nv50.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. /*
  2. * Copyright 2012 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #include "nv50.h"
  25. #include "pll.h"
  26. #include "seq.h"
  27. #include <subdev/bios.h>
  28. #include <subdev/bios/pll.h>
  29. static u32
  30. read_div(struct nv50_clk *clk)
  31. {
  32. struct nvkm_device *device = clk->base.subdev.device;
  33. switch (device->chipset) {
  34. case 0x50: /* it exists, but only has bit 31, not the dividers.. */
  35. case 0x84:
  36. case 0x86:
  37. case 0x98:
  38. case 0xa0:
  39. return nvkm_rd32(device, 0x004700);
  40. case 0x92:
  41. case 0x94:
  42. case 0x96:
  43. return nvkm_rd32(device, 0x004800);
  44. default:
  45. return 0x00000000;
  46. }
  47. }
  48. static u32
  49. read_pll_src(struct nv50_clk *clk, u32 base)
  50. {
  51. struct nvkm_subdev *subdev = &clk->base.subdev;
  52. struct nvkm_device *device = subdev->device;
  53. u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
  54. u32 rsel = nvkm_rd32(device, 0x00e18c);
  55. int P, N, M, id;
  56. switch (device->chipset) {
  57. case 0x50:
  58. case 0xa0:
  59. switch (base) {
  60. case 0x4020:
  61. case 0x4028: id = !!(rsel & 0x00000004); break;
  62. case 0x4008: id = !!(rsel & 0x00000008); break;
  63. case 0x4030: id = 0; break;
  64. default:
  65. nvkm_error(subdev, "ref: bad pll %06x\n", base);
  66. return 0;
  67. }
  68. coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
  69. ref *= (coef & 0x01000000) ? 2 : 4;
  70. P = (coef & 0x00070000) >> 16;
  71. N = ((coef & 0x0000ff00) >> 8) + 1;
  72. M = ((coef & 0x000000ff) >> 0) + 1;
  73. break;
  74. case 0x84:
  75. case 0x86:
  76. case 0x92:
  77. coef = nvkm_rd32(device, 0x00e81c);
  78. P = (coef & 0x00070000) >> 16;
  79. N = (coef & 0x0000ff00) >> 8;
  80. M = (coef & 0x000000ff) >> 0;
  81. break;
  82. case 0x94:
  83. case 0x96:
  84. case 0x98:
  85. rsel = nvkm_rd32(device, 0x00c050);
  86. switch (base) {
  87. case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
  88. case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
  89. case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
  90. case 0x4030: rsel = 3; break;
  91. default:
  92. nvkm_error(subdev, "ref: bad pll %06x\n", base);
  93. return 0;
  94. }
  95. switch (rsel) {
  96. case 0: id = 1; break;
  97. case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
  98. case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
  99. case 3: id = 0; break;
  100. }
  101. coef = nvkm_rd32(device, 0x00e81c + (id * 0x28));
  102. P = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
  103. P += (coef & 0x00070000) >> 16;
  104. N = (coef & 0x0000ff00) >> 8;
  105. M = (coef & 0x000000ff) >> 0;
  106. break;
  107. default:
  108. BUG_ON(1);
  109. }
  110. if (M)
  111. return (ref * N / M) >> P;
  112. return 0;
  113. }
  114. static u32
  115. read_pll_ref(struct nv50_clk *clk, u32 base)
  116. {
  117. struct nvkm_subdev *subdev = &clk->base.subdev;
  118. struct nvkm_device *device = subdev->device;
  119. u32 src, mast = nvkm_rd32(device, 0x00c040);
  120. switch (base) {
  121. case 0x004028:
  122. src = !!(mast & 0x00200000);
  123. break;
  124. case 0x004020:
  125. src = !!(mast & 0x00400000);
  126. break;
  127. case 0x004008:
  128. src = !!(mast & 0x00010000);
  129. break;
  130. case 0x004030:
  131. src = !!(mast & 0x02000000);
  132. break;
  133. case 0x00e810:
  134. return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
  135. default:
  136. nvkm_error(subdev, "bad pll %06x\n", base);
  137. return 0;
  138. }
  139. if (src)
  140. return nvkm_clk_read(&clk->base, nv_clk_src_href);
  141. return read_pll_src(clk, base);
  142. }
  143. static u32
  144. read_pll(struct nv50_clk *clk, u32 base)
  145. {
  146. struct nvkm_device *device = clk->base.subdev.device;
  147. u32 mast = nvkm_rd32(device, 0x00c040);
  148. u32 ctrl = nvkm_rd32(device, base + 0);
  149. u32 coef = nvkm_rd32(device, base + 4);
  150. u32 ref = read_pll_ref(clk, base);
  151. u32 freq = 0;
  152. int N1, N2, M1, M2;
  153. if (base == 0x004028 && (mast & 0x00100000)) {
  154. /* wtf, appears to only disable post-divider on gt200 */
  155. if (device->chipset != 0xa0)
  156. return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
  157. }
  158. N2 = (coef & 0xff000000) >> 24;
  159. M2 = (coef & 0x00ff0000) >> 16;
  160. N1 = (coef & 0x0000ff00) >> 8;
  161. M1 = (coef & 0x000000ff);
  162. if ((ctrl & 0x80000000) && M1) {
  163. freq = ref * N1 / M1;
  164. if ((ctrl & 0x40000100) == 0x40000000) {
  165. if (M2)
  166. freq = freq * N2 / M2;
  167. else
  168. freq = 0;
  169. }
  170. }
  171. return freq;
  172. }
  173. int
  174. nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
  175. {
  176. struct nv50_clk *clk = nv50_clk(base);
  177. struct nvkm_subdev *subdev = &clk->base.subdev;
  178. struct nvkm_device *device = subdev->device;
  179. u32 mast = nvkm_rd32(device, 0x00c040);
  180. u32 P = 0;
  181. switch (src) {
  182. case nv_clk_src_crystal:
  183. return device->crystal;
  184. case nv_clk_src_href:
  185. return 100000; /* PCIE reference clock */
  186. case nv_clk_src_hclk:
  187. return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
  188. case nv_clk_src_hclkm3:
  189. return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
  190. case nv_clk_src_hclkm3d2:
  191. return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
  192. case nv_clk_src_host:
  193. switch (mast & 0x30000000) {
  194. case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
  195. case 0x10000000: break;
  196. case 0x20000000: /* !0x50 */
  197. case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
  198. }
  199. break;
  200. case nv_clk_src_core:
  201. if (!(mast & 0x00100000))
  202. P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
  203. switch (mast & 0x00000003) {
  204. case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
  205. case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
  206. case 0x00000002: return read_pll(clk, 0x004020) >> P;
  207. case 0x00000003: return read_pll(clk, 0x004028) >> P;
  208. }
  209. break;
  210. case nv_clk_src_shader:
  211. P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
  212. switch (mast & 0x00000030) {
  213. case 0x00000000:
  214. if (mast & 0x00000080)
  215. return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
  216. return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
  217. case 0x00000010: break;
  218. case 0x00000020: return read_pll(clk, 0x004028) >> P;
  219. case 0x00000030: return read_pll(clk, 0x004020) >> P;
  220. }
  221. break;
  222. case nv_clk_src_mem:
  223. P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
  224. if (nvkm_rd32(device, 0x004008) & 0x00000200) {
  225. switch (mast & 0x0000c000) {
  226. case 0x00000000:
  227. return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
  228. case 0x00008000:
  229. case 0x0000c000:
  230. return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
  231. }
  232. } else {
  233. return read_pll(clk, 0x004008) >> P;
  234. }
  235. break;
  236. case nv_clk_src_vdec:
  237. P = (read_div(clk) & 0x00000700) >> 8;
  238. switch (device->chipset) {
  239. case 0x84:
  240. case 0x86:
  241. case 0x92:
  242. case 0x94:
  243. case 0x96:
  244. case 0xa0:
  245. switch (mast & 0x00000c00) {
  246. case 0x00000000:
  247. if (device->chipset == 0xa0) /* wtf?? */
  248. return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
  249. return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
  250. case 0x00000400:
  251. return 0;
  252. case 0x00000800:
  253. if (mast & 0x01000000)
  254. return read_pll(clk, 0x004028) >> P;
  255. return read_pll(clk, 0x004030) >> P;
  256. case 0x00000c00:
  257. return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
  258. }
  259. break;
  260. case 0x98:
  261. switch (mast & 0x00000c00) {
  262. case 0x00000000:
  263. return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
  264. case 0x00000400:
  265. return 0;
  266. case 0x00000800:
  267. return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
  268. case 0x00000c00:
  269. return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
  270. }
  271. break;
  272. }
  273. break;
  274. case nv_clk_src_dom6:
  275. switch (device->chipset) {
  276. case 0x50:
  277. case 0xa0:
  278. return read_pll(clk, 0x00e810) >> 2;
  279. case 0x84:
  280. case 0x86:
  281. case 0x92:
  282. case 0x94:
  283. case 0x96:
  284. case 0x98:
  285. P = (read_div(clk) & 0x00000007) >> 0;
  286. switch (mast & 0x0c000000) {
  287. case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
  288. case 0x04000000: break;
  289. case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
  290. case 0x0c000000:
  291. return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
  292. }
  293. break;
  294. default:
  295. break;
  296. }
  297. default:
  298. break;
  299. }
  300. nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
  301. return -EINVAL;
  302. }
  303. static u32
  304. calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
  305. {
  306. struct nvkm_subdev *subdev = &clk->base.subdev;
  307. struct nvbios_pll pll;
  308. int ret;
  309. ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
  310. if (ret)
  311. return 0;
  312. pll.vco2.max_freq = 0;
  313. pll.refclk = read_pll_ref(clk, reg);
  314. if (!pll.refclk)
  315. return 0;
  316. return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
  317. }
  318. static inline u32
  319. calc_div(u32 src, u32 target, int *div)
  320. {
  321. u32 clk0 = src, clk1 = src;
  322. for (*div = 0; *div <= 7; (*div)++) {
  323. if (clk0 <= target) {
  324. clk1 = clk0 << (*div ? 1 : 0);
  325. break;
  326. }
  327. clk0 >>= 1;
  328. }
  329. if (target - clk0 <= clk1 - target)
  330. return clk0;
  331. (*div)--;
  332. return clk1;
  333. }
  334. static inline u32
  335. clk_same(u32 a, u32 b)
  336. {
  337. return ((a / 1000) == (b / 1000));
  338. }
  339. int
  340. nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
  341. {
  342. struct nv50_clk *clk = nv50_clk(base);
  343. struct nv50_clk_hwsq *hwsq = &clk->hwsq;
  344. struct nvkm_subdev *subdev = &clk->base.subdev;
  345. struct nvkm_device *device = subdev->device;
  346. const int shader = cstate->domain[nv_clk_src_shader];
  347. const int core = cstate->domain[nv_clk_src_core];
  348. const int vdec = cstate->domain[nv_clk_src_vdec];
  349. const int dom6 = cstate->domain[nv_clk_src_dom6];
  350. u32 mastm = 0, mastv = 0;
  351. u32 divsm = 0, divsv = 0;
  352. int N, M, P1, P2;
  353. int freq, out;
  354. /* prepare a hwsq script from which we'll perform the reclock */
  355. out = clk_init(hwsq, subdev);
  356. if (out)
  357. return out;
  358. clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
  359. clk_nsec(hwsq, 8000);
  360. clk_setf(hwsq, 0x10, 0x00); /* disable fb */
  361. clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
  362. /* vdec: avoid modifying xpll until we know exactly how the other
  363. * clock domains work, i suspect at least some of them can also be
  364. * tied to xpll...
  365. */
  366. if (vdec) {
  367. /* see how close we can get using nvclk as a source */
  368. freq = calc_div(core, vdec, &P1);
  369. /* see how close we can get using xpll/hclk as a source */
  370. if (device->chipset != 0x98)
  371. out = read_pll(clk, 0x004030);
  372. else
  373. out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
  374. out = calc_div(out, vdec, &P2);
  375. /* select whichever gets us closest */
  376. if (abs(vdec - freq) <= abs(vdec - out)) {
  377. if (device->chipset != 0x98)
  378. mastv |= 0x00000c00;
  379. divsv |= P1 << 8;
  380. } else {
  381. mastv |= 0x00000800;
  382. divsv |= P2 << 8;
  383. }
  384. mastm |= 0x00000c00;
  385. divsm |= 0x00000700;
  386. }
  387. /* dom6: nfi what this is, but we're limited to various combinations
  388. * of the host clock frequency
  389. */
  390. if (dom6) {
  391. if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
  392. mastv |= 0x00000000;
  393. } else
  394. if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
  395. mastv |= 0x08000000;
  396. } else {
  397. freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
  398. calc_div(freq, dom6, &P1);
  399. mastv |= 0x0c000000;
  400. divsv |= P1;
  401. }
  402. mastm |= 0x0c000000;
  403. divsm |= 0x00000007;
  404. }
  405. /* vdec/dom6: switch to "safe" clocks temporarily, update dividers
  406. * and then switch to target clocks
  407. */
  408. clk_mask(hwsq, mast, mastm, 0x00000000);
  409. clk_mask(hwsq, divs, divsm, divsv);
  410. clk_mask(hwsq, mast, mastm, mastv);
  411. /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
  412. * sclk to hclk) before reprogramming
  413. */
  414. if (device->chipset < 0x92)
  415. clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
  416. else
  417. clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
  418. /* core: for the moment at least, always use nvpll */
  419. freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
  420. if (freq == 0)
  421. return -ERANGE;
  422. clk_mask(hwsq, nvpll[0], 0xc03f0100,
  423. 0x80000000 | (P1 << 19) | (P1 << 16));
  424. clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
  425. /* shader: tie to nvclk if possible, otherwise use spll. have to be
  426. * very careful that the shader clock is at least twice the core, or
  427. * some chipsets will be very unhappy. i expect most or all of these
  428. * cases will be handled by tying to nvclk, but it's possible there's
  429. * corners
  430. */
  431. if (P1-- && shader == (core << 1)) {
  432. clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
  433. clk_mask(hwsq, mast, 0x00100033, 0x00000023);
  434. } else {
  435. freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
  436. if (freq == 0)
  437. return -ERANGE;
  438. clk_mask(hwsq, spll[0], 0xc03f0100,
  439. 0x80000000 | (P1 << 19) | (P1 << 16));
  440. clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
  441. clk_mask(hwsq, mast, 0x00100033, 0x00000033);
  442. }
  443. /* restore normal operation */
  444. clk_setf(hwsq, 0x10, 0x01); /* enable fb */
  445. clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
  446. clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
  447. return 0;
  448. }
  449. int
  450. nv50_clk_prog(struct nvkm_clk *base)
  451. {
  452. struct nv50_clk *clk = nv50_clk(base);
  453. return clk_exec(&clk->hwsq, true);
  454. }
  455. void
  456. nv50_clk_tidy(struct nvkm_clk *base)
  457. {
  458. struct nv50_clk *clk = nv50_clk(base);
  459. clk_exec(&clk->hwsq, false);
  460. }
  461. int
  462. nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
  463. int index, bool allow_reclock, struct nvkm_clk **pclk)
  464. {
  465. struct nv50_clk *clk;
  466. int ret;
  467. if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
  468. return -ENOMEM;
  469. ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
  470. *pclk = &clk->base;
  471. if (ret)
  472. return ret;
  473. clk->hwsq.r_fifo = hwsq_reg(0x002504);
  474. clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
  475. clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
  476. clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
  477. clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
  478. switch (device->chipset) {
  479. case 0x92:
  480. case 0x94:
  481. case 0x96:
  482. clk->hwsq.r_divs = hwsq_reg(0x004800);
  483. break;
  484. default:
  485. clk->hwsq.r_divs = hwsq_reg(0x004700);
  486. break;
  487. }
  488. clk->hwsq.r_mast = hwsq_reg(0x00c040);
  489. return 0;
  490. }
  491. static const struct nvkm_clk_func
  492. nv50_clk = {
  493. .read = nv50_clk_read,
  494. .calc = nv50_clk_calc,
  495. .prog = nv50_clk_prog,
  496. .tidy = nv50_clk_tidy,
  497. .domains = {
  498. { nv_clk_src_crystal, 0xff },
  499. { nv_clk_src_href , 0xff },
  500. { nv_clk_src_core , 0xff, 0, "core", 1000 },
  501. { nv_clk_src_shader , 0xff, 0, "shader", 1000 },
  502. { nv_clk_src_mem , 0xff, 0, "memory", 1000 },
  503. { nv_clk_src_max }
  504. }
  505. };
  506. int
  507. nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
  508. {
  509. return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
  510. }