ramgk104.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #define gk104_ram(p) container_of((p), struct gk104_ram, base)
  25. #include "ram.h"
  26. #include "ramfuc.h"
  27. #include <core/option.h>
  28. #include <subdev/bios.h>
  29. #include <subdev/bios/init.h>
  30. #include <subdev/bios/M0205.h>
  31. #include <subdev/bios/M0209.h>
  32. #include <subdev/bios/pll.h>
  33. #include <subdev/bios/rammap.h>
  34. #include <subdev/bios/timing.h>
  35. #include <subdev/clk.h>
  36. #include <subdev/clk/pll.h>
  37. #include <subdev/gpio.h>
  38. struct gk104_ramfuc {
  39. struct ramfuc base;
  40. struct nvbios_pll refpll;
  41. struct nvbios_pll mempll;
  42. struct ramfuc_reg r_gpioMV;
  43. u32 r_funcMV[2];
  44. struct ramfuc_reg r_gpio2E;
  45. u32 r_func2E[2];
  46. struct ramfuc_reg r_gpiotrig;
  47. struct ramfuc_reg r_0x132020;
  48. struct ramfuc_reg r_0x132028;
  49. struct ramfuc_reg r_0x132024;
  50. struct ramfuc_reg r_0x132030;
  51. struct ramfuc_reg r_0x132034;
  52. struct ramfuc_reg r_0x132000;
  53. struct ramfuc_reg r_0x132004;
  54. struct ramfuc_reg r_0x132040;
  55. struct ramfuc_reg r_0x10f248;
  56. struct ramfuc_reg r_0x10f290;
  57. struct ramfuc_reg r_0x10f294;
  58. struct ramfuc_reg r_0x10f298;
  59. struct ramfuc_reg r_0x10f29c;
  60. struct ramfuc_reg r_0x10f2a0;
  61. struct ramfuc_reg r_0x10f2a4;
  62. struct ramfuc_reg r_0x10f2a8;
  63. struct ramfuc_reg r_0x10f2ac;
  64. struct ramfuc_reg r_0x10f2cc;
  65. struct ramfuc_reg r_0x10f2e8;
  66. struct ramfuc_reg r_0x10f250;
  67. struct ramfuc_reg r_0x10f24c;
  68. struct ramfuc_reg r_0x10fec4;
  69. struct ramfuc_reg r_0x10fec8;
  70. struct ramfuc_reg r_0x10f604;
  71. struct ramfuc_reg r_0x10f614;
  72. struct ramfuc_reg r_0x10f610;
  73. struct ramfuc_reg r_0x100770;
  74. struct ramfuc_reg r_0x100778;
  75. struct ramfuc_reg r_0x10f224;
  76. struct ramfuc_reg r_0x10f870;
  77. struct ramfuc_reg r_0x10f698;
  78. struct ramfuc_reg r_0x10f694;
  79. struct ramfuc_reg r_0x10f6b8;
  80. struct ramfuc_reg r_0x10f808;
  81. struct ramfuc_reg r_0x10f670;
  82. struct ramfuc_reg r_0x10f60c;
  83. struct ramfuc_reg r_0x10f830;
  84. struct ramfuc_reg r_0x1373ec;
  85. struct ramfuc_reg r_0x10f800;
  86. struct ramfuc_reg r_0x10f82c;
  87. struct ramfuc_reg r_0x10f978;
  88. struct ramfuc_reg r_0x10f910;
  89. struct ramfuc_reg r_0x10f914;
  90. struct ramfuc_reg r_mr[16]; /* MR0 - MR8, MR15 */
  91. struct ramfuc_reg r_0x62c000;
  92. struct ramfuc_reg r_0x10f200;
  93. struct ramfuc_reg r_0x10f210;
  94. struct ramfuc_reg r_0x10f310;
  95. struct ramfuc_reg r_0x10f314;
  96. struct ramfuc_reg r_0x10f318;
  97. struct ramfuc_reg r_0x10f090;
  98. struct ramfuc_reg r_0x10f69c;
  99. struct ramfuc_reg r_0x10f824;
  100. struct ramfuc_reg r_0x1373f0;
  101. struct ramfuc_reg r_0x1373f4;
  102. struct ramfuc_reg r_0x137320;
  103. struct ramfuc_reg r_0x10f65c;
  104. struct ramfuc_reg r_0x10f6bc;
  105. struct ramfuc_reg r_0x100710;
  106. struct ramfuc_reg r_0x100750;
  107. };
  108. struct gk104_ram {
  109. struct nvkm_ram base;
  110. struct gk104_ramfuc fuc;
  111. struct list_head cfg;
  112. u32 parts;
  113. u32 pmask;
  114. u32 pnuts;
  115. struct nvbios_ramcfg diff;
  116. int from;
  117. int mode;
  118. int N1, fN1, M1, P1;
  119. int N2, M2, P2;
  120. };
  121. /*******************************************************************************
  122. * GDDR5
  123. ******************************************************************************/
  124. static void
  125. gk104_ram_train(struct gk104_ramfuc *fuc, u32 mask, u32 data)
  126. {
  127. struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc);
  128. u32 addr = 0x110974, i;
  129. ram_mask(fuc, 0x10f910, mask, data);
  130. ram_mask(fuc, 0x10f914, mask, data);
  131. for (i = 0; (data & 0x80000000) && i < ram->parts; addr += 0x1000, i++) {
  132. if (ram->pmask & (1 << i))
  133. continue;
  134. ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
  135. }
  136. }
  137. static void
  138. r1373f4_init(struct gk104_ramfuc *fuc)
  139. {
  140. struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc);
  141. const u32 mcoef = ((--ram->P2 << 28) | (ram->N2 << 8) | ram->M2);
  142. const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1);
  143. const u32 runk0 = ram->fN1 << 16;
  144. const u32 runk1 = ram->fN1;
  145. if (ram->from == 2) {
  146. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100);
  147. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010);
  148. } else {
  149. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010);
  150. }
  151. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000);
  152. ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000);
  153. /* (re)program refpll, if required */
  154. if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef ||
  155. (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) {
  156. ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
  157. ram_mask(fuc, 0x132020, 0x00000001, 0x00000000);
  158. ram_wr32(fuc, 0x137320, 0x00000000);
  159. ram_mask(fuc, 0x132030, 0xffff0000, runk0);
  160. ram_mask(fuc, 0x132034, 0x0000ffff, runk1);
  161. ram_wr32(fuc, 0x132024, rcoef);
  162. ram_mask(fuc, 0x132028, 0x00080000, 0x00080000);
  163. ram_mask(fuc, 0x132020, 0x00000001, 0x00000001);
  164. ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
  165. ram_mask(fuc, 0x132028, 0x00080000, 0x00000000);
  166. }
  167. /* (re)program mempll, if required */
  168. if (ram->mode == 2) {
  169. ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
  170. ram_mask(fuc, 0x132000, 0x80000000, 0x80000000);
  171. ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
  172. ram_mask(fuc, 0x132004, 0x103fffff, mcoef);
  173. ram_mask(fuc, 0x132000, 0x00000001, 0x00000001);
  174. ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
  175. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100);
  176. } else {
  177. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010100);
  178. }
  179. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010);
  180. }
  181. static void
  182. r1373f4_fini(struct gk104_ramfuc *fuc)
  183. {
  184. struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc);
  185. struct nvkm_ram_data *next = ram->base.next;
  186. u8 v0 = next->bios.ramcfg_11_03_c0;
  187. u8 v1 = next->bios.ramcfg_11_03_30;
  188. u32 tmp;
  189. tmp = ram_rd32(fuc, 0x1373ec) & ~0x00030000;
  190. ram_wr32(fuc, 0x1373ec, tmp | (v1 << 16));
  191. ram_mask(fuc, 0x1373f0, (~ram->mode & 3), 0x00000000);
  192. if (ram->mode == 2) {
  193. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000002);
  194. ram_mask(fuc, 0x1373f4, 0x00001100, 0x00000000);
  195. } else {
  196. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000001);
  197. ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
  198. }
  199. ram_mask(fuc, 0x10f800, 0x00000030, (v0 ^ v1) << 4);
  200. }
  201. static void
  202. gk104_ram_nuts(struct gk104_ram *ram, struct ramfuc_reg *reg,
  203. u32 _mask, u32 _data, u32 _copy)
  204. {
  205. struct nvkm_fb *fb = ram->base.fb;
  206. struct ramfuc *fuc = &ram->fuc.base;
  207. struct nvkm_device *device = fb->subdev.device;
  208. u32 addr = 0x110000 + (reg->addr & 0xfff);
  209. u32 mask = _mask | _copy;
  210. u32 data = (_data & _mask) | (reg->data & _copy);
  211. u32 i;
  212. for (i = 0; i < 16; i++, addr += 0x1000) {
  213. if (ram->pnuts & (1 << i)) {
  214. u32 prev = nvkm_rd32(device, addr);
  215. u32 next = (prev & ~mask) | data;
  216. nvkm_memx_wr32(fuc->memx, addr, next);
  217. }
  218. }
  219. }
  220. #define ram_nuts(s,r,m,d,c) \
  221. gk104_ram_nuts((s), &(s)->fuc.r_##r, (m), (d), (c))
  222. static int
  223. gk104_ram_calc_gddr5(struct gk104_ram *ram, u32 freq)
  224. {
  225. struct gk104_ramfuc *fuc = &ram->fuc;
  226. struct nvkm_ram_data *next = ram->base.next;
  227. int vc = !next->bios.ramcfg_11_02_08;
  228. int mv = !next->bios.ramcfg_11_02_04;
  229. u32 mask, data;
  230. ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000);
  231. ram_block(fuc);
  232. if (nvkm_device_engine(ram->base.fb->subdev.device, NVKM_ENGINE_DISP))
  233. ram_wr32(fuc, 0x62c000, 0x0f0f0000);
  234. /* MR1: turn termination on early, for some reason.. */
  235. if ((ram->base.mr[1] & 0x03c) != 0x030) {
  236. ram_mask(fuc, mr[1], 0x03c, ram->base.mr[1] & 0x03c);
  237. ram_nuts(ram, mr[1], 0x03c, ram->base.mr1_nuts & 0x03c, 0x000);
  238. }
  239. if (vc == 1 && ram_have(fuc, gpio2E)) {
  240. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]);
  241. if (temp != ram_rd32(fuc, gpio2E)) {
  242. ram_wr32(fuc, gpiotrig, 1);
  243. ram_nsec(fuc, 20000);
  244. }
  245. }
  246. ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
  247. gk104_ram_train(fuc, 0x01020000, 0x000c0000);
  248. ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */
  249. ram_nsec(fuc, 1000);
  250. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  251. ram_nsec(fuc, 1000);
  252. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  253. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  254. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  255. ram_wr32(fuc, 0x10f090, 0x00000061);
  256. ram_wr32(fuc, 0x10f090, 0xc000007f);
  257. ram_nsec(fuc, 1000);
  258. ram_wr32(fuc, 0x10f698, 0x00000000);
  259. ram_wr32(fuc, 0x10f69c, 0x00000000);
  260. /*XXX: there does appear to be some kind of condition here, simply
  261. * modifying these bits in the vbios from the default pl0
  262. * entries shows no change. however, the data does appear to
  263. * be correct and may be required for the transition back
  264. */
  265. mask = 0x800f07e0;
  266. data = 0x00030000;
  267. if (ram_rd32(fuc, 0x10f978) & 0x00800000)
  268. data |= 0x00040000;
  269. if (1) {
  270. data |= 0x800807e0;
  271. switch (next->bios.ramcfg_11_03_c0) {
  272. case 3: data &= ~0x00000040; break;
  273. case 2: data &= ~0x00000100; break;
  274. case 1: data &= ~0x80000000; break;
  275. case 0: data &= ~0x00000400; break;
  276. }
  277. switch (next->bios.ramcfg_11_03_30) {
  278. case 3: data &= ~0x00000020; break;
  279. case 2: data &= ~0x00000080; break;
  280. case 1: data &= ~0x00080000; break;
  281. case 0: data &= ~0x00000200; break;
  282. }
  283. }
  284. if (next->bios.ramcfg_11_02_80)
  285. mask |= 0x03000000;
  286. if (next->bios.ramcfg_11_02_40)
  287. mask |= 0x00002000;
  288. if (next->bios.ramcfg_11_07_10)
  289. mask |= 0x00004000;
  290. if (next->bios.ramcfg_11_07_08)
  291. mask |= 0x00000003;
  292. else {
  293. mask |= 0x34000000;
  294. if (ram_rd32(fuc, 0x10f978) & 0x00800000)
  295. mask |= 0x40000000;
  296. }
  297. ram_mask(fuc, 0x10f824, mask, data);
  298. ram_mask(fuc, 0x132040, 0x00010000, 0x00000000);
  299. if (ram->from == 2 && ram->mode != 2) {
  300. ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
  301. ram_mask(fuc, 0x10f200, 0x18008000, 0x00008000);
  302. ram_mask(fuc, 0x10f800, 0x00000000, 0x00000004);
  303. ram_mask(fuc, 0x10f830, 0x00008000, 0x01040010);
  304. ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
  305. r1373f4_init(fuc);
  306. ram_mask(fuc, 0x1373f0, 0x00000002, 0x00000001);
  307. r1373f4_fini(fuc);
  308. ram_mask(fuc, 0x10f830, 0x00c00000, 0x00240001);
  309. } else
  310. if (ram->from != 2 && ram->mode != 2) {
  311. r1373f4_init(fuc);
  312. r1373f4_fini(fuc);
  313. }
  314. if (ram_have(fuc, gpioMV)) {
  315. u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]);
  316. if (temp != ram_rd32(fuc, gpioMV)) {
  317. ram_wr32(fuc, gpiotrig, 1);
  318. ram_nsec(fuc, 64000);
  319. }
  320. }
  321. if (next->bios.ramcfg_11_02_40 ||
  322. next->bios.ramcfg_11_07_10) {
  323. ram_mask(fuc, 0x132040, 0x00010000, 0x00010000);
  324. ram_nsec(fuc, 20000);
  325. }
  326. if (ram->from != 2 && ram->mode == 2) {
  327. if (0 /*XXX: Titan */)
  328. ram_mask(fuc, 0x10f200, 0x18000000, 0x18000000);
  329. ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000);
  330. ram_mask(fuc, 0x1373f0, 0x00000000, 0x00000002);
  331. ram_mask(fuc, 0x10f830, 0x00800001, 0x00408010);
  332. r1373f4_init(fuc);
  333. r1373f4_fini(fuc);
  334. ram_mask(fuc, 0x10f808, 0x00000000, 0x00080000);
  335. ram_mask(fuc, 0x10f200, 0x00808000, 0x00800000);
  336. } else
  337. if (ram->from == 2 && ram->mode == 2) {
  338. ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000);
  339. r1373f4_init(fuc);
  340. r1373f4_fini(fuc);
  341. }
  342. if (ram->mode != 2) /*XXX*/ {
  343. if (next->bios.ramcfg_11_07_40)
  344. ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000);
  345. }
  346. ram_wr32(fuc, 0x10f65c, 0x00000011 * next->bios.rammap_11_11_0c);
  347. ram_wr32(fuc, 0x10f6b8, 0x01010101 * next->bios.ramcfg_11_09);
  348. ram_wr32(fuc, 0x10f6bc, 0x01010101 * next->bios.ramcfg_11_09);
  349. if (!next->bios.ramcfg_11_07_08 && !next->bios.ramcfg_11_07_04) {
  350. ram_wr32(fuc, 0x10f698, 0x01010101 * next->bios.ramcfg_11_04);
  351. ram_wr32(fuc, 0x10f69c, 0x01010101 * next->bios.ramcfg_11_04);
  352. } else
  353. if (!next->bios.ramcfg_11_07_08) {
  354. ram_wr32(fuc, 0x10f698, 0x00000000);
  355. ram_wr32(fuc, 0x10f69c, 0x00000000);
  356. }
  357. if (ram->mode != 2) {
  358. u32 data = 0x01000100 * next->bios.ramcfg_11_04;
  359. ram_nuke(fuc, 0x10f694);
  360. ram_mask(fuc, 0x10f694, 0xff00ff00, data);
  361. }
  362. if (ram->mode == 2 && next->bios.ramcfg_11_08_10)
  363. data = 0x00000080;
  364. else
  365. data = 0x00000000;
  366. ram_mask(fuc, 0x10f60c, 0x00000080, data);
  367. mask = 0x00070000;
  368. data = 0x00000000;
  369. if (!next->bios.ramcfg_11_02_80)
  370. data |= 0x03000000;
  371. if (!next->bios.ramcfg_11_02_40)
  372. data |= 0x00002000;
  373. if (!next->bios.ramcfg_11_07_10)
  374. data |= 0x00004000;
  375. if (!next->bios.ramcfg_11_07_08)
  376. data |= 0x00000003;
  377. else
  378. data |= 0x74000000;
  379. ram_mask(fuc, 0x10f824, mask, data);
  380. if (next->bios.ramcfg_11_01_08)
  381. data = 0x00000000;
  382. else
  383. data = 0x00001000;
  384. ram_mask(fuc, 0x10f200, 0x00001000, data);
  385. if (ram_rd32(fuc, 0x10f670) & 0x80000000) {
  386. ram_nsec(fuc, 10000);
  387. ram_mask(fuc, 0x10f670, 0x80000000, 0x00000000);
  388. }
  389. if (next->bios.ramcfg_11_08_01)
  390. data = 0x00100000;
  391. else
  392. data = 0x00000000;
  393. ram_mask(fuc, 0x10f82c, 0x00100000, data);
  394. data = 0x00000000;
  395. if (next->bios.ramcfg_11_08_08)
  396. data |= 0x00002000;
  397. if (next->bios.ramcfg_11_08_04)
  398. data |= 0x00001000;
  399. if (next->bios.ramcfg_11_08_02)
  400. data |= 0x00004000;
  401. ram_mask(fuc, 0x10f830, 0x00007000, data);
  402. /* PFB timing */
  403. ram_mask(fuc, 0x10f248, 0xffffffff, next->bios.timing[10]);
  404. ram_mask(fuc, 0x10f290, 0xffffffff, next->bios.timing[0]);
  405. ram_mask(fuc, 0x10f294, 0xffffffff, next->bios.timing[1]);
  406. ram_mask(fuc, 0x10f298, 0xffffffff, next->bios.timing[2]);
  407. ram_mask(fuc, 0x10f29c, 0xffffffff, next->bios.timing[3]);
  408. ram_mask(fuc, 0x10f2a0, 0xffffffff, next->bios.timing[4]);
  409. ram_mask(fuc, 0x10f2a4, 0xffffffff, next->bios.timing[5]);
  410. ram_mask(fuc, 0x10f2a8, 0xffffffff, next->bios.timing[6]);
  411. ram_mask(fuc, 0x10f2ac, 0xffffffff, next->bios.timing[7]);
  412. ram_mask(fuc, 0x10f2cc, 0xffffffff, next->bios.timing[8]);
  413. ram_mask(fuc, 0x10f2e8, 0xffffffff, next->bios.timing[9]);
  414. data = mask = 0x00000000;
  415. if (ram->diff.ramcfg_11_08_20) {
  416. if (next->bios.ramcfg_11_08_20)
  417. data |= 0x01000000;
  418. mask |= 0x01000000;
  419. }
  420. ram_mask(fuc, 0x10f200, mask, data);
  421. data = mask = 0x00000000;
  422. if (ram->diff.ramcfg_11_02_03) {
  423. data |= next->bios.ramcfg_11_02_03 << 8;
  424. mask |= 0x00000300;
  425. }
  426. if (ram->diff.ramcfg_11_01_10) {
  427. if (next->bios.ramcfg_11_01_10)
  428. data |= 0x70000000;
  429. mask |= 0x70000000;
  430. }
  431. ram_mask(fuc, 0x10f604, mask, data);
  432. data = mask = 0x00000000;
  433. if (ram->diff.timing_20_30_07) {
  434. data |= next->bios.timing_20_30_07 << 28;
  435. mask |= 0x70000000;
  436. }
  437. if (ram->diff.ramcfg_11_01_01) {
  438. if (next->bios.ramcfg_11_01_01)
  439. data |= 0x00000100;
  440. mask |= 0x00000100;
  441. }
  442. ram_mask(fuc, 0x10f614, mask, data);
  443. data = mask = 0x00000000;
  444. if (ram->diff.timing_20_30_07) {
  445. data |= next->bios.timing_20_30_07 << 28;
  446. mask |= 0x70000000;
  447. }
  448. if (ram->diff.ramcfg_11_01_02) {
  449. if (next->bios.ramcfg_11_01_02)
  450. data |= 0x00000100;
  451. mask |= 0x00000100;
  452. }
  453. ram_mask(fuc, 0x10f610, mask, data);
  454. mask = 0x33f00000;
  455. data = 0x00000000;
  456. if (!next->bios.ramcfg_11_01_04)
  457. data |= 0x20200000;
  458. if (!next->bios.ramcfg_11_07_80)
  459. data |= 0x12800000;
  460. /*XXX: see note above about there probably being some condition
  461. * for the 10f824 stuff that uses ramcfg 3...
  462. */
  463. if (next->bios.ramcfg_11_03_f0) {
  464. if (next->bios.rammap_11_08_0c) {
  465. if (!next->bios.ramcfg_11_07_80)
  466. mask |= 0x00000020;
  467. else
  468. data |= 0x00000020;
  469. mask |= 0x00000004;
  470. }
  471. } else {
  472. mask |= 0x40000020;
  473. data |= 0x00000004;
  474. }
  475. ram_mask(fuc, 0x10f808, mask, data);
  476. ram_wr32(fuc, 0x10f870, 0x11111111 * next->bios.ramcfg_11_03_0f);
  477. data = mask = 0x00000000;
  478. if (ram->diff.ramcfg_11_02_03) {
  479. data |= next->bios.ramcfg_11_02_03;
  480. mask |= 0x00000003;
  481. }
  482. if (ram->diff.ramcfg_11_01_10) {
  483. if (next->bios.ramcfg_11_01_10)
  484. data |= 0x00000004;
  485. mask |= 0x00000004;
  486. }
  487. if ((ram_mask(fuc, 0x100770, mask, data) & mask & 4) != (data & 4)) {
  488. ram_mask(fuc, 0x100750, 0x00000008, 0x00000008);
  489. ram_wr32(fuc, 0x100710, 0x00000000);
  490. ram_wait(fuc, 0x100710, 0x80000000, 0x80000000, 200000);
  491. }
  492. data = next->bios.timing_20_30_07 << 8;
  493. if (next->bios.ramcfg_11_01_01)
  494. data |= 0x80000000;
  495. ram_mask(fuc, 0x100778, 0x00000700, data);
  496. ram_mask(fuc, 0x10f250, 0x000003f0, next->bios.timing_20_2c_003f << 4);
  497. data = (next->bios.timing[10] & 0x7f000000) >> 24;
  498. if (data < next->bios.timing_20_2c_1fc0)
  499. data = next->bios.timing_20_2c_1fc0;
  500. ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24);
  501. ram_mask(fuc, 0x10f224, 0x001f0000, next->bios.timing_20_30_f8 << 16);
  502. ram_mask(fuc, 0x10fec4, 0x041e0f07, next->bios.timing_20_31_0800 << 26 |
  503. next->bios.timing_20_31_0780 << 17 |
  504. next->bios.timing_20_31_0078 << 8 |
  505. next->bios.timing_20_31_0007);
  506. ram_mask(fuc, 0x10fec8, 0x00000027, next->bios.timing_20_31_8000 << 5 |
  507. next->bios.timing_20_31_7000);
  508. ram_wr32(fuc, 0x10f090, 0x4000007e);
  509. ram_nsec(fuc, 2000);
  510. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  511. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  512. ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */
  513. if (next->bios.ramcfg_11_08_10 && (ram->mode == 2) /*XXX*/) {
  514. u32 temp = ram_mask(fuc, 0x10f294, 0xff000000, 0x24000000);
  515. gk104_ram_train(fuc, 0xbc0e0000, 0xa4010000); /*XXX*/
  516. ram_nsec(fuc, 1000);
  517. ram_wr32(fuc, 0x10f294, temp);
  518. }
  519. ram_mask(fuc, mr[3], 0xfff, ram->base.mr[3]);
  520. ram_wr32(fuc, mr[0], ram->base.mr[0]);
  521. ram_mask(fuc, mr[8], 0xfff, ram->base.mr[8]);
  522. ram_nsec(fuc, 1000);
  523. ram_mask(fuc, mr[1], 0xfff, ram->base.mr[1]);
  524. ram_mask(fuc, mr[5], 0xfff, ram->base.mr[5] & ~0x004); /* LP3 later */
  525. ram_mask(fuc, mr[6], 0xfff, ram->base.mr[6]);
  526. ram_mask(fuc, mr[7], 0xfff, ram->base.mr[7]);
  527. if (vc == 0 && ram_have(fuc, gpio2E)) {
  528. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]);
  529. if (temp != ram_rd32(fuc, gpio2E)) {
  530. ram_wr32(fuc, gpiotrig, 1);
  531. ram_nsec(fuc, 20000);
  532. }
  533. }
  534. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  535. ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */
  536. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  537. ram_nsec(fuc, 1000);
  538. ram_nuts(ram, 0x10f200, 0x18808800, 0x00000000, 0x18808800);
  539. data = ram_rd32(fuc, 0x10f978);
  540. data &= ~0x00046144;
  541. data |= 0x0000000b;
  542. if (!next->bios.ramcfg_11_07_08) {
  543. if (!next->bios.ramcfg_11_07_04)
  544. data |= 0x0000200c;
  545. else
  546. data |= 0x00000000;
  547. } else {
  548. data |= 0x00040044;
  549. }
  550. ram_wr32(fuc, 0x10f978, data);
  551. if (ram->mode == 1) {
  552. data = ram_rd32(fuc, 0x10f830) | 0x00000001;
  553. ram_wr32(fuc, 0x10f830, data);
  554. }
  555. if (!next->bios.ramcfg_11_07_08) {
  556. data = 0x88020000;
  557. if ( next->bios.ramcfg_11_07_04)
  558. data |= 0x10000000;
  559. if (!next->bios.rammap_11_08_10)
  560. data |= 0x00080000;
  561. } else {
  562. data = 0xa40e0000;
  563. }
  564. gk104_ram_train(fuc, 0xbc0f0000, data);
  565. if (1) /* XXX: not always? */
  566. ram_nsec(fuc, 1000);
  567. if (ram->mode == 2) { /*XXX*/
  568. ram_mask(fuc, 0x10f800, 0x00000004, 0x00000004);
  569. }
  570. /* LP3 */
  571. if (ram_mask(fuc, mr[5], 0x004, ram->base.mr[5]) != ram->base.mr[5])
  572. ram_nsec(fuc, 1000);
  573. if (ram->mode != 2) {
  574. ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000);
  575. ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
  576. }
  577. if (next->bios.ramcfg_11_07_02)
  578. gk104_ram_train(fuc, 0x80020000, 0x01000000);
  579. ram_unblock(fuc);
  580. if (nvkm_device_engine(ram->base.fb->subdev.device, NVKM_ENGINE_DISP))
  581. ram_wr32(fuc, 0x62c000, 0x0f0f0f00);
  582. if (next->bios.rammap_11_08_01)
  583. data = 0x00000800;
  584. else
  585. data = 0x00000000;
  586. ram_mask(fuc, 0x10f200, 0x00000800, data);
  587. ram_nuts(ram, 0x10f200, 0x18808800, data, 0x18808800);
  588. return 0;
  589. }
  590. /*******************************************************************************
  591. * DDR3
  592. ******************************************************************************/
  593. static void
  594. nvkm_sddr3_dll_reset(struct gk104_ramfuc *fuc)
  595. {
  596. ram_nuke(fuc, mr[0]);
  597. ram_mask(fuc, mr[0], 0x100, 0x100);
  598. ram_mask(fuc, mr[0], 0x100, 0x000);
  599. }
  600. static void
  601. nvkm_sddr3_dll_disable(struct gk104_ramfuc *fuc)
  602. {
  603. u32 mr1_old = ram_rd32(fuc, mr[1]);
  604. if (!(mr1_old & 0x1)) {
  605. ram_mask(fuc, mr[1], 0x1, 0x1);
  606. ram_nsec(fuc, 1000);
  607. }
  608. }
  609. static int
  610. gk104_ram_calc_sddr3(struct gk104_ram *ram, u32 freq)
  611. {
  612. struct gk104_ramfuc *fuc = &ram->fuc;
  613. const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1);
  614. const u32 runk0 = ram->fN1 << 16;
  615. const u32 runk1 = ram->fN1;
  616. struct nvkm_ram_data *next = ram->base.next;
  617. int vc = !next->bios.ramcfg_11_02_08;
  618. int mv = !next->bios.ramcfg_11_02_04;
  619. u32 mask, data;
  620. ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000);
  621. ram_block(fuc);
  622. if (nvkm_device_engine(ram->base.fb->subdev.device, NVKM_ENGINE_DISP))
  623. ram_wr32(fuc, 0x62c000, 0x0f0f0000);
  624. if (vc == 1 && ram_have(fuc, gpio2E)) {
  625. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]);
  626. if (temp != ram_rd32(fuc, gpio2E)) {
  627. ram_wr32(fuc, gpiotrig, 1);
  628. ram_nsec(fuc, 20000);
  629. }
  630. }
  631. ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
  632. if (next->bios.ramcfg_11_03_f0)
  633. ram_mask(fuc, 0x10f808, 0x04000000, 0x04000000);
  634. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  635. if (next->bios.ramcfg_DLLoff)
  636. nvkm_sddr3_dll_disable(fuc);
  637. ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */
  638. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  639. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  640. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  641. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  642. ram_nsec(fuc, 1000);
  643. ram_wr32(fuc, 0x10f090, 0x00000060);
  644. ram_wr32(fuc, 0x10f090, 0xc000007e);
  645. /*XXX: there does appear to be some kind of condition here, simply
  646. * modifying these bits in the vbios from the default pl0
  647. * entries shows no change. however, the data does appear to
  648. * be correct and may be required for the transition back
  649. */
  650. mask = 0x00010000;
  651. data = 0x00010000;
  652. if (1) {
  653. mask |= 0x800807e0;
  654. data |= 0x800807e0;
  655. switch (next->bios.ramcfg_11_03_c0) {
  656. case 3: data &= ~0x00000040; break;
  657. case 2: data &= ~0x00000100; break;
  658. case 1: data &= ~0x80000000; break;
  659. case 0: data &= ~0x00000400; break;
  660. }
  661. switch (next->bios.ramcfg_11_03_30) {
  662. case 3: data &= ~0x00000020; break;
  663. case 2: data &= ~0x00000080; break;
  664. case 1: data &= ~0x00080000; break;
  665. case 0: data &= ~0x00000200; break;
  666. }
  667. }
  668. if (next->bios.ramcfg_11_02_80)
  669. mask |= 0x03000000;
  670. if (next->bios.ramcfg_11_02_40)
  671. mask |= 0x00002000;
  672. if (next->bios.ramcfg_11_07_10)
  673. mask |= 0x00004000;
  674. if (next->bios.ramcfg_11_07_08)
  675. mask |= 0x00000003;
  676. else
  677. mask |= 0x14000000;
  678. ram_mask(fuc, 0x10f824, mask, data);
  679. ram_mask(fuc, 0x132040, 0x00010000, 0x00000000);
  680. ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010);
  681. data = ram_rd32(fuc, 0x1373ec) & ~0x00030000;
  682. data |= next->bios.ramcfg_11_03_30 << 16;
  683. ram_wr32(fuc, 0x1373ec, data);
  684. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000);
  685. ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000);
  686. /* (re)program refpll, if required */
  687. if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef ||
  688. (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) {
  689. ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
  690. ram_mask(fuc, 0x132020, 0x00000001, 0x00000000);
  691. ram_wr32(fuc, 0x137320, 0x00000000);
  692. ram_mask(fuc, 0x132030, 0xffff0000, runk0);
  693. ram_mask(fuc, 0x132034, 0x0000ffff, runk1);
  694. ram_wr32(fuc, 0x132024, rcoef);
  695. ram_mask(fuc, 0x132028, 0x00080000, 0x00080000);
  696. ram_mask(fuc, 0x132020, 0x00000001, 0x00000001);
  697. ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
  698. ram_mask(fuc, 0x132028, 0x00080000, 0x00000000);
  699. }
  700. ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000010);
  701. ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000001);
  702. ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
  703. if (ram_have(fuc, gpioMV)) {
  704. u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]);
  705. if (temp != ram_rd32(fuc, gpioMV)) {
  706. ram_wr32(fuc, gpiotrig, 1);
  707. ram_nsec(fuc, 64000);
  708. }
  709. }
  710. if (next->bios.ramcfg_11_02_40 ||
  711. next->bios.ramcfg_11_07_10) {
  712. ram_mask(fuc, 0x132040, 0x00010000, 0x00010000);
  713. ram_nsec(fuc, 20000);
  714. }
  715. if (ram->mode != 2) /*XXX*/ {
  716. if (next->bios.ramcfg_11_07_40)
  717. ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000);
  718. }
  719. ram_wr32(fuc, 0x10f65c, 0x00000011 * next->bios.rammap_11_11_0c);
  720. ram_wr32(fuc, 0x10f6b8, 0x01010101 * next->bios.ramcfg_11_09);
  721. ram_wr32(fuc, 0x10f6bc, 0x01010101 * next->bios.ramcfg_11_09);
  722. mask = 0x00010000;
  723. data = 0x00000000;
  724. if (!next->bios.ramcfg_11_02_80)
  725. data |= 0x03000000;
  726. if (!next->bios.ramcfg_11_02_40)
  727. data |= 0x00002000;
  728. if (!next->bios.ramcfg_11_07_10)
  729. data |= 0x00004000;
  730. if (!next->bios.ramcfg_11_07_08)
  731. data |= 0x00000003;
  732. else
  733. data |= 0x14000000;
  734. ram_mask(fuc, 0x10f824, mask, data);
  735. ram_nsec(fuc, 1000);
  736. if (next->bios.ramcfg_11_08_01)
  737. data = 0x00100000;
  738. else
  739. data = 0x00000000;
  740. ram_mask(fuc, 0x10f82c, 0x00100000, data);
  741. /* PFB timing */
  742. ram_mask(fuc, 0x10f248, 0xffffffff, next->bios.timing[10]);
  743. ram_mask(fuc, 0x10f290, 0xffffffff, next->bios.timing[0]);
  744. ram_mask(fuc, 0x10f294, 0xffffffff, next->bios.timing[1]);
  745. ram_mask(fuc, 0x10f298, 0xffffffff, next->bios.timing[2]);
  746. ram_mask(fuc, 0x10f29c, 0xffffffff, next->bios.timing[3]);
  747. ram_mask(fuc, 0x10f2a0, 0xffffffff, next->bios.timing[4]);
  748. ram_mask(fuc, 0x10f2a4, 0xffffffff, next->bios.timing[5]);
  749. ram_mask(fuc, 0x10f2a8, 0xffffffff, next->bios.timing[6]);
  750. ram_mask(fuc, 0x10f2ac, 0xffffffff, next->bios.timing[7]);
  751. ram_mask(fuc, 0x10f2cc, 0xffffffff, next->bios.timing[8]);
  752. ram_mask(fuc, 0x10f2e8, 0xffffffff, next->bios.timing[9]);
  753. mask = 0x33f00000;
  754. data = 0x00000000;
  755. if (!next->bios.ramcfg_11_01_04)
  756. data |= 0x20200000;
  757. if (!next->bios.ramcfg_11_07_80)
  758. data |= 0x12800000;
  759. /*XXX: see note above about there probably being some condition
  760. * for the 10f824 stuff that uses ramcfg 3...
  761. */
  762. if (next->bios.ramcfg_11_03_f0) {
  763. if (next->bios.rammap_11_08_0c) {
  764. if (!next->bios.ramcfg_11_07_80)
  765. mask |= 0x00000020;
  766. else
  767. data |= 0x00000020;
  768. mask |= 0x08000004;
  769. }
  770. data |= 0x04000000;
  771. } else {
  772. mask |= 0x44000020;
  773. data |= 0x08000004;
  774. }
  775. ram_mask(fuc, 0x10f808, mask, data);
  776. ram_wr32(fuc, 0x10f870, 0x11111111 * next->bios.ramcfg_11_03_0f);
  777. ram_mask(fuc, 0x10f250, 0x000003f0, next->bios.timing_20_2c_003f << 4);
  778. data = (next->bios.timing[10] & 0x7f000000) >> 24;
  779. if (data < next->bios.timing_20_2c_1fc0)
  780. data = next->bios.timing_20_2c_1fc0;
  781. ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24);
  782. ram_mask(fuc, 0x10f224, 0x001f0000, next->bios.timing_20_30_f8 << 16);
  783. ram_wr32(fuc, 0x10f090, 0x4000007f);
  784. ram_nsec(fuc, 1000);
  785. ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
  786. ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
  787. ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */
  788. ram_nsec(fuc, 1000);
  789. if (!next->bios.ramcfg_DLLoff) {
  790. ram_mask(fuc, mr[1], 0x1, 0x0);
  791. nvkm_sddr3_dll_reset(fuc);
  792. }
  793. ram_mask(fuc, mr[2], 0x00000fff, ram->base.mr[2]);
  794. ram_mask(fuc, mr[1], 0xffffffff, ram->base.mr[1]);
  795. ram_wr32(fuc, mr[0], ram->base.mr[0]);
  796. ram_nsec(fuc, 1000);
  797. if (!next->bios.ramcfg_DLLoff) {
  798. nvkm_sddr3_dll_reset(fuc);
  799. ram_nsec(fuc, 1000);
  800. }
  801. if (vc == 0 && ram_have(fuc, gpio2E)) {
  802. u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]);
  803. if (temp != ram_rd32(fuc, gpio2E)) {
  804. ram_wr32(fuc, gpiotrig, 1);
  805. ram_nsec(fuc, 20000);
  806. }
  807. }
  808. if (ram->mode != 2) {
  809. ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000);
  810. ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
  811. }
  812. ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
  813. ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */
  814. ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
  815. ram_nsec(fuc, 1000);
  816. ram_unblock(fuc);
  817. if (nvkm_device_engine(ram->base.fb->subdev.device, NVKM_ENGINE_DISP))
  818. ram_wr32(fuc, 0x62c000, 0x0f0f0f00);
  819. if (next->bios.rammap_11_08_01)
  820. data = 0x00000800;
  821. else
  822. data = 0x00000000;
  823. ram_mask(fuc, 0x10f200, 0x00000800, data);
  824. return 0;
  825. }
  826. /*******************************************************************************
  827. * main hooks
  828. ******************************************************************************/
  829. static int
  830. gk104_ram_calc_data(struct gk104_ram *ram, u32 khz, struct nvkm_ram_data *data)
  831. {
  832. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  833. struct nvkm_ram_data *cfg;
  834. u32 mhz = khz / 1000;
  835. list_for_each_entry(cfg, &ram->cfg, head) {
  836. if (mhz >= cfg->bios.rammap_min &&
  837. mhz <= cfg->bios.rammap_max) {
  838. *data = *cfg;
  839. data->freq = khz;
  840. return 0;
  841. }
  842. }
  843. nvkm_error(subdev, "ramcfg data for %dMHz not found\n", mhz);
  844. return -EINVAL;
  845. }
  846. static int
  847. gk104_calc_pll_output(int fN, int M, int N, int P, int clk)
  848. {
  849. return ((clk * N) + (((u16)(fN + 4096) * clk) >> 13)) / (M * P);
  850. }
  851. static int
  852. gk104_pll_calc_hiclk(int target_khz, int crystal,
  853. int *N1, int *fN1, int *M1, int *P1,
  854. int *N2, int *M2, int *P2)
  855. {
  856. int best_clk = 0, best_err = target_khz, p_ref, n_ref;
  857. bool upper = false;
  858. *M1 = 1;
  859. /* M has to be 1, otherwise it gets unstable */
  860. *M2 = 1;
  861. /* can be 1 or 2, sticking with 1 for simplicity */
  862. *P2 = 1;
  863. for (p_ref = 0x7; p_ref >= 0x5; --p_ref) {
  864. for (n_ref = 0x25; n_ref <= 0x2b; ++n_ref) {
  865. int cur_N, cur_clk, cur_err;
  866. cur_clk = gk104_calc_pll_output(0, 1, n_ref, p_ref, crystal);
  867. cur_N = target_khz / cur_clk;
  868. cur_err = target_khz
  869. - gk104_calc_pll_output(0xf000, 1, cur_N, 1, cur_clk);
  870. /* we found a better combination */
  871. if (cur_err < best_err) {
  872. best_err = cur_err;
  873. best_clk = cur_clk;
  874. *N2 = cur_N;
  875. *N1 = n_ref;
  876. *P1 = p_ref;
  877. upper = false;
  878. }
  879. cur_N += 1;
  880. cur_err = gk104_calc_pll_output(0xf000, 1, cur_N, 1, cur_clk)
  881. - target_khz;
  882. if (cur_err < best_err) {
  883. best_err = cur_err;
  884. best_clk = cur_clk;
  885. *N2 = cur_N;
  886. *N1 = n_ref;
  887. *P1 = p_ref;
  888. upper = true;
  889. }
  890. }
  891. }
  892. /* adjust fN to get closer to the target clock */
  893. *fN1 = (u16)((((best_err / *N2 * *P2) * (*P1 * *M1)) << 13) / crystal);
  894. if (upper)
  895. *fN1 = (u16)(1 - *fN1);
  896. return gk104_calc_pll_output(*fN1, 1, *N1, *P1, crystal);
  897. }
  898. static int
  899. gk104_ram_calc_xits(struct gk104_ram *ram, struct nvkm_ram_data *next)
  900. {
  901. struct gk104_ramfuc *fuc = &ram->fuc;
  902. struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  903. int refclk, i;
  904. int ret;
  905. ret = ram_init(fuc, ram->base.fb);
  906. if (ret)
  907. return ret;
  908. ram->mode = (next->freq > fuc->refpll.vco1.max_freq) ? 2 : 1;
  909. ram->from = ram_rd32(fuc, 0x1373f4) & 0x0000000f;
  910. /* XXX: this is *not* what nvidia do. on fermi nvidia generally
  911. * select, based on some unknown condition, one of the two possible
  912. * reference frequencies listed in the vbios table for mempll and
  913. * program refpll to that frequency.
  914. *
  915. * so far, i've seen very weird values being chosen by nvidia on
  916. * kepler boards, no idea how/why they're chosen.
  917. */
  918. refclk = next->freq;
  919. if (ram->mode == 2) {
  920. ret = gk104_pll_calc_hiclk(next->freq, subdev->device->crystal,
  921. &ram->N1, &ram->fN1, &ram->M1, &ram->P1,
  922. &ram->N2, &ram->M2, &ram->P2);
  923. fuc->mempll.refclk = ret;
  924. if (ret <= 0) {
  925. nvkm_error(subdev, "unable to calc plls\n");
  926. return -EINVAL;
  927. }
  928. nvkm_debug(subdev, "sucessfully calced PLLs for clock %i kHz"
  929. " (refclock: %i kHz)\n", next->freq, ret);
  930. } else {
  931. /* calculate refpll coefficients */
  932. ret = gt215_pll_calc(subdev, &fuc->refpll, refclk, &ram->N1,
  933. &ram->fN1, &ram->M1, &ram->P1);
  934. fuc->mempll.refclk = ret;
  935. if (ret <= 0) {
  936. nvkm_error(subdev, "unable to calc refpll\n");
  937. return -EINVAL;
  938. }
  939. }
  940. for (i = 0; i < ARRAY_SIZE(fuc->r_mr); i++) {
  941. if (ram_have(fuc, mr[i]))
  942. ram->base.mr[i] = ram_rd32(fuc, mr[i]);
  943. }
  944. ram->base.freq = next->freq;
  945. switch (ram->base.type) {
  946. case NVKM_RAM_TYPE_DDR3:
  947. ret = nvkm_sddr3_calc(&ram->base);
  948. if (ret == 0)
  949. ret = gk104_ram_calc_sddr3(ram, next->freq);
  950. break;
  951. case NVKM_RAM_TYPE_GDDR5:
  952. ret = nvkm_gddr5_calc(&ram->base, ram->pnuts != 0);
  953. if (ret == 0)
  954. ret = gk104_ram_calc_gddr5(ram, next->freq);
  955. break;
  956. default:
  957. ret = -ENOSYS;
  958. break;
  959. }
  960. return ret;
  961. }
  962. static int
  963. gk104_ram_calc(struct nvkm_ram *base, u32 freq)
  964. {
  965. struct gk104_ram *ram = gk104_ram(base);
  966. struct nvkm_clk *clk = ram->base.fb->subdev.device->clk;
  967. struct nvkm_ram_data *xits = &ram->base.xition;
  968. struct nvkm_ram_data *copy;
  969. int ret;
  970. if (ram->base.next == NULL) {
  971. ret = gk104_ram_calc_data(ram,
  972. nvkm_clk_read(clk, nv_clk_src_mem),
  973. &ram->base.former);
  974. if (ret)
  975. return ret;
  976. ret = gk104_ram_calc_data(ram, freq, &ram->base.target);
  977. if (ret)
  978. return ret;
  979. if (ram->base.target.freq < ram->base.former.freq) {
  980. *xits = ram->base.target;
  981. copy = &ram->base.former;
  982. } else {
  983. *xits = ram->base.former;
  984. copy = &ram->base.target;
  985. }
  986. xits->bios.ramcfg_11_02_04 = copy->bios.ramcfg_11_02_04;
  987. xits->bios.ramcfg_11_02_03 = copy->bios.ramcfg_11_02_03;
  988. xits->bios.timing_20_30_07 = copy->bios.timing_20_30_07;
  989. ram->base.next = &ram->base.target;
  990. if (memcmp(xits, &ram->base.former, sizeof(xits->bios)))
  991. ram->base.next = &ram->base.xition;
  992. } else {
  993. BUG_ON(ram->base.next != &ram->base.xition);
  994. ram->base.next = &ram->base.target;
  995. }
  996. return gk104_ram_calc_xits(ram, ram->base.next);
  997. }
  998. static void
  999. gk104_ram_prog_0(struct gk104_ram *ram, u32 freq)
  1000. {
  1001. struct nvkm_device *device = ram->base.fb->subdev.device;
  1002. struct nvkm_ram_data *cfg;
  1003. u32 mhz = freq / 1000;
  1004. u32 mask, data;
  1005. list_for_each_entry(cfg, &ram->cfg, head) {
  1006. if (mhz >= cfg->bios.rammap_min &&
  1007. mhz <= cfg->bios.rammap_max)
  1008. break;
  1009. }
  1010. if (&cfg->head == &ram->cfg)
  1011. return;
  1012. if (mask = 0, data = 0, ram->diff.rammap_11_0a_03fe) {
  1013. data |= cfg->bios.rammap_11_0a_03fe << 12;
  1014. mask |= 0x001ff000;
  1015. }
  1016. if (ram->diff.rammap_11_09_01ff) {
  1017. data |= cfg->bios.rammap_11_09_01ff;
  1018. mask |= 0x000001ff;
  1019. }
  1020. nvkm_mask(device, 0x10f468, mask, data);
  1021. if (mask = 0, data = 0, ram->diff.rammap_11_0a_0400) {
  1022. data |= cfg->bios.rammap_11_0a_0400;
  1023. mask |= 0x00000001;
  1024. }
  1025. nvkm_mask(device, 0x10f420, mask, data);
  1026. if (mask = 0, data = 0, ram->diff.rammap_11_0a_0800) {
  1027. data |= cfg->bios.rammap_11_0a_0800;
  1028. mask |= 0x00000001;
  1029. }
  1030. nvkm_mask(device, 0x10f430, mask, data);
  1031. if (mask = 0, data = 0, ram->diff.rammap_11_0b_01f0) {
  1032. data |= cfg->bios.rammap_11_0b_01f0;
  1033. mask |= 0x0000001f;
  1034. }
  1035. nvkm_mask(device, 0x10f400, mask, data);
  1036. if (mask = 0, data = 0, ram->diff.rammap_11_0b_0200) {
  1037. data |= cfg->bios.rammap_11_0b_0200 << 9;
  1038. mask |= 0x00000200;
  1039. }
  1040. nvkm_mask(device, 0x10f410, mask, data);
  1041. if (mask = 0, data = 0, ram->diff.rammap_11_0d) {
  1042. data |= cfg->bios.rammap_11_0d << 16;
  1043. mask |= 0x00ff0000;
  1044. }
  1045. if (ram->diff.rammap_11_0f) {
  1046. data |= cfg->bios.rammap_11_0f << 8;
  1047. mask |= 0x0000ff00;
  1048. }
  1049. nvkm_mask(device, 0x10f440, mask, data);
  1050. if (mask = 0, data = 0, ram->diff.rammap_11_0e) {
  1051. data |= cfg->bios.rammap_11_0e << 8;
  1052. mask |= 0x0000ff00;
  1053. }
  1054. if (ram->diff.rammap_11_0b_0800) {
  1055. data |= cfg->bios.rammap_11_0b_0800 << 7;
  1056. mask |= 0x00000080;
  1057. }
  1058. if (ram->diff.rammap_11_0b_0400) {
  1059. data |= cfg->bios.rammap_11_0b_0400 << 5;
  1060. mask |= 0x00000020;
  1061. }
  1062. nvkm_mask(device, 0x10f444, mask, data);
  1063. }
  1064. static int
  1065. gk104_ram_prog(struct nvkm_ram *base)
  1066. {
  1067. struct gk104_ram *ram = gk104_ram(base);
  1068. struct gk104_ramfuc *fuc = &ram->fuc;
  1069. struct nvkm_device *device = ram->base.fb->subdev.device;
  1070. struct nvkm_ram_data *next = ram->base.next;
  1071. if (!nvkm_boolopt(device->cfgopt, "NvMemExec", true)) {
  1072. ram_exec(fuc, false);
  1073. return (ram->base.next == &ram->base.xition);
  1074. }
  1075. gk104_ram_prog_0(ram, 1000);
  1076. ram_exec(fuc, true);
  1077. gk104_ram_prog_0(ram, next->freq);
  1078. return (ram->base.next == &ram->base.xition);
  1079. }
  1080. static void
  1081. gk104_ram_tidy(struct nvkm_ram *base)
  1082. {
  1083. struct gk104_ram *ram = gk104_ram(base);
  1084. ram->base.next = NULL;
  1085. ram_exec(&ram->fuc, false);
  1086. }
  1087. struct gk104_ram_train {
  1088. u16 mask;
  1089. struct nvbios_M0209S remap;
  1090. struct nvbios_M0209S type00;
  1091. struct nvbios_M0209S type01;
  1092. struct nvbios_M0209S type04;
  1093. struct nvbios_M0209S type06;
  1094. struct nvbios_M0209S type07;
  1095. struct nvbios_M0209S type08;
  1096. struct nvbios_M0209S type09;
  1097. };
  1098. static int
  1099. gk104_ram_train_type(struct nvkm_ram *ram, int i, u8 ramcfg,
  1100. struct gk104_ram_train *train)
  1101. {
  1102. struct nvkm_bios *bios = ram->fb->subdev.device->bios;
  1103. struct nvbios_M0205E M0205E;
  1104. struct nvbios_M0205S M0205S;
  1105. struct nvbios_M0209E M0209E;
  1106. struct nvbios_M0209S *remap = &train->remap;
  1107. struct nvbios_M0209S *value;
  1108. u8 ver, hdr, cnt, len;
  1109. u32 data;
  1110. /* determine type of data for this index */
  1111. if (!(data = nvbios_M0205Ep(bios, i, &ver, &hdr, &cnt, &len, &M0205E)))
  1112. return -ENOENT;
  1113. switch (M0205E.type) {
  1114. case 0x00: value = &train->type00; break;
  1115. case 0x01: value = &train->type01; break;
  1116. case 0x04: value = &train->type04; break;
  1117. case 0x06: value = &train->type06; break;
  1118. case 0x07: value = &train->type07; break;
  1119. case 0x08: value = &train->type08; break;
  1120. case 0x09: value = &train->type09; break;
  1121. default:
  1122. return 0;
  1123. }
  1124. /* training data index determined by ramcfg strap */
  1125. if (!(data = nvbios_M0205Sp(bios, i, ramcfg, &ver, &hdr, &M0205S)))
  1126. return -EINVAL;
  1127. i = M0205S.data;
  1128. /* training data format information */
  1129. if (!(data = nvbios_M0209Ep(bios, i, &ver, &hdr, &cnt, &len, &M0209E)))
  1130. return -EINVAL;
  1131. /* ... and the raw data */
  1132. if (!(data = nvbios_M0209Sp(bios, i, 0, &ver, &hdr, value)))
  1133. return -EINVAL;
  1134. if (M0209E.v02_07 == 2) {
  1135. /* of course! why wouldn't we have a pointer to another entry
  1136. * in the same table, and use the first one as an array of
  1137. * remap indices...
  1138. */
  1139. if (!(data = nvbios_M0209Sp(bios, M0209E.v03, 0, &ver, &hdr,
  1140. remap)))
  1141. return -EINVAL;
  1142. for (i = 0; i < ARRAY_SIZE(value->data); i++)
  1143. value->data[i] = remap->data[value->data[i]];
  1144. } else
  1145. if (M0209E.v02_07 != 1)
  1146. return -EINVAL;
  1147. train->mask |= 1 << M0205E.type;
  1148. return 0;
  1149. }
  1150. static int
  1151. gk104_ram_train_init_0(struct nvkm_ram *ram, struct gk104_ram_train *train)
  1152. {
  1153. struct nvkm_subdev *subdev = &ram->fb->subdev;
  1154. struct nvkm_device *device = subdev->device;
  1155. int i, j;
  1156. if ((train->mask & 0x03d3) != 0x03d3) {
  1157. nvkm_warn(subdev, "missing link training data\n");
  1158. return -EINVAL;
  1159. }
  1160. for (i = 0; i < 0x30; i++) {
  1161. for (j = 0; j < 8; j += 4) {
  1162. nvkm_wr32(device, 0x10f968 + j, 0x00000000 | (i << 8));
  1163. nvkm_wr32(device, 0x10f920 + j, 0x00000000 |
  1164. train->type08.data[i] << 4 |
  1165. train->type06.data[i]);
  1166. nvkm_wr32(device, 0x10f918 + j, train->type00.data[i]);
  1167. nvkm_wr32(device, 0x10f920 + j, 0x00000100 |
  1168. train->type09.data[i] << 4 |
  1169. train->type07.data[i]);
  1170. nvkm_wr32(device, 0x10f918 + j, train->type01.data[i]);
  1171. }
  1172. }
  1173. for (j = 0; j < 8; j += 4) {
  1174. for (i = 0; i < 0x100; i++) {
  1175. nvkm_wr32(device, 0x10f968 + j, i);
  1176. nvkm_wr32(device, 0x10f900 + j, train->type04.data[i]);
  1177. }
  1178. }
  1179. return 0;
  1180. }
  1181. static int
  1182. gk104_ram_train_init(struct nvkm_ram *ram)
  1183. {
  1184. u8 ramcfg = nvbios_ramcfg_index(&ram->fb->subdev);
  1185. struct gk104_ram_train *train;
  1186. int ret, i;
  1187. if (!(train = kzalloc(sizeof(*train), GFP_KERNEL)))
  1188. return -ENOMEM;
  1189. for (i = 0; i < 0x100; i++) {
  1190. ret = gk104_ram_train_type(ram, i, ramcfg, train);
  1191. if (ret && ret != -ENOENT)
  1192. break;
  1193. }
  1194. switch (ram->type) {
  1195. case NVKM_RAM_TYPE_GDDR5:
  1196. ret = gk104_ram_train_init_0(ram, train);
  1197. break;
  1198. default:
  1199. ret = 0;
  1200. break;
  1201. }
  1202. kfree(train);
  1203. return ret;
  1204. }
  1205. int
  1206. gk104_ram_init(struct nvkm_ram *ram)
  1207. {
  1208. struct nvkm_subdev *subdev = &ram->fb->subdev;
  1209. struct nvkm_device *device = subdev->device;
  1210. struct nvkm_bios *bios = device->bios;
  1211. u8 ver, hdr, cnt, len, snr, ssz;
  1212. u32 data, save;
  1213. int i;
  1214. /* run a bunch of tables from rammap table. there's actually
  1215. * individual pointers for each rammap entry too, but, nvidia
  1216. * seem to just run the last two entries' scripts early on in
  1217. * their init, and never again.. we'll just run 'em all once
  1218. * for now.
  1219. *
  1220. * i strongly suspect that each script is for a separate mode
  1221. * (likely selected by 0x10f65c's lower bits?), and the
  1222. * binary driver skips the one that's already been setup by
  1223. * the init tables.
  1224. */
  1225. data = nvbios_rammapTe(bios, &ver, &hdr, &cnt, &len, &snr, &ssz);
  1226. if (!data || hdr < 0x15)
  1227. return -EINVAL;
  1228. cnt = nvbios_rd08(bios, data + 0x14); /* guess at count */
  1229. data = nvbios_rd32(bios, data + 0x10); /* guess u32... */
  1230. save = nvkm_rd32(device, 0x10f65c) & 0x000000f0;
  1231. for (i = 0; i < cnt; i++, data += 4) {
  1232. if (i != save >> 4) {
  1233. nvkm_mask(device, 0x10f65c, 0x000000f0, i << 4);
  1234. nvbios_exec(&(struct nvbios_init) {
  1235. .subdev = subdev,
  1236. .bios = bios,
  1237. .offset = nvbios_rd32(bios, data),
  1238. .execute = 1,
  1239. });
  1240. }
  1241. }
  1242. nvkm_mask(device, 0x10f65c, 0x000000f0, save);
  1243. nvkm_mask(device, 0x10f584, 0x11000000, 0x00000000);
  1244. nvkm_wr32(device, 0x10ecc0, 0xffffffff);
  1245. nvkm_mask(device, 0x10f160, 0x00000010, 0x00000010);
  1246. return gk104_ram_train_init(ram);
  1247. }
  1248. static int
  1249. gk104_ram_ctor_data(struct gk104_ram *ram, u8 ramcfg, int i)
  1250. {
  1251. struct nvkm_bios *bios = ram->base.fb->subdev.device->bios;
  1252. struct nvkm_ram_data *cfg;
  1253. struct nvbios_ramcfg *d = &ram->diff;
  1254. struct nvbios_ramcfg *p, *n;
  1255. u8 ver, hdr, cnt, len;
  1256. u32 data;
  1257. int ret;
  1258. if (!(cfg = kmalloc(sizeof(*cfg), GFP_KERNEL)))
  1259. return -ENOMEM;
  1260. p = &list_last_entry(&ram->cfg, typeof(*cfg), head)->bios;
  1261. n = &cfg->bios;
  1262. /* memory config data for a range of target frequencies */
  1263. data = nvbios_rammapEp(bios, i, &ver, &hdr, &cnt, &len, &cfg->bios);
  1264. if (ret = -ENOENT, !data)
  1265. goto done;
  1266. if (ret = -ENOSYS, ver != 0x11 || hdr < 0x12)
  1267. goto done;
  1268. /* ... and a portion specific to the attached memory */
  1269. data = nvbios_rammapSp(bios, data, ver, hdr, cnt, len, ramcfg,
  1270. &ver, &hdr, &cfg->bios);
  1271. if (ret = -EINVAL, !data)
  1272. goto done;
  1273. if (ret = -ENOSYS, ver != 0x11 || hdr < 0x0a)
  1274. goto done;
  1275. /* lookup memory timings, if bios says they're present */
  1276. if (cfg->bios.ramcfg_timing != 0xff) {
  1277. data = nvbios_timingEp(bios, cfg->bios.ramcfg_timing,
  1278. &ver, &hdr, &cnt, &len,
  1279. &cfg->bios);
  1280. if (ret = -EINVAL, !data)
  1281. goto done;
  1282. if (ret = -ENOSYS, ver != 0x20 || hdr < 0x33)
  1283. goto done;
  1284. }
  1285. list_add_tail(&cfg->head, &ram->cfg);
  1286. if (ret = 0, i == 0)
  1287. goto done;
  1288. d->rammap_11_0a_03fe |= p->rammap_11_0a_03fe != n->rammap_11_0a_03fe;
  1289. d->rammap_11_09_01ff |= p->rammap_11_09_01ff != n->rammap_11_09_01ff;
  1290. d->rammap_11_0a_0400 |= p->rammap_11_0a_0400 != n->rammap_11_0a_0400;
  1291. d->rammap_11_0a_0800 |= p->rammap_11_0a_0800 != n->rammap_11_0a_0800;
  1292. d->rammap_11_0b_01f0 |= p->rammap_11_0b_01f0 != n->rammap_11_0b_01f0;
  1293. d->rammap_11_0b_0200 |= p->rammap_11_0b_0200 != n->rammap_11_0b_0200;
  1294. d->rammap_11_0d |= p->rammap_11_0d != n->rammap_11_0d;
  1295. d->rammap_11_0f |= p->rammap_11_0f != n->rammap_11_0f;
  1296. d->rammap_11_0e |= p->rammap_11_0e != n->rammap_11_0e;
  1297. d->rammap_11_0b_0800 |= p->rammap_11_0b_0800 != n->rammap_11_0b_0800;
  1298. d->rammap_11_0b_0400 |= p->rammap_11_0b_0400 != n->rammap_11_0b_0400;
  1299. d->ramcfg_11_01_01 |= p->ramcfg_11_01_01 != n->ramcfg_11_01_01;
  1300. d->ramcfg_11_01_02 |= p->ramcfg_11_01_02 != n->ramcfg_11_01_02;
  1301. d->ramcfg_11_01_10 |= p->ramcfg_11_01_10 != n->ramcfg_11_01_10;
  1302. d->ramcfg_11_02_03 |= p->ramcfg_11_02_03 != n->ramcfg_11_02_03;
  1303. d->ramcfg_11_08_20 |= p->ramcfg_11_08_20 != n->ramcfg_11_08_20;
  1304. d->timing_20_30_07 |= p->timing_20_30_07 != n->timing_20_30_07;
  1305. done:
  1306. if (ret)
  1307. kfree(cfg);
  1308. return ret;
  1309. }
  1310. static void *
  1311. gk104_ram_dtor(struct nvkm_ram *base)
  1312. {
  1313. struct gk104_ram *ram = gk104_ram(base);
  1314. struct nvkm_ram_data *cfg, *tmp;
  1315. list_for_each_entry_safe(cfg, tmp, &ram->cfg, head) {
  1316. kfree(cfg);
  1317. }
  1318. return ram;
  1319. }
  1320. static const struct nvkm_ram_func
  1321. gk104_ram_func = {
  1322. .dtor = gk104_ram_dtor,
  1323. .init = gk104_ram_init,
  1324. .get = gf100_ram_get,
  1325. .put = gf100_ram_put,
  1326. .calc = gk104_ram_calc,
  1327. .prog = gk104_ram_prog,
  1328. .tidy = gk104_ram_tidy,
  1329. };
  1330. int
  1331. gk104_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
  1332. {
  1333. return gk104_ram_ctor(fb, pram, 0x022554);
  1334. }
  1335. int
  1336. gk104_ram_ctor(struct nvkm_fb *fb, struct nvkm_ram **pram, u32 maskaddr)
  1337. {
  1338. struct nvkm_subdev *subdev = &fb->subdev;
  1339. struct nvkm_device *device = subdev->device;
  1340. struct nvkm_bios *bios = device->bios;
  1341. struct nvkm_gpio *gpio = device->gpio;
  1342. struct dcb_gpio_func func;
  1343. struct gk104_ram *ram;
  1344. int ret, i;
  1345. u8 ramcfg = nvbios_ramcfg_index(subdev);
  1346. u32 tmp;
  1347. if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
  1348. return -ENOMEM;
  1349. *pram = &ram->base;
  1350. ret = gf100_ram_ctor(&gk104_ram_func, fb, maskaddr, &ram->base);
  1351. if (ret)
  1352. return ret;
  1353. INIT_LIST_HEAD(&ram->cfg);
  1354. /* calculate a mask of differently configured memory partitions,
  1355. * because, of course reclocking wasn't complicated enough
  1356. * already without having to treat some of them differently to
  1357. * the others....
  1358. */
  1359. ram->parts = nvkm_rd32(device, 0x022438);
  1360. ram->pmask = nvkm_rd32(device, 0x022554);
  1361. ram->pnuts = 0;
  1362. for (i = 0, tmp = 0; i < ram->parts; i++) {
  1363. if (!(ram->pmask & (1 << i))) {
  1364. u32 cfg1 = nvkm_rd32(device, 0x110204 + (i * 0x1000));
  1365. if (tmp && tmp != cfg1) {
  1366. ram->pnuts |= (1 << i);
  1367. continue;
  1368. }
  1369. tmp = cfg1;
  1370. }
  1371. }
  1372. /* parse bios data for all rammap table entries up-front, and
  1373. * build information on whether certain fields differ between
  1374. * any of the entries.
  1375. *
  1376. * the binary driver appears to completely ignore some fields
  1377. * when all entries contain the same value. at first, it was
  1378. * hoped that these were mere optimisations and the bios init
  1379. * tables had configured as per the values here, but there is
  1380. * evidence now to suggest that this isn't the case and we do
  1381. * need to treat this condition as a "don't touch" indicator.
  1382. */
  1383. for (i = 0; !ret; i++) {
  1384. ret = gk104_ram_ctor_data(ram, ramcfg, i);
  1385. if (ret && ret != -ENOENT) {
  1386. nvkm_error(subdev, "failed to parse ramcfg data\n");
  1387. return ret;
  1388. }
  1389. }
  1390. /* parse bios data for both pll's */
  1391. ret = nvbios_pll_parse(bios, 0x0c, &ram->fuc.refpll);
  1392. if (ret) {
  1393. nvkm_error(subdev, "mclk refpll data not found\n");
  1394. return ret;
  1395. }
  1396. ret = nvbios_pll_parse(bios, 0x04, &ram->fuc.mempll);
  1397. if (ret) {
  1398. nvkm_error(subdev, "mclk pll data not found\n");
  1399. return ret;
  1400. }
  1401. /* lookup memory voltage gpios */
  1402. ret = nvkm_gpio_find(gpio, 0, 0x18, DCB_GPIO_UNUSED, &func);
  1403. if (ret == 0) {
  1404. ram->fuc.r_gpioMV = ramfuc_reg(0x00d610 + (func.line * 0x04));
  1405. ram->fuc.r_funcMV[0] = (func.log[0] ^ 2) << 12;
  1406. ram->fuc.r_funcMV[1] = (func.log[1] ^ 2) << 12;
  1407. }
  1408. ret = nvkm_gpio_find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func);
  1409. if (ret == 0) {
  1410. ram->fuc.r_gpio2E = ramfuc_reg(0x00d610 + (func.line * 0x04));
  1411. ram->fuc.r_func2E[0] = (func.log[0] ^ 2) << 12;
  1412. ram->fuc.r_func2E[1] = (func.log[1] ^ 2) << 12;
  1413. }
  1414. ram->fuc.r_gpiotrig = ramfuc_reg(0x00d604);
  1415. ram->fuc.r_0x132020 = ramfuc_reg(0x132020);
  1416. ram->fuc.r_0x132028 = ramfuc_reg(0x132028);
  1417. ram->fuc.r_0x132024 = ramfuc_reg(0x132024);
  1418. ram->fuc.r_0x132030 = ramfuc_reg(0x132030);
  1419. ram->fuc.r_0x132034 = ramfuc_reg(0x132034);
  1420. ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
  1421. ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
  1422. ram->fuc.r_0x132040 = ramfuc_reg(0x132040);
  1423. ram->fuc.r_0x10f248 = ramfuc_reg(0x10f248);
  1424. ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
  1425. ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
  1426. ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
  1427. ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
  1428. ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
  1429. ram->fuc.r_0x10f2a4 = ramfuc_reg(0x10f2a4);
  1430. ram->fuc.r_0x10f2a8 = ramfuc_reg(0x10f2a8);
  1431. ram->fuc.r_0x10f2ac = ramfuc_reg(0x10f2ac);
  1432. ram->fuc.r_0x10f2cc = ramfuc_reg(0x10f2cc);
  1433. ram->fuc.r_0x10f2e8 = ramfuc_reg(0x10f2e8);
  1434. ram->fuc.r_0x10f250 = ramfuc_reg(0x10f250);
  1435. ram->fuc.r_0x10f24c = ramfuc_reg(0x10f24c);
  1436. ram->fuc.r_0x10fec4 = ramfuc_reg(0x10fec4);
  1437. ram->fuc.r_0x10fec8 = ramfuc_reg(0x10fec8);
  1438. ram->fuc.r_0x10f604 = ramfuc_reg(0x10f604);
  1439. ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
  1440. ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
  1441. ram->fuc.r_0x100770 = ramfuc_reg(0x100770);
  1442. ram->fuc.r_0x100778 = ramfuc_reg(0x100778);
  1443. ram->fuc.r_0x10f224 = ramfuc_reg(0x10f224);
  1444. ram->fuc.r_0x10f870 = ramfuc_reg(0x10f870);
  1445. ram->fuc.r_0x10f698 = ramfuc_reg(0x10f698);
  1446. ram->fuc.r_0x10f694 = ramfuc_reg(0x10f694);
  1447. ram->fuc.r_0x10f6b8 = ramfuc_reg(0x10f6b8);
  1448. ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
  1449. ram->fuc.r_0x10f670 = ramfuc_reg(0x10f670);
  1450. ram->fuc.r_0x10f60c = ramfuc_reg(0x10f60c);
  1451. ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
  1452. ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
  1453. ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
  1454. ram->fuc.r_0x10f82c = ramfuc_reg(0x10f82c);
  1455. ram->fuc.r_0x10f978 = ramfuc_reg(0x10f978);
  1456. ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
  1457. ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
  1458. switch (ram->base.type) {
  1459. case NVKM_RAM_TYPE_GDDR5:
  1460. ram->fuc.r_mr[0] = ramfuc_reg(0x10f300);
  1461. ram->fuc.r_mr[1] = ramfuc_reg(0x10f330);
  1462. ram->fuc.r_mr[2] = ramfuc_reg(0x10f334);
  1463. ram->fuc.r_mr[3] = ramfuc_reg(0x10f338);
  1464. ram->fuc.r_mr[4] = ramfuc_reg(0x10f33c);
  1465. ram->fuc.r_mr[5] = ramfuc_reg(0x10f340);
  1466. ram->fuc.r_mr[6] = ramfuc_reg(0x10f344);
  1467. ram->fuc.r_mr[7] = ramfuc_reg(0x10f348);
  1468. ram->fuc.r_mr[8] = ramfuc_reg(0x10f354);
  1469. ram->fuc.r_mr[15] = ramfuc_reg(0x10f34c);
  1470. break;
  1471. case NVKM_RAM_TYPE_DDR3:
  1472. ram->fuc.r_mr[0] = ramfuc_reg(0x10f300);
  1473. ram->fuc.r_mr[1] = ramfuc_reg(0x10f304);
  1474. ram->fuc.r_mr[2] = ramfuc_reg(0x10f320);
  1475. break;
  1476. default:
  1477. break;
  1478. }
  1479. ram->fuc.r_0x62c000 = ramfuc_reg(0x62c000);
  1480. ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
  1481. ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
  1482. ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
  1483. ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
  1484. ram->fuc.r_0x10f318 = ramfuc_reg(0x10f318);
  1485. ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
  1486. ram->fuc.r_0x10f69c = ramfuc_reg(0x10f69c);
  1487. ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
  1488. ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
  1489. ram->fuc.r_0x1373f4 = ramfuc_reg(0x1373f4);
  1490. ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
  1491. ram->fuc.r_0x10f65c = ramfuc_reg(0x10f65c);
  1492. ram->fuc.r_0x10f6bc = ramfuc_reg(0x10f6bc);
  1493. ram->fuc.r_0x100710 = ramfuc_reg(0x100710);
  1494. ram->fuc.r_0x100750 = ramfuc_reg(0x100750);
  1495. return 0;
  1496. }