ramnv50.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #define nv50_ram(p) container_of((p), struct nv50_ram, base)
  25. #include "ram.h"
  26. #include "ramseq.h"
  27. #include "nv50.h"
  28. #include <core/option.h>
  29. #include <subdev/bios.h>
  30. #include <subdev/bios/perf.h>
  31. #include <subdev/bios/pll.h>
  32. #include <subdev/bios/rammap.h>
  33. #include <subdev/bios/timing.h>
  34. #include <subdev/clk/pll.h>
  35. #include <subdev/gpio.h>
  36. struct nv50_ramseq {
  37. struct hwsq base;
  38. struct hwsq_reg r_0x002504;
  39. struct hwsq_reg r_0x004008;
  40. struct hwsq_reg r_0x00400c;
  41. struct hwsq_reg r_0x00c040;
  42. struct hwsq_reg r_0x100200;
  43. struct hwsq_reg r_0x100210;
  44. struct hwsq_reg r_0x10021c;
  45. struct hwsq_reg r_0x1002d0;
  46. struct hwsq_reg r_0x1002d4;
  47. struct hwsq_reg r_0x1002dc;
  48. struct hwsq_reg r_0x10053c;
  49. struct hwsq_reg r_0x1005a0;
  50. struct hwsq_reg r_0x1005a4;
  51. struct hwsq_reg r_0x100710;
  52. struct hwsq_reg r_0x100714;
  53. struct hwsq_reg r_0x100718;
  54. struct hwsq_reg r_0x10071c;
  55. struct hwsq_reg r_0x100da0;
  56. struct hwsq_reg r_0x100e20;
  57. struct hwsq_reg r_0x100e24;
  58. struct hwsq_reg r_0x611200;
  59. struct hwsq_reg r_timing[9];
  60. struct hwsq_reg r_mr[4];
  61. struct hwsq_reg r_gpio[4];
  62. };
  63. struct nv50_ram {
  64. struct nvkm_ram base;
  65. struct nv50_ramseq hwsq;
  66. };
  67. #define T(t) cfg->timing_10_##t
  68. static int
  69. nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
  70. {
  71. struct nvbios_ramcfg *cfg = &ram->base.target.bios;
  72. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  73. struct nvkm_device *device = subdev->device;
  74. u32 cur2, cur4, cur7, cur8;
  75. u8 unkt3b;
  76. cur2 = nvkm_rd32(device, 0x100228);
  77. cur4 = nvkm_rd32(device, 0x100230);
  78. cur7 = nvkm_rd32(device, 0x10023c);
  79. cur8 = nvkm_rd32(device, 0x100240);
  80. switch ((!T(CWL)) * ram->base.type) {
  81. case NVKM_RAM_TYPE_DDR2:
  82. T(CWL) = T(CL) - 1;
  83. break;
  84. case NVKM_RAM_TYPE_GDDR3:
  85. T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
  86. break;
  87. }
  88. /* XXX: N=1 is not proper statistics */
  89. if (device->chipset == 0xa0) {
  90. unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
  91. timing[6] = (0x2d + T(CL) - T(CWL) +
  92. ram->base.next->bios.rammap_00_16_40) << 16 |
  93. T(CWL) << 8 |
  94. (0x2f + T(CL) - T(CWL));
  95. } else {
  96. unkt3b = 0x16;
  97. timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
  98. max_t(s8, T(CWL) - 2, 1) << 8 |
  99. (0x2e + T(CL) - T(CWL));
  100. }
  101. timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
  102. timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
  103. max_t(u8, T(18), 1) << 16 |
  104. (T(WTR) + 1 + T(CWL)) << 8 |
  105. (3 + T(CL) - T(CWL));
  106. timing[2] = (T(CWL) - 1) << 24 |
  107. (T(RRD) << 16) |
  108. (T(RCDWR) << 8) |
  109. T(RCDRD);
  110. timing[3] = (unkt3b - 2 + T(CL)) << 24 |
  111. unkt3b << 16 |
  112. (T(CL) - 1) << 8 |
  113. (T(CL) - 1);
  114. timing[4] = (cur4 & 0xffff0000) |
  115. T(13) << 8 |
  116. T(13);
  117. timing[5] = T(RFC) << 24 |
  118. max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
  119. T(RP);
  120. /* Timing 6 is already done above */
  121. timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
  122. timing[8] = (cur8 & 0xffffff00);
  123. /* XXX: P.version == 1 only has DDR2 and GDDR3? */
  124. if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
  125. timing[5] |= (T(CL) + 3) << 8;
  126. timing[8] |= (T(CL) - 4);
  127. } else
  128. if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
  129. timing[5] |= (T(CL) + 2) << 8;
  130. timing[8] |= (T(CL) - 2);
  131. }
  132. nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
  133. timing[0], timing[1], timing[2], timing[3]);
  134. nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
  135. timing[4], timing[5], timing[6], timing[7]);
  136. nvkm_debug(subdev, " 240: %08x\n", timing[8]);
  137. return 0;
  138. }
  139. static int
  140. nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
  141. {
  142. unsigned int i;
  143. struct nvbios_ramcfg *cfg = &ram->base.target.bios;
  144. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  145. struct nvkm_device *device = subdev->device;
  146. for (i = 0; i <= 8; i++)
  147. timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
  148. /* Derive the bare minimum for the MR calculation to succeed */
  149. cfg->timing_ver = 0x10;
  150. T(CL) = (timing[3] & 0xff) + 1;
  151. switch (ram->base.type) {
  152. case NVKM_RAM_TYPE_DDR2:
  153. T(CWL) = T(CL) - 1;
  154. break;
  155. case NVKM_RAM_TYPE_GDDR3:
  156. T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
  157. break;
  158. default:
  159. return -ENOSYS;
  160. break;
  161. }
  162. T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
  163. return 0;
  164. }
  165. #undef T
  166. static void
  167. nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
  168. {
  169. ram_mask(hwsq, mr[0], 0x100, 0x100);
  170. ram_mask(hwsq, mr[0], 0x100, 0x000);
  171. ram_nsec(hwsq, 24000);
  172. }
  173. static void
  174. nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
  175. {
  176. struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
  177. struct dcb_gpio_func func;
  178. u32 reg, sh, gpio_val;
  179. int ret;
  180. if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
  181. ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
  182. if (ret)
  183. return;
  184. reg = func.line >> 3;
  185. sh = (func.line & 0x7) << 2;
  186. gpio_val = ram_rd32(hwsq, gpio[reg]);
  187. if (gpio_val & (8 << sh))
  188. val = !val;
  189. if (!(func.log[1] & 1))
  190. val = !val;
  191. ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
  192. ram_nsec(hwsq, 20000);
  193. }
  194. }
  195. static int
  196. nv50_ram_calc(struct nvkm_ram *base, u32 freq)
  197. {
  198. struct nv50_ram *ram = nv50_ram(base);
  199. struct nv50_ramseq *hwsq = &ram->hwsq;
  200. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  201. struct nvkm_bios *bios = subdev->device->bios;
  202. struct nvbios_perfE perfE;
  203. struct nvbios_pll mpll;
  204. struct nvkm_ram_data *next;
  205. u8 ver, hdr, cnt, len, strap, size;
  206. u32 data;
  207. u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
  208. int N1, M1, N2, M2, P;
  209. int ret, i;
  210. u32 timing[9];
  211. next = &ram->base.target;
  212. next->freq = freq;
  213. ram->base.next = next;
  214. /* lookup closest matching performance table entry for frequency */
  215. i = 0;
  216. do {
  217. data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
  218. &size, &perfE);
  219. if (!data || (ver < 0x25 || ver >= 0x40) ||
  220. (size < 2)) {
  221. nvkm_error(subdev, "invalid/missing perftab entry\n");
  222. return -EINVAL;
  223. }
  224. } while (perfE.memory < freq);
  225. nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
  226. /* locate specific data set for the attached memory */
  227. strap = nvbios_ramcfg_index(subdev);
  228. if (strap >= cnt) {
  229. nvkm_error(subdev, "invalid ramcfg strap\n");
  230. return -EINVAL;
  231. }
  232. data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
  233. &next->bios);
  234. if (!data) {
  235. nvkm_error(subdev, "invalid/missing rammap entry ");
  236. return -EINVAL;
  237. }
  238. /* lookup memory timings, if bios says they're present */
  239. if (next->bios.ramcfg_timing != 0xff) {
  240. data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
  241. &ver, &hdr, &cnt, &len, &next->bios);
  242. if (!data || ver != 0x10 || hdr < 0x12) {
  243. nvkm_error(subdev, "invalid/missing timing entry "
  244. "%02x %04x %02x %02x\n",
  245. strap, data, ver, hdr);
  246. return -EINVAL;
  247. }
  248. nv50_ram_timing_calc(ram, timing);
  249. } else {
  250. nv50_ram_timing_read(ram, timing);
  251. }
  252. ret = ram_init(hwsq, subdev);
  253. if (ret)
  254. return ret;
  255. /* Determine ram-specific MR values */
  256. ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
  257. ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
  258. ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
  259. switch (ram->base.type) {
  260. case NVKM_RAM_TYPE_GDDR3:
  261. ret = nvkm_gddr3_calc(&ram->base);
  262. break;
  263. default:
  264. ret = -ENOSYS;
  265. break;
  266. }
  267. if (ret) {
  268. nvkm_error(subdev, "Could not calculate MR\n");
  269. return ret;
  270. }
  271. if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
  272. ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
  273. /* Always disable this bit during reclock */
  274. ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
  275. ram_wait_vblank(hwsq);
  276. ram_wr32(hwsq, 0x611200, 0x00003300);
  277. ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
  278. ram_nsec(hwsq, 8000);
  279. ram_setf(hwsq, 0x10, 0x00); /* disable fb */
  280. ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
  281. ram_nsec(hwsq, 2000);
  282. if (next->bios.timing_10_ODT)
  283. nv50_ram_gpio(hwsq, 0x2e, 1);
  284. ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
  285. ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
  286. ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
  287. ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
  288. ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
  289. ret = nvbios_pll_parse(bios, 0x004008, &mpll);
  290. mpll.vco2.max_freq = 0;
  291. if (ret >= 0) {
  292. ret = nv04_pll_calc(subdev, &mpll, freq,
  293. &N1, &M1, &N2, &M2, &P);
  294. if (ret <= 0)
  295. ret = -EINVAL;
  296. }
  297. if (ret < 0)
  298. return ret;
  299. /* XXX: 750MHz seems rather arbitrary */
  300. if (freq <= 750000) {
  301. r100da0 = 0x00000010;
  302. r004008 = 0x90000000;
  303. } else {
  304. r100da0 = 0x00000000;
  305. r004008 = 0x80000000;
  306. }
  307. r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
  308. ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
  309. /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
  310. * it have a different rammap bit from DLLoff? */
  311. ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
  312. next->bios.rammap_00_16_40 << 14);
  313. ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
  314. ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
  315. /* XXX: GDDR3 only? */
  316. if (subdev->device->chipset >= 0x92)
  317. ram_wr32(hwsq, 0x100da0, r100da0);
  318. nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
  319. ram_nsec(hwsq, 64000); /*XXX*/
  320. ram_nsec(hwsq, 32000); /*XXX*/
  321. ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
  322. ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
  323. ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
  324. ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
  325. ram_nsec(hwsq, 12000);
  326. switch (ram->base.type) {
  327. case NVKM_RAM_TYPE_DDR2:
  328. ram_nuke(hwsq, mr[0]); /* force update */
  329. ram_mask(hwsq, mr[0], 0x000, 0x000);
  330. break;
  331. case NVKM_RAM_TYPE_GDDR3:
  332. ram_nuke(hwsq, mr[1]); /* force update */
  333. ram_wr32(hwsq, mr[1], ram->base.mr[1]);
  334. ram_nuke(hwsq, mr[0]); /* force update */
  335. ram_wr32(hwsq, mr[0], ram->base.mr[0]);
  336. break;
  337. default:
  338. break;
  339. }
  340. ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
  341. ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
  342. ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
  343. ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
  344. ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
  345. ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
  346. ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
  347. ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
  348. ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
  349. if (!next->bios.ramcfg_00_03_02)
  350. ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
  351. ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
  352. /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
  353. unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100;
  354. unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
  355. unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
  356. unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
  357. if (subdev->device->chipset <= 0x96) {
  358. unk710 &= ~0x0000006e;
  359. unk714 &= ~0x00000100;
  360. if (!next->bios.ramcfg_00_03_08)
  361. unk710 |= 0x00000060;
  362. if (!next->bios.ramcfg_FBVDDQ)
  363. unk714 |= 0x00000100;
  364. if ( next->bios.ramcfg_00_04_04)
  365. unk710 |= 0x0000000e;
  366. } else {
  367. unk710 &= ~0x00000001;
  368. if (!next->bios.ramcfg_00_03_08)
  369. unk710 |= 0x00000001;
  370. }
  371. if ( next->bios.ramcfg_00_03_01)
  372. unk71c |= 0x00000100;
  373. if ( next->bios.ramcfg_00_03_02)
  374. unk710 |= 0x00000100;
  375. if (!next->bios.ramcfg_00_03_08)
  376. unk714 |= 0x00000020;
  377. if ( next->bios.ramcfg_00_04_04)
  378. unk714 |= 0x70000000;
  379. if ( next->bios.ramcfg_00_04_20)
  380. unk718 |= 0x00000100;
  381. ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
  382. ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
  383. ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
  384. ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
  385. /* XXX: G94 does not even test these regs in trace. Harmless we do it,
  386. * but why is it omitted? */
  387. if (next->bios.rammap_00_16_20) {
  388. ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
  389. next->bios.ramcfg_00_06 << 8 |
  390. next->bios.ramcfg_00_05);
  391. ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
  392. next->bios.ramcfg_00_08);
  393. ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
  394. } else {
  395. ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
  396. }
  397. ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
  398. if (!next->bios.timing_10_ODT)
  399. nv50_ram_gpio(hwsq, 0x2e, 0);
  400. /* Reset DLL */
  401. if (!next->bios.ramcfg_DLLoff)
  402. nvkm_sddr2_dll_reset(hwsq);
  403. ram_setf(hwsq, 0x10, 0x01); /* enable fb */
  404. ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
  405. ram_wr32(hwsq, 0x611200, 0x00003330);
  406. ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
  407. if (next->bios.rammap_00_17_02)
  408. ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
  409. if (!next->bios.rammap_00_16_40)
  410. ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
  411. if (next->bios.ramcfg_00_03_02)
  412. ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
  413. if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
  414. ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
  415. return 0;
  416. }
  417. static int
  418. nv50_ram_prog(struct nvkm_ram *base)
  419. {
  420. struct nv50_ram *ram = nv50_ram(base);
  421. struct nvkm_device *device = ram->base.fb->subdev.device;
  422. ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
  423. return 0;
  424. }
  425. static void
  426. nv50_ram_tidy(struct nvkm_ram *base)
  427. {
  428. struct nv50_ram *ram = nv50_ram(base);
  429. ram_exec(&ram->hwsq, false);
  430. }
  431. void
  432. __nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
  433. {
  434. struct nvkm_mm_node *this;
  435. while (!list_empty(&mem->regions)) {
  436. this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
  437. list_del(&this->rl_entry);
  438. nvkm_mm_free(&ram->vram, &this);
  439. }
  440. nvkm_mm_free(&ram->tags, &mem->tag);
  441. }
  442. void
  443. nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
  444. {
  445. struct nvkm_mem *mem = *pmem;
  446. *pmem = NULL;
  447. if (unlikely(mem == NULL))
  448. return;
  449. mutex_lock(&ram->fb->subdev.mutex);
  450. __nv50_ram_put(ram, mem);
  451. mutex_unlock(&ram->fb->subdev.mutex);
  452. kfree(mem);
  453. }
  454. int
  455. nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
  456. u32 memtype, struct nvkm_mem **pmem)
  457. {
  458. struct nvkm_mm *heap = &ram->vram;
  459. struct nvkm_mm *tags = &ram->tags;
  460. struct nvkm_mm_node *r;
  461. struct nvkm_mem *mem;
  462. int comp = (memtype & 0x300) >> 8;
  463. int type = (memtype & 0x07f);
  464. int back = (memtype & 0x800);
  465. int min, max, ret;
  466. max = (size >> NVKM_RAM_MM_SHIFT);
  467. min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
  468. align >>= NVKM_RAM_MM_SHIFT;
  469. mem = kzalloc(sizeof(*mem), GFP_KERNEL);
  470. if (!mem)
  471. return -ENOMEM;
  472. mutex_lock(&ram->fb->subdev.mutex);
  473. if (comp) {
  474. if (align == (1 << (16 - NVKM_RAM_MM_SHIFT))) {
  475. int n = (max >> 4) * comp;
  476. ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
  477. if (ret)
  478. mem->tag = NULL;
  479. }
  480. if (unlikely(!mem->tag))
  481. comp = 0;
  482. }
  483. INIT_LIST_HEAD(&mem->regions);
  484. mem->memtype = (comp << 7) | type;
  485. mem->size = max;
  486. type = nv50_fb_memtype[type];
  487. do {
  488. if (back)
  489. ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
  490. else
  491. ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
  492. if (ret) {
  493. mutex_unlock(&ram->fb->subdev.mutex);
  494. ram->func->put(ram, &mem);
  495. return ret;
  496. }
  497. list_add_tail(&r->rl_entry, &mem->regions);
  498. max -= r->length;
  499. } while (max);
  500. mutex_unlock(&ram->fb->subdev.mutex);
  501. r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
  502. mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
  503. *pmem = mem;
  504. return 0;
  505. }
  506. static const struct nvkm_ram_func
  507. nv50_ram_func = {
  508. .get = nv50_ram_get,
  509. .put = nv50_ram_put,
  510. .calc = nv50_ram_calc,
  511. .prog = nv50_ram_prog,
  512. .tidy = nv50_ram_tidy,
  513. };
  514. static u32
  515. nv50_fb_vram_rblock(struct nvkm_ram *ram)
  516. {
  517. struct nvkm_subdev *subdev = &ram->fb->subdev;
  518. struct nvkm_device *device = subdev->device;
  519. int colbits, rowbitsa, rowbitsb, banks;
  520. u64 rowsize, predicted;
  521. u32 r0, r4, rt, rblock_size;
  522. r0 = nvkm_rd32(device, 0x100200);
  523. r4 = nvkm_rd32(device, 0x100204);
  524. rt = nvkm_rd32(device, 0x100250);
  525. nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
  526. r0, r4, rt, nvkm_rd32(device, 0x001540));
  527. colbits = (r4 & 0x0000f000) >> 12;
  528. rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
  529. rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
  530. banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
  531. rowsize = ram->parts * banks * (1 << colbits) * 8;
  532. predicted = rowsize << rowbitsa;
  533. if (r0 & 0x00000004)
  534. predicted += rowsize << rowbitsb;
  535. if (predicted != ram->size) {
  536. nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
  537. (u32)(ram->size >> 20));
  538. }
  539. rblock_size = rowsize;
  540. if (rt & 1)
  541. rblock_size *= 3;
  542. nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
  543. return rblock_size;
  544. }
  545. int
  546. nv50_ram_ctor(const struct nvkm_ram_func *func,
  547. struct nvkm_fb *fb, struct nvkm_ram *ram)
  548. {
  549. struct nvkm_device *device = fb->subdev.device;
  550. struct nvkm_bios *bios = device->bios;
  551. const u32 rsvd_head = ( 256 * 1024); /* vga memory */
  552. const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
  553. u64 size = nvkm_rd32(device, 0x10020c);
  554. u32 tags = nvkm_rd32(device, 0x100320);
  555. enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
  556. int ret;
  557. switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
  558. case 0: type = NVKM_RAM_TYPE_DDR1; break;
  559. case 1:
  560. if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
  561. type = NVKM_RAM_TYPE_DDR3;
  562. else
  563. type = NVKM_RAM_TYPE_DDR2;
  564. break;
  565. case 2: type = NVKM_RAM_TYPE_GDDR3; break;
  566. case 3: type = NVKM_RAM_TYPE_GDDR4; break;
  567. case 4: type = NVKM_RAM_TYPE_GDDR5; break;
  568. default:
  569. break;
  570. }
  571. size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
  572. ret = nvkm_ram_ctor(func, fb, type, size, tags, ram);
  573. if (ret)
  574. return ret;
  575. ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
  576. ram->parts = hweight8(ram->part_mask);
  577. ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
  578. nvkm_mm_fini(&ram->vram);
  579. return nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
  580. (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
  581. nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
  582. }
  583. int
  584. nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
  585. {
  586. struct nv50_ram *ram;
  587. int ret, i;
  588. if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
  589. return -ENOMEM;
  590. *pram = &ram->base;
  591. ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
  592. if (ret)
  593. return ret;
  594. ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
  595. ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
  596. ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
  597. ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
  598. ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
  599. ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
  600. ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
  601. ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
  602. ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
  603. ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
  604. ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
  605. ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
  606. ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
  607. ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
  608. ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
  609. ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
  610. ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
  611. ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
  612. ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
  613. ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
  614. ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
  615. for (i = 0; i < 9; i++)
  616. ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
  617. if (ram->base.ranks > 1) {
  618. ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
  619. ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
  620. ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
  621. ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
  622. } else {
  623. ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
  624. ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
  625. ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
  626. ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
  627. }
  628. ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
  629. ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
  630. ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
  631. ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
  632. return 0;
  633. }