verbs.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <rdma/ib_verbs.h>
  47. #include <rdma/ib_cache.h>
  48. #include <rdma/ib_addr.h>
  49. #include <rdma/rw.h>
  50. #include "core_priv.h"
  51. static const char * const ib_events[] = {
  52. [IB_EVENT_CQ_ERR] = "CQ error",
  53. [IB_EVENT_QP_FATAL] = "QP fatal error",
  54. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  55. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  56. [IB_EVENT_COMM_EST] = "communication established",
  57. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  58. [IB_EVENT_PATH_MIG] = "path migration successful",
  59. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  60. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  61. [IB_EVENT_PORT_ACTIVE] = "port active",
  62. [IB_EVENT_PORT_ERR] = "port error",
  63. [IB_EVENT_LID_CHANGE] = "LID change",
  64. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  65. [IB_EVENT_SM_CHANGE] = "SM change",
  66. [IB_EVENT_SRQ_ERR] = "SRQ error",
  67. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  68. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  69. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  70. [IB_EVENT_GID_CHANGE] = "GID changed",
  71. };
  72. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  73. {
  74. size_t index = event;
  75. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  76. ib_events[index] : "unrecognized event";
  77. }
  78. EXPORT_SYMBOL(ib_event_msg);
  79. static const char * const wc_statuses[] = {
  80. [IB_WC_SUCCESS] = "success",
  81. [IB_WC_LOC_LEN_ERR] = "local length error",
  82. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  83. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  84. [IB_WC_LOC_PROT_ERR] = "local protection error",
  85. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  86. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  87. [IB_WC_BAD_RESP_ERR] = "bad response error",
  88. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  89. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  90. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  91. [IB_WC_REM_OP_ERR] = "remote operation error",
  92. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  93. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  94. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  95. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  96. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  97. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  98. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  99. [IB_WC_FATAL_ERR] = "fatal error",
  100. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  101. [IB_WC_GENERAL_ERR] = "general error",
  102. };
  103. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  104. {
  105. size_t index = status;
  106. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  107. wc_statuses[index] : "unrecognized status";
  108. }
  109. EXPORT_SYMBOL(ib_wc_status_msg);
  110. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  111. {
  112. switch (rate) {
  113. case IB_RATE_2_5_GBPS: return 1;
  114. case IB_RATE_5_GBPS: return 2;
  115. case IB_RATE_10_GBPS: return 4;
  116. case IB_RATE_20_GBPS: return 8;
  117. case IB_RATE_30_GBPS: return 12;
  118. case IB_RATE_40_GBPS: return 16;
  119. case IB_RATE_60_GBPS: return 24;
  120. case IB_RATE_80_GBPS: return 32;
  121. case IB_RATE_120_GBPS: return 48;
  122. default: return -1;
  123. }
  124. }
  125. EXPORT_SYMBOL(ib_rate_to_mult);
  126. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  127. {
  128. switch (mult) {
  129. case 1: return IB_RATE_2_5_GBPS;
  130. case 2: return IB_RATE_5_GBPS;
  131. case 4: return IB_RATE_10_GBPS;
  132. case 8: return IB_RATE_20_GBPS;
  133. case 12: return IB_RATE_30_GBPS;
  134. case 16: return IB_RATE_40_GBPS;
  135. case 24: return IB_RATE_60_GBPS;
  136. case 32: return IB_RATE_80_GBPS;
  137. case 48: return IB_RATE_120_GBPS;
  138. default: return IB_RATE_PORT_CURRENT;
  139. }
  140. }
  141. EXPORT_SYMBOL(mult_to_ib_rate);
  142. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  143. {
  144. switch (rate) {
  145. case IB_RATE_2_5_GBPS: return 2500;
  146. case IB_RATE_5_GBPS: return 5000;
  147. case IB_RATE_10_GBPS: return 10000;
  148. case IB_RATE_20_GBPS: return 20000;
  149. case IB_RATE_30_GBPS: return 30000;
  150. case IB_RATE_40_GBPS: return 40000;
  151. case IB_RATE_60_GBPS: return 60000;
  152. case IB_RATE_80_GBPS: return 80000;
  153. case IB_RATE_120_GBPS: return 120000;
  154. case IB_RATE_14_GBPS: return 14062;
  155. case IB_RATE_56_GBPS: return 56250;
  156. case IB_RATE_112_GBPS: return 112500;
  157. case IB_RATE_168_GBPS: return 168750;
  158. case IB_RATE_25_GBPS: return 25781;
  159. case IB_RATE_100_GBPS: return 103125;
  160. case IB_RATE_200_GBPS: return 206250;
  161. case IB_RATE_300_GBPS: return 309375;
  162. default: return -1;
  163. }
  164. }
  165. EXPORT_SYMBOL(ib_rate_to_mbps);
  166. __attribute_const__ enum rdma_transport_type
  167. rdma_node_get_transport(enum rdma_node_type node_type)
  168. {
  169. switch (node_type) {
  170. case RDMA_NODE_IB_CA:
  171. case RDMA_NODE_IB_SWITCH:
  172. case RDMA_NODE_IB_ROUTER:
  173. return RDMA_TRANSPORT_IB;
  174. case RDMA_NODE_RNIC:
  175. return RDMA_TRANSPORT_IWARP;
  176. case RDMA_NODE_USNIC:
  177. return RDMA_TRANSPORT_USNIC;
  178. case RDMA_NODE_USNIC_UDP:
  179. return RDMA_TRANSPORT_USNIC_UDP;
  180. default:
  181. BUG();
  182. return 0;
  183. }
  184. }
  185. EXPORT_SYMBOL(rdma_node_get_transport);
  186. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  187. {
  188. if (device->get_link_layer)
  189. return device->get_link_layer(device, port_num);
  190. switch (rdma_node_get_transport(device->node_type)) {
  191. case RDMA_TRANSPORT_IB:
  192. return IB_LINK_LAYER_INFINIBAND;
  193. case RDMA_TRANSPORT_IWARP:
  194. case RDMA_TRANSPORT_USNIC:
  195. case RDMA_TRANSPORT_USNIC_UDP:
  196. return IB_LINK_LAYER_ETHERNET;
  197. default:
  198. return IB_LINK_LAYER_UNSPECIFIED;
  199. }
  200. }
  201. EXPORT_SYMBOL(rdma_port_get_link_layer);
  202. /* Protection domains */
  203. /**
  204. * ib_alloc_pd - Allocates an unused protection domain.
  205. * @device: The device on which to allocate the protection domain.
  206. *
  207. * A protection domain object provides an association between QPs, shared
  208. * receive queues, address handles, memory regions, and memory windows.
  209. *
  210. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  211. * memory operations.
  212. */
  213. struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
  214. const char *caller)
  215. {
  216. struct ib_pd *pd;
  217. int mr_access_flags = 0;
  218. pd = device->alloc_pd(device, NULL, NULL);
  219. if (IS_ERR(pd))
  220. return pd;
  221. pd->device = device;
  222. pd->uobject = NULL;
  223. pd->__internal_mr = NULL;
  224. atomic_set(&pd->usecnt, 0);
  225. pd->flags = flags;
  226. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  227. pd->local_dma_lkey = device->local_dma_lkey;
  228. else
  229. mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
  230. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  231. pr_warn("%s: enabling unsafe global rkey\n", caller);
  232. mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
  233. }
  234. if (mr_access_flags) {
  235. struct ib_mr *mr;
  236. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  237. if (IS_ERR(mr)) {
  238. ib_dealloc_pd(pd);
  239. return ERR_CAST(mr);
  240. }
  241. mr->device = pd->device;
  242. mr->pd = pd;
  243. mr->uobject = NULL;
  244. mr->need_inval = false;
  245. pd->__internal_mr = mr;
  246. if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
  247. pd->local_dma_lkey = pd->__internal_mr->lkey;
  248. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  249. pd->unsafe_global_rkey = pd->__internal_mr->rkey;
  250. }
  251. return pd;
  252. }
  253. EXPORT_SYMBOL(__ib_alloc_pd);
  254. /**
  255. * ib_dealloc_pd - Deallocates a protection domain.
  256. * @pd: The protection domain to deallocate.
  257. *
  258. * It is an error to call this function while any resources in the pd still
  259. * exist. The caller is responsible to synchronously destroy them and
  260. * guarantee no new allocations will happen.
  261. */
  262. void ib_dealloc_pd(struct ib_pd *pd)
  263. {
  264. int ret;
  265. if (pd->__internal_mr) {
  266. ret = pd->device->dereg_mr(pd->__internal_mr);
  267. WARN_ON(ret);
  268. pd->__internal_mr = NULL;
  269. }
  270. /* uverbs manipulates usecnt with proper locking, while the kabi
  271. requires the caller to guarantee we can't race here. */
  272. WARN_ON(atomic_read(&pd->usecnt));
  273. /* Making delalloc_pd a void return is a WIP, no driver should return
  274. an error here. */
  275. ret = pd->device->dealloc_pd(pd);
  276. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  277. }
  278. EXPORT_SYMBOL(ib_dealloc_pd);
  279. /* Address handles */
  280. struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
  281. {
  282. struct ib_ah *ah;
  283. ah = pd->device->create_ah(pd, ah_attr, NULL);
  284. if (!IS_ERR(ah)) {
  285. ah->device = pd->device;
  286. ah->pd = pd;
  287. ah->uobject = NULL;
  288. atomic_inc(&pd->usecnt);
  289. }
  290. return ah;
  291. }
  292. EXPORT_SYMBOL(ib_create_ah);
  293. int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
  294. {
  295. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  296. struct iphdr ip4h_checked;
  297. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  298. /* If it's IPv6, the version must be 6, otherwise, the first
  299. * 20 bytes (before the IPv4 header) are garbled.
  300. */
  301. if (ip6h->version != 6)
  302. return (ip4h->version == 4) ? 4 : 0;
  303. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  304. /* RoCE v2 requires no options, thus header length
  305. * must be 5 words
  306. */
  307. if (ip4h->ihl != 5)
  308. return 6;
  309. /* Verify checksum.
  310. * We can't write on scattered buffers so we need to copy to
  311. * temp buffer.
  312. */
  313. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  314. ip4h_checked.check = 0;
  315. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  316. /* if IPv4 header checksum is OK, believe it */
  317. if (ip4h->check == ip4h_checked.check)
  318. return 4;
  319. return 6;
  320. }
  321. EXPORT_SYMBOL(ib_get_rdma_header_version);
  322. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  323. u8 port_num,
  324. const struct ib_grh *grh)
  325. {
  326. int grh_version;
  327. if (rdma_protocol_ib(device, port_num))
  328. return RDMA_NETWORK_IB;
  329. grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
  330. if (grh_version == 4)
  331. return RDMA_NETWORK_IPV4;
  332. if (grh->next_hdr == IPPROTO_UDP)
  333. return RDMA_NETWORK_IPV6;
  334. return RDMA_NETWORK_ROCE_V1;
  335. }
  336. struct find_gid_index_context {
  337. u16 vlan_id;
  338. enum ib_gid_type gid_type;
  339. };
  340. static bool find_gid_index(const union ib_gid *gid,
  341. const struct ib_gid_attr *gid_attr,
  342. void *context)
  343. {
  344. struct find_gid_index_context *ctx =
  345. (struct find_gid_index_context *)context;
  346. if (ctx->gid_type != gid_attr->gid_type)
  347. return false;
  348. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  349. (is_vlan_dev(gid_attr->ndev) &&
  350. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  351. return false;
  352. return true;
  353. }
  354. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  355. u16 vlan_id, const union ib_gid *sgid,
  356. enum ib_gid_type gid_type,
  357. u16 *gid_index)
  358. {
  359. struct find_gid_index_context context = {.vlan_id = vlan_id,
  360. .gid_type = gid_type};
  361. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  362. &context, gid_index);
  363. }
  364. int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
  365. enum rdma_network_type net_type,
  366. union ib_gid *sgid, union ib_gid *dgid)
  367. {
  368. struct sockaddr_in src_in;
  369. struct sockaddr_in dst_in;
  370. __be32 src_saddr, dst_saddr;
  371. if (!sgid || !dgid)
  372. return -EINVAL;
  373. if (net_type == RDMA_NETWORK_IPV4) {
  374. memcpy(&src_in.sin_addr.s_addr,
  375. &hdr->roce4grh.saddr, 4);
  376. memcpy(&dst_in.sin_addr.s_addr,
  377. &hdr->roce4grh.daddr, 4);
  378. src_saddr = src_in.sin_addr.s_addr;
  379. dst_saddr = dst_in.sin_addr.s_addr;
  380. ipv6_addr_set_v4mapped(src_saddr,
  381. (struct in6_addr *)sgid);
  382. ipv6_addr_set_v4mapped(dst_saddr,
  383. (struct in6_addr *)dgid);
  384. return 0;
  385. } else if (net_type == RDMA_NETWORK_IPV6 ||
  386. net_type == RDMA_NETWORK_IB) {
  387. *dgid = hdr->ibgrh.dgid;
  388. *sgid = hdr->ibgrh.sgid;
  389. return 0;
  390. } else {
  391. return -EINVAL;
  392. }
  393. }
  394. EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
  395. int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
  396. const struct ib_wc *wc, const struct ib_grh *grh,
  397. struct ib_ah_attr *ah_attr)
  398. {
  399. u32 flow_class;
  400. u16 gid_index;
  401. int ret;
  402. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  403. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  404. int hoplimit = 0xff;
  405. union ib_gid dgid;
  406. union ib_gid sgid;
  407. memset(ah_attr, 0, sizeof *ah_attr);
  408. if (rdma_cap_eth_ah(device, port_num)) {
  409. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  410. net_type = wc->network_hdr_type;
  411. else
  412. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  413. gid_type = ib_network_to_gid_type(net_type);
  414. }
  415. ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  416. &sgid, &dgid);
  417. if (ret)
  418. return ret;
  419. if (rdma_protocol_roce(device, port_num)) {
  420. int if_index = 0;
  421. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  422. wc->vlan_id : 0xffff;
  423. struct net_device *idev;
  424. struct net_device *resolved_dev;
  425. if (!(wc->wc_flags & IB_WC_GRH))
  426. return -EPROTOTYPE;
  427. if (!device->get_netdev)
  428. return -EOPNOTSUPP;
  429. idev = device->get_netdev(device, port_num);
  430. if (!idev)
  431. return -ENODEV;
  432. ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
  433. ah_attr->dmac,
  434. wc->wc_flags & IB_WC_WITH_VLAN ?
  435. NULL : &vlan_id,
  436. &if_index, &hoplimit);
  437. if (ret) {
  438. dev_put(idev);
  439. return ret;
  440. }
  441. resolved_dev = dev_get_by_index(&init_net, if_index);
  442. if (resolved_dev->flags & IFF_LOOPBACK) {
  443. dev_put(resolved_dev);
  444. resolved_dev = idev;
  445. dev_hold(resolved_dev);
  446. }
  447. rcu_read_lock();
  448. if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
  449. resolved_dev))
  450. ret = -EHOSTUNREACH;
  451. rcu_read_unlock();
  452. dev_put(idev);
  453. dev_put(resolved_dev);
  454. if (ret)
  455. return ret;
  456. ret = get_sgid_index_from_eth(device, port_num, vlan_id,
  457. &dgid, gid_type, &gid_index);
  458. if (ret)
  459. return ret;
  460. }
  461. ah_attr->dlid = wc->slid;
  462. ah_attr->sl = wc->sl;
  463. ah_attr->src_path_bits = wc->dlid_path_bits;
  464. ah_attr->port_num = port_num;
  465. if (wc->wc_flags & IB_WC_GRH) {
  466. ah_attr->ah_flags = IB_AH_GRH;
  467. ah_attr->grh.dgid = sgid;
  468. if (!rdma_cap_eth_ah(device, port_num)) {
  469. if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
  470. ret = ib_find_cached_gid_by_port(device, &dgid,
  471. IB_GID_TYPE_IB,
  472. port_num, NULL,
  473. &gid_index);
  474. if (ret)
  475. return ret;
  476. } else {
  477. gid_index = 0;
  478. }
  479. }
  480. ah_attr->grh.sgid_index = (u8) gid_index;
  481. flow_class = be32_to_cpu(grh->version_tclass_flow);
  482. ah_attr->grh.flow_label = flow_class & 0xFFFFF;
  483. ah_attr->grh.hop_limit = hoplimit;
  484. ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
  485. }
  486. return 0;
  487. }
  488. EXPORT_SYMBOL(ib_init_ah_from_wc);
  489. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  490. const struct ib_grh *grh, u8 port_num)
  491. {
  492. struct ib_ah_attr ah_attr;
  493. int ret;
  494. ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  495. if (ret)
  496. return ERR_PTR(ret);
  497. return ib_create_ah(pd, &ah_attr);
  498. }
  499. EXPORT_SYMBOL(ib_create_ah_from_wc);
  500. int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
  501. {
  502. return ah->device->modify_ah ?
  503. ah->device->modify_ah(ah, ah_attr) :
  504. -ENOSYS;
  505. }
  506. EXPORT_SYMBOL(ib_modify_ah);
  507. int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
  508. {
  509. return ah->device->query_ah ?
  510. ah->device->query_ah(ah, ah_attr) :
  511. -ENOSYS;
  512. }
  513. EXPORT_SYMBOL(ib_query_ah);
  514. int ib_destroy_ah(struct ib_ah *ah)
  515. {
  516. struct ib_pd *pd;
  517. int ret;
  518. pd = ah->pd;
  519. ret = ah->device->destroy_ah(ah);
  520. if (!ret)
  521. atomic_dec(&pd->usecnt);
  522. return ret;
  523. }
  524. EXPORT_SYMBOL(ib_destroy_ah);
  525. /* Shared receive queues */
  526. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  527. struct ib_srq_init_attr *srq_init_attr)
  528. {
  529. struct ib_srq *srq;
  530. if (!pd->device->create_srq)
  531. return ERR_PTR(-ENOSYS);
  532. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  533. if (!IS_ERR(srq)) {
  534. srq->device = pd->device;
  535. srq->pd = pd;
  536. srq->uobject = NULL;
  537. srq->event_handler = srq_init_attr->event_handler;
  538. srq->srq_context = srq_init_attr->srq_context;
  539. srq->srq_type = srq_init_attr->srq_type;
  540. if (srq->srq_type == IB_SRQT_XRC) {
  541. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  542. srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
  543. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  544. atomic_inc(&srq->ext.xrc.cq->usecnt);
  545. }
  546. atomic_inc(&pd->usecnt);
  547. atomic_set(&srq->usecnt, 0);
  548. }
  549. return srq;
  550. }
  551. EXPORT_SYMBOL(ib_create_srq);
  552. int ib_modify_srq(struct ib_srq *srq,
  553. struct ib_srq_attr *srq_attr,
  554. enum ib_srq_attr_mask srq_attr_mask)
  555. {
  556. return srq->device->modify_srq ?
  557. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  558. -ENOSYS;
  559. }
  560. EXPORT_SYMBOL(ib_modify_srq);
  561. int ib_query_srq(struct ib_srq *srq,
  562. struct ib_srq_attr *srq_attr)
  563. {
  564. return srq->device->query_srq ?
  565. srq->device->query_srq(srq, srq_attr) : -ENOSYS;
  566. }
  567. EXPORT_SYMBOL(ib_query_srq);
  568. int ib_destroy_srq(struct ib_srq *srq)
  569. {
  570. struct ib_pd *pd;
  571. enum ib_srq_type srq_type;
  572. struct ib_xrcd *uninitialized_var(xrcd);
  573. struct ib_cq *uninitialized_var(cq);
  574. int ret;
  575. if (atomic_read(&srq->usecnt))
  576. return -EBUSY;
  577. pd = srq->pd;
  578. srq_type = srq->srq_type;
  579. if (srq_type == IB_SRQT_XRC) {
  580. xrcd = srq->ext.xrc.xrcd;
  581. cq = srq->ext.xrc.cq;
  582. }
  583. ret = srq->device->destroy_srq(srq);
  584. if (!ret) {
  585. atomic_dec(&pd->usecnt);
  586. if (srq_type == IB_SRQT_XRC) {
  587. atomic_dec(&xrcd->usecnt);
  588. atomic_dec(&cq->usecnt);
  589. }
  590. }
  591. return ret;
  592. }
  593. EXPORT_SYMBOL(ib_destroy_srq);
  594. /* Queue pairs */
  595. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  596. {
  597. struct ib_qp *qp = context;
  598. unsigned long flags;
  599. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  600. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  601. if (event->element.qp->event_handler)
  602. event->element.qp->event_handler(event, event->element.qp->qp_context);
  603. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  604. }
  605. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  606. {
  607. mutex_lock(&xrcd->tgt_qp_mutex);
  608. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  609. mutex_unlock(&xrcd->tgt_qp_mutex);
  610. }
  611. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  612. void (*event_handler)(struct ib_event *, void *),
  613. void *qp_context)
  614. {
  615. struct ib_qp *qp;
  616. unsigned long flags;
  617. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  618. if (!qp)
  619. return ERR_PTR(-ENOMEM);
  620. qp->real_qp = real_qp;
  621. atomic_inc(&real_qp->usecnt);
  622. qp->device = real_qp->device;
  623. qp->event_handler = event_handler;
  624. qp->qp_context = qp_context;
  625. qp->qp_num = real_qp->qp_num;
  626. qp->qp_type = real_qp->qp_type;
  627. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  628. list_add(&qp->open_list, &real_qp->open_list);
  629. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  630. return qp;
  631. }
  632. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  633. struct ib_qp_open_attr *qp_open_attr)
  634. {
  635. struct ib_qp *qp, *real_qp;
  636. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  637. return ERR_PTR(-EINVAL);
  638. qp = ERR_PTR(-EINVAL);
  639. mutex_lock(&xrcd->tgt_qp_mutex);
  640. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  641. if (real_qp->qp_num == qp_open_attr->qp_num) {
  642. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  643. qp_open_attr->qp_context);
  644. break;
  645. }
  646. }
  647. mutex_unlock(&xrcd->tgt_qp_mutex);
  648. return qp;
  649. }
  650. EXPORT_SYMBOL(ib_open_qp);
  651. static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
  652. struct ib_qp_init_attr *qp_init_attr)
  653. {
  654. struct ib_qp *real_qp = qp;
  655. qp->event_handler = __ib_shared_qp_event_handler;
  656. qp->qp_context = qp;
  657. qp->pd = NULL;
  658. qp->send_cq = qp->recv_cq = NULL;
  659. qp->srq = NULL;
  660. qp->xrcd = qp_init_attr->xrcd;
  661. atomic_inc(&qp_init_attr->xrcd->usecnt);
  662. INIT_LIST_HEAD(&qp->open_list);
  663. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  664. qp_init_attr->qp_context);
  665. if (!IS_ERR(qp))
  666. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  667. else
  668. real_qp->device->destroy_qp(real_qp);
  669. return qp;
  670. }
  671. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  672. struct ib_qp_init_attr *qp_init_attr)
  673. {
  674. struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
  675. struct ib_qp *qp;
  676. int ret;
  677. if (qp_init_attr->rwq_ind_tbl &&
  678. (qp_init_attr->recv_cq ||
  679. qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
  680. qp_init_attr->cap.max_recv_sge))
  681. return ERR_PTR(-EINVAL);
  682. /*
  683. * If the callers is using the RDMA API calculate the resources
  684. * needed for the RDMA READ/WRITE operations.
  685. *
  686. * Note that these callers need to pass in a port number.
  687. */
  688. if (qp_init_attr->cap.max_rdma_ctxs)
  689. rdma_rw_init_qp(device, qp_init_attr);
  690. qp = device->create_qp(pd, qp_init_attr, NULL);
  691. if (IS_ERR(qp))
  692. return qp;
  693. qp->device = device;
  694. qp->real_qp = qp;
  695. qp->uobject = NULL;
  696. qp->qp_type = qp_init_attr->qp_type;
  697. qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
  698. atomic_set(&qp->usecnt, 0);
  699. qp->mrs_used = 0;
  700. spin_lock_init(&qp->mr_lock);
  701. INIT_LIST_HEAD(&qp->rdma_mrs);
  702. INIT_LIST_HEAD(&qp->sig_mrs);
  703. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
  704. return ib_create_xrc_qp(qp, qp_init_attr);
  705. qp->event_handler = qp_init_attr->event_handler;
  706. qp->qp_context = qp_init_attr->qp_context;
  707. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  708. qp->recv_cq = NULL;
  709. qp->srq = NULL;
  710. } else {
  711. qp->recv_cq = qp_init_attr->recv_cq;
  712. if (qp_init_attr->recv_cq)
  713. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  714. qp->srq = qp_init_attr->srq;
  715. if (qp->srq)
  716. atomic_inc(&qp_init_attr->srq->usecnt);
  717. }
  718. qp->pd = pd;
  719. qp->send_cq = qp_init_attr->send_cq;
  720. qp->xrcd = NULL;
  721. atomic_inc(&pd->usecnt);
  722. if (qp_init_attr->send_cq)
  723. atomic_inc(&qp_init_attr->send_cq->usecnt);
  724. if (qp_init_attr->rwq_ind_tbl)
  725. atomic_inc(&qp->rwq_ind_tbl->usecnt);
  726. if (qp_init_attr->cap.max_rdma_ctxs) {
  727. ret = rdma_rw_init_mrs(qp, qp_init_attr);
  728. if (ret) {
  729. pr_err("failed to init MR pool ret= %d\n", ret);
  730. ib_destroy_qp(qp);
  731. return ERR_PTR(ret);
  732. }
  733. }
  734. /*
  735. * Note: all hw drivers guarantee that max_send_sge is lower than
  736. * the device RDMA WRITE SGE limit but not all hw drivers ensure that
  737. * max_send_sge <= max_sge_rd.
  738. */
  739. qp->max_write_sge = qp_init_attr->cap.max_send_sge;
  740. qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
  741. device->attrs.max_sge_rd);
  742. return qp;
  743. }
  744. EXPORT_SYMBOL(ib_create_qp);
  745. static const struct {
  746. int valid;
  747. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  748. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  749. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  750. [IB_QPS_RESET] = {
  751. [IB_QPS_RESET] = { .valid = 1 },
  752. [IB_QPS_INIT] = {
  753. .valid = 1,
  754. .req_param = {
  755. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  756. IB_QP_PORT |
  757. IB_QP_QKEY),
  758. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  759. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  760. IB_QP_PORT |
  761. IB_QP_ACCESS_FLAGS),
  762. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  763. IB_QP_PORT |
  764. IB_QP_ACCESS_FLAGS),
  765. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  766. IB_QP_PORT |
  767. IB_QP_ACCESS_FLAGS),
  768. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  769. IB_QP_PORT |
  770. IB_QP_ACCESS_FLAGS),
  771. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  772. IB_QP_QKEY),
  773. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  774. IB_QP_QKEY),
  775. }
  776. },
  777. },
  778. [IB_QPS_INIT] = {
  779. [IB_QPS_RESET] = { .valid = 1 },
  780. [IB_QPS_ERR] = { .valid = 1 },
  781. [IB_QPS_INIT] = {
  782. .valid = 1,
  783. .opt_param = {
  784. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  785. IB_QP_PORT |
  786. IB_QP_QKEY),
  787. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  788. IB_QP_PORT |
  789. IB_QP_ACCESS_FLAGS),
  790. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  791. IB_QP_PORT |
  792. IB_QP_ACCESS_FLAGS),
  793. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  794. IB_QP_PORT |
  795. IB_QP_ACCESS_FLAGS),
  796. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  797. IB_QP_PORT |
  798. IB_QP_ACCESS_FLAGS),
  799. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  800. IB_QP_QKEY),
  801. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  802. IB_QP_QKEY),
  803. }
  804. },
  805. [IB_QPS_RTR] = {
  806. .valid = 1,
  807. .req_param = {
  808. [IB_QPT_UC] = (IB_QP_AV |
  809. IB_QP_PATH_MTU |
  810. IB_QP_DEST_QPN |
  811. IB_QP_RQ_PSN),
  812. [IB_QPT_RC] = (IB_QP_AV |
  813. IB_QP_PATH_MTU |
  814. IB_QP_DEST_QPN |
  815. IB_QP_RQ_PSN |
  816. IB_QP_MAX_DEST_RD_ATOMIC |
  817. IB_QP_MIN_RNR_TIMER),
  818. [IB_QPT_XRC_INI] = (IB_QP_AV |
  819. IB_QP_PATH_MTU |
  820. IB_QP_DEST_QPN |
  821. IB_QP_RQ_PSN),
  822. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  823. IB_QP_PATH_MTU |
  824. IB_QP_DEST_QPN |
  825. IB_QP_RQ_PSN |
  826. IB_QP_MAX_DEST_RD_ATOMIC |
  827. IB_QP_MIN_RNR_TIMER),
  828. },
  829. .opt_param = {
  830. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  831. IB_QP_QKEY),
  832. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  833. IB_QP_ACCESS_FLAGS |
  834. IB_QP_PKEY_INDEX),
  835. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  836. IB_QP_ACCESS_FLAGS |
  837. IB_QP_PKEY_INDEX),
  838. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  839. IB_QP_ACCESS_FLAGS |
  840. IB_QP_PKEY_INDEX),
  841. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  842. IB_QP_ACCESS_FLAGS |
  843. IB_QP_PKEY_INDEX),
  844. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  845. IB_QP_QKEY),
  846. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  847. IB_QP_QKEY),
  848. },
  849. },
  850. },
  851. [IB_QPS_RTR] = {
  852. [IB_QPS_RESET] = { .valid = 1 },
  853. [IB_QPS_ERR] = { .valid = 1 },
  854. [IB_QPS_RTS] = {
  855. .valid = 1,
  856. .req_param = {
  857. [IB_QPT_UD] = IB_QP_SQ_PSN,
  858. [IB_QPT_UC] = IB_QP_SQ_PSN,
  859. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  860. IB_QP_RETRY_CNT |
  861. IB_QP_RNR_RETRY |
  862. IB_QP_SQ_PSN |
  863. IB_QP_MAX_QP_RD_ATOMIC),
  864. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  865. IB_QP_RETRY_CNT |
  866. IB_QP_RNR_RETRY |
  867. IB_QP_SQ_PSN |
  868. IB_QP_MAX_QP_RD_ATOMIC),
  869. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  870. IB_QP_SQ_PSN),
  871. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  872. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  873. },
  874. .opt_param = {
  875. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  876. IB_QP_QKEY),
  877. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  878. IB_QP_ALT_PATH |
  879. IB_QP_ACCESS_FLAGS |
  880. IB_QP_PATH_MIG_STATE),
  881. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  882. IB_QP_ALT_PATH |
  883. IB_QP_ACCESS_FLAGS |
  884. IB_QP_MIN_RNR_TIMER |
  885. IB_QP_PATH_MIG_STATE),
  886. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  887. IB_QP_ALT_PATH |
  888. IB_QP_ACCESS_FLAGS |
  889. IB_QP_PATH_MIG_STATE),
  890. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  891. IB_QP_ALT_PATH |
  892. IB_QP_ACCESS_FLAGS |
  893. IB_QP_MIN_RNR_TIMER |
  894. IB_QP_PATH_MIG_STATE),
  895. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  896. IB_QP_QKEY),
  897. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  898. IB_QP_QKEY),
  899. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  900. }
  901. }
  902. },
  903. [IB_QPS_RTS] = {
  904. [IB_QPS_RESET] = { .valid = 1 },
  905. [IB_QPS_ERR] = { .valid = 1 },
  906. [IB_QPS_RTS] = {
  907. .valid = 1,
  908. .opt_param = {
  909. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  910. IB_QP_QKEY),
  911. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  912. IB_QP_ACCESS_FLAGS |
  913. IB_QP_ALT_PATH |
  914. IB_QP_PATH_MIG_STATE),
  915. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  916. IB_QP_ACCESS_FLAGS |
  917. IB_QP_ALT_PATH |
  918. IB_QP_PATH_MIG_STATE |
  919. IB_QP_MIN_RNR_TIMER),
  920. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  921. IB_QP_ACCESS_FLAGS |
  922. IB_QP_ALT_PATH |
  923. IB_QP_PATH_MIG_STATE),
  924. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  925. IB_QP_ACCESS_FLAGS |
  926. IB_QP_ALT_PATH |
  927. IB_QP_PATH_MIG_STATE |
  928. IB_QP_MIN_RNR_TIMER),
  929. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  930. IB_QP_QKEY),
  931. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  932. IB_QP_QKEY),
  933. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  934. }
  935. },
  936. [IB_QPS_SQD] = {
  937. .valid = 1,
  938. .opt_param = {
  939. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  940. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  941. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  942. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  943. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  944. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  945. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  946. }
  947. },
  948. },
  949. [IB_QPS_SQD] = {
  950. [IB_QPS_RESET] = { .valid = 1 },
  951. [IB_QPS_ERR] = { .valid = 1 },
  952. [IB_QPS_RTS] = {
  953. .valid = 1,
  954. .opt_param = {
  955. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  956. IB_QP_QKEY),
  957. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  958. IB_QP_ALT_PATH |
  959. IB_QP_ACCESS_FLAGS |
  960. IB_QP_PATH_MIG_STATE),
  961. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  962. IB_QP_ALT_PATH |
  963. IB_QP_ACCESS_FLAGS |
  964. IB_QP_MIN_RNR_TIMER |
  965. IB_QP_PATH_MIG_STATE),
  966. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  967. IB_QP_ALT_PATH |
  968. IB_QP_ACCESS_FLAGS |
  969. IB_QP_PATH_MIG_STATE),
  970. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  971. IB_QP_ALT_PATH |
  972. IB_QP_ACCESS_FLAGS |
  973. IB_QP_MIN_RNR_TIMER |
  974. IB_QP_PATH_MIG_STATE),
  975. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  976. IB_QP_QKEY),
  977. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  978. IB_QP_QKEY),
  979. }
  980. },
  981. [IB_QPS_SQD] = {
  982. .valid = 1,
  983. .opt_param = {
  984. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  985. IB_QP_QKEY),
  986. [IB_QPT_UC] = (IB_QP_AV |
  987. IB_QP_ALT_PATH |
  988. IB_QP_ACCESS_FLAGS |
  989. IB_QP_PKEY_INDEX |
  990. IB_QP_PATH_MIG_STATE),
  991. [IB_QPT_RC] = (IB_QP_PORT |
  992. IB_QP_AV |
  993. IB_QP_TIMEOUT |
  994. IB_QP_RETRY_CNT |
  995. IB_QP_RNR_RETRY |
  996. IB_QP_MAX_QP_RD_ATOMIC |
  997. IB_QP_MAX_DEST_RD_ATOMIC |
  998. IB_QP_ALT_PATH |
  999. IB_QP_ACCESS_FLAGS |
  1000. IB_QP_PKEY_INDEX |
  1001. IB_QP_MIN_RNR_TIMER |
  1002. IB_QP_PATH_MIG_STATE),
  1003. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  1004. IB_QP_AV |
  1005. IB_QP_TIMEOUT |
  1006. IB_QP_RETRY_CNT |
  1007. IB_QP_RNR_RETRY |
  1008. IB_QP_MAX_QP_RD_ATOMIC |
  1009. IB_QP_ALT_PATH |
  1010. IB_QP_ACCESS_FLAGS |
  1011. IB_QP_PKEY_INDEX |
  1012. IB_QP_PATH_MIG_STATE),
  1013. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  1014. IB_QP_AV |
  1015. IB_QP_TIMEOUT |
  1016. IB_QP_MAX_DEST_RD_ATOMIC |
  1017. IB_QP_ALT_PATH |
  1018. IB_QP_ACCESS_FLAGS |
  1019. IB_QP_PKEY_INDEX |
  1020. IB_QP_MIN_RNR_TIMER |
  1021. IB_QP_PATH_MIG_STATE),
  1022. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  1023. IB_QP_QKEY),
  1024. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  1025. IB_QP_QKEY),
  1026. }
  1027. }
  1028. },
  1029. [IB_QPS_SQE] = {
  1030. [IB_QPS_RESET] = { .valid = 1 },
  1031. [IB_QPS_ERR] = { .valid = 1 },
  1032. [IB_QPS_RTS] = {
  1033. .valid = 1,
  1034. .opt_param = {
  1035. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1036. IB_QP_QKEY),
  1037. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1038. IB_QP_ACCESS_FLAGS),
  1039. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1040. IB_QP_QKEY),
  1041. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1042. IB_QP_QKEY),
  1043. }
  1044. }
  1045. },
  1046. [IB_QPS_ERR] = {
  1047. [IB_QPS_RESET] = { .valid = 1 },
  1048. [IB_QPS_ERR] = { .valid = 1 }
  1049. }
  1050. };
  1051. int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  1052. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  1053. enum rdma_link_layer ll)
  1054. {
  1055. enum ib_qp_attr_mask req_param, opt_param;
  1056. if (cur_state < 0 || cur_state > IB_QPS_ERR ||
  1057. next_state < 0 || next_state > IB_QPS_ERR)
  1058. return 0;
  1059. if (mask & IB_QP_CUR_STATE &&
  1060. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  1061. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  1062. return 0;
  1063. if (!qp_state_table[cur_state][next_state].valid)
  1064. return 0;
  1065. req_param = qp_state_table[cur_state][next_state].req_param[type];
  1066. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  1067. if ((mask & req_param) != req_param)
  1068. return 0;
  1069. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1070. return 0;
  1071. return 1;
  1072. }
  1073. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1074. int ib_resolve_eth_dmac(struct ib_device *device,
  1075. struct ib_ah_attr *ah_attr)
  1076. {
  1077. int ret = 0;
  1078. if (ah_attr->port_num < rdma_start_port(device) ||
  1079. ah_attr->port_num > rdma_end_port(device))
  1080. return -EINVAL;
  1081. if (!rdma_cap_eth_ah(device, ah_attr->port_num))
  1082. return 0;
  1083. if (rdma_link_local_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1084. rdma_get_ll_mac((struct in6_addr *)ah_attr->grh.dgid.raw,
  1085. ah_attr->dmac);
  1086. } else {
  1087. union ib_gid sgid;
  1088. struct ib_gid_attr sgid_attr;
  1089. int ifindex;
  1090. int hop_limit;
  1091. ret = ib_query_gid(device,
  1092. ah_attr->port_num,
  1093. ah_attr->grh.sgid_index,
  1094. &sgid, &sgid_attr);
  1095. if (ret || !sgid_attr.ndev) {
  1096. if (!ret)
  1097. ret = -ENXIO;
  1098. goto out;
  1099. }
  1100. ifindex = sgid_attr.ndev->ifindex;
  1101. ret = rdma_addr_find_l2_eth_by_grh(&sgid,
  1102. &ah_attr->grh.dgid,
  1103. ah_attr->dmac,
  1104. NULL, &ifindex, &hop_limit);
  1105. dev_put(sgid_attr.ndev);
  1106. ah_attr->grh.hop_limit = hop_limit;
  1107. }
  1108. out:
  1109. return ret;
  1110. }
  1111. EXPORT_SYMBOL(ib_resolve_eth_dmac);
  1112. int ib_modify_qp(struct ib_qp *qp,
  1113. struct ib_qp_attr *qp_attr,
  1114. int qp_attr_mask)
  1115. {
  1116. if (qp_attr_mask & IB_QP_AV) {
  1117. int ret;
  1118. ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
  1119. if (ret)
  1120. return ret;
  1121. }
  1122. return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
  1123. }
  1124. EXPORT_SYMBOL(ib_modify_qp);
  1125. int ib_query_qp(struct ib_qp *qp,
  1126. struct ib_qp_attr *qp_attr,
  1127. int qp_attr_mask,
  1128. struct ib_qp_init_attr *qp_init_attr)
  1129. {
  1130. return qp->device->query_qp ?
  1131. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1132. -ENOSYS;
  1133. }
  1134. EXPORT_SYMBOL(ib_query_qp);
  1135. int ib_close_qp(struct ib_qp *qp)
  1136. {
  1137. struct ib_qp *real_qp;
  1138. unsigned long flags;
  1139. real_qp = qp->real_qp;
  1140. if (real_qp == qp)
  1141. return -EINVAL;
  1142. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1143. list_del(&qp->open_list);
  1144. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1145. atomic_dec(&real_qp->usecnt);
  1146. kfree(qp);
  1147. return 0;
  1148. }
  1149. EXPORT_SYMBOL(ib_close_qp);
  1150. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1151. {
  1152. struct ib_xrcd *xrcd;
  1153. struct ib_qp *real_qp;
  1154. int ret;
  1155. real_qp = qp->real_qp;
  1156. xrcd = real_qp->xrcd;
  1157. mutex_lock(&xrcd->tgt_qp_mutex);
  1158. ib_close_qp(qp);
  1159. if (atomic_read(&real_qp->usecnt) == 0)
  1160. list_del(&real_qp->xrcd_list);
  1161. else
  1162. real_qp = NULL;
  1163. mutex_unlock(&xrcd->tgt_qp_mutex);
  1164. if (real_qp) {
  1165. ret = ib_destroy_qp(real_qp);
  1166. if (!ret)
  1167. atomic_dec(&xrcd->usecnt);
  1168. else
  1169. __ib_insert_xrcd_qp(xrcd, real_qp);
  1170. }
  1171. return 0;
  1172. }
  1173. int ib_destroy_qp(struct ib_qp *qp)
  1174. {
  1175. struct ib_pd *pd;
  1176. struct ib_cq *scq, *rcq;
  1177. struct ib_srq *srq;
  1178. struct ib_rwq_ind_table *ind_tbl;
  1179. int ret;
  1180. WARN_ON_ONCE(qp->mrs_used > 0);
  1181. if (atomic_read(&qp->usecnt))
  1182. return -EBUSY;
  1183. if (qp->real_qp != qp)
  1184. return __ib_destroy_shared_qp(qp);
  1185. pd = qp->pd;
  1186. scq = qp->send_cq;
  1187. rcq = qp->recv_cq;
  1188. srq = qp->srq;
  1189. ind_tbl = qp->rwq_ind_tbl;
  1190. if (!qp->uobject)
  1191. rdma_rw_cleanup_mrs(qp);
  1192. ret = qp->device->destroy_qp(qp);
  1193. if (!ret) {
  1194. if (pd)
  1195. atomic_dec(&pd->usecnt);
  1196. if (scq)
  1197. atomic_dec(&scq->usecnt);
  1198. if (rcq)
  1199. atomic_dec(&rcq->usecnt);
  1200. if (srq)
  1201. atomic_dec(&srq->usecnt);
  1202. if (ind_tbl)
  1203. atomic_dec(&ind_tbl->usecnt);
  1204. }
  1205. return ret;
  1206. }
  1207. EXPORT_SYMBOL(ib_destroy_qp);
  1208. /* Completion queues */
  1209. struct ib_cq *ib_create_cq(struct ib_device *device,
  1210. ib_comp_handler comp_handler,
  1211. void (*event_handler)(struct ib_event *, void *),
  1212. void *cq_context,
  1213. const struct ib_cq_init_attr *cq_attr)
  1214. {
  1215. struct ib_cq *cq;
  1216. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1217. if (!IS_ERR(cq)) {
  1218. cq->device = device;
  1219. cq->uobject = NULL;
  1220. cq->comp_handler = comp_handler;
  1221. cq->event_handler = event_handler;
  1222. cq->cq_context = cq_context;
  1223. atomic_set(&cq->usecnt, 0);
  1224. }
  1225. return cq;
  1226. }
  1227. EXPORT_SYMBOL(ib_create_cq);
  1228. int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1229. {
  1230. return cq->device->modify_cq ?
  1231. cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
  1232. }
  1233. EXPORT_SYMBOL(ib_modify_cq);
  1234. int ib_destroy_cq(struct ib_cq *cq)
  1235. {
  1236. if (atomic_read(&cq->usecnt))
  1237. return -EBUSY;
  1238. return cq->device->destroy_cq(cq);
  1239. }
  1240. EXPORT_SYMBOL(ib_destroy_cq);
  1241. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1242. {
  1243. return cq->device->resize_cq ?
  1244. cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
  1245. }
  1246. EXPORT_SYMBOL(ib_resize_cq);
  1247. /* Memory regions */
  1248. int ib_dereg_mr(struct ib_mr *mr)
  1249. {
  1250. struct ib_pd *pd = mr->pd;
  1251. int ret;
  1252. ret = mr->device->dereg_mr(mr);
  1253. if (!ret)
  1254. atomic_dec(&pd->usecnt);
  1255. return ret;
  1256. }
  1257. EXPORT_SYMBOL(ib_dereg_mr);
  1258. /**
  1259. * ib_alloc_mr() - Allocates a memory region
  1260. * @pd: protection domain associated with the region
  1261. * @mr_type: memory region type
  1262. * @max_num_sg: maximum sg entries available for registration.
  1263. *
  1264. * Notes:
  1265. * Memory registeration page/sg lists must not exceed max_num_sg.
  1266. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1267. * max_num_sg * used_page_size.
  1268. *
  1269. */
  1270. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1271. enum ib_mr_type mr_type,
  1272. u32 max_num_sg)
  1273. {
  1274. struct ib_mr *mr;
  1275. if (!pd->device->alloc_mr)
  1276. return ERR_PTR(-ENOSYS);
  1277. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1278. if (!IS_ERR(mr)) {
  1279. mr->device = pd->device;
  1280. mr->pd = pd;
  1281. mr->uobject = NULL;
  1282. atomic_inc(&pd->usecnt);
  1283. mr->need_inval = false;
  1284. }
  1285. return mr;
  1286. }
  1287. EXPORT_SYMBOL(ib_alloc_mr);
  1288. /* "Fast" memory regions */
  1289. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1290. int mr_access_flags,
  1291. struct ib_fmr_attr *fmr_attr)
  1292. {
  1293. struct ib_fmr *fmr;
  1294. if (!pd->device->alloc_fmr)
  1295. return ERR_PTR(-ENOSYS);
  1296. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1297. if (!IS_ERR(fmr)) {
  1298. fmr->device = pd->device;
  1299. fmr->pd = pd;
  1300. atomic_inc(&pd->usecnt);
  1301. }
  1302. return fmr;
  1303. }
  1304. EXPORT_SYMBOL(ib_alloc_fmr);
  1305. int ib_unmap_fmr(struct list_head *fmr_list)
  1306. {
  1307. struct ib_fmr *fmr;
  1308. if (list_empty(fmr_list))
  1309. return 0;
  1310. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1311. return fmr->device->unmap_fmr(fmr_list);
  1312. }
  1313. EXPORT_SYMBOL(ib_unmap_fmr);
  1314. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1315. {
  1316. struct ib_pd *pd;
  1317. int ret;
  1318. pd = fmr->pd;
  1319. ret = fmr->device->dealloc_fmr(fmr);
  1320. if (!ret)
  1321. atomic_dec(&pd->usecnt);
  1322. return ret;
  1323. }
  1324. EXPORT_SYMBOL(ib_dealloc_fmr);
  1325. /* Multicast groups */
  1326. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1327. {
  1328. int ret;
  1329. if (!qp->device->attach_mcast)
  1330. return -ENOSYS;
  1331. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
  1332. return -EINVAL;
  1333. ret = qp->device->attach_mcast(qp, gid, lid);
  1334. if (!ret)
  1335. atomic_inc(&qp->usecnt);
  1336. return ret;
  1337. }
  1338. EXPORT_SYMBOL(ib_attach_mcast);
  1339. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1340. {
  1341. int ret;
  1342. if (!qp->device->detach_mcast)
  1343. return -ENOSYS;
  1344. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
  1345. return -EINVAL;
  1346. ret = qp->device->detach_mcast(qp, gid, lid);
  1347. if (!ret)
  1348. atomic_dec(&qp->usecnt);
  1349. return ret;
  1350. }
  1351. EXPORT_SYMBOL(ib_detach_mcast);
  1352. struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
  1353. {
  1354. struct ib_xrcd *xrcd;
  1355. if (!device->alloc_xrcd)
  1356. return ERR_PTR(-ENOSYS);
  1357. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1358. if (!IS_ERR(xrcd)) {
  1359. xrcd->device = device;
  1360. xrcd->inode = NULL;
  1361. atomic_set(&xrcd->usecnt, 0);
  1362. mutex_init(&xrcd->tgt_qp_mutex);
  1363. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1364. }
  1365. return xrcd;
  1366. }
  1367. EXPORT_SYMBOL(ib_alloc_xrcd);
  1368. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1369. {
  1370. struct ib_qp *qp;
  1371. int ret;
  1372. if (atomic_read(&xrcd->usecnt))
  1373. return -EBUSY;
  1374. while (!list_empty(&xrcd->tgt_qp_list)) {
  1375. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1376. ret = ib_destroy_qp(qp);
  1377. if (ret)
  1378. return ret;
  1379. }
  1380. return xrcd->device->dealloc_xrcd(xrcd);
  1381. }
  1382. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1383. /**
  1384. * ib_create_wq - Creates a WQ associated with the specified protection
  1385. * domain.
  1386. * @pd: The protection domain associated with the WQ.
  1387. * @wq_init_attr: A list of initial attributes required to create the
  1388. * WQ. If WQ creation succeeds, then the attributes are updated to
  1389. * the actual capabilities of the created WQ.
  1390. *
  1391. * wq_init_attr->max_wr and wq_init_attr->max_sge determine
  1392. * the requested size of the WQ, and set to the actual values allocated
  1393. * on return.
  1394. * If ib_create_wq() succeeds, then max_wr and max_sge will always be
  1395. * at least as large as the requested values.
  1396. */
  1397. struct ib_wq *ib_create_wq(struct ib_pd *pd,
  1398. struct ib_wq_init_attr *wq_attr)
  1399. {
  1400. struct ib_wq *wq;
  1401. if (!pd->device->create_wq)
  1402. return ERR_PTR(-ENOSYS);
  1403. wq = pd->device->create_wq(pd, wq_attr, NULL);
  1404. if (!IS_ERR(wq)) {
  1405. wq->event_handler = wq_attr->event_handler;
  1406. wq->wq_context = wq_attr->wq_context;
  1407. wq->wq_type = wq_attr->wq_type;
  1408. wq->cq = wq_attr->cq;
  1409. wq->device = pd->device;
  1410. wq->pd = pd;
  1411. wq->uobject = NULL;
  1412. atomic_inc(&pd->usecnt);
  1413. atomic_inc(&wq_attr->cq->usecnt);
  1414. atomic_set(&wq->usecnt, 0);
  1415. }
  1416. return wq;
  1417. }
  1418. EXPORT_SYMBOL(ib_create_wq);
  1419. /**
  1420. * ib_destroy_wq - Destroys the specified WQ.
  1421. * @wq: The WQ to destroy.
  1422. */
  1423. int ib_destroy_wq(struct ib_wq *wq)
  1424. {
  1425. int err;
  1426. struct ib_cq *cq = wq->cq;
  1427. struct ib_pd *pd = wq->pd;
  1428. if (atomic_read(&wq->usecnt))
  1429. return -EBUSY;
  1430. err = wq->device->destroy_wq(wq);
  1431. if (!err) {
  1432. atomic_dec(&pd->usecnt);
  1433. atomic_dec(&cq->usecnt);
  1434. }
  1435. return err;
  1436. }
  1437. EXPORT_SYMBOL(ib_destroy_wq);
  1438. /**
  1439. * ib_modify_wq - Modifies the specified WQ.
  1440. * @wq: The WQ to modify.
  1441. * @wq_attr: On input, specifies the WQ attributes to modify.
  1442. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
  1443. * are being modified.
  1444. * On output, the current values of selected WQ attributes are returned.
  1445. */
  1446. int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
  1447. u32 wq_attr_mask)
  1448. {
  1449. int err;
  1450. if (!wq->device->modify_wq)
  1451. return -ENOSYS;
  1452. err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
  1453. return err;
  1454. }
  1455. EXPORT_SYMBOL(ib_modify_wq);
  1456. /*
  1457. * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
  1458. * @device: The device on which to create the rwq indirection table.
  1459. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
  1460. * create the Indirection Table.
  1461. *
  1462. * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
  1463. * than the created ib_rwq_ind_table object and the caller is responsible
  1464. * for its memory allocation/free.
  1465. */
  1466. struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
  1467. struct ib_rwq_ind_table_init_attr *init_attr)
  1468. {
  1469. struct ib_rwq_ind_table *rwq_ind_table;
  1470. int i;
  1471. u32 table_size;
  1472. if (!device->create_rwq_ind_table)
  1473. return ERR_PTR(-ENOSYS);
  1474. table_size = (1 << init_attr->log_ind_tbl_size);
  1475. rwq_ind_table = device->create_rwq_ind_table(device,
  1476. init_attr, NULL);
  1477. if (IS_ERR(rwq_ind_table))
  1478. return rwq_ind_table;
  1479. rwq_ind_table->ind_tbl = init_attr->ind_tbl;
  1480. rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
  1481. rwq_ind_table->device = device;
  1482. rwq_ind_table->uobject = NULL;
  1483. atomic_set(&rwq_ind_table->usecnt, 0);
  1484. for (i = 0; i < table_size; i++)
  1485. atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
  1486. return rwq_ind_table;
  1487. }
  1488. EXPORT_SYMBOL(ib_create_rwq_ind_table);
  1489. /*
  1490. * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
  1491. * @wq_ind_table: The Indirection Table to destroy.
  1492. */
  1493. int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
  1494. {
  1495. int err, i;
  1496. u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
  1497. struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
  1498. if (atomic_read(&rwq_ind_table->usecnt))
  1499. return -EBUSY;
  1500. err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
  1501. if (!err) {
  1502. for (i = 0; i < table_size; i++)
  1503. atomic_dec(&ind_tbl[i]->usecnt);
  1504. }
  1505. return err;
  1506. }
  1507. EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
  1508. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1509. struct ib_flow_attr *flow_attr,
  1510. int domain)
  1511. {
  1512. struct ib_flow *flow_id;
  1513. if (!qp->device->create_flow)
  1514. return ERR_PTR(-ENOSYS);
  1515. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1516. if (!IS_ERR(flow_id)) {
  1517. atomic_inc(&qp->usecnt);
  1518. flow_id->qp = qp;
  1519. }
  1520. return flow_id;
  1521. }
  1522. EXPORT_SYMBOL(ib_create_flow);
  1523. int ib_destroy_flow(struct ib_flow *flow_id)
  1524. {
  1525. int err;
  1526. struct ib_qp *qp = flow_id->qp;
  1527. err = qp->device->destroy_flow(flow_id);
  1528. if (!err)
  1529. atomic_dec(&qp->usecnt);
  1530. return err;
  1531. }
  1532. EXPORT_SYMBOL(ib_destroy_flow);
  1533. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1534. struct ib_mr_status *mr_status)
  1535. {
  1536. return mr->device->check_mr_status ?
  1537. mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
  1538. }
  1539. EXPORT_SYMBOL(ib_check_mr_status);
  1540. int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
  1541. int state)
  1542. {
  1543. if (!device->set_vf_link_state)
  1544. return -ENOSYS;
  1545. return device->set_vf_link_state(device, vf, port, state);
  1546. }
  1547. EXPORT_SYMBOL(ib_set_vf_link_state);
  1548. int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
  1549. struct ifla_vf_info *info)
  1550. {
  1551. if (!device->get_vf_config)
  1552. return -ENOSYS;
  1553. return device->get_vf_config(device, vf, port, info);
  1554. }
  1555. EXPORT_SYMBOL(ib_get_vf_config);
  1556. int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
  1557. struct ifla_vf_stats *stats)
  1558. {
  1559. if (!device->get_vf_stats)
  1560. return -ENOSYS;
  1561. return device->get_vf_stats(device, vf, port, stats);
  1562. }
  1563. EXPORT_SYMBOL(ib_get_vf_stats);
  1564. int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
  1565. int type)
  1566. {
  1567. if (!device->set_vf_guid)
  1568. return -ENOSYS;
  1569. return device->set_vf_guid(device, vf, port, guid, type);
  1570. }
  1571. EXPORT_SYMBOL(ib_set_vf_guid);
  1572. /**
  1573. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1574. * and set it the memory region.
  1575. * @mr: memory region
  1576. * @sg: dma mapped scatterlist
  1577. * @sg_nents: number of entries in sg
  1578. * @sg_offset: offset in bytes into sg
  1579. * @page_size: page vector desired page size
  1580. *
  1581. * Constraints:
  1582. * - The first sg element is allowed to have an offset.
  1583. * - Each sg element must either be aligned to page_size or virtually
  1584. * contiguous to the previous element. In case an sg element has a
  1585. * non-contiguous offset, the mapping prefix will not include it.
  1586. * - The last sg element is allowed to have length less than page_size.
  1587. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1588. * then only max_num_sg entries will be mapped.
  1589. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
  1590. * constraints holds and the page_size argument is ignored.
  1591. *
  1592. * Returns the number of sg elements that were mapped to the memory region.
  1593. *
  1594. * After this completes successfully, the memory region
  1595. * is ready for registration.
  1596. */
  1597. int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
  1598. unsigned int *sg_offset, unsigned int page_size)
  1599. {
  1600. if (unlikely(!mr->device->map_mr_sg))
  1601. return -ENOSYS;
  1602. mr->page_size = page_size;
  1603. return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
  1604. }
  1605. EXPORT_SYMBOL(ib_map_mr_sg);
  1606. /**
  1607. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1608. * to a page vector
  1609. * @mr: memory region
  1610. * @sgl: dma mapped scatterlist
  1611. * @sg_nents: number of entries in sg
  1612. * @sg_offset_p: IN: start offset in bytes into sg
  1613. * OUT: offset in bytes for element n of the sg of the first
  1614. * byte that has not been processed where n is the return
  1615. * value of this function.
  1616. * @set_page: driver page assignment function pointer
  1617. *
  1618. * Core service helper for drivers to convert the largest
  1619. * prefix of given sg list to a page vector. The sg list
  1620. * prefix converted is the prefix that meet the requirements
  1621. * of ib_map_mr_sg.
  1622. *
  1623. * Returns the number of sg elements that were assigned to
  1624. * a page vector.
  1625. */
  1626. int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
  1627. unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
  1628. {
  1629. struct scatterlist *sg;
  1630. u64 last_end_dma_addr = 0;
  1631. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1632. unsigned int last_page_off = 0;
  1633. u64 page_mask = ~((u64)mr->page_size - 1);
  1634. int i, ret;
  1635. if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
  1636. return -EINVAL;
  1637. mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
  1638. mr->length = 0;
  1639. for_each_sg(sgl, sg, sg_nents, i) {
  1640. u64 dma_addr = sg_dma_address(sg) + sg_offset;
  1641. u64 prev_addr = dma_addr;
  1642. unsigned int dma_len = sg_dma_len(sg) - sg_offset;
  1643. u64 end_dma_addr = dma_addr + dma_len;
  1644. u64 page_addr = dma_addr & page_mask;
  1645. /*
  1646. * For the second and later elements, check whether either the
  1647. * end of element i-1 or the start of element i is not aligned
  1648. * on a page boundary.
  1649. */
  1650. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1651. /* Stop mapping if there is a gap. */
  1652. if (last_end_dma_addr != dma_addr)
  1653. break;
  1654. /*
  1655. * Coalesce this element with the last. If it is small
  1656. * enough just update mr->length. Otherwise start
  1657. * mapping from the next page.
  1658. */
  1659. goto next_page;
  1660. }
  1661. do {
  1662. ret = set_page(mr, page_addr);
  1663. if (unlikely(ret < 0)) {
  1664. sg_offset = prev_addr - sg_dma_address(sg);
  1665. mr->length += prev_addr - dma_addr;
  1666. if (sg_offset_p)
  1667. *sg_offset_p = sg_offset;
  1668. return i || sg_offset ? i : ret;
  1669. }
  1670. prev_addr = page_addr;
  1671. next_page:
  1672. page_addr += mr->page_size;
  1673. } while (page_addr < end_dma_addr);
  1674. mr->length += dma_len;
  1675. last_end_dma_addr = end_dma_addr;
  1676. last_page_off = end_dma_addr & ~page_mask;
  1677. sg_offset = 0;
  1678. }
  1679. if (sg_offset_p)
  1680. *sg_offset_p = 0;
  1681. return i;
  1682. }
  1683. EXPORT_SYMBOL(ib_sg_to_pages);
  1684. struct ib_drain_cqe {
  1685. struct ib_cqe cqe;
  1686. struct completion done;
  1687. };
  1688. static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
  1689. {
  1690. struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
  1691. cqe);
  1692. complete(&cqe->done);
  1693. }
  1694. /*
  1695. * Post a WR and block until its completion is reaped for the SQ.
  1696. */
  1697. static void __ib_drain_sq(struct ib_qp *qp)
  1698. {
  1699. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1700. struct ib_drain_cqe sdrain;
  1701. struct ib_send_wr swr = {}, *bad_swr;
  1702. int ret;
  1703. if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
  1704. WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
  1705. "IB_POLL_DIRECT poll_ctx not supported for drain\n");
  1706. return;
  1707. }
  1708. swr.wr_cqe = &sdrain.cqe;
  1709. sdrain.cqe.done = ib_drain_qp_done;
  1710. init_completion(&sdrain.done);
  1711. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1712. if (ret) {
  1713. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1714. return;
  1715. }
  1716. ret = ib_post_send(qp, &swr, &bad_swr);
  1717. if (ret) {
  1718. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1719. return;
  1720. }
  1721. wait_for_completion(&sdrain.done);
  1722. }
  1723. /*
  1724. * Post a WR and block until its completion is reaped for the RQ.
  1725. */
  1726. static void __ib_drain_rq(struct ib_qp *qp)
  1727. {
  1728. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1729. struct ib_drain_cqe rdrain;
  1730. struct ib_recv_wr rwr = {}, *bad_rwr;
  1731. int ret;
  1732. if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
  1733. WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
  1734. "IB_POLL_DIRECT poll_ctx not supported for drain\n");
  1735. return;
  1736. }
  1737. rwr.wr_cqe = &rdrain.cqe;
  1738. rdrain.cqe.done = ib_drain_qp_done;
  1739. init_completion(&rdrain.done);
  1740. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1741. if (ret) {
  1742. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1743. return;
  1744. }
  1745. ret = ib_post_recv(qp, &rwr, &bad_rwr);
  1746. if (ret) {
  1747. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1748. return;
  1749. }
  1750. wait_for_completion(&rdrain.done);
  1751. }
  1752. /**
  1753. * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
  1754. * application.
  1755. * @qp: queue pair to drain
  1756. *
  1757. * If the device has a provider-specific drain function, then
  1758. * call that. Otherwise call the generic drain function
  1759. * __ib_drain_sq().
  1760. *
  1761. * The caller must:
  1762. *
  1763. * ensure there is room in the CQ and SQ for the drain work request and
  1764. * completion.
  1765. *
  1766. * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
  1767. * IB_POLL_DIRECT.
  1768. *
  1769. * ensure that there are no other contexts that are posting WRs concurrently.
  1770. * Otherwise the drain is not guaranteed.
  1771. */
  1772. void ib_drain_sq(struct ib_qp *qp)
  1773. {
  1774. if (qp->device->drain_sq)
  1775. qp->device->drain_sq(qp);
  1776. else
  1777. __ib_drain_sq(qp);
  1778. }
  1779. EXPORT_SYMBOL(ib_drain_sq);
  1780. /**
  1781. * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
  1782. * application.
  1783. * @qp: queue pair to drain
  1784. *
  1785. * If the device has a provider-specific drain function, then
  1786. * call that. Otherwise call the generic drain function
  1787. * __ib_drain_rq().
  1788. *
  1789. * The caller must:
  1790. *
  1791. * ensure there is room in the CQ and RQ for the drain work request and
  1792. * completion.
  1793. *
  1794. * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
  1795. * IB_POLL_DIRECT.
  1796. *
  1797. * ensure that there are no other contexts that are posting WRs concurrently.
  1798. * Otherwise the drain is not guaranteed.
  1799. */
  1800. void ib_drain_rq(struct ib_qp *qp)
  1801. {
  1802. if (qp->device->drain_rq)
  1803. qp->device->drain_rq(qp);
  1804. else
  1805. __ib_drain_rq(qp);
  1806. }
  1807. EXPORT_SYMBOL(ib_drain_rq);
  1808. /**
  1809. * ib_drain_qp() - Block until all CQEs have been consumed by the
  1810. * application on both the RQ and SQ.
  1811. * @qp: queue pair to drain
  1812. *
  1813. * The caller must:
  1814. *
  1815. * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
  1816. * and completions.
  1817. *
  1818. * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
  1819. * IB_POLL_DIRECT.
  1820. *
  1821. * ensure that there are no other contexts that are posting WRs concurrently.
  1822. * Otherwise the drain is not guaranteed.
  1823. */
  1824. void ib_drain_qp(struct ib_qp *qp)
  1825. {
  1826. ib_drain_sq(qp);
  1827. if (!qp->srq)
  1828. ib_drain_rq(qp);
  1829. }
  1830. EXPORT_SYMBOL(ib_drain_qp);