_va;
  483. u64 bar2_pa;
  484. u32 bar2_qid;
  485. struct c4iw_rdev *rdev;
  486. size_t memsize;
  487. __be64 bits_type_ts;
  488. u32 cqid;
  489. u32 qid_mask;
  490. int vector;
  491. u16 size; /* including status page */
  492. u16 cidx;
  493. u16 sw_pidx;
  494. u16 sw_cidx;
  495. u16 sw_in_use;
  496. u16 cidx_inc;
  497. u8 gen;
  498. u8 error;
  499. unsigned long flags;
  500. };
  501. static inline void write_gts(struct t4_cq *cq, u32 val)
  502. {
  503. if (cq->bar2_va)
  504. writel(val | INGRESSQID_V(cq->bar2_qid),
  505. cq->bar2_va + SGE_UDB_GTS);
  506. else
  507. writel(val | INGRESSQID_V(cq->cqid), cq->gts);
  508. }
  509. static inline int t4_clear_cq_armed(struct t4_cq *cq)
  510. {
  511. return test_and_clear_bit(CQ_ARMED, &cq->flags);
  512. }
  513. static inline int t4_arm_cq(struct t4_cq *cq, int se)
  514. {
  515. u32 val;
  516. set_bit(CQ_ARMED, &cq->flags);
  517. while (cq->cidx_inc > CIDXINC_M) {
  518. val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
  519. write_gts(cq, val);
  520. cq->cidx_inc -= CIDXINC_M;
  521. }
  522. val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
  523. write_gts(cq, val);
  524. cq->cidx_inc = 0;
  525. return 0;
  526. }
  527. static inline void t4_swcq_produce(struct t4_cq *cq)
  528. {
  529. cq->sw_in_use++;
  530. if (cq->sw_in_use == cq->size) {
  531. PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
  532. cq->error = 1;
  533. BUG_ON(1);
  534. }
  535. if (++cq->sw_pidx == cq->size)
  536. cq->sw_pidx = 0;
  537. }
  538. static inline void t4_swcq_consume(struct t4_cq *cq)
  539. {
  540. BUG_ON(cq->sw_in_use < 1);
  541. cq->sw_in_use--;
  542. if (++cq->sw_cidx == cq->size)
  543. cq->sw_cidx = 0;
  544. }
  545. static inline void t4_hwcq_consume(struct t4_cq *cq)
  546. {
  547. cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
  548. if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
  549. u32 val;
  550. val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
  551. write_gts(cq, val);
  552. cq->cidx_inc = 0;
  553. }
  554. if (++cq->cidx == cq->size) {
  555. cq->cidx = 0;
  556. cq->gen ^= 1;
  557. }
  558. }
  559. static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
  560. {
  561. return (CQE_GENBIT(cqe) == cq->gen);
  562. }
  563. static inline int t4_cq_notempty(struct t4_cq *cq)
  564. {
  565. return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
  566. }
  567. static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  568. {
  569. int ret;
  570. u16 prev_cidx;
  571. if (cq->cidx == 0)
  572. prev_cidx = cq->size - 1;
  573. else
  574. prev_cidx = cq->cidx - 1;
  575. if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
  576. ret = -EOVERFLOW;
  577. cq->error = 1;
  578. printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
  579. BUG_ON(1);
  580. } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
  581. /* Ensure CQE is flushed to memory */
  582. rmb();
  583. *cqe = &cq->queue[cq->cidx];
  584. ret = 0;
  585. } else
  586. ret = -ENODATA;
  587. return ret;
  588. }
  589. static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
  590. {
  591. if (cq->sw_in_use == cq->size) {
  592. PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
  593. cq->error = 1;
  594. BUG_ON(1);
  595. return NULL;
  596. }
  597. if (cq->sw_in_use)
  598. return &cq->sw_queue[cq->sw_cidx];
  599. return NULL;
  600. }
  601. static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  602. {
  603. int ret = 0;
  604. if (cq->error)
  605. ret = -ENODATA;
  606. else if (cq->sw_in_use)
  607. *cqe = &cq->sw_queue[cq->sw_cidx];
  608. else
  609. ret = t4_next_hw_cqe(cq, cqe);
  610. return ret;
  611. }
  612. static inline int t4_cq_in_error(struct t4_cq *cq)
  613. {
  614. return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
  615. }
  616. static inline void t4_set_cq_in_error(struct t4_cq *cq)
  617. {
  618. ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
  619. }
  620. #endif
  621. struct t4_dev_status_page {
  622. u8 db_off;
  623. u8 pad1;
  624. u16 pad2;
  625. u32 pad3;
  626. u64 qp_start;
  627. u64 qp_size;
  628. u64 cq_start;
  629. u64 cq_size;
  630. };