vc4_crtc.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * output's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, this file also manages
  18. * setup of the VC4 HVS's display elements on the CRTC.
  19. *
  20. * The 2835 has 3 different pixel valves. pv0 in the audio power
  21. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  22. * image domain can feed either HDMI or the SDTV controller. The
  23. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  24. * SDTV, etc.) according to which output type is chosen in the mux.
  25. *
  26. * For power management, the pixel valve's registers are all clocked
  27. * by the AXI clock, while the timings and FIFOs make use of the
  28. * output-specific clock. Since the encoders also directly consume
  29. * the CPRMAN clocks, and know what timings they need, they are the
  30. * ones that set the clock.
  31. */
  32. #include "drm_atomic.h"
  33. #include "drm_atomic_helper.h"
  34. #include "drm_crtc_helper.h"
  35. #include "linux/clk.h"
  36. #include "drm_fb_cma_helper.h"
  37. #include "linux/component.h"
  38. #include "linux/of_device.h"
  39. #include "vc4_drv.h"
  40. #include "vc4_regs.h"
  41. struct vc4_crtc {
  42. struct drm_crtc base;
  43. const struct vc4_crtc_data *data;
  44. void __iomem *regs;
  45. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  46. ktime_t t_vblank;
  47. /* Which HVS channel we're using for our CRTC. */
  48. int channel;
  49. u8 lut_r[256];
  50. u8 lut_g[256];
  51. u8 lut_b[256];
  52. /* Size in pixels of the COB memory allocated to this CRTC. */
  53. u32 cob_size;
  54. struct drm_pending_vblank_event *event;
  55. };
  56. struct vc4_crtc_state {
  57. struct drm_crtc_state base;
  58. /* Dlist area for this CRTC configuration. */
  59. struct drm_mm_node mm;
  60. };
  61. static inline struct vc4_crtc *
  62. to_vc4_crtc(struct drm_crtc *crtc)
  63. {
  64. return (struct vc4_crtc *)crtc;
  65. }
  66. static inline struct vc4_crtc_state *
  67. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  68. {
  69. return (struct vc4_crtc_state *)crtc_state;
  70. }
  71. struct vc4_crtc_data {
  72. /* Which channel of the HVS this pixelvalve sources from. */
  73. int hvs_channel;
  74. enum vc4_encoder_type encoder_types[4];
  75. };
  76. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  77. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  78. #define CRTC_REG(reg) { reg, #reg }
  79. static const struct {
  80. u32 reg;
  81. const char *name;
  82. } crtc_regs[] = {
  83. CRTC_REG(PV_CONTROL),
  84. CRTC_REG(PV_V_CONTROL),
  85. CRTC_REG(PV_VSYNCD_EVEN),
  86. CRTC_REG(PV_HORZA),
  87. CRTC_REG(PV_HORZB),
  88. CRTC_REG(PV_VERTA),
  89. CRTC_REG(PV_VERTB),
  90. CRTC_REG(PV_VERTA_EVEN),
  91. CRTC_REG(PV_VERTB_EVEN),
  92. CRTC_REG(PV_INTEN),
  93. CRTC_REG(PV_INTSTAT),
  94. CRTC_REG(PV_STAT),
  95. CRTC_REG(PV_HACT_ACT),
  96. };
  97. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  98. {
  99. int i;
  100. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  101. DRM_INFO("0x%04x (%s): 0x%08x\n",
  102. crtc_regs[i].reg, crtc_regs[i].name,
  103. CRTC_READ(crtc_regs[i].reg));
  104. }
  105. }
  106. #ifdef CONFIG_DEBUG_FS
  107. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  108. {
  109. struct drm_info_node *node = (struct drm_info_node *)m->private;
  110. struct drm_device *dev = node->minor->dev;
  111. int crtc_index = (uintptr_t)node->info_ent->data;
  112. struct drm_crtc *crtc;
  113. struct vc4_crtc *vc4_crtc;
  114. int i;
  115. i = 0;
  116. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  117. if (i == crtc_index)
  118. break;
  119. i++;
  120. }
  121. if (!crtc)
  122. return 0;
  123. vc4_crtc = to_vc4_crtc(crtc);
  124. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  125. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  126. crtc_regs[i].name, crtc_regs[i].reg,
  127. CRTC_READ(crtc_regs[i].reg));
  128. }
  129. return 0;
  130. }
  131. #endif
  132. int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  133. unsigned int flags, int *vpos, int *hpos,
  134. ktime_t *stime, ktime_t *etime,
  135. const struct drm_display_mode *mode)
  136. {
  137. struct vc4_dev *vc4 = to_vc4_dev(dev);
  138. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  139. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  140. u32 val;
  141. int fifo_lines;
  142. int vblank_lines;
  143. int ret = 0;
  144. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  145. /* Get optional system timestamp before query. */
  146. if (stime)
  147. *stime = ktime_get();
  148. /*
  149. * Read vertical scanline which is currently composed for our
  150. * pixelvalve by the HVS, and also the scaler status.
  151. */
  152. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  153. /* Get optional system timestamp after query. */
  154. if (etime)
  155. *etime = ktime_get();
  156. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  157. /* Vertical position of hvs composed scanline. */
  158. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  159. *hpos = 0;
  160. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  161. *vpos /= 2;
  162. /* Use hpos to correct for field offset in interlaced mode. */
  163. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  164. *hpos += mode->crtc_htotal / 2;
  165. }
  166. /* This is the offset we need for translating hvs -> pv scanout pos. */
  167. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  168. if (fifo_lines > 0)
  169. ret |= DRM_SCANOUTPOS_VALID;
  170. /* HVS more than fifo_lines into frame for compositing? */
  171. if (*vpos > fifo_lines) {
  172. /*
  173. * We are in active scanout and can get some meaningful results
  174. * from HVS. The actual PV scanout can not trail behind more
  175. * than fifo_lines as that is the fifo's capacity. Assume that
  176. * in active scanout the HVS and PV work in lockstep wrt. HVS
  177. * refilling the fifo and PV consuming from the fifo, ie.
  178. * whenever the PV consumes and frees up a scanline in the
  179. * fifo, the HVS will immediately refill it, therefore
  180. * incrementing vpos. Therefore we choose HVS read position -
  181. * fifo size in scanlines as a estimate of the real scanout
  182. * position of the PV.
  183. */
  184. *vpos -= fifo_lines + 1;
  185. ret |= DRM_SCANOUTPOS_ACCURATE;
  186. return ret;
  187. }
  188. /*
  189. * Less: This happens when we are in vblank and the HVS, after getting
  190. * the VSTART restart signal from the PV, just started refilling its
  191. * fifo with new lines from the top-most lines of the new framebuffers.
  192. * The PV does not scan out in vblank, so does not remove lines from
  193. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  194. * We can't get meaningful readings wrt. scanline position of the PV
  195. * and need to make things up in a approximative but consistent way.
  196. */
  197. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  198. vblank_lines = mode->vtotal - mode->vdisplay;
  199. if (flags & DRM_CALLED_FROM_VBLIRQ) {
  200. /*
  201. * Assume the irq handler got called close to first
  202. * line of vblank, so PV has about a full vblank
  203. * scanlines to go, and as a base timestamp use the
  204. * one taken at entry into vblank irq handler, so it
  205. * is not affected by random delays due to lock
  206. * contention on event_lock or vblank_time lock in
  207. * the core.
  208. */
  209. *vpos = -vblank_lines;
  210. if (stime)
  211. *stime = vc4_crtc->t_vblank;
  212. if (etime)
  213. *etime = vc4_crtc->t_vblank;
  214. /*
  215. * If the HVS fifo is not yet full then we know for certain
  216. * we are at the very beginning of vblank, as the hvs just
  217. * started refilling, and the stime and etime timestamps
  218. * truly correspond to start of vblank.
  219. */
  220. if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
  221. ret |= DRM_SCANOUTPOS_ACCURATE;
  222. } else {
  223. /*
  224. * No clue where we are inside vblank. Return a vpos of zero,
  225. * which will cause calling code to just return the etime
  226. * timestamp uncorrected. At least this is no worse than the
  227. * standard fallback.
  228. */
  229. *vpos = 0;
  230. }
  231. return ret;
  232. }
  233. int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
  234. int *max_error, struct timeval *vblank_time,
  235. unsigned flags)
  236. {
  237. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  238. struct drm_crtc_state *state = crtc->state;
  239. /* Helper routine in DRM core does all the work: */
  240. return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
  241. vblank_time, flags,
  242. &state->adjusted_mode);
  243. }
  244. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  245. {
  246. drm_crtc_cleanup(crtc);
  247. }
  248. static void
  249. vc4_crtc_lut_load(struct drm_crtc *crtc)
  250. {
  251. struct drm_device *dev = crtc->dev;
  252. struct vc4_dev *vc4 = to_vc4_dev(dev);
  253. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  254. u32 i;
  255. /* The LUT memory is laid out with each HVS channel in order,
  256. * each of which takes 256 writes for R, 256 for G, then 256
  257. * for B.
  258. */
  259. HVS_WRITE(SCALER_GAMADDR,
  260. SCALER_GAMADDR_AUTOINC |
  261. (vc4_crtc->channel * 3 * crtc->gamma_size));
  262. for (i = 0; i < crtc->gamma_size; i++)
  263. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  264. for (i = 0; i < crtc->gamma_size; i++)
  265. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  266. for (i = 0; i < crtc->gamma_size; i++)
  267. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  268. }
  269. static int
  270. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  271. uint32_t size)
  272. {
  273. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  274. u32 i;
  275. for (i = 0; i < size; i++) {
  276. vc4_crtc->lut_r[i] = r[i] >> 8;
  277. vc4_crtc->lut_g[i] = g[i] >> 8;
  278. vc4_crtc->lut_b[i] = b[i] >> 8;
  279. }
  280. vc4_crtc_lut_load(crtc);
  281. return 0;
  282. }
  283. static u32 vc4_get_fifo_full_level(u32 format)
  284. {
  285. static const u32 fifo_len_bytes = 64;
  286. static const u32 hvs_latency_pix = 6;
  287. switch (format) {
  288. case PV_CONTROL_FORMAT_DSIV_16:
  289. case PV_CONTROL_FORMAT_DSIC_16:
  290. return fifo_len_bytes - 2 * hvs_latency_pix;
  291. case PV_CONTROL_FORMAT_DSIV_18:
  292. return fifo_len_bytes - 14;
  293. case PV_CONTROL_FORMAT_24:
  294. case PV_CONTROL_FORMAT_DSIV_24:
  295. default:
  296. return fifo_len_bytes - 3 * hvs_latency_pix;
  297. }
  298. }
  299. /*
  300. * Returns the clock select bit for the connector attached to the
  301. * CRTC.
  302. */
  303. static int vc4_get_clock_select(struct drm_crtc *crtc)
  304. {
  305. struct drm_connector *connector;
  306. drm_for_each_connector(connector, crtc->dev) {
  307. if (connector->state->crtc == crtc) {
  308. struct drm_encoder *encoder = connector->encoder;
  309. struct vc4_encoder *vc4_encoder =
  310. to_vc4_encoder(encoder);
  311. return vc4_encoder->clock_select;
  312. }
  313. }
  314. return -1;
  315. }
  316. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  317. {
  318. struct drm_device *dev = crtc->dev;
  319. struct vc4_dev *vc4 = to_vc4_dev(dev);
  320. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  321. struct drm_crtc_state *state = crtc->state;
  322. struct drm_display_mode *mode = &state->adjusted_mode;
  323. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  324. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  325. u32 format = PV_CONTROL_FORMAT_24;
  326. bool debug_dump_regs = false;
  327. int clock_select = vc4_get_clock_select(crtc);
  328. if (debug_dump_regs) {
  329. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  330. vc4_crtc_dump_regs(vc4_crtc);
  331. }
  332. /* Reset the PV fifo. */
  333. CRTC_WRITE(PV_CONTROL, 0);
  334. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  335. CRTC_WRITE(PV_CONTROL, 0);
  336. CRTC_WRITE(PV_HORZA,
  337. VC4_SET_FIELD((mode->htotal -
  338. mode->hsync_end) * pixel_rep,
  339. PV_HORZA_HBP) |
  340. VC4_SET_FIELD((mode->hsync_end -
  341. mode->hsync_start) * pixel_rep,
  342. PV_HORZA_HSYNC));
  343. CRTC_WRITE(PV_HORZB,
  344. VC4_SET_FIELD((mode->hsync_start -
  345. mode->hdisplay) * pixel_rep,
  346. PV_HORZB_HFP) |
  347. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  348. CRTC_WRITE(PV_VERTA,
  349. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  350. PV_VERTA_VBP) |
  351. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  352. PV_VERTA_VSYNC));
  353. CRTC_WRITE(PV_VERTB,
  354. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  355. PV_VERTB_VFP) |
  356. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  357. if (interlace) {
  358. CRTC_WRITE(PV_VERTA_EVEN,
  359. VC4_SET_FIELD(mode->crtc_vtotal -
  360. mode->crtc_vsync_end - 1,
  361. PV_VERTA_VBP) |
  362. VC4_SET_FIELD(mode->crtc_vsync_end -
  363. mode->crtc_vsync_start,
  364. PV_VERTA_VSYNC));
  365. CRTC_WRITE(PV_VERTB_EVEN,
  366. VC4_SET_FIELD(mode->crtc_vsync_start -
  367. mode->crtc_vdisplay,
  368. PV_VERTB_VFP) |
  369. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  370. /* We set up first field even mode for HDMI. VEC's
  371. * NTSC mode would want first field odd instead, once
  372. * we support it (to do so, set ODD_FIRST and put the
  373. * delay in VSYNCD_EVEN instead).
  374. */
  375. CRTC_WRITE(PV_V_CONTROL,
  376. PV_VCONTROL_CONTINUOUS |
  377. PV_VCONTROL_INTERLACE |
  378. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  379. PV_VCONTROL_ODD_DELAY));
  380. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  381. } else {
  382. CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
  383. }
  384. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  385. CRTC_WRITE(PV_CONTROL,
  386. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  387. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  388. PV_CONTROL_FIFO_LEVEL) |
  389. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  390. PV_CONTROL_CLR_AT_START |
  391. PV_CONTROL_TRIGGER_UNDERFLOW |
  392. PV_CONTROL_WAIT_HSTART |
  393. VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
  394. PV_CONTROL_FIFO_CLR |
  395. PV_CONTROL_EN);
  396. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  397. SCALER_DISPBKGND_AUTOHS |
  398. SCALER_DISPBKGND_GAMMA |
  399. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  400. /* Reload the LUT, since the SRAMs would have been disabled if
  401. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  402. */
  403. vc4_crtc_lut_load(crtc);
  404. if (debug_dump_regs) {
  405. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  406. vc4_crtc_dump_regs(vc4_crtc);
  407. }
  408. }
  409. static void require_hvs_enabled(struct drm_device *dev)
  410. {
  411. struct vc4_dev *vc4 = to_vc4_dev(dev);
  412. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  413. SCALER_DISPCTRL_ENABLE);
  414. }
  415. static void vc4_crtc_disable(struct drm_crtc *crtc)
  416. {
  417. struct drm_device *dev = crtc->dev;
  418. struct vc4_dev *vc4 = to_vc4_dev(dev);
  419. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  420. u32 chan = vc4_crtc->channel;
  421. int ret;
  422. require_hvs_enabled(dev);
  423. /* Disable vblank irq handling before crtc is disabled. */
  424. drm_crtc_vblank_off(crtc);
  425. CRTC_WRITE(PV_V_CONTROL,
  426. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  427. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  428. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  429. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  430. SCALER_DISPCTRLX_ENABLE) {
  431. HVS_WRITE(SCALER_DISPCTRLX(chan),
  432. SCALER_DISPCTRLX_RESET);
  433. /* While the docs say that reset is self-clearing, it
  434. * seems it doesn't actually.
  435. */
  436. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  437. }
  438. /* Once we leave, the scaler should be disabled and its fifo empty. */
  439. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  440. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  441. SCALER_DISPSTATX_MODE) !=
  442. SCALER_DISPSTATX_MODE_DISABLED);
  443. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  444. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  445. SCALER_DISPSTATX_EMPTY);
  446. }
  447. static void vc4_crtc_enable(struct drm_crtc *crtc)
  448. {
  449. struct drm_device *dev = crtc->dev;
  450. struct vc4_dev *vc4 = to_vc4_dev(dev);
  451. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  452. struct drm_crtc_state *state = crtc->state;
  453. struct drm_display_mode *mode = &state->adjusted_mode;
  454. require_hvs_enabled(dev);
  455. /* Turn on the scaler, which will wait for vstart to start
  456. * compositing.
  457. */
  458. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  459. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  460. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  461. SCALER_DISPCTRLX_ENABLE);
  462. /* Turn on the pixel valve, which will emit the vstart signal. */
  463. CRTC_WRITE(PV_V_CONTROL,
  464. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  465. /* Enable vblank irq handling after crtc is started. */
  466. drm_crtc_vblank_on(crtc);
  467. }
  468. static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
  469. const struct drm_display_mode *mode,
  470. struct drm_display_mode *adjusted_mode)
  471. {
  472. /* Do not allow doublescan modes from user space */
  473. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  474. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  475. crtc->base.id);
  476. return false;
  477. }
  478. return true;
  479. }
  480. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  481. struct drm_crtc_state *state)
  482. {
  483. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  484. struct drm_device *dev = crtc->dev;
  485. struct vc4_dev *vc4 = to_vc4_dev(dev);
  486. struct drm_plane *plane;
  487. unsigned long flags;
  488. const struct drm_plane_state *plane_state;
  489. u32 dlist_count = 0;
  490. int ret;
  491. /* The pixelvalve can only feed one encoder (and encoders are
  492. * 1:1 with connectors.)
  493. */
  494. if (hweight32(state->connector_mask) > 1)
  495. return -EINVAL;
  496. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  497. dlist_count += vc4_plane_dlist_size(plane_state);
  498. dlist_count++; /* Account for SCALER_CTL0_END. */
  499. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  500. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  501. dlist_count, 1, 0);
  502. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  503. if (ret)
  504. return ret;
  505. return 0;
  506. }
  507. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  508. struct drm_crtc_state *old_state)
  509. {
  510. struct drm_device *dev = crtc->dev;
  511. struct vc4_dev *vc4 = to_vc4_dev(dev);
  512. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  513. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  514. struct drm_plane *plane;
  515. bool debug_dump_regs = false;
  516. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  517. u32 __iomem *dlist_next = dlist_start;
  518. if (debug_dump_regs) {
  519. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  520. vc4_hvs_dump_state(dev);
  521. }
  522. /* Copy all the active planes' dlist contents to the hardware dlist. */
  523. drm_atomic_crtc_for_each_plane(plane, crtc) {
  524. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  525. }
  526. writel(SCALER_CTL0_END, dlist_next);
  527. dlist_next++;
  528. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  529. if (crtc->state->event) {
  530. unsigned long flags;
  531. crtc->state->event->pipe = drm_crtc_index(crtc);
  532. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  533. spin_lock_irqsave(&dev->event_lock, flags);
  534. vc4_crtc->event = crtc->state->event;
  535. crtc->state->event = NULL;
  536. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  537. vc4_state->mm.start);
  538. spin_unlock_irqrestore(&dev->event_lock, flags);
  539. } else {
  540. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  541. vc4_state->mm.start);
  542. }
  543. if (debug_dump_regs) {
  544. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  545. vc4_hvs_dump_state(dev);
  546. }
  547. }
  548. int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
  549. {
  550. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  551. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  552. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  553. return 0;
  554. }
  555. void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
  556. {
  557. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  558. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  559. CRTC_WRITE(PV_INTEN, 0);
  560. }
  561. /* Must be called with the event lock held */
  562. bool vc4_event_pending(struct drm_crtc *crtc)
  563. {
  564. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  565. return !!vc4_crtc->event;
  566. }
  567. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  568. {
  569. struct drm_crtc *crtc = &vc4_crtc->base;
  570. struct drm_device *dev = crtc->dev;
  571. struct vc4_dev *vc4 = to_vc4_dev(dev);
  572. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  573. u32 chan = vc4_crtc->channel;
  574. unsigned long flags;
  575. spin_lock_irqsave(&dev->event_lock, flags);
  576. if (vc4_crtc->event &&
  577. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  578. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  579. vc4_crtc->event = NULL;
  580. drm_crtc_vblank_put(crtc);
  581. }
  582. spin_unlock_irqrestore(&dev->event_lock, flags);
  583. }
  584. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  585. {
  586. struct vc4_crtc *vc4_crtc = data;
  587. u32 stat = CRTC_READ(PV_INTSTAT);
  588. irqreturn_t ret = IRQ_NONE;
  589. if (stat & PV_INT_VFP_START) {
  590. vc4_crtc->t_vblank = ktime_get();
  591. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  592. drm_crtc_handle_vblank(&vc4_crtc->base);
  593. vc4_crtc_handle_page_flip(vc4_crtc);
  594. ret = IRQ_HANDLED;
  595. }
  596. return ret;
  597. }
  598. struct vc4_async_flip_state {
  599. struct drm_crtc *crtc;
  600. struct drm_framebuffer *fb;
  601. struct drm_pending_vblank_event *event;
  602. struct vc4_seqno_cb cb;
  603. };
  604. /* Called when the V3D execution for the BO being flipped to is done, so that
  605. * we can actually update the plane's address to point to it.
  606. */
  607. static void
  608. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  609. {
  610. struct vc4_async_flip_state *flip_state =
  611. container_of(cb, struct vc4_async_flip_state, cb);
  612. struct drm_crtc *crtc = flip_state->crtc;
  613. struct drm_device *dev = crtc->dev;
  614. struct vc4_dev *vc4 = to_vc4_dev(dev);
  615. struct drm_plane *plane = crtc->primary;
  616. vc4_plane_async_set_fb(plane, flip_state->fb);
  617. if (flip_state->event) {
  618. unsigned long flags;
  619. spin_lock_irqsave(&dev->event_lock, flags);
  620. drm_crtc_send_vblank_event(crtc, flip_state->event);
  621. spin_unlock_irqrestore(&dev->event_lock, flags);
  622. }
  623. drm_crtc_vblank_put(crtc);
  624. drm_framebuffer_unreference(flip_state->fb);
  625. kfree(flip_state);
  626. up(&vc4->async_modeset);
  627. }
  628. /* Implements async (non-vblank-synced) page flips.
  629. *
  630. * The page flip ioctl needs to return immediately, so we grab the
  631. * modeset semaphore on the pipe, and queue the address update for
  632. * when V3D is done with the BO being flipped to.
  633. */
  634. static int vc4_async_page_flip(struct drm_crtc *crtc,
  635. struct drm_framebuffer *fb,
  636. struct drm_pending_vblank_event *event,
  637. uint32_t flags)
  638. {
  639. struct drm_device *dev = crtc->dev;
  640. struct vc4_dev *vc4 = to_vc4_dev(dev);
  641. struct drm_plane *plane = crtc->primary;
  642. int ret = 0;
  643. struct vc4_async_flip_state *flip_state;
  644. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  645. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  646. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  647. if (!flip_state)
  648. return -ENOMEM;
  649. drm_framebuffer_reference(fb);
  650. flip_state->fb = fb;
  651. flip_state->crtc = crtc;
  652. flip_state->event = event;
  653. /* Make sure all other async modesetes have landed. */
  654. ret = down_interruptible(&vc4->async_modeset);
  655. if (ret) {
  656. drm_framebuffer_unreference(fb);
  657. kfree(flip_state);
  658. return ret;
  659. }
  660. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  661. /* Immediately update the plane's legacy fb pointer, so that later
  662. * modeset prep sees the state that will be present when the semaphore
  663. * is released.
  664. */
  665. drm_atomic_set_fb_for_plane(plane->state, fb);
  666. plane->fb = fb;
  667. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  668. vc4_async_page_flip_complete);
  669. /* Driver takes ownership of state on successful async commit. */
  670. return 0;
  671. }
  672. static int vc4_page_flip(struct drm_crtc *crtc,
  673. struct drm_framebuffer *fb,
  674. struct drm_pending_vblank_event *event,
  675. uint32_t flags)
  676. {
  677. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  678. return vc4_async_page_flip(crtc, fb, event, flags);
  679. else
  680. return drm_atomic_helper_page_flip(crtc, fb, event, flags);
  681. }
  682. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  683. {
  684. struct vc4_crtc_state *vc4_state;
  685. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  686. if (!vc4_state)
  687. return NULL;
  688. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  689. return &vc4_state->base;
  690. }
  691. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  692. struct drm_crtc_state *state)
  693. {
  694. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  695. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  696. if (vc4_state->mm.allocated) {
  697. unsigned long flags;
  698. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  699. drm_mm_remove_node(&vc4_state->mm);
  700. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  701. }
  702. __drm_atomic_helper_crtc_destroy_state(state);
  703. }
  704. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  705. .set_config = drm_atomic_helper_set_config,
  706. .destroy = vc4_crtc_destroy,
  707. .page_flip = vc4_page_flip,
  708. .set_property = NULL,
  709. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  710. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  711. .reset = drm_atomic_helper_crtc_reset,
  712. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  713. .atomic_destroy_state = vc4_crtc_destroy_state,
  714. .gamma_set = vc4_crtc_gamma_set,
  715. };
  716. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  717. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  718. .disable = vc4_crtc_disable,
  719. .enable = vc4_crtc_enable,
  720. .mode_fixup = vc4_crtc_mode_fixup,
  721. .atomic_check = vc4_crtc_atomic_check,
  722. .atomic_flush = vc4_crtc_atomic_flush,
  723. };
  724. static const struct vc4_crtc_data pv0_data = {
  725. .hvs_channel = 0,
  726. .encoder_types = {
  727. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  728. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  729. },
  730. };
  731. static const struct vc4_crtc_data pv1_data = {
  732. .hvs_channel = 2,
  733. .encoder_types = {
  734. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  735. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  736. },
  737. };
  738. static const struct vc4_crtc_data pv2_data = {
  739. .hvs_channel = 1,
  740. .encoder_types = {
  741. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  742. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  743. },
  744. };
  745. static const struct of_device_id vc4_crtc_dt_match[] = {
  746. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  747. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  748. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  749. {}
  750. };
  751. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  752. struct drm_crtc *crtc)
  753. {
  754. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  755. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  756. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  757. struct drm_encoder *encoder;
  758. drm_for_each_encoder(encoder, drm) {
  759. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  760. int i;
  761. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  762. if (vc4_encoder->type == encoder_types[i]) {
  763. vc4_encoder->clock_select = i;
  764. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  765. break;
  766. }
  767. }
  768. }
  769. }
  770. static void
  771. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  772. {
  773. struct drm_device *drm = vc4_crtc->base.dev;
  774. struct vc4_dev *vc4 = to_vc4_dev(drm);
  775. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  776. /* Top/base are supposed to be 4-pixel aligned, but the
  777. * Raspberry Pi firmware fills the low bits (which are
  778. * presumably ignored).
  779. */
  780. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  781. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  782. vc4_crtc->cob_size = top - base + 4;
  783. }
  784. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  785. {
  786. struct platform_device *pdev = to_platform_device(dev);
  787. struct drm_device *drm = dev_get_drvdata(master);
  788. struct vc4_crtc *vc4_crtc;
  789. struct drm_crtc *crtc;
  790. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  791. const struct of_device_id *match;
  792. int ret, i;
  793. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  794. if (!vc4_crtc)
  795. return -ENOMEM;
  796. crtc = &vc4_crtc->base;
  797. match = of_match_device(vc4_crtc_dt_match, dev);
  798. if (!match)
  799. return -ENODEV;
  800. vc4_crtc->data = match->data;
  801. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  802. if (IS_ERR(vc4_crtc->regs))
  803. return PTR_ERR(vc4_crtc->regs);
  804. /* For now, we create just the primary and the legacy cursor
  805. * planes. We should be able to stack more planes on easily,
  806. * but to do that we would need to compute the bandwidth
  807. * requirement of the plane configuration, and reject ones
  808. * that will take too much.
  809. */
  810. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  811. if (IS_ERR(primary_plane)) {
  812. dev_err(dev, "failed to construct primary plane\n");
  813. ret = PTR_ERR(primary_plane);
  814. goto err;
  815. }
  816. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  817. &vc4_crtc_funcs, NULL);
  818. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  819. primary_plane->crtc = crtc;
  820. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  821. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  822. /* Set up some arbitrary number of planes. We're not limited
  823. * by a set number of physical registers, just the space in
  824. * the HVS (16k) and how small an plane can be (28 bytes).
  825. * However, each plane we set up takes up some memory, and
  826. * increases the cost of looping over planes, which atomic
  827. * modesetting does quite a bit. As a result, we pick a
  828. * modest number of planes to expose, that should hopefully
  829. * still cover any sane usecase.
  830. */
  831. for (i = 0; i < 8; i++) {
  832. struct drm_plane *plane =
  833. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  834. if (IS_ERR(plane))
  835. continue;
  836. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  837. }
  838. /* Set up the legacy cursor after overlay initialization,
  839. * since we overlay planes on the CRTC in the order they were
  840. * initialized.
  841. */
  842. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  843. if (!IS_ERR(cursor_plane)) {
  844. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  845. cursor_plane->crtc = crtc;
  846. crtc->cursor = cursor_plane;
  847. }
  848. vc4_crtc_get_cob_allocation(vc4_crtc);
  849. CRTC_WRITE(PV_INTEN, 0);
  850. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  851. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  852. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  853. if (ret)
  854. goto err_destroy_planes;
  855. vc4_set_crtc_possible_masks(drm, crtc);
  856. for (i = 0; i < crtc->gamma_size; i++) {
  857. vc4_crtc->lut_r[i] = i;
  858. vc4_crtc->lut_g[i] = i;
  859. vc4_crtc->lut_b[i] = i;
  860. }
  861. platform_set_drvdata(pdev, vc4_crtc);
  862. return 0;
  863. err_destroy_planes:
  864. list_for_each_entry_safe(destroy_plane, temp,
  865. &drm->mode_config.plane_list, head) {
  866. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  867. destroy_plane->funcs->destroy(destroy_plane);
  868. }
  869. err:
  870. return ret;
  871. }
  872. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  873. void *data)
  874. {
  875. struct platform_device *pdev = to_platform_device(dev);
  876. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  877. vc4_crtc_destroy(&vc4_crtc->base);
  878. CRTC_WRITE(PV_INTEN, 0);
  879. platform_set_drvdata(pdev, NULL);
  880. }
  881. static const struct component_ops vc4_crtc_ops = {
  882. .bind = vc4_crtc_bind,
  883. .unbind = vc4_crtc_unbind,
  884. };
  885. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  886. {
  887. return component_add(&pdev->dev, &vc4_crtc_ops);
  888. }
  889. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  890. {
  891. component_del(&pdev->dev, &vc4_crtc_ops);
  892. return 0;
  893. }
  894. struct platform_driver vc4_crtc_driver = {
  895. .probe = vc4_crtc_dev_probe,
  896. .remove = vc4_crtc_dev_remove,
  897. .driver = {
  898. .name = "vc4_crtc",
  899. .of_match_table = vc4_crtc_dt_match,
  900. },
  901. };