ramgt215.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. * Roy Spliet <rspliet@eclipso.eu>
  24. */
  25. #define gt215_ram(p) container_of((p), struct gt215_ram, base)
  26. #include "ram.h"
  27. #include "ramfuc.h"
  28. #include <core/option.h>
  29. #include <subdev/bios.h>
  30. #include <subdev/bios/M0205.h>
  31. #include <subdev/bios/rammap.h>
  32. #include <subdev/bios/timing.h>
  33. #include <subdev/clk/gt215.h>
  34. #include <subdev/gpio.h>
  35. struct gt215_ramfuc {
  36. struct ramfuc base;
  37. struct ramfuc_reg r_0x001610;
  38. struct ramfuc_reg r_0x001700;
  39. struct ramfuc_reg r_0x002504;
  40. struct ramfuc_reg r_0x004000;
  41. struct ramfuc_reg r_0x004004;
  42. struct ramfuc_reg r_0x004018;
  43. struct ramfuc_reg r_0x004128;
  44. struct ramfuc_reg r_0x004168;
  45. struct ramfuc_reg r_0x100080;
  46. struct ramfuc_reg r_0x100200;
  47. struct ramfuc_reg r_0x100210;
  48. struct ramfuc_reg r_0x100220[9];
  49. struct ramfuc_reg r_0x100264;
  50. struct ramfuc_reg r_0x1002d0;
  51. struct ramfuc_reg r_0x1002d4;
  52. struct ramfuc_reg r_0x1002dc;
  53. struct ramfuc_reg r_0x10053c;
  54. struct ramfuc_reg r_0x1005a0;
  55. struct ramfuc_reg r_0x1005a4;
  56. struct ramfuc_reg r_0x100700;
  57. struct ramfuc_reg r_0x100714;
  58. struct ramfuc_reg r_0x100718;
  59. struct ramfuc_reg r_0x10071c;
  60. struct ramfuc_reg r_0x100720;
  61. struct ramfuc_reg r_0x100760;
  62. struct ramfuc_reg r_0x1007a0;
  63. struct ramfuc_reg r_0x1007e0;
  64. struct ramfuc_reg r_0x100da0;
  65. struct ramfuc_reg r_0x10f804;
  66. struct ramfuc_reg r_0x1110e0;
  67. struct ramfuc_reg r_0x111100;
  68. struct ramfuc_reg r_0x111104;
  69. struct ramfuc_reg r_0x1111e0;
  70. struct ramfuc_reg r_0x111400;
  71. struct ramfuc_reg r_0x611200;
  72. struct ramfuc_reg r_mr[4];
  73. struct ramfuc_reg r_gpio[4];
  74. };
  75. struct gt215_ltrain {
  76. enum {
  77. NVA3_TRAIN_UNKNOWN,
  78. NVA3_TRAIN_UNSUPPORTED,
  79. NVA3_TRAIN_ONCE,
  80. NVA3_TRAIN_EXEC,
  81. NVA3_TRAIN_DONE
  82. } state;
  83. u32 r_100720;
  84. u32 r_1111e0;
  85. u32 r_111400;
  86. struct nvkm_mem *mem;
  87. };
  88. struct gt215_ram {
  89. struct nvkm_ram base;
  90. struct gt215_ramfuc fuc;
  91. struct gt215_ltrain ltrain;
  92. };
  93. static void
  94. gt215_link_train_calc(u32 *vals, struct gt215_ltrain *train)
  95. {
  96. int i, lo, hi;
  97. u8 median[8], bins[4] = {0, 0, 0, 0}, bin = 0, qty = 0;
  98. for (i = 0; i < 8; i++) {
  99. for (lo = 0; lo < 0x40; lo++) {
  100. if (!(vals[lo] & 0x80000000))
  101. continue;
  102. if (vals[lo] & (0x101 << i))
  103. break;
  104. }
  105. if (lo == 0x40)
  106. return;
  107. for (hi = lo + 1; hi < 0x40; hi++) {
  108. if (!(vals[lo] & 0x80000000))
  109. continue;
  110. if (!(vals[hi] & (0x101 << i))) {
  111. hi--;
  112. break;
  113. }
  114. }
  115. median[i] = ((hi - lo) >> 1) + lo;
  116. bins[(median[i] & 0xf0) >> 4]++;
  117. median[i] += 0x30;
  118. }
  119. /* Find the best value for 0x1111e0 */
  120. for (i = 0; i < 4; i++) {
  121. if (bins[i] > qty) {
  122. bin = i + 3;
  123. qty = bins[i];
  124. }
  125. }
  126. train->r_100720 = 0;
  127. for (i = 0; i < 8; i++) {
  128. median[i] = max(median[i], (u8) (bin << 4));
  129. median[i] = min(median[i], (u8) ((bin << 4) | 0xf));
  130. train->r_100720 |= ((median[i] & 0x0f) << (i << 2));
  131. }
  132. train->r_1111e0 = 0x02000000 | (bin * 0x101);
  133. train->r_111400 = 0x0;
  134. }
  135. /*
  136. * Link training for (at least) DDR3
  137. */
  138. static int
  139. gt215_link_train(struct gt215_ram *ram)
  140. {
  141. struct gt215_ltrain *train = &ram->ltrain;
  142. struct gt215_ramfuc *fuc = &ram->fuc;
  143. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  144. struct nvkm_device *device = subdev->device;
  145. struct nvkm_bios *bios = device->bios;
  146. struct nvkm_clk *clk = device->clk;
  147. u32 *result, r1700;
  148. int ret, i;
  149. struct nvbios_M0205T M0205T = { 0 };
  150. u8 ver, hdr, cnt, len, snr, ssz;
  151. unsigned int clk_current;
  152. unsigned long flags;
  153. unsigned long *f = &flags;
  154. if (nvkm_boolopt(device->cfgopt, "NvMemExec", true) != true)
  155. return -ENOSYS;
  156. /* XXX: Multiple partitions? */
  157. result = kmalloc(64 * sizeof(u32), GFP_KERNEL);
  158. if (!result)
  159. return -ENOMEM;
  160. train->state = NVA3_TRAIN_EXEC;
  161. /* Clock speeds for training and back */
  162. nvbios_M0205Tp(bios, &ver, &hdr, &cnt, &len, &snr, &ssz, &M0205T);
  163. if (M0205T.freq == 0) {
  164. kfree(result);
  165. return -ENOENT;
  166. }
  167. clk_current = nvkm_clk_read(clk, nv_clk_src_mem);
  168. ret = gt215_clk_pre(clk, f);
  169. if (ret)
  170. goto out;
  171. /* First: clock up/down */
  172. ret = ram->base.func->calc(&ram->base, (u32) M0205T.freq * 1000);
  173. if (ret)
  174. goto out;
  175. /* Do this *after* calc, eliminates write in script */
  176. nvkm_wr32(device, 0x111400, 0x00000000);
  177. /* XXX: Magic writes that improve train reliability? */
  178. nvkm_mask(device, 0x100674, 0x0000ffff, 0x00000000);
  179. nvkm_mask(device, 0x1005e4, 0x0000ffff, 0x00000000);
  180. nvkm_mask(device, 0x100b0c, 0x000000ff, 0x00000000);
  181. nvkm_wr32(device, 0x100c04, 0x00000400);
  182. /* Now the training script */
  183. r1700 = ram_rd32(fuc, 0x001700);
  184. ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
  185. ram_wr32(fuc, 0x611200, 0x3300);
  186. ram_wait_vblank(fuc);
  187. ram_wait(fuc, 0x611200, 0x00000003, 0x00000000, 500000);
  188. ram_mask(fuc, 0x001610, 0x00000083, 0x00000003);
  189. ram_mask(fuc, 0x100080, 0x00000020, 0x00000000);
  190. ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
  191. ram_wr32(fuc, 0x001700, 0x00000000);
  192. ram_train(fuc);
  193. /* Reset */
  194. ram_mask(fuc, 0x10f804, 0x80000000, 0x80000000);
  195. ram_wr32(fuc, 0x10053c, 0x0);
  196. ram_wr32(fuc, 0x100720, train->r_100720);
  197. ram_wr32(fuc, 0x1111e0, train->r_1111e0);
  198. ram_wr32(fuc, 0x111400, train->r_111400);
  199. ram_nuke(fuc, 0x100080);
  200. ram_mask(fuc, 0x100080, 0x00000020, 0x00000020);
  201. ram_nsec(fuc, 1000);
  202. ram_wr32(fuc, 0x001700, r1700);
  203. ram_mask(fuc, 0x001610, 0x00000083, 0x00000080);
  204. ram_wr32(fuc, 0x611200, 0x3330);
  205. ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
  206. ram_exec(fuc, true);
  207. ram->base.func->calc(&ram->base, clk_current);
  208. ram_exec(fuc, true);
  209. /* Post-processing, avoids flicker */
  210. nvkm_mask(device, 0x616308, 0x10, 0x10);
  211. nvkm_mask(device, 0x616b08, 0x10, 0x10);
  212. gt215_clk_post(clk, f);
  213. ram_train_result(ram->base.fb, result, 64);
  214. for (i = 0; i < 64; i++)
  215. nvkm_debug(subdev, "Train: %08x", result[i]);
  216. gt215_link_train_calc(result, train);
  217. nvkm_debug(subdev, "Train: %08x %08x %08x", train->r_100720,
  218. train->r_1111e0, train->r_111400);
  219. kfree(result);
  220. train->state = NVA3_TRAIN_DONE;
  221. return ret;
  222. out:
  223. if(ret == -EBUSY)
  224. f = NULL;
  225. train->state = NVA3_TRAIN_UNSUPPORTED;
  226. gt215_clk_post(clk, f);
  227. kfree(result);
  228. return ret;
  229. }
  230. static int
  231. gt215_link_train_init(struct gt215_ram *ram)
  232. {
  233. static const u32 pattern[16] = {
  234. 0xaaaaaaaa, 0xcccccccc, 0xdddddddd, 0xeeeeeeee,
  235. 0x00000000, 0x11111111, 0x44444444, 0xdddddddd,
  236. 0x33333333, 0x55555555, 0x77777777, 0x66666666,
  237. 0x99999999, 0x88888888, 0xeeeeeeee, 0xbbbbbbbb,
  238. };
  239. struct gt215_ltrain *train = &ram->ltrain;
  240. struct nvkm_device *device = ram->base.fb->subdev.device;
  241. struct nvkm_bios *bios = device->bios;
  242. struct nvkm_mem *mem;
  243. struct nvbios_M0205E M0205E;
  244. u8 ver, hdr, cnt, len;
  245. u32 r001700;
  246. int ret, i = 0;
  247. train->state = NVA3_TRAIN_UNSUPPORTED;
  248. /* We support type "5"
  249. * XXX: training pattern table appears to be unused for this routine */
  250. if (!nvbios_M0205Ep(bios, i, &ver, &hdr, &cnt, &len, &M0205E))
  251. return -ENOENT;
  252. if (M0205E.type != 5)
  253. return 0;
  254. train->state = NVA3_TRAIN_ONCE;
  255. ret = ram->base.func->get(&ram->base, 0x8000, 0x10000, 0, 0x800,
  256. &ram->ltrain.mem);
  257. if (ret)
  258. return ret;
  259. mem = ram->ltrain.mem;
  260. nvkm_wr32(device, 0x100538, 0x10000000 | (mem->offset >> 16));
  261. nvkm_wr32(device, 0x1005a8, 0x0000ffff);
  262. nvkm_mask(device, 0x10f800, 0x00000001, 0x00000001);
  263. for (i = 0; i < 0x30; i++) {
  264. nvkm_wr32(device, 0x10f8c0, (i << 8) | i);
  265. nvkm_wr32(device, 0x10f900, pattern[i % 16]);
  266. }
  267. for (i = 0; i < 0x30; i++) {
  268. nvkm_wr32(device, 0x10f8e0, (i << 8) | i);
  269. nvkm_wr32(device, 0x10f920, pattern[i % 16]);
  270. }
  271. /* And upload the pattern */
  272. r001700 = nvkm_rd32(device, 0x1700);
  273. nvkm_wr32(device, 0x1700, mem->offset >> 16);
  274. for (i = 0; i < 16; i++)
  275. nvkm_wr32(device, 0x700000 + (i << 2), pattern[i]);
  276. for (i = 0; i < 16; i++)
  277. nvkm_wr32(device, 0x700100 + (i << 2), pattern[i]);
  278. nvkm_wr32(device, 0x1700, r001700);
  279. train->r_100720 = nvkm_rd32(device, 0x100720);
  280. train->r_1111e0 = nvkm_rd32(device, 0x1111e0);
  281. train->r_111400 = nvkm_rd32(device, 0x111400);
  282. return 0;
  283. }
  284. static void
  285. gt215_link_train_fini(struct gt215_ram *ram)
  286. {
  287. if (ram->ltrain.mem)
  288. ram->base.func->put(&ram->base, &ram->ltrain.mem);
  289. }
  290. /*
  291. * RAM reclocking
  292. */
  293. #define T(t) cfg->timing_10_##t
  294. static int
  295. gt215_ram_timing_calc(struct gt215_ram *ram, u32 *timing)
  296. {
  297. struct nvbios_ramcfg *cfg = &ram->base.target.bios;
  298. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  299. struct nvkm_device *device = subdev->device;
  300. int tUNK_base, tUNK_40_0, prevCL;
  301. u32 cur2, cur3, cur7, cur8;
  302. cur2 = nvkm_rd32(device, 0x100228);
  303. cur3 = nvkm_rd32(device, 0x10022c);
  304. cur7 = nvkm_rd32(device, 0x10023c);
  305. cur8 = nvkm_rd32(device, 0x100240);
  306. switch ((!T(CWL)) * ram->base.type) {
  307. case NVKM_RAM_TYPE_DDR2:
  308. T(CWL) = T(CL) - 1;
  309. break;
  310. case NVKM_RAM_TYPE_GDDR3:
  311. T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
  312. break;
  313. }
  314. prevCL = (cur3 & 0x000000ff) + 1;
  315. tUNK_base = ((cur7 & 0x00ff0000) >> 16) - prevCL;
  316. timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
  317. timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
  318. max_t(u8,T(18), 1) << 16 |
  319. (T(WTR) + 1 + T(CWL)) << 8 |
  320. (5 + T(CL) - T(CWL));
  321. timing[2] = (T(CWL) - 1) << 24 |
  322. (T(RRD) << 16) |
  323. (T(RCDWR) << 8) |
  324. T(RCDRD);
  325. timing[3] = (cur3 & 0x00ff0000) |
  326. (0x30 + T(CL)) << 24 |
  327. (0xb + T(CL)) << 8 |
  328. (T(CL) - 1);
  329. timing[4] = T(20) << 24 |
  330. T(21) << 16 |
  331. T(13) << 8 |
  332. T(13);
  333. timing[5] = T(RFC) << 24 |
  334. max_t(u8,T(RCDRD), T(RCDWR)) << 16 |
  335. max_t(u8, (T(CWL) + 6), (T(CL) + 2)) << 8 |
  336. T(RP);
  337. timing[6] = (0x5a + T(CL)) << 16 |
  338. max_t(u8, 1, (6 - T(CL) + T(CWL))) << 8 |
  339. (0x50 + T(CL) - T(CWL));
  340. timing[7] = (cur7 & 0xff000000) |
  341. ((tUNK_base + T(CL)) << 16) |
  342. 0x202;
  343. timing[8] = cur8 & 0xffffff00;
  344. switch (ram->base.type) {
  345. case NVKM_RAM_TYPE_DDR2:
  346. case NVKM_RAM_TYPE_GDDR3:
  347. tUNK_40_0 = prevCL - (cur8 & 0xff);
  348. if (tUNK_40_0 > 0)
  349. timing[8] |= T(CL);
  350. break;
  351. default:
  352. break;
  353. }
  354. nvkm_debug(subdev, "Entry: 220: %08x %08x %08x %08x\n",
  355. timing[0], timing[1], timing[2], timing[3]);
  356. nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
  357. timing[4], timing[5], timing[6], timing[7]);
  358. nvkm_debug(subdev, " 240: %08x\n", timing[8]);
  359. return 0;
  360. }
  361. #undef T
  362. static void
  363. nvkm_sddr2_dll_reset(struct gt215_ramfuc *fuc)
  364. {
  365. ram_mask(fuc, mr[0], 0x100, 0x100);
  366. ram_nsec(fuc, 1000);
  367. ram_mask(fuc, mr[0], 0x100, 0x000);
  368. ram_nsec(fuc, 1000);
  369. }
  370. static void
  371. nvkm_sddr3_dll_disable(struct gt215_ramfuc *fuc, u32 *mr)
  372. {
  373. u32 mr1_old = ram_rd32(fuc, mr[1]);
  374. if (!(mr1_old & 0x1)) {
  375. ram_wr32(fuc, 0x1002d4, 0x00000001);
  376. ram_wr32(fuc, mr[1], mr[1]);
  377. ram_nsec(fuc, 1000);
  378. }
  379. }
  380. static void
  381. nvkm_gddr3_dll_disable(struct gt215_ramfuc *fuc, u32 *mr)
  382. {
  383. u32 mr1_old = ram_rd32(fuc, mr[1]);
  384. if (!(mr1_old & 0x40)) {
  385. ram_wr32(fuc, mr[1], mr[1]);
  386. ram_nsec(fuc, 1000);
  387. }
  388. }
  389. static void
  390. gt215_ram_lock_pll(struct gt215_ramfuc *fuc, struct gt215_clk_info *mclk)
  391. {
  392. ram_wr32(fuc, 0x004004, mclk->pll);
  393. ram_mask(fuc, 0x004000, 0x00000001, 0x00000001);
  394. ram_mask(fuc, 0x004000, 0x00000010, 0x00000000);
  395. ram_wait(fuc, 0x004000, 0x00020000, 0x00020000, 64000);
  396. ram_mask(fuc, 0x004000, 0x00000010, 0x00000010);
  397. }
  398. static void
  399. gt215_ram_gpio(struct gt215_ramfuc *fuc, u8 tag, u32 val)
  400. {
  401. struct nvkm_gpio *gpio = fuc->base.fb->subdev.device->gpio;
  402. struct dcb_gpio_func func;
  403. u32 reg, sh, gpio_val;
  404. int ret;
  405. if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
  406. ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
  407. if (ret)
  408. return;
  409. reg = func.line >> 3;
  410. sh = (func.line & 0x7) << 2;
  411. gpio_val = ram_rd32(fuc, gpio[reg]);
  412. if (gpio_val & (8 << sh))
  413. val = !val;
  414. if (!(func.log[1] & 1))
  415. val = !val;
  416. ram_mask(fuc, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
  417. ram_nsec(fuc, 20000);
  418. }
  419. }
  420. static int
  421. gt215_ram_calc(struct nvkm_ram *base, u32 freq)
  422. {
  423. struct gt215_ram *ram = gt215_ram(base);
  424. struct gt215_ramfuc *fuc = &ram->fuc;
  425. struct gt215_ltrain *train = &ram->ltrain;
  426. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  427. struct nvkm_device *device = subdev->device;
  428. struct nvkm_bios *bios = device->bios;
  429. struct gt215_clk_info mclk;
  430. struct nvkm_gpio *gpio = device->gpio;
  431. struct nvkm_ram_data *next;
  432. u8 ver, hdr, cnt, len, strap;
  433. u32 data;
  434. u32 r004018, r100760, r100da0, r111100, ctrl;
  435. u32 unk714, unk718, unk71c;
  436. int ret, i;
  437. u32 timing[9];
  438. bool pll2pll;
  439. next = &ram->base.target;
  440. next->freq = freq;
  441. ram->base.next = next;
  442. if (ram->ltrain.state == NVA3_TRAIN_ONCE)
  443. gt215_link_train(ram);
  444. /* lookup memory config data relevant to the target frequency */
  445. data = nvbios_rammapEm(bios, freq / 1000, &ver, &hdr, &cnt, &len,
  446. &next->bios);
  447. if (!data || ver != 0x10 || hdr < 0x05) {
  448. nvkm_error(subdev, "invalid/missing rammap entry\n");
  449. return -EINVAL;
  450. }
  451. /* locate specific data set for the attached memory */
  452. strap = nvbios_ramcfg_index(subdev);
  453. if (strap >= cnt) {
  454. nvkm_error(subdev, "invalid ramcfg strap\n");
  455. return -EINVAL;
  456. }
  457. data = nvbios_rammapSp(bios, data, ver, hdr, cnt, len, strap,
  458. &ver, &hdr, &next->bios);
  459. if (!data || ver != 0x10 || hdr < 0x09) {
  460. nvkm_error(subdev, "invalid/missing ramcfg entry\n");
  461. return -EINVAL;
  462. }
  463. /* lookup memory timings, if bios says they're present */
  464. if (next->bios.ramcfg_timing != 0xff) {
  465. data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
  466. &ver, &hdr, &cnt, &len,
  467. &next->bios);
  468. if (!data || ver != 0x10 || hdr < 0x17) {
  469. nvkm_error(subdev, "invalid/missing timing entry\n");
  470. return -EINVAL;
  471. }
  472. }
  473. ret = gt215_pll_info(device->clk, 0x12, 0x4000, freq, &mclk);
  474. if (ret < 0) {
  475. nvkm_error(subdev, "failed mclk calculation\n");
  476. return ret;
  477. }
  478. gt215_ram_timing_calc(ram, timing);
  479. ret = ram_init(fuc, ram->base.fb);
  480. if (ret)
  481. return ret;
  482. /* Determine ram-specific MR values */
  483. ram->base.mr[0] = ram_rd32(fuc, mr[0]);
  484. ram->base.mr[1] = ram_rd32(fuc, mr[1]);
  485. ram->base.mr[2] = ram_rd32(fuc, mr[2]);
  486. switch (ram->base.type) {
  487. case NVKM_RAM_TYPE_DDR2:
  488. ret = nvkm_sddr2_calc(&ram->base);
  489. break;
  490. case NVKM_RAM_TYPE_DDR3:
  491. ret = nvkm_sddr3_calc(&ram->base);
  492. break;
  493. case NVKM_RAM_TYPE_GDDR3:
  494. ret = nvkm_gddr3_calc(&ram->base);
  495. break;
  496. default:
  497. ret = -ENOSYS;
  498. break;
  499. }
  500. if (ret)
  501. return ret;
  502. /* XXX: 750MHz seems rather arbitrary */
  503. if (freq <= 750000) {
  504. r004018 = 0x10000000;
  505. r100760 = 0x22222222;
  506. r100da0 = 0x00000010;
  507. } else {
  508. r004018 = 0x00000000;
  509. r100760 = 0x00000000;
  510. r100da0 = 0x00000000;
  511. }
  512. if (!next->bios.ramcfg_DLLoff)
  513. r004018 |= 0x00004000;
  514. /* pll2pll requires to switch to a safe clock first */
  515. ctrl = ram_rd32(fuc, 0x004000);
  516. pll2pll = (!(ctrl & 0x00000008)) && mclk.pll;
  517. /* Pre, NVIDIA does this outside the script */
  518. if (next->bios.ramcfg_10_02_10) {
  519. ram_mask(fuc, 0x111104, 0x00000600, 0x00000000);
  520. } else {
  521. ram_mask(fuc, 0x111100, 0x40000000, 0x40000000);
  522. ram_mask(fuc, 0x111104, 0x00000180, 0x00000000);
  523. }
  524. /* Always disable this bit during reclock */
  525. ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
  526. /* If switching from non-pll to pll, lock before disabling FB */
  527. if (mclk.pll && !pll2pll) {
  528. ram_mask(fuc, 0x004128, 0x003f3141, mclk.clk | 0x00000101);
  529. gt215_ram_lock_pll(fuc, &mclk);
  530. }
  531. /* Start with disabling some CRTCs and PFIFO? */
  532. ram_wait_vblank(fuc);
  533. ram_wr32(fuc, 0x611200, 0x3300);
  534. ram_mask(fuc, 0x002504, 0x1, 0x1);
  535. ram_nsec(fuc, 10000);
  536. ram_wait(fuc, 0x002504, 0x10, 0x10, 20000); /* XXX: or longer? */
  537. ram_block(fuc);
  538. ram_nsec(fuc, 2000);
  539. if (!next->bios.ramcfg_10_02_10) {
  540. if (ram->base.type == NVKM_RAM_TYPE_GDDR3)
  541. ram_mask(fuc, 0x111100, 0x04020000, 0x00020000);
  542. else
  543. ram_mask(fuc, 0x111100, 0x04020000, 0x04020000);
  544. }
  545. /* If we're disabling the DLL, do it now */
  546. switch (next->bios.ramcfg_DLLoff * ram->base.type) {
  547. case NVKM_RAM_TYPE_DDR3:
  548. nvkm_sddr3_dll_disable(fuc, ram->base.mr);
  549. break;
  550. case NVKM_RAM_TYPE_GDDR3:
  551. nvkm_gddr3_dll_disable(fuc, ram->base.mr);
  552. break;
  553. }
  554. if (next->bios.timing_10_ODT)
  555. gt215_ram_gpio(fuc, 0x2e, 1);
  556. /* Brace RAM for impact */
  557. ram_wr32(fuc, 0x1002d4, 0x00000001);
  558. ram_wr32(fuc, 0x1002d0, 0x00000001);
  559. ram_wr32(fuc, 0x1002d0, 0x00000001);
  560. ram_wr32(fuc, 0x100210, 0x00000000);
  561. ram_wr32(fuc, 0x1002dc, 0x00000001);
  562. ram_nsec(fuc, 2000);
  563. if (device->chipset == 0xa3 && freq <= 500000)
  564. ram_mask(fuc, 0x100700, 0x00000006, 0x00000006);
  565. /* Alter FBVDD/Q, apparently must be done with PLL disabled, thus
  566. * set it to bypass */
  567. if (nvkm_gpio_get(gpio, 0, 0x18, DCB_GPIO_UNUSED) ==
  568. next->bios.ramcfg_FBVDDQ) {
  569. data = ram_rd32(fuc, 0x004000) & 0x9;
  570. if (data == 0x1)
  571. ram_mask(fuc, 0x004000, 0x8, 0x8);
  572. if (data & 0x1)
  573. ram_mask(fuc, 0x004000, 0x1, 0x0);
  574. gt215_ram_gpio(fuc, 0x18, !next->bios.ramcfg_FBVDDQ);
  575. if (data & 0x1)
  576. ram_mask(fuc, 0x004000, 0x1, 0x1);
  577. }
  578. /* Fiddle with clocks */
  579. /* There's 4 scenario's
  580. * pll->pll: first switch to a 324MHz clock, set up new PLL, switch
  581. * clk->pll: Set up new PLL, switch
  582. * pll->clk: Set up clock, switch
  583. * clk->clk: Overwrite ctrl and other bits, switch */
  584. /* Switch to regular clock - 324MHz */
  585. if (pll2pll) {
  586. ram_mask(fuc, 0x004000, 0x00000004, 0x00000004);
  587. ram_mask(fuc, 0x004168, 0x003f3141, 0x00083101);
  588. ram_mask(fuc, 0x004000, 0x00000008, 0x00000008);
  589. ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
  590. ram_wr32(fuc, 0x004018, 0x00001000);
  591. gt215_ram_lock_pll(fuc, &mclk);
  592. }
  593. if (mclk.pll) {
  594. ram_mask(fuc, 0x004000, 0x00000105, 0x00000105);
  595. ram_wr32(fuc, 0x004018, 0x00001000 | r004018);
  596. ram_wr32(fuc, 0x100da0, r100da0);
  597. } else {
  598. ram_mask(fuc, 0x004168, 0x003f3141, mclk.clk | 0x00000101);
  599. ram_mask(fuc, 0x004000, 0x00000108, 0x00000008);
  600. ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
  601. ram_wr32(fuc, 0x004018, 0x00009000 | r004018);
  602. ram_wr32(fuc, 0x100da0, r100da0);
  603. }
  604. ram_nsec(fuc, 20000);
  605. if (next->bios.rammap_10_04_08) {
  606. ram_wr32(fuc, 0x1005a0, next->bios.ramcfg_10_06 << 16 |
  607. next->bios.ramcfg_10_05 << 8 |
  608. next->bios.ramcfg_10_05);
  609. ram_wr32(fuc, 0x1005a4, next->bios.ramcfg_10_08 << 8 |
  610. next->bios.ramcfg_10_07);
  611. ram_wr32(fuc, 0x10f804, next->bios.ramcfg_10_09_f0 << 20 |
  612. next->bios.ramcfg_10_03_0f << 16 |
  613. next->bios.ramcfg_10_09_0f |
  614. 0x80000000);
  615. ram_mask(fuc, 0x10053c, 0x00001000, 0x00000000);
  616. } else {
  617. if (train->state == NVA3_TRAIN_DONE) {
  618. ram_wr32(fuc, 0x100080, 0x1020);
  619. ram_mask(fuc, 0x111400, 0xffffffff, train->r_111400);
  620. ram_mask(fuc, 0x1111e0, 0xffffffff, train->r_1111e0);
  621. ram_mask(fuc, 0x100720, 0xffffffff, train->r_100720);
  622. }
  623. ram_mask(fuc, 0x10053c, 0x00001000, 0x00001000);
  624. ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
  625. ram_mask(fuc, 0x100760, 0x22222222, r100760);
  626. ram_mask(fuc, 0x1007a0, 0x22222222, r100760);
  627. ram_mask(fuc, 0x1007e0, 0x22222222, r100760);
  628. }
  629. if (device->chipset == 0xa3 && freq > 500000) {
  630. ram_mask(fuc, 0x100700, 0x00000006, 0x00000000);
  631. }
  632. /* Final switch */
  633. if (mclk.pll) {
  634. ram_mask(fuc, 0x1110e0, 0x00088000, 0x00011000);
  635. ram_mask(fuc, 0x004000, 0x00000008, 0x00000000);
  636. }
  637. ram_wr32(fuc, 0x1002dc, 0x00000000);
  638. ram_wr32(fuc, 0x1002d4, 0x00000001);
  639. ram_wr32(fuc, 0x100210, 0x80000000);
  640. ram_nsec(fuc, 2000);
  641. /* Set RAM MR parameters and timings */
  642. for (i = 2; i >= 0; i--) {
  643. if (ram_rd32(fuc, mr[i]) != ram->base.mr[i]) {
  644. ram_wr32(fuc, mr[i], ram->base.mr[i]);
  645. ram_nsec(fuc, 1000);
  646. }
  647. }
  648. ram_wr32(fuc, 0x100220[3], timing[3]);
  649. ram_wr32(fuc, 0x100220[1], timing[1]);
  650. ram_wr32(fuc, 0x100220[6], timing[6]);
  651. ram_wr32(fuc, 0x100220[7], timing[7]);
  652. ram_wr32(fuc, 0x100220[2], timing[2]);
  653. ram_wr32(fuc, 0x100220[4], timing[4]);
  654. ram_wr32(fuc, 0x100220[5], timing[5]);
  655. ram_wr32(fuc, 0x100220[0], timing[0]);
  656. ram_wr32(fuc, 0x100220[8], timing[8]);
  657. /* Misc */
  658. ram_mask(fuc, 0x100200, 0x00001000, !next->bios.ramcfg_10_02_08 << 12);
  659. /* XXX: A lot of "chipset"/"ram type" specific stuff...? */
  660. unk714 = ram_rd32(fuc, 0x100714) & ~0xf0000130;
  661. unk718 = ram_rd32(fuc, 0x100718) & ~0x00000100;
  662. unk71c = ram_rd32(fuc, 0x10071c) & ~0x00000100;
  663. r111100 = ram_rd32(fuc, 0x111100) & ~0x3a800000;
  664. /* NVA8 seems to skip various bits related to ramcfg_10_02_04 */
  665. if (device->chipset == 0xa8) {
  666. r111100 |= 0x08000000;
  667. if (!next->bios.ramcfg_10_02_04)
  668. unk714 |= 0x00000010;
  669. } else {
  670. if (next->bios.ramcfg_10_02_04) {
  671. switch (ram->base.type) {
  672. case NVKM_RAM_TYPE_DDR2:
  673. case NVKM_RAM_TYPE_DDR3:
  674. r111100 &= ~0x00000020;
  675. if (next->bios.ramcfg_10_02_10)
  676. r111100 |= 0x08000004;
  677. else
  678. r111100 |= 0x00000024;
  679. break;
  680. default:
  681. break;
  682. }
  683. } else {
  684. switch (ram->base.type) {
  685. case NVKM_RAM_TYPE_DDR2:
  686. case NVKM_RAM_TYPE_DDR3:
  687. r111100 &= ~0x00000024;
  688. r111100 |= 0x12800000;
  689. if (next->bios.ramcfg_10_02_10)
  690. r111100 |= 0x08000000;
  691. unk714 |= 0x00000010;
  692. break;
  693. case NVKM_RAM_TYPE_GDDR3:
  694. r111100 |= 0x30000000;
  695. unk714 |= 0x00000020;
  696. break;
  697. default:
  698. break;
  699. }
  700. }
  701. }
  702. unk714 |= (next->bios.ramcfg_10_04_01) << 8;
  703. if (next->bios.ramcfg_10_02_20)
  704. unk714 |= 0xf0000000;
  705. if (next->bios.ramcfg_10_02_02)
  706. unk718 |= 0x00000100;
  707. if (next->bios.ramcfg_10_02_01)
  708. unk71c |= 0x00000100;
  709. if (next->bios.timing_10_24 != 0xff) {
  710. unk718 &= ~0xf0000000;
  711. unk718 |= next->bios.timing_10_24 << 28;
  712. }
  713. if (next->bios.ramcfg_10_02_10)
  714. r111100 &= ~0x04020000;
  715. ram_mask(fuc, 0x100714, 0xffffffff, unk714);
  716. ram_mask(fuc, 0x10071c, 0xffffffff, unk71c);
  717. ram_mask(fuc, 0x100718, 0xffffffff, unk718);
  718. ram_mask(fuc, 0x111100, 0xffffffff, r111100);
  719. if (!next->bios.timing_10_ODT)
  720. gt215_ram_gpio(fuc, 0x2e, 0);
  721. /* Reset DLL */
  722. if (!next->bios.ramcfg_DLLoff)
  723. nvkm_sddr2_dll_reset(fuc);
  724. if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
  725. ram_nsec(fuc, 31000);
  726. } else {
  727. ram_nsec(fuc, 14000);
  728. }
  729. if (ram->base.type == NVKM_RAM_TYPE_DDR3) {
  730. ram_wr32(fuc, 0x100264, 0x1);
  731. ram_nsec(fuc, 2000);
  732. }
  733. ram_nuke(fuc, 0x100700);
  734. ram_mask(fuc, 0x100700, 0x01000000, 0x01000000);
  735. ram_mask(fuc, 0x100700, 0x01000000, 0x00000000);
  736. /* Re-enable FB */
  737. ram_unblock(fuc);
  738. ram_wr32(fuc, 0x611200, 0x3330);
  739. /* Post fiddlings */
  740. if (next->bios.rammap_10_04_02)
  741. ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
  742. if (next->bios.ramcfg_10_02_10) {
  743. ram_mask(fuc, 0x111104, 0x00000180, 0x00000180);
  744. ram_mask(fuc, 0x111100, 0x40000000, 0x00000000);
  745. } else {
  746. ram_mask(fuc, 0x111104, 0x00000600, 0x00000600);
  747. }
  748. if (mclk.pll) {
  749. ram_mask(fuc, 0x004168, 0x00000001, 0x00000000);
  750. ram_mask(fuc, 0x004168, 0x00000100, 0x00000000);
  751. } else {
  752. ram_mask(fuc, 0x004000, 0x00000001, 0x00000000);
  753. ram_mask(fuc, 0x004128, 0x00000001, 0x00000000);
  754. ram_mask(fuc, 0x004128, 0x00000100, 0x00000000);
  755. }
  756. return 0;
  757. }
  758. static int
  759. gt215_ram_prog(struct nvkm_ram *base)
  760. {
  761. struct gt215_ram *ram = gt215_ram(base);
  762. struct gt215_ramfuc *fuc = &ram->fuc;
  763. struct nvkm_device *device = ram->base.fb->subdev.device;
  764. bool exec = nvkm_boolopt(device->cfgopt, "NvMemExec", true);
  765. if (exec) {
  766. nvkm_mask(device, 0x001534, 0x2, 0x2);
  767. ram_exec(fuc, true);
  768. /* Post-processing, avoids flicker */
  769. nvkm_mask(device, 0x002504, 0x1, 0x0);
  770. nvkm_mask(device, 0x001534, 0x2, 0x0);
  771. nvkm_mask(device, 0x616308, 0x10, 0x10);
  772. nvkm_mask(device, 0x616b08, 0x10, 0x10);
  773. } else {
  774. ram_exec(fuc, false);
  775. }
  776. return 0;
  777. }
  778. static void
  779. gt215_ram_tidy(struct nvkm_ram *base)
  780. {
  781. struct gt215_ram *ram = gt215_ram(base);
  782. ram_exec(&ram->fuc, false);
  783. }
  784. static int
  785. gt215_ram_init(struct nvkm_ram *base)
  786. {
  787. struct gt215_ram *ram = gt215_ram(base);
  788. gt215_link_train_init(ram);
  789. return 0;
  790. }
  791. static void *
  792. gt215_ram_dtor(struct nvkm_ram *base)
  793. {
  794. struct gt215_ram *ram = gt215_ram(base);
  795. gt215_link_train_fini(ram);
  796. return ram;
  797. }
  798. static const struct nvkm_ram_func
  799. gt215_ram_func = {
  800. .dtor = gt215_ram_dtor,
  801. .init = gt215_ram_init,
  802. .get = nv50_ram_get,
  803. .put = nv50_ram_put,
  804. .calc = gt215_ram_calc,
  805. .prog = gt215_ram_prog,
  806. .tidy = gt215_ram_tidy,
  807. };
  808. int
  809. gt215_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
  810. {
  811. struct gt215_ram *ram;
  812. int ret, i;
  813. if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
  814. return -ENOMEM;
  815. *pram = &ram->base;
  816. ret = nv50_ram_ctor(&gt215_ram_func, fb, &ram->base);
  817. if (ret)
  818. return ret;
  819. ram->fuc.r_0x001610 = ramfuc_reg(0x001610);
  820. ram->fuc.r_0x001700 = ramfuc_reg(0x001700);
  821. ram->fuc.r_0x002504 = ramfuc_reg(0x002504);
  822. ram->fuc.r_0x004000 = ramfuc_reg(0x004000);
  823. ram->fuc.r_0x004004 = ramfuc_reg(0x004004);
  824. ram->fuc.r_0x004018 = ramfuc_reg(0x004018);
  825. ram->fuc.r_0x004128 = ramfuc_reg(0x004128);
  826. ram->fuc.r_0x004168 = ramfuc_reg(0x004168);
  827. ram->fuc.r_0x100080 = ramfuc_reg(0x100080);
  828. ram->fuc.r_0x100200 = ramfuc_reg(0x100200);
  829. ram->fuc.r_0x100210 = ramfuc_reg(0x100210);
  830. for (i = 0; i < 9; i++)
  831. ram->fuc.r_0x100220[i] = ramfuc_reg(0x100220 + (i * 4));
  832. ram->fuc.r_0x100264 = ramfuc_reg(0x100264);
  833. ram->fuc.r_0x1002d0 = ramfuc_reg(0x1002d0);
  834. ram->fuc.r_0x1002d4 = ramfuc_reg(0x1002d4);
  835. ram->fuc.r_0x1002dc = ramfuc_reg(0x1002dc);
  836. ram->fuc.r_0x10053c = ramfuc_reg(0x10053c);
  837. ram->fuc.r_0x1005a0 = ramfuc_reg(0x1005a0);
  838. ram->fuc.r_0x1005a4 = ramfuc_reg(0x1005a4);
  839. ram->fuc.r_0x100700 = ramfuc_reg(0x100700);
  840. ram->fuc.r_0x100714 = ramfuc_reg(0x100714);
  841. ram->fuc.r_0x100718 = ramfuc_reg(0x100718);
  842. ram->fuc.r_0x10071c = ramfuc_reg(0x10071c);
  843. ram->fuc.r_0x100720 = ramfuc_reg(0x100720);
  844. ram->fuc.r_0x100760 = ramfuc_stride(0x100760, 4, ram->base.part_mask);
  845. ram->fuc.r_0x1007a0 = ramfuc_stride(0x1007a0, 4, ram->base.part_mask);
  846. ram->fuc.r_0x1007e0 = ramfuc_stride(0x1007e0, 4, ram->base.part_mask);
  847. ram->fuc.r_0x100da0 = ramfuc_stride(0x100da0, 4, ram->base.part_mask);
  848. ram->fuc.r_0x10f804 = ramfuc_reg(0x10f804);
  849. ram->fuc.r_0x1110e0 = ramfuc_stride(0x1110e0, 4, ram->base.part_mask);
  850. ram->fuc.r_0x111100 = ramfuc_reg(0x111100);
  851. ram->fuc.r_0x111104 = ramfuc_reg(0x111104);
  852. ram->fuc.r_0x1111e0 = ramfuc_reg(0x1111e0);
  853. ram->fuc.r_0x111400 = ramfuc_reg(0x111400);
  854. ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
  855. if (ram->base.ranks > 1) {
  856. ram->fuc.r_mr[0] = ramfuc_reg2(0x1002c0, 0x1002c8);
  857. ram->fuc.r_mr[1] = ramfuc_reg2(0x1002c4, 0x1002cc);
  858. ram->fuc.r_mr[2] = ramfuc_reg2(0x1002e0, 0x1002e8);
  859. ram->fuc.r_mr[3] = ramfuc_reg2(0x1002e4, 0x1002ec);
  860. } else {
  861. ram->fuc.r_mr[0] = ramfuc_reg(0x1002c0);
  862. ram->fuc.r_mr[1] = ramfuc_reg(0x1002c4);
  863. ram->fuc.r_mr[2] = ramfuc_reg(0x1002e0);
  864. ram->fuc.r_mr[3] = ramfuc_reg(0x1002e4);
  865. }
  866. ram->fuc.r_gpio[0] = ramfuc_reg(0x00e104);
  867. ram->fuc.r_gpio[1] = ramfuc_reg(0x00e108);
  868. ram->fuc.r_gpio[2] = ramfuc_reg(0x00e120);
  869. ram->fuc.r_gpio[3] = ramfuc_reg(0x00e124);
  870. return 0;
  871. }