a5xx_power.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /* Copyright (c) 2016 The Linux Foundation. All rights reserved.
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License version 2 and
  5. * only version 2 as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. */
  13. #include <linux/pm_opp.h>
  14. #include "a5xx_gpu.h"
  15. /*
  16. * The GPMU data block is a block of shared registers that can be used to
  17. * communicate back and forth. These "registers" are by convention with the GPMU
  18. * firwmare and not bound to any specific hardware design
  19. */
  20. #define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE
  21. #define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5)
  22. #define AGC_MSG_BASE (AGC_INIT_BASE + 7)
  23. #define AGC_MSG_STATE (AGC_MSG_BASE + 0)
  24. #define AGC_MSG_COMMAND (AGC_MSG_BASE + 1)
  25. #define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3)
  26. #define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o))
  27. #define AGC_POWER_CONFIG_PRODUCTION_ID 1
  28. #define AGC_INIT_MSG_VALUE 0xBABEFACE
  29. static struct {
  30. uint32_t reg;
  31. uint32_t value;
  32. } a5xx_sequence_regs[] = {
  33. { 0xB9A1, 0x00010303 },
  34. { 0xB9A2, 0x13000000 },
  35. { 0xB9A3, 0x00460020 },
  36. { 0xB9A4, 0x10000000 },
  37. { 0xB9A5, 0x040A1707 },
  38. { 0xB9A6, 0x00010000 },
  39. { 0xB9A7, 0x0E000904 },
  40. { 0xB9A8, 0x10000000 },
  41. { 0xB9A9, 0x01165000 },
  42. { 0xB9AA, 0x000E0002 },
  43. { 0xB9AB, 0x03884141 },
  44. { 0xB9AC, 0x10000840 },
  45. { 0xB9AD, 0x572A5000 },
  46. { 0xB9AE, 0x00000003 },
  47. { 0xB9AF, 0x00000000 },
  48. { 0xB9B0, 0x10000000 },
  49. { 0xB828, 0x6C204010 },
  50. { 0xB829, 0x6C204011 },
  51. { 0xB82A, 0x6C204012 },
  52. { 0xB82B, 0x6C204013 },
  53. { 0xB82C, 0x6C204014 },
  54. { 0xB90F, 0x00000004 },
  55. { 0xB910, 0x00000002 },
  56. { 0xB911, 0x00000002 },
  57. { 0xB912, 0x00000002 },
  58. { 0xB913, 0x00000002 },
  59. { 0xB92F, 0x00000004 },
  60. { 0xB930, 0x00000005 },
  61. { 0xB931, 0x00000005 },
  62. { 0xB932, 0x00000005 },
  63. { 0xB933, 0x00000005 },
  64. { 0xB96F, 0x00000001 },
  65. { 0xB970, 0x00000003 },
  66. { 0xB94F, 0x00000004 },
  67. { 0xB950, 0x0000000B },
  68. { 0xB951, 0x0000000B },
  69. { 0xB952, 0x0000000B },
  70. { 0xB953, 0x0000000B },
  71. { 0xB907, 0x00000019 },
  72. { 0xB927, 0x00000019 },
  73. { 0xB947, 0x00000019 },
  74. { 0xB967, 0x00000019 },
  75. { 0xB987, 0x00000019 },
  76. { 0xB906, 0x00220001 },
  77. { 0xB926, 0x00220001 },
  78. { 0xB946, 0x00220001 },
  79. { 0xB966, 0x00220001 },
  80. { 0xB986, 0x00300000 },
  81. { 0xAC40, 0x0340FF41 },
  82. { 0xAC41, 0x03BEFED0 },
  83. { 0xAC42, 0x00331FED },
  84. { 0xAC43, 0x021FFDD3 },
  85. { 0xAC44, 0x5555AAAA },
  86. { 0xAC45, 0x5555AAAA },
  87. { 0xB9BA, 0x00000008 },
  88. };
  89. /*
  90. * Get the actual voltage value for the operating point at the specified
  91. * frequency
  92. */
  93. static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq)
  94. {
  95. struct drm_device *dev = gpu->dev;
  96. struct msm_drm_private *priv = dev->dev_private;
  97. struct platform_device *pdev = priv->gpu_pdev;
  98. struct dev_pm_opp *opp;
  99. opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true);
  100. return (!IS_ERR(opp)) ? dev_pm_opp_get_voltage(opp) / 1000 : 0;
  101. }
  102. /* Setup thermal limit management */
  103. static void a5xx_lm_setup(struct msm_gpu *gpu)
  104. {
  105. struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
  106. struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
  107. unsigned int i;
  108. /* Write the block of sequence registers */
  109. for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++)
  110. gpu_write(gpu, a5xx_sequence_regs[i].reg,
  111. a5xx_sequence_regs[i].value);
  112. /* Hard code the A530 GPU thermal sensor ID for the GPMU */
  113. gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007);
  114. gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01);
  115. gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01);
  116. /* Until we get clock scaling 0 is always the active power level */
  117. gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0);
  118. gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage);
  119. /* The threshold is fixed at 6000 for A530 */
  120. gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000);
  121. gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
  122. gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1);
  123. /* Write the voltage table */
  124. gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
  125. gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1);
  126. gpu_write(gpu, AGC_MSG_STATE, 1);
  127. gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID);
  128. /* Write the max power - hard coded to 5448 for A530 */
  129. gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448);
  130. gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1);
  131. /*
  132. * For now just write the one voltage level - we will do more when we
  133. * can do scaling
  134. */
  135. gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate));
  136. gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000);
  137. gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t));
  138. gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE);
  139. }
  140. /* Enable SP/TP cpower collapse */
  141. static void a5xx_pc_init(struct msm_gpu *gpu)
  142. {
  143. gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F);
  144. gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0);
  145. gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080);
  146. gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040);
  147. }
  148. /* Enable the GPMU microcontroller */
  149. static int a5xx_gpmu_init(struct msm_gpu *gpu)
  150. {
  151. struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
  152. struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
  153. struct msm_ringbuffer *ring = gpu->rb;
  154. if (!a5xx_gpu->gpmu_dwords)
  155. return 0;
  156. /* Turn off protected mode for this operation */
  157. OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
  158. OUT_RING(ring, 0);
  159. /* Kick off the IB to load the GPMU microcode */
  160. OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
  161. OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova));
  162. OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova));
  163. OUT_RING(ring, a5xx_gpu->gpmu_dwords);
  164. /* Turn back on protected mode */
  165. OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
  166. OUT_RING(ring, 1);
  167. gpu->funcs->flush(gpu);
  168. if (!gpu->funcs->idle(gpu)) {
  169. DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n",
  170. gpu->name);
  171. return -EINVAL;
  172. }
  173. gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014);
  174. /* Kick off the GPMU */
  175. gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0);
  176. /*
  177. * Wait for the GPMU to respond. It isn't fatal if it doesn't, we just
  178. * won't have advanced power collapse.
  179. */
  180. if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF,
  181. 0xBABEFACE))
  182. DRM_ERROR("%s: GPMU firmware initialization timed out\n",
  183. gpu->name);
  184. return 0;
  185. }
  186. /* Enable limits management */
  187. static void a5xx_lm_enable(struct msm_gpu *gpu)
  188. {
  189. gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0);
  190. gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A);
  191. gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01);
  192. gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000);
  193. gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000);
  194. gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011);
  195. }
  196. int a5xx_power_init(struct msm_gpu *gpu)
  197. {
  198. int ret;
  199. /* Set up the limits management */
  200. a5xx_lm_setup(gpu);
  201. /* Set up SP/TP power collpase */
  202. a5xx_pc_init(gpu);
  203. /* Start the GPMU */
  204. ret = a5xx_gpmu_init(gpu);
  205. if (ret)
  206. return ret;
  207. /* Start the limits management */
  208. a5xx_lm_enable(gpu);
  209. return 0;
  210. }
  211. void a5xx_gpmu_ucode_init(struct msm_gpu *gpu)
  212. {
  213. struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
  214. struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
  215. struct drm_device *drm = gpu->dev;
  216. const struct firmware *fw;
  217. uint32_t dwords = 0, offset = 0, bosize;
  218. unsigned int *data, *ptr, *cmds;
  219. unsigned int cmds_size;
  220. if (a5xx_gpu->gpmu_bo)
  221. return;
  222. /* Get the firmware */
  223. if (request_firmware(&fw, adreno_gpu->info->gpmufw, drm->dev)) {
  224. DRM_ERROR("%s: Could not get GPMU firmware. GPMU will not be active\n",
  225. gpu->name);
  226. return;
  227. }
  228. data = (unsigned int *) fw->data;
  229. /*
  230. * The first dword is the size of the remaining data in dwords. Use it
  231. * as a checksum of sorts and make sure it matches the actual size of
  232. * the firmware that we read
  233. */
  234. if (fw->size < 8 || (data[0] < 2) || (data[0] >= (fw->size >> 2)))
  235. goto out;
  236. /* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */
  237. if (data[1] != 2)
  238. goto out;
  239. cmds = data + data[2] + 3;
  240. cmds_size = data[0] - data[2] - 2;
  241. /*
  242. * A single type4 opcode can only have so many values attached so
  243. * add enough opcodes to load the all the commands
  244. */
  245. bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2;
  246. mutex_lock(&drm->struct_mutex);
  247. a5xx_gpu->gpmu_bo = msm_gem_new(drm, bosize, MSM_BO_UNCACHED);
  248. mutex_unlock(&drm->struct_mutex);
  249. if (IS_ERR(a5xx_gpu->gpmu_bo))
  250. goto err;
  251. if (msm_gem_get_iova(a5xx_gpu->gpmu_bo, gpu->id, &a5xx_gpu->gpmu_iova))
  252. goto err;
  253. ptr = msm_gem_get_vaddr(a5xx_gpu->gpmu_bo);
  254. if (!ptr)
  255. goto err;
  256. while (cmds_size > 0) {
  257. int i;
  258. uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ?
  259. TYPE4_MAX_PAYLOAD : cmds_size;
  260. ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset,
  261. _size);
  262. for (i = 0; i < _size; i++)
  263. ptr[dwords++] = *cmds++;
  264. offset += _size;
  265. cmds_size -= _size;
  266. }
  267. msm_gem_put_vaddr(a5xx_gpu->gpmu_bo);
  268. a5xx_gpu->gpmu_dwords = dwords;
  269. goto out;
  270. err:
  271. if (a5xx_gpu->gpmu_iova)
  272. msm_gem_put_iova(a5xx_gpu->gpmu_bo, gpu->id);
  273. if (a5xx_gpu->gpmu_bo)
  274. drm_gem_object_unreference_unlocked(a5xx_gpu->gpmu_bo);
  275. a5xx_gpu->gpmu_bo = NULL;
  276. a5xx_gpu->gpmu_iova = 0;
  277. a5xx_gpu->gpmu_dwords = 0;
  278. out:
  279. /* No need to keep that firmware laying around anymore */
  280. release_firmware(fw);
  281. }