i2c-qup.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731
  1. /*
  2. * Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2014, Sony Mobile Communications AB.
  4. *
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 and
  8. * only version 2 as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. #include <linux/acpi.h>
  17. #include <linux/atomic.h>
  18. #include <linux/clk.h>
  19. #include <linux/delay.h>
  20. #include <linux/dmaengine.h>
  21. #include <linux/dmapool.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/err.h>
  24. #include <linux/i2c.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/module.h>
  28. #include <linux/of.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/scatterlist.h>
  32. /* QUP Registers */
  33. #define QUP_CONFIG 0x000
  34. #define QUP_STATE 0x004
  35. #define QUP_IO_MODE 0x008
  36. #define QUP_SW_RESET 0x00c
  37. #define QUP_OPERATIONAL 0x018
  38. #define QUP_ERROR_FLAGS 0x01c
  39. #define QUP_ERROR_FLAGS_EN 0x020
  40. #define QUP_OPERATIONAL_MASK 0x028
  41. #define QUP_HW_VERSION 0x030
  42. #define QUP_MX_OUTPUT_CNT 0x100
  43. #define QUP_OUT_FIFO_BASE 0x110
  44. #define QUP_MX_WRITE_CNT 0x150
  45. #define QUP_MX_INPUT_CNT 0x200
  46. #define QUP_MX_READ_CNT 0x208
  47. #define QUP_IN_FIFO_BASE 0x218
  48. #define QUP_I2C_CLK_CTL 0x400
  49. #define QUP_I2C_STATUS 0x404
  50. #define QUP_I2C_MASTER_GEN 0x408
  51. /* QUP States and reset values */
  52. #define QUP_RESET_STATE 0
  53. #define QUP_RUN_STATE 1
  54. #define QUP_PAUSE_STATE 3
  55. #define QUP_STATE_MASK 3
  56. #define QUP_STATE_VALID BIT(2)
  57. #define QUP_I2C_MAST_GEN BIT(4)
  58. #define QUP_I2C_FLUSH BIT(6)
  59. #define QUP_OPERATIONAL_RESET 0x000ff0
  60. #define QUP_I2C_STATUS_RESET 0xfffffc
  61. /* QUP OPERATIONAL FLAGS */
  62. #define QUP_I2C_NACK_FLAG BIT(3)
  63. #define QUP_OUT_NOT_EMPTY BIT(4)
  64. #define QUP_IN_NOT_EMPTY BIT(5)
  65. #define QUP_OUT_FULL BIT(6)
  66. #define QUP_OUT_SVC_FLAG BIT(8)
  67. #define QUP_IN_SVC_FLAG BIT(9)
  68. #define QUP_MX_OUTPUT_DONE BIT(10)
  69. #define QUP_MX_INPUT_DONE BIT(11)
  70. /* I2C mini core related values */
  71. #define QUP_CLOCK_AUTO_GATE BIT(13)
  72. #define I2C_MINI_CORE (2 << 8)
  73. #define I2C_N_VAL 15
  74. #define I2C_N_VAL_V2 7
  75. /* Most significant word offset in FIFO port */
  76. #define QUP_MSW_SHIFT (I2C_N_VAL + 1)
  77. /* Packing/Unpacking words in FIFOs, and IO modes */
  78. #define QUP_OUTPUT_BLK_MODE (1 << 10)
  79. #define QUP_OUTPUT_BAM_MODE (3 << 10)
  80. #define QUP_INPUT_BLK_MODE (1 << 12)
  81. #define QUP_INPUT_BAM_MODE (3 << 12)
  82. #define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  83. #define QUP_UNPACK_EN BIT(14)
  84. #define QUP_PACK_EN BIT(15)
  85. #define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN)
  86. #define QUP_V2_TAGS_EN 1
  87. #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  88. #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
  89. #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
  90. #define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07)
  91. /* QUP tags */
  92. #define QUP_TAG_START (1 << 8)
  93. #define QUP_TAG_DATA (2 << 8)
  94. #define QUP_TAG_STOP (3 << 8)
  95. #define QUP_TAG_REC (4 << 8)
  96. #define QUP_BAM_INPUT_EOT 0x93
  97. #define QUP_BAM_FLUSH_STOP 0x96
  98. /* QUP v2 tags */
  99. #define QUP_TAG_V2_START 0x81
  100. #define QUP_TAG_V2_DATAWR 0x82
  101. #define QUP_TAG_V2_DATAWR_STOP 0x83
  102. #define QUP_TAG_V2_DATARD 0x85
  103. #define QUP_TAG_V2_DATARD_STOP 0x87
  104. /* Status, Error flags */
  105. #define I2C_STATUS_WR_BUFFER_FULL BIT(0)
  106. #define I2C_STATUS_BUS_ACTIVE BIT(8)
  107. #define I2C_STATUS_ERROR_MASK 0x38000fc
  108. #define QUP_STATUS_ERROR_FLAGS 0x7c
  109. #define QUP_READ_LIMIT 256
  110. #define SET_BIT 0x1
  111. #define RESET_BIT 0x0
  112. #define ONE_BYTE 0x1
  113. #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31)
  114. #define MX_TX_RX_LEN SZ_64K
  115. #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT)
  116. /* Max timeout in ms for 32k bytes */
  117. #define TOUT_MAX 300
  118. /* Default values. Use these if FW query fails */
  119. #define DEFAULT_CLK_FREQ 100000
  120. #define DEFAULT_SRC_CLK 20000000
  121. struct qup_i2c_block {
  122. int count;
  123. int pos;
  124. int tx_tag_len;
  125. int rx_tag_len;
  126. int data_len;
  127. u8 tags[6];
  128. };
  129. struct qup_i2c_tag {
  130. u8 *start;
  131. dma_addr_t addr;
  132. };
  133. struct qup_i2c_bam {
  134. struct qup_i2c_tag tag;
  135. struct dma_chan *dma;
  136. struct scatterlist *sg;
  137. };
  138. struct qup_i2c_dev {
  139. struct device *dev;
  140. void __iomem *base;
  141. int irq;
  142. struct clk *clk;
  143. struct clk *pclk;
  144. struct i2c_adapter adap;
  145. int clk_ctl;
  146. int out_fifo_sz;
  147. int in_fifo_sz;
  148. int out_blk_sz;
  149. int in_blk_sz;
  150. unsigned long one_byte_t;
  151. struct qup_i2c_block blk;
  152. struct i2c_msg *msg;
  153. /* Current posion in user message buffer */
  154. int pos;
  155. /* I2C protocol errors */
  156. u32 bus_err;
  157. /* QUP core errors */
  158. u32 qup_err;
  159. /* To check if this is the last msg */
  160. bool is_last;
  161. /* To configure when bus is in run state */
  162. int config_run;
  163. /* dma parameters */
  164. bool is_dma;
  165. struct dma_pool *dpool;
  166. struct qup_i2c_tag start_tag;
  167. struct qup_i2c_bam brx;
  168. struct qup_i2c_bam btx;
  169. struct completion xfer;
  170. };
  171. static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
  172. {
  173. struct qup_i2c_dev *qup = dev;
  174. u32 bus_err;
  175. u32 qup_err;
  176. u32 opflags;
  177. bus_err = readl(qup->base + QUP_I2C_STATUS);
  178. qup_err = readl(qup->base + QUP_ERROR_FLAGS);
  179. opflags = readl(qup->base + QUP_OPERATIONAL);
  180. if (!qup->msg) {
  181. /* Clear Error interrupt */
  182. writel(QUP_RESET_STATE, qup->base + QUP_STATE);
  183. return IRQ_HANDLED;
  184. }
  185. bus_err &= I2C_STATUS_ERROR_MASK;
  186. qup_err &= QUP_STATUS_ERROR_FLAGS;
  187. /* Clear the error bits in QUP_ERROR_FLAGS */
  188. if (qup_err)
  189. writel(qup_err, qup->base + QUP_ERROR_FLAGS);
  190. /* Clear the error bits in QUP_I2C_STATUS */
  191. if (bus_err)
  192. writel(bus_err, qup->base + QUP_I2C_STATUS);
  193. /* Reset the QUP State in case of error */
  194. if (qup_err || bus_err) {
  195. writel(QUP_RESET_STATE, qup->base + QUP_STATE);
  196. goto done;
  197. }
  198. if (opflags & QUP_IN_SVC_FLAG)
  199. writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
  200. if (opflags & QUP_OUT_SVC_FLAG)
  201. writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
  202. done:
  203. qup->qup_err = qup_err;
  204. qup->bus_err = bus_err;
  205. complete(&qup->xfer);
  206. return IRQ_HANDLED;
  207. }
  208. static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
  209. u32 req_state, u32 req_mask)
  210. {
  211. int retries = 1;
  212. u32 state;
  213. /*
  214. * State transition takes 3 AHB clocks cycles + 3 I2C master clock
  215. * cycles. So retry once after a 1uS delay.
  216. */
  217. do {
  218. state = readl(qup->base + QUP_STATE);
  219. if (state & QUP_STATE_VALID &&
  220. (state & req_mask) == req_state)
  221. return 0;
  222. udelay(1);
  223. } while (retries--);
  224. return -ETIMEDOUT;
  225. }
  226. static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
  227. {
  228. return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
  229. }
  230. static void qup_i2c_flush(struct qup_i2c_dev *qup)
  231. {
  232. u32 val = readl(qup->base + QUP_STATE);
  233. val |= QUP_I2C_FLUSH;
  234. writel(val, qup->base + QUP_STATE);
  235. }
  236. static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
  237. {
  238. return qup_i2c_poll_state_mask(qup, 0, 0);
  239. }
  240. static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
  241. {
  242. return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
  243. }
  244. static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
  245. {
  246. if (qup_i2c_poll_state_valid(qup) != 0)
  247. return -EIO;
  248. writel(state, qup->base + QUP_STATE);
  249. if (qup_i2c_poll_state(qup, state) != 0)
  250. return -EIO;
  251. return 0;
  252. }
  253. /**
  254. * qup_i2c_wait_ready - wait for a give number of bytes in tx/rx path
  255. * @qup: The qup_i2c_dev device
  256. * @op: The bit/event to wait on
  257. * @val: value of the bit to wait on, 0 or 1
  258. * @len: The length the bytes to be transferred
  259. */
  260. static int qup_i2c_wait_ready(struct qup_i2c_dev *qup, int op, bool val,
  261. int len)
  262. {
  263. unsigned long timeout;
  264. u32 opflags;
  265. u32 status;
  266. u32 shift = __ffs(op);
  267. int ret = 0;
  268. len *= qup->one_byte_t;
  269. /* timeout after a wait of twice the max time */
  270. timeout = jiffies + len * 4;
  271. for (;;) {
  272. opflags = readl(qup->base + QUP_OPERATIONAL);
  273. status = readl(qup->base + QUP_I2C_STATUS);
  274. if (((opflags & op) >> shift) == val) {
  275. if ((op == QUP_OUT_NOT_EMPTY) && qup->is_last) {
  276. if (!(status & I2C_STATUS_BUS_ACTIVE)) {
  277. ret = 0;
  278. goto done;
  279. }
  280. } else {
  281. ret = 0;
  282. goto done;
  283. }
  284. }
  285. if (time_after(jiffies, timeout)) {
  286. ret = -ETIMEDOUT;
  287. goto done;
  288. }
  289. usleep_range(len, len * 2);
  290. }
  291. done:
  292. if (qup->bus_err || qup->qup_err)
  293. ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
  294. return ret;
  295. }
  296. static void qup_i2c_set_write_mode_v2(struct qup_i2c_dev *qup,
  297. struct i2c_msg *msg)
  298. {
  299. /* Number of entries to shift out, including the tags */
  300. int total = msg->len + qup->blk.tx_tag_len;
  301. total |= qup->config_run;
  302. if (total < qup->out_fifo_sz) {
  303. /* FIFO mode */
  304. writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
  305. writel(total, qup->base + QUP_MX_WRITE_CNT);
  306. } else {
  307. /* BLOCK mode (transfer data on chunks) */
  308. writel(QUP_OUTPUT_BLK_MODE | QUP_REPACK_EN,
  309. qup->base + QUP_IO_MODE);
  310. writel(total, qup->base + QUP_MX_OUTPUT_CNT);
  311. }
  312. }
  313. static void qup_i2c_set_write_mode(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  314. {
  315. /* Number of entries to shift out, including the start */
  316. int total = msg->len + 1;
  317. if (total < qup->out_fifo_sz) {
  318. /* FIFO mode */
  319. writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
  320. writel(total, qup->base + QUP_MX_WRITE_CNT);
  321. } else {
  322. /* BLOCK mode (transfer data on chunks) */
  323. writel(QUP_OUTPUT_BLK_MODE | QUP_REPACK_EN,
  324. qup->base + QUP_IO_MODE);
  325. writel(total, qup->base + QUP_MX_OUTPUT_CNT);
  326. }
  327. }
  328. static int check_for_fifo_space(struct qup_i2c_dev *qup)
  329. {
  330. int ret;
  331. ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
  332. if (ret)
  333. goto out;
  334. ret = qup_i2c_wait_ready(qup, QUP_OUT_FULL,
  335. RESET_BIT, 4 * ONE_BYTE);
  336. if (ret) {
  337. /* Fifo is full. Drain out the fifo */
  338. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  339. if (ret)
  340. goto out;
  341. ret = qup_i2c_wait_ready(qup, QUP_OUT_NOT_EMPTY,
  342. RESET_BIT, 256 * ONE_BYTE);
  343. if (ret) {
  344. dev_err(qup->dev, "timeout for fifo out full");
  345. goto out;
  346. }
  347. ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
  348. if (ret)
  349. goto out;
  350. }
  351. out:
  352. return ret;
  353. }
  354. static int qup_i2c_issue_write(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  355. {
  356. u32 addr = msg->addr << 1;
  357. u32 qup_tag;
  358. int idx;
  359. u32 val;
  360. int ret = 0;
  361. if (qup->pos == 0) {
  362. val = QUP_TAG_START | addr;
  363. idx = 1;
  364. } else {
  365. val = 0;
  366. idx = 0;
  367. }
  368. while (qup->pos < msg->len) {
  369. /* Check that there's space in the FIFO for our pair */
  370. ret = check_for_fifo_space(qup);
  371. if (ret)
  372. return ret;
  373. if (qup->pos == msg->len - 1)
  374. qup_tag = QUP_TAG_STOP;
  375. else
  376. qup_tag = QUP_TAG_DATA;
  377. if (idx & 1)
  378. val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
  379. else
  380. val = qup_tag | msg->buf[qup->pos];
  381. /* Write out the pair and the last odd value */
  382. if (idx & 1 || qup->pos == msg->len - 1)
  383. writel(val, qup->base + QUP_OUT_FIFO_BASE);
  384. qup->pos++;
  385. idx++;
  386. }
  387. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  388. return ret;
  389. }
  390. static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
  391. struct i2c_msg *msg)
  392. {
  393. memset(&qup->blk, 0, sizeof(qup->blk));
  394. qup->blk.data_len = msg->len;
  395. qup->blk.count = (msg->len + QUP_READ_LIMIT - 1) / QUP_READ_LIMIT;
  396. /* 4 bytes for first block and 2 writes for rest */
  397. qup->blk.tx_tag_len = 4 + (qup->blk.count - 1) * 2;
  398. /* There are 2 tag bytes that are read in to fifo for every block */
  399. if (msg->flags & I2C_M_RD)
  400. qup->blk.rx_tag_len = qup->blk.count * 2;
  401. }
  402. static int qup_i2c_send_data(struct qup_i2c_dev *qup, int tlen, u8 *tbuf,
  403. int dlen, u8 *dbuf)
  404. {
  405. u32 val = 0, idx = 0, pos = 0, i = 0, t;
  406. int len = tlen + dlen;
  407. u8 *buf = tbuf;
  408. int ret = 0;
  409. while (len > 0) {
  410. ret = check_for_fifo_space(qup);
  411. if (ret)
  412. return ret;
  413. t = (len >= 4) ? 4 : len;
  414. while (idx < t) {
  415. if (!i && (pos >= tlen)) {
  416. buf = dbuf;
  417. pos = 0;
  418. i = 1;
  419. }
  420. val |= buf[pos++] << (idx++ * 8);
  421. }
  422. writel(val, qup->base + QUP_OUT_FIFO_BASE);
  423. idx = 0;
  424. val = 0;
  425. len -= 4;
  426. }
  427. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  428. return ret;
  429. }
  430. static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
  431. {
  432. int data_len;
  433. if (qup->blk.data_len > QUP_READ_LIMIT)
  434. data_len = QUP_READ_LIMIT;
  435. else
  436. data_len = qup->blk.data_len;
  437. return data_len;
  438. }
  439. static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
  440. {
  441. return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
  442. }
  443. static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
  444. struct i2c_msg *msg)
  445. {
  446. int len = 0;
  447. if (msg->len > 1) {
  448. tags[len++] = QUP_TAG_V2_DATARD_STOP;
  449. tags[len++] = qup_i2c_get_data_len(qup) - 1;
  450. } else {
  451. tags[len++] = QUP_TAG_V2_START;
  452. tags[len++] = addr & 0xff;
  453. if (msg->flags & I2C_M_TEN)
  454. tags[len++] = addr >> 8;
  455. tags[len++] = QUP_TAG_V2_DATARD;
  456. /* Read 1 byte indicating the length of the SMBus message */
  457. tags[len++] = 1;
  458. }
  459. return len;
  460. }
  461. static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
  462. struct i2c_msg *msg, int is_dma)
  463. {
  464. u16 addr = i2c_8bit_addr_from_msg(msg);
  465. int len = 0;
  466. int data_len;
  467. int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
  468. /* Handle tags for SMBus block read */
  469. if (qup_i2c_check_msg_len(msg))
  470. return qup_i2c_set_tags_smb(addr, tags, qup, msg);
  471. if (qup->blk.pos == 0) {
  472. tags[len++] = QUP_TAG_V2_START;
  473. tags[len++] = addr & 0xff;
  474. if (msg->flags & I2C_M_TEN)
  475. tags[len++] = addr >> 8;
  476. }
  477. /* Send _STOP commands for the last block */
  478. if (last) {
  479. if (msg->flags & I2C_M_RD)
  480. tags[len++] = QUP_TAG_V2_DATARD_STOP;
  481. else
  482. tags[len++] = QUP_TAG_V2_DATAWR_STOP;
  483. } else {
  484. if (msg->flags & I2C_M_RD)
  485. tags[len++] = QUP_TAG_V2_DATARD;
  486. else
  487. tags[len++] = QUP_TAG_V2_DATAWR;
  488. }
  489. data_len = qup_i2c_get_data_len(qup);
  490. /* 0 implies 256 bytes */
  491. if (data_len == QUP_READ_LIMIT)
  492. tags[len++] = 0;
  493. else
  494. tags[len++] = data_len;
  495. if ((msg->flags & I2C_M_RD) && last && is_dma) {
  496. tags[len++] = QUP_BAM_INPUT_EOT;
  497. tags[len++] = QUP_BAM_FLUSH_STOP;
  498. }
  499. return len;
  500. }
  501. static int qup_i2c_issue_xfer_v2(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  502. {
  503. int data_len = 0, tag_len, index;
  504. int ret;
  505. tag_len = qup_i2c_set_tags(qup->blk.tags, qup, msg, 0);
  506. index = msg->len - qup->blk.data_len;
  507. /* only tags are written for read */
  508. if (!(msg->flags & I2C_M_RD))
  509. data_len = qup_i2c_get_data_len(qup);
  510. ret = qup_i2c_send_data(qup, tag_len, qup->blk.tags,
  511. data_len, &msg->buf[index]);
  512. qup->blk.data_len -= data_len;
  513. return ret;
  514. }
  515. static void qup_i2c_bam_cb(void *data)
  516. {
  517. struct qup_i2c_dev *qup = data;
  518. complete(&qup->xfer);
  519. }
  520. static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
  521. unsigned int buflen, struct qup_i2c_dev *qup,
  522. int dir)
  523. {
  524. int ret;
  525. sg_set_buf(sg, buf, buflen);
  526. ret = dma_map_sg(qup->dev, sg, 1, dir);
  527. if (!ret)
  528. return -EINVAL;
  529. return 0;
  530. }
  531. static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
  532. {
  533. if (qup->btx.dma)
  534. dma_release_channel(qup->btx.dma);
  535. if (qup->brx.dma)
  536. dma_release_channel(qup->brx.dma);
  537. qup->btx.dma = NULL;
  538. qup->brx.dma = NULL;
  539. }
  540. static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
  541. {
  542. int err;
  543. if (!qup->btx.dma) {
  544. qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
  545. if (IS_ERR(qup->btx.dma)) {
  546. err = PTR_ERR(qup->btx.dma);
  547. qup->btx.dma = NULL;
  548. dev_err(qup->dev, "\n tx channel not available");
  549. return err;
  550. }
  551. }
  552. if (!qup->brx.dma) {
  553. qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
  554. if (IS_ERR(qup->brx.dma)) {
  555. dev_err(qup->dev, "\n rx channel not available");
  556. err = PTR_ERR(qup->brx.dma);
  557. qup->brx.dma = NULL;
  558. qup_i2c_rel_dma(qup);
  559. return err;
  560. }
  561. }
  562. return 0;
  563. }
  564. static int qup_i2c_bam_do_xfer(struct qup_i2c_dev *qup, struct i2c_msg *msg,
  565. int num)
  566. {
  567. struct dma_async_tx_descriptor *txd, *rxd = NULL;
  568. int ret = 0, idx = 0, limit = QUP_READ_LIMIT;
  569. dma_cookie_t cookie_rx, cookie_tx;
  570. u32 rx_nents = 0, tx_nents = 0, len, blocks, rem;
  571. u32 i, tlen, tx_len, tx_buf = 0, rx_buf = 0, off = 0;
  572. u8 *tags;
  573. while (idx < num) {
  574. tx_len = 0, len = 0, i = 0;
  575. qup->is_last = (idx == (num - 1));
  576. qup_i2c_set_blk_data(qup, msg);
  577. blocks = qup->blk.count;
  578. rem = msg->len - (blocks - 1) * limit;
  579. if (msg->flags & I2C_M_RD) {
  580. rx_nents += (blocks * 2) + 1;
  581. tx_nents += 1;
  582. while (qup->blk.pos < blocks) {
  583. tlen = (i == (blocks - 1)) ? rem : limit;
  584. tags = &qup->start_tag.start[off + len];
  585. len += qup_i2c_set_tags(tags, qup, msg, 1);
  586. qup->blk.data_len -= tlen;
  587. /* scratch buf to read the start and len tags */
  588. ret = qup_sg_set_buf(&qup->brx.sg[rx_buf++],
  589. &qup->brx.tag.start[0],
  590. 2, qup, DMA_FROM_DEVICE);
  591. if (ret)
  592. return ret;
  593. ret = qup_sg_set_buf(&qup->brx.sg[rx_buf++],
  594. &msg->buf[limit * i],
  595. tlen, qup,
  596. DMA_FROM_DEVICE);
  597. if (ret)
  598. return ret;
  599. i++;
  600. qup->blk.pos = i;
  601. }
  602. ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
  603. &qup->start_tag.start[off],
  604. len, qup, DMA_TO_DEVICE);
  605. if (ret)
  606. return ret;
  607. off += len;
  608. /* scratch buf to read the BAM EOT and FLUSH tags */
  609. ret = qup_sg_set_buf(&qup->brx.sg[rx_buf++],
  610. &qup->brx.tag.start[0],
  611. 2, qup, DMA_FROM_DEVICE);
  612. if (ret)
  613. return ret;
  614. } else {
  615. tx_nents += (blocks * 2);
  616. while (qup->blk.pos < blocks) {
  617. tlen = (i == (blocks - 1)) ? rem : limit;
  618. tags = &qup->start_tag.start[off + tx_len];
  619. len = qup_i2c_set_tags(tags, qup, msg, 1);
  620. qup->blk.data_len -= tlen;
  621. ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
  622. tags, len,
  623. qup, DMA_TO_DEVICE);
  624. if (ret)
  625. return ret;
  626. tx_len += len;
  627. ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
  628. &msg->buf[limit * i],
  629. tlen, qup, DMA_TO_DEVICE);
  630. if (ret)
  631. return ret;
  632. i++;
  633. qup->blk.pos = i;
  634. }
  635. off += tx_len;
  636. if (idx == (num - 1)) {
  637. len = 1;
  638. if (rx_nents) {
  639. qup->btx.tag.start[0] =
  640. QUP_BAM_INPUT_EOT;
  641. len++;
  642. }
  643. qup->btx.tag.start[len - 1] =
  644. QUP_BAM_FLUSH_STOP;
  645. ret = qup_sg_set_buf(&qup->btx.sg[tx_buf++],
  646. &qup->btx.tag.start[0],
  647. len, qup, DMA_TO_DEVICE);
  648. if (ret)
  649. return ret;
  650. tx_nents += 1;
  651. }
  652. }
  653. idx++;
  654. msg++;
  655. }
  656. txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_nents,
  657. DMA_MEM_TO_DEV,
  658. DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
  659. if (!txd) {
  660. dev_err(qup->dev, "failed to get tx desc\n");
  661. ret = -EINVAL;
  662. goto desc_err;
  663. }
  664. if (!rx_nents) {
  665. txd->callback = qup_i2c_bam_cb;
  666. txd->callback_param = qup;
  667. }
  668. cookie_tx = dmaengine_submit(txd);
  669. if (dma_submit_error(cookie_tx)) {
  670. ret = -EINVAL;
  671. goto desc_err;
  672. }
  673. dma_async_issue_pending(qup->btx.dma);
  674. if (rx_nents) {
  675. rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
  676. rx_nents, DMA_DEV_TO_MEM,
  677. DMA_PREP_INTERRUPT);
  678. if (!rxd) {
  679. dev_err(qup->dev, "failed to get rx desc\n");
  680. ret = -EINVAL;
  681. /* abort TX descriptors */
  682. dmaengine_terminate_all(qup->btx.dma);
  683. goto desc_err;
  684. }
  685. rxd->callback = qup_i2c_bam_cb;
  686. rxd->callback_param = qup;
  687. cookie_rx = dmaengine_submit(rxd);
  688. if (dma_submit_error(cookie_rx)) {
  689. ret = -EINVAL;
  690. goto desc_err;
  691. }
  692. dma_async_issue_pending(qup->brx.dma);
  693. }
  694. if (!wait_for_completion_timeout(&qup->xfer, TOUT_MAX * HZ)) {
  695. dev_err(qup->dev, "normal trans timed out\n");
  696. ret = -ETIMEDOUT;
  697. }
  698. if (ret || qup->bus_err || qup->qup_err) {
  699. if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
  700. dev_err(qup->dev, "change to run state timed out");
  701. goto desc_err;
  702. }
  703. if (rx_nents)
  704. writel(QUP_BAM_INPUT_EOT,
  705. qup->base + QUP_OUT_FIFO_BASE);
  706. writel(QUP_BAM_FLUSH_STOP, qup->base + QUP_OUT_FIFO_BASE);
  707. qup_i2c_flush(qup);
  708. /* wait for remaining interrupts to occur */
  709. if (!wait_for_completion_timeout(&qup->xfer, HZ))
  710. dev_err(qup->dev, "flush timed out\n");
  711. qup_i2c_rel_dma(qup);
  712. ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
  713. }
  714. desc_err:
  715. dma_unmap_sg(qup->dev, qup->btx.sg, tx_nents, DMA_TO_DEVICE);
  716. if (rx_nents)
  717. dma_unmap_sg(qup->dev, qup->brx.sg, rx_nents,
  718. DMA_FROM_DEVICE);
  719. return ret;
  720. }
  721. static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
  722. int num)
  723. {
  724. struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
  725. int ret = 0;
  726. enable_irq(qup->irq);
  727. ret = qup_i2c_req_dma(qup);
  728. if (ret)
  729. goto out;
  730. writel(0, qup->base + QUP_MX_INPUT_CNT);
  731. writel(0, qup->base + QUP_MX_OUTPUT_CNT);
  732. /* set BAM mode */
  733. writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
  734. /* mask fifo irqs */
  735. writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
  736. /* set RUN STATE */
  737. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  738. if (ret)
  739. goto out;
  740. writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
  741. qup->msg = msg;
  742. ret = qup_i2c_bam_do_xfer(qup, qup->msg, num);
  743. out:
  744. disable_irq(qup->irq);
  745. qup->msg = NULL;
  746. return ret;
  747. }
  748. static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
  749. struct i2c_msg *msg)
  750. {
  751. unsigned long left;
  752. int ret = 0;
  753. left = wait_for_completion_timeout(&qup->xfer, HZ);
  754. if (!left) {
  755. writel(1, qup->base + QUP_SW_RESET);
  756. ret = -ETIMEDOUT;
  757. }
  758. if (qup->bus_err || qup->qup_err)
  759. ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
  760. return ret;
  761. }
  762. static int qup_i2c_write_one_v2(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  763. {
  764. int ret = 0;
  765. qup->msg = msg;
  766. qup->pos = 0;
  767. enable_irq(qup->irq);
  768. qup_i2c_set_blk_data(qup, msg);
  769. qup_i2c_set_write_mode_v2(qup, msg);
  770. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  771. if (ret)
  772. goto err;
  773. writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
  774. do {
  775. ret = qup_i2c_issue_xfer_v2(qup, msg);
  776. if (ret)
  777. goto err;
  778. ret = qup_i2c_wait_for_complete(qup, msg);
  779. if (ret)
  780. goto err;
  781. qup->blk.pos++;
  782. } while (qup->blk.pos < qup->blk.count);
  783. ret = qup_i2c_wait_ready(qup, QUP_OUT_NOT_EMPTY, RESET_BIT, ONE_BYTE);
  784. err:
  785. disable_irq(qup->irq);
  786. qup->msg = NULL;
  787. return ret;
  788. }
  789. static int qup_i2c_write_one(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  790. {
  791. int ret;
  792. qup->msg = msg;
  793. qup->pos = 0;
  794. enable_irq(qup->irq);
  795. qup_i2c_set_write_mode(qup, msg);
  796. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  797. if (ret)
  798. goto err;
  799. writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
  800. do {
  801. ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
  802. if (ret)
  803. goto err;
  804. ret = qup_i2c_issue_write(qup, msg);
  805. if (ret)
  806. goto err;
  807. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  808. if (ret)
  809. goto err;
  810. ret = qup_i2c_wait_for_complete(qup, msg);
  811. if (ret)
  812. goto err;
  813. } while (qup->pos < msg->len);
  814. /* Wait for the outstanding data in the fifo to drain */
  815. ret = qup_i2c_wait_ready(qup, QUP_OUT_NOT_EMPTY, RESET_BIT, ONE_BYTE);
  816. err:
  817. disable_irq(qup->irq);
  818. qup->msg = NULL;
  819. return ret;
  820. }
  821. static void qup_i2c_set_read_mode(struct qup_i2c_dev *qup, int len)
  822. {
  823. if (len < qup->in_fifo_sz) {
  824. /* FIFO mode */
  825. writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
  826. writel(len, qup->base + QUP_MX_READ_CNT);
  827. } else {
  828. /* BLOCK mode (transfer data on chunks) */
  829. writel(QUP_INPUT_BLK_MODE | QUP_REPACK_EN,
  830. qup->base + QUP_IO_MODE);
  831. writel(len, qup->base + QUP_MX_INPUT_CNT);
  832. }
  833. }
  834. static void qup_i2c_set_read_mode_v2(struct qup_i2c_dev *qup, int len)
  835. {
  836. int tx_len = qup->blk.tx_tag_len;
  837. len += qup->blk.rx_tag_len;
  838. len |= qup->config_run;
  839. tx_len |= qup->config_run;
  840. if (len < qup->in_fifo_sz) {
  841. /* FIFO mode */
  842. writel(QUP_REPACK_EN, qup->base + QUP_IO_MODE);
  843. writel(tx_len, qup->base + QUP_MX_WRITE_CNT);
  844. writel(len, qup->base + QUP_MX_READ_CNT);
  845. } else {
  846. /* BLOCK mode (transfer data on chunks) */
  847. writel(QUP_INPUT_BLK_MODE | QUP_REPACK_EN,
  848. qup->base + QUP_IO_MODE);
  849. writel(tx_len, qup->base + QUP_MX_OUTPUT_CNT);
  850. writel(len, qup->base + QUP_MX_INPUT_CNT);
  851. }
  852. }
  853. static void qup_i2c_issue_read(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  854. {
  855. u32 addr, len, val;
  856. addr = i2c_8bit_addr_from_msg(msg);
  857. /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
  858. len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
  859. val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
  860. writel(val, qup->base + QUP_OUT_FIFO_BASE);
  861. }
  862. static int qup_i2c_read_fifo(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  863. {
  864. u32 val = 0;
  865. int idx;
  866. int ret = 0;
  867. for (idx = 0; qup->pos < msg->len; idx++) {
  868. if ((idx & 1) == 0) {
  869. /* Check that FIFO have data */
  870. ret = qup_i2c_wait_ready(qup, QUP_IN_NOT_EMPTY,
  871. SET_BIT, 4 * ONE_BYTE);
  872. if (ret)
  873. return ret;
  874. /* Reading 2 words at time */
  875. val = readl(qup->base + QUP_IN_FIFO_BASE);
  876. msg->buf[qup->pos++] = val & 0xFF;
  877. } else {
  878. msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
  879. }
  880. }
  881. return ret;
  882. }
  883. static int qup_i2c_read_fifo_v2(struct qup_i2c_dev *qup,
  884. struct i2c_msg *msg)
  885. {
  886. u32 val;
  887. int idx, pos = 0, ret = 0, total, msg_offset = 0;
  888. /*
  889. * If the message length is already read in
  890. * the first byte of the buffer, account for
  891. * that by setting the offset
  892. */
  893. if (qup_i2c_check_msg_len(msg) && (msg->len > 1))
  894. msg_offset = 1;
  895. total = qup_i2c_get_data_len(qup);
  896. total -= msg_offset;
  897. /* 2 extra bytes for read tags */
  898. while (pos < (total + 2)) {
  899. /* Check that FIFO have data */
  900. ret = qup_i2c_wait_ready(qup, QUP_IN_NOT_EMPTY,
  901. SET_BIT, 4 * ONE_BYTE);
  902. if (ret) {
  903. dev_err(qup->dev, "timeout for fifo not empty");
  904. return ret;
  905. }
  906. val = readl(qup->base + QUP_IN_FIFO_BASE);
  907. for (idx = 0; idx < 4; idx++, val >>= 8, pos++) {
  908. /* first 2 bytes are tag bytes */
  909. if (pos < 2)
  910. continue;
  911. if (pos >= (total + 2))
  912. goto out;
  913. msg->buf[qup->pos + msg_offset] = val & 0xff;
  914. qup->pos++;
  915. }
  916. }
  917. out:
  918. qup->blk.data_len -= total;
  919. return ret;
  920. }
  921. static int qup_i2c_read_one_v2(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  922. {
  923. int ret = 0;
  924. qup->msg = msg;
  925. qup->pos = 0;
  926. enable_irq(qup->irq);
  927. qup_i2c_set_blk_data(qup, msg);
  928. qup_i2c_set_read_mode_v2(qup, msg->len);
  929. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  930. if (ret)
  931. goto err;
  932. writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
  933. do {
  934. ret = qup_i2c_issue_xfer_v2(qup, msg);
  935. if (ret)
  936. goto err;
  937. ret = qup_i2c_wait_for_complete(qup, msg);
  938. if (ret)
  939. goto err;
  940. ret = qup_i2c_read_fifo_v2(qup, msg);
  941. if (ret)
  942. goto err;
  943. qup->blk.pos++;
  944. /* Handle SMBus block read length */
  945. if (qup_i2c_check_msg_len(msg) && (msg->len == 1)) {
  946. if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX) {
  947. ret = -EPROTO;
  948. goto err;
  949. }
  950. msg->len += msg->buf[0];
  951. qup->pos = 0;
  952. qup_i2c_set_blk_data(qup, msg);
  953. /* set tag length for block read */
  954. qup->blk.tx_tag_len = 2;
  955. qup_i2c_set_read_mode_v2(qup, msg->buf[0]);
  956. }
  957. } while (qup->blk.pos < qup->blk.count);
  958. err:
  959. disable_irq(qup->irq);
  960. qup->msg = NULL;
  961. return ret;
  962. }
  963. static int qup_i2c_read_one(struct qup_i2c_dev *qup, struct i2c_msg *msg)
  964. {
  965. int ret;
  966. qup->msg = msg;
  967. qup->pos = 0;
  968. enable_irq(qup->irq);
  969. qup_i2c_set_read_mode(qup, msg->len);
  970. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  971. if (ret)
  972. goto err;
  973. writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
  974. ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
  975. if (ret)
  976. goto err;
  977. qup_i2c_issue_read(qup, msg);
  978. ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
  979. if (ret)
  980. goto err;
  981. do {
  982. ret = qup_i2c_wait_for_complete(qup, msg);
  983. if (ret)
  984. goto err;
  985. ret = qup_i2c_read_fifo(qup, msg);
  986. if (ret)
  987. goto err;
  988. } while (qup->pos < msg->len);
  989. err:
  990. disable_irq(qup->irq);
  991. qup->msg = NULL;
  992. return ret;
  993. }
  994. static int qup_i2c_xfer(struct i2c_adapter *adap,
  995. struct i2c_msg msgs[],
  996. int num)
  997. {
  998. struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
  999. int ret, idx;
  1000. ret = pm_runtime_get_sync(qup->dev);
  1001. if (ret < 0)
  1002. goto out;
  1003. qup->bus_err = 0;
  1004. qup->qup_err = 0;
  1005. writel(1, qup->base + QUP_SW_RESET);
  1006. ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
  1007. if (ret)
  1008. goto out;
  1009. /* Configure QUP as I2C mini core */
  1010. writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
  1011. for (idx = 0; idx < num; idx++) {
  1012. if (msgs[idx].len == 0) {
  1013. ret = -EINVAL;
  1014. goto out;
  1015. }
  1016. if (qup_i2c_poll_state_i2c_master(qup)) {
  1017. ret = -EIO;
  1018. goto out;
  1019. }
  1020. if (qup_i2c_check_msg_len(&msgs[idx])) {
  1021. ret = -EINVAL;
  1022. goto out;
  1023. }
  1024. if (msgs[idx].flags & I2C_M_RD)
  1025. ret = qup_i2c_read_one(qup, &msgs[idx]);
  1026. else
  1027. ret = qup_i2c_write_one(qup, &msgs[idx]);
  1028. if (ret)
  1029. break;
  1030. ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
  1031. if (ret)
  1032. break;
  1033. }
  1034. if (ret == 0)
  1035. ret = num;
  1036. out:
  1037. pm_runtime_mark_last_busy(qup->dev);
  1038. pm_runtime_put_autosuspend(qup->dev);
  1039. return ret;
  1040. }
  1041. static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
  1042. struct i2c_msg msgs[],
  1043. int num)
  1044. {
  1045. struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
  1046. int ret, len, idx = 0, use_dma = 0;
  1047. qup->bus_err = 0;
  1048. qup->qup_err = 0;
  1049. ret = pm_runtime_get_sync(qup->dev);
  1050. if (ret < 0)
  1051. goto out;
  1052. writel(1, qup->base + QUP_SW_RESET);
  1053. ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
  1054. if (ret)
  1055. goto out;
  1056. /* Configure QUP as I2C mini core */
  1057. writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
  1058. writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
  1059. if ((qup->is_dma)) {
  1060. /* All i2c_msgs should be transferred using either dma or cpu */
  1061. for (idx = 0; idx < num; idx++) {
  1062. if (msgs[idx].len == 0) {
  1063. ret = -EINVAL;
  1064. goto out;
  1065. }
  1066. len = (msgs[idx].len > qup->out_fifo_sz) ||
  1067. (msgs[idx].len > qup->in_fifo_sz);
  1068. if ((!is_vmalloc_addr(msgs[idx].buf)) && len) {
  1069. use_dma = 1;
  1070. } else {
  1071. use_dma = 0;
  1072. break;
  1073. }
  1074. }
  1075. }
  1076. idx = 0;
  1077. do {
  1078. if (msgs[idx].len == 0) {
  1079. ret = -EINVAL;
  1080. goto out;
  1081. }
  1082. if (qup_i2c_poll_state_i2c_master(qup)) {
  1083. ret = -EIO;
  1084. goto out;
  1085. }
  1086. qup->is_last = (idx == (num - 1));
  1087. if (idx)
  1088. qup->config_run = QUP_I2C_MX_CONFIG_DURING_RUN;
  1089. else
  1090. qup->config_run = 0;
  1091. reinit_completion(&qup->xfer);
  1092. if (use_dma) {
  1093. ret = qup_i2c_bam_xfer(adap, &msgs[idx], num);
  1094. } else {
  1095. if (msgs[idx].flags & I2C_M_RD)
  1096. ret = qup_i2c_read_one_v2(qup, &msgs[idx]);
  1097. else
  1098. ret = qup_i2c_write_one_v2(qup, &msgs[idx]);
  1099. }
  1100. } while ((idx++ < (num - 1)) && !use_dma && !ret);
  1101. if (!ret)
  1102. ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
  1103. if (ret == 0)
  1104. ret = num;
  1105. out:
  1106. pm_runtime_mark_last_busy(qup->dev);
  1107. pm_runtime_put_autosuspend(qup->dev);
  1108. return ret;
  1109. }
  1110. static u32 qup_i2c_func(struct i2c_adapter *adap)
  1111. {
  1112. return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
  1113. }
  1114. static const struct i2c_algorithm qup_i2c_algo = {
  1115. .master_xfer = qup_i2c_xfer,
  1116. .functionality = qup_i2c_func,
  1117. };
  1118. static const struct i2c_algorithm qup_i2c_algo_v2 = {
  1119. .master_xfer = qup_i2c_xfer_v2,
  1120. .functionality = qup_i2c_func,
  1121. };
  1122. /*
  1123. * The QUP block will issue a NACK and STOP on the bus when reaching
  1124. * the end of the read, the length of the read is specified as one byte
  1125. * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
  1126. */
  1127. static struct i2c_adapter_quirks qup_i2c_quirks = {
  1128. .max_read_len = QUP_READ_LIMIT,
  1129. };
  1130. static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
  1131. {
  1132. clk_prepare_enable(qup->clk);
  1133. clk_prepare_enable(qup->pclk);
  1134. }
  1135. static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
  1136. {
  1137. u32 config;
  1138. qup_i2c_change_state(qup, QUP_RESET_STATE);
  1139. clk_disable_unprepare(qup->clk);
  1140. config = readl(qup->base + QUP_CONFIG);
  1141. config |= QUP_CLOCK_AUTO_GATE;
  1142. writel(config, qup->base + QUP_CONFIG);
  1143. clk_disable_unprepare(qup->pclk);
  1144. }
  1145. static int qup_i2c_probe(struct platform_device *pdev)
  1146. {
  1147. static const int blk_sizes[] = {4, 16, 32};
  1148. struct qup_i2c_dev *qup;
  1149. unsigned long one_bit_t;
  1150. struct resource *res;
  1151. u32 io_mode, hw_ver, size;
  1152. int ret, fs_div, hs_div;
  1153. u32 src_clk_freq = DEFAULT_SRC_CLK;
  1154. u32 clk_freq = DEFAULT_CLK_FREQ;
  1155. int blocks;
  1156. qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
  1157. if (!qup)
  1158. return -ENOMEM;
  1159. qup->dev = &pdev->dev;
  1160. init_completion(&qup->xfer);
  1161. platform_set_drvdata(pdev, qup);
  1162. ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
  1163. if (ret) {
  1164. dev_notice(qup->dev, "using default clock-frequency %d",
  1165. DEFAULT_CLK_FREQ);
  1166. }
  1167. if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
  1168. qup->adap.algo = &qup_i2c_algo;
  1169. qup->adap.quirks = &qup_i2c_quirks;
  1170. } else {
  1171. qup->adap.algo = &qup_i2c_algo_v2;
  1172. ret = qup_i2c_req_dma(qup);
  1173. if (ret == -EPROBE_DEFER)
  1174. goto fail_dma;
  1175. else if (ret != 0)
  1176. goto nodma;
  1177. blocks = (MX_BLOCKS << 1) + 1;
  1178. qup->btx.sg = devm_kzalloc(&pdev->dev,
  1179. sizeof(*qup->btx.sg) * blocks,
  1180. GFP_KERNEL);
  1181. if (!qup->btx.sg) {
  1182. ret = -ENOMEM;
  1183. goto fail_dma;
  1184. }
  1185. sg_init_table(qup->btx.sg, blocks);
  1186. qup->brx.sg = devm_kzalloc(&pdev->dev,
  1187. sizeof(*qup->brx.sg) * blocks,
  1188. GFP_KERNEL);
  1189. if (!qup->brx.sg) {
  1190. ret = -ENOMEM;
  1191. goto fail_dma;
  1192. }
  1193. sg_init_table(qup->brx.sg, blocks);
  1194. /* 2 tag bytes for each block + 5 for start, stop tags */
  1195. size = blocks * 2 + 5;
  1196. qup->start_tag.start = devm_kzalloc(&pdev->dev,
  1197. size, GFP_KERNEL);
  1198. if (!qup->start_tag.start) {
  1199. ret = -ENOMEM;
  1200. goto fail_dma;
  1201. }
  1202. qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
  1203. if (!qup->brx.tag.start) {
  1204. ret = -ENOMEM;
  1205. goto fail_dma;
  1206. }
  1207. qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
  1208. if (!qup->btx.tag.start) {
  1209. ret = -ENOMEM;
  1210. goto fail_dma;
  1211. }
  1212. qup->is_dma = true;
  1213. }
  1214. nodma:
  1215. /* We support frequencies up to FAST Mode (400KHz) */
  1216. if (!clk_freq || clk_freq > 400000) {
  1217. dev_err(qup->dev, "clock frequency not supported %d\n",
  1218. clk_freq);
  1219. return -EINVAL;
  1220. }
  1221. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1222. qup->base = devm_ioremap_resource(qup->dev, res);
  1223. if (IS_ERR(qup->base))
  1224. return PTR_ERR(qup->base);
  1225. qup->irq = platform_get_irq(pdev, 0);
  1226. if (qup->irq < 0) {
  1227. dev_err(qup->dev, "No IRQ defined\n");
  1228. return qup->irq;
  1229. }
  1230. if (has_acpi_companion(qup->dev)) {
  1231. ret = device_property_read_u32(qup->dev,
  1232. "src-clock-hz", &src_clk_freq);
  1233. if (ret) {
  1234. dev_notice(qup->dev, "using default src-clock-hz %d",
  1235. DEFAULT_SRC_CLK);
  1236. }
  1237. ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
  1238. } else {
  1239. qup->clk = devm_clk_get(qup->dev, "core");
  1240. if (IS_ERR(qup->clk)) {
  1241. dev_err(qup->dev, "Could not get core clock\n");
  1242. return PTR_ERR(qup->clk);
  1243. }
  1244. qup->pclk = devm_clk_get(qup->dev, "iface");
  1245. if (IS_ERR(qup->pclk)) {
  1246. dev_err(qup->dev, "Could not get iface clock\n");
  1247. return PTR_ERR(qup->pclk);
  1248. }
  1249. qup_i2c_enable_clocks(qup);
  1250. src_clk_freq = clk_get_rate(qup->clk);
  1251. }
  1252. /*
  1253. * Bootloaders might leave a pending interrupt on certain QUP's,
  1254. * so we reset the core before registering for interrupts.
  1255. */
  1256. writel(1, qup->base + QUP_SW_RESET);
  1257. ret = qup_i2c_poll_state_valid(qup);
  1258. if (ret)
  1259. goto fail;
  1260. ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
  1261. IRQF_TRIGGER_HIGH, "i2c_qup", qup);
  1262. if (ret) {
  1263. dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
  1264. goto fail;
  1265. }
  1266. disable_irq(qup->irq);
  1267. hw_ver = readl(qup->base + QUP_HW_VERSION);
  1268. dev_dbg(qup->dev, "Revision %x\n", hw_ver);
  1269. io_mode = readl(qup->base + QUP_IO_MODE);
  1270. /*
  1271. * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
  1272. * associated with each byte written/received
  1273. */
  1274. size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
  1275. if (size >= ARRAY_SIZE(blk_sizes)) {
  1276. ret = -EIO;
  1277. goto fail;
  1278. }
  1279. qup->out_blk_sz = blk_sizes[size] / 2;
  1280. size = QUP_INPUT_BLOCK_SIZE(io_mode);
  1281. if (size >= ARRAY_SIZE(blk_sizes)) {
  1282. ret = -EIO;
  1283. goto fail;
  1284. }
  1285. qup->in_blk_sz = blk_sizes[size] / 2;
  1286. size = QUP_OUTPUT_FIFO_SIZE(io_mode);
  1287. qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
  1288. size = QUP_INPUT_FIFO_SIZE(io_mode);
  1289. qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
  1290. fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
  1291. hs_div = 3;
  1292. qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
  1293. /*
  1294. * Time it takes for a byte to be clocked out on the bus.
  1295. * Each byte takes 9 clock cycles (8 bits + 1 ack).
  1296. */
  1297. one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
  1298. qup->one_byte_t = one_bit_t * 9;
  1299. dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
  1300. qup->in_blk_sz, qup->in_fifo_sz,
  1301. qup->out_blk_sz, qup->out_fifo_sz);
  1302. i2c_set_adapdata(&qup->adap, qup);
  1303. qup->adap.dev.parent = qup->dev;
  1304. qup->adap.dev.of_node = pdev->dev.of_node;
  1305. qup->is_last = true;
  1306. strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
  1307. pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
  1308. pm_runtime_use_autosuspend(qup->dev);
  1309. pm_runtime_set_active(qup->dev);
  1310. pm_runtime_enable(qup->dev);
  1311. ret = i2c_add_adapter(&qup->adap);
  1312. if (ret)
  1313. goto fail_runtime;
  1314. return 0;
  1315. fail_runtime:
  1316. pm_runtime_disable(qup->dev);
  1317. pm_runtime_set_suspended(qup->dev);
  1318. fail:
  1319. qup_i2c_disable_clocks(qup);
  1320. fail_dma:
  1321. if (qup->btx.dma)
  1322. dma_release_channel(qup->btx.dma);
  1323. if (qup->brx.dma)
  1324. dma_release_channel(qup->brx.dma);
  1325. return ret;
  1326. }
  1327. static int qup_i2c_remove(struct platform_device *pdev)
  1328. {
  1329. struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
  1330. if (qup->is_dma) {
  1331. dma_release_channel(qup->btx.dma);
  1332. dma_release_channel(qup->brx.dma);
  1333. }
  1334. disable_irq(qup->irq);
  1335. qup_i2c_disable_clocks(qup);
  1336. i2c_del_adapter(&qup->adap);
  1337. pm_runtime_disable(qup->dev);
  1338. pm_runtime_set_suspended(qup->dev);
  1339. return 0;
  1340. }
  1341. #ifdef CONFIG_PM
  1342. static int qup_i2c_pm_suspend_runtime(struct device *device)
  1343. {
  1344. struct qup_i2c_dev *qup = dev_get_drvdata(device);
  1345. dev_dbg(device, "pm_runtime: suspending...\n");
  1346. qup_i2c_disable_clocks(qup);
  1347. return 0;
  1348. }
  1349. static int qup_i2c_pm_resume_runtime(struct device *device)
  1350. {
  1351. struct qup_i2c_dev *qup = dev_get_drvdata(device);
  1352. dev_dbg(device, "pm_runtime: resuming...\n");
  1353. qup_i2c_enable_clocks(qup);
  1354. return 0;
  1355. }
  1356. #endif
  1357. #ifdef CONFIG_PM_SLEEP
  1358. static int qup_i2c_suspend(struct device *device)
  1359. {
  1360. if (!pm_runtime_suspended(device))
  1361. return qup_i2c_pm_suspend_runtime(device);
  1362. return 0;
  1363. }
  1364. static int qup_i2c_resume(struct device *device)
  1365. {
  1366. qup_i2c_pm_resume_runtime(device);
  1367. pm_runtime_mark_last_busy(device);
  1368. pm_request_autosuspend(device);
  1369. return 0;
  1370. }
  1371. #endif
  1372. static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
  1373. SET_SYSTEM_SLEEP_PM_OPS(
  1374. qup_i2c_suspend,
  1375. qup_i2c_resume)
  1376. SET_RUNTIME_PM_OPS(
  1377. qup_i2c_pm_suspend_runtime,
  1378. qup_i2c_pm_resume_runtime,
  1379. NULL)
  1380. };
  1381. static const struct of_device_id qup_i2c_dt_match[] = {
  1382. { .compatible = "qcom,i2c-qup-v1.1.1" },
  1383. { .compatible = "qcom,i2c-qup-v2.1.1" },
  1384. { .compatible = "qcom,i2c-qup-v2.2.1" },
  1385. {}
  1386. };
  1387. MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
  1388. #if IS_ENABLED(CONFIG_ACPI)
  1389. static const struct acpi_device_id qup_i2c_acpi_match[] = {
  1390. { "QCOM8010"},
  1391. { },
  1392. };
  1393. MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
  1394. #endif
  1395. static struct platform_driver qup_i2c_driver = {
  1396. .probe = qup_i2c_probe,
  1397. .remove = qup_i2c_remove,
  1398. .driver = {
  1399. .name = "i2c_qup",
  1400. .pm = &qup_i2c_qup_pm_ops,
  1401. .of_match_table = qup_i2c_dt_match,
  1402. .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
  1403. },
  1404. };
  1405. module_platform_driver(qup_i2c_driver);
  1406. MODULE_LICENSE("GPL v2");
  1407. MODULE_ALIAS("platform:i2c_qup");