intel_pm.c 228 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include <drm/drm_plane_helper.h>
  29. #include "i915_drv.h"
  30. #include "intel_drv.h"
  31. #include "../../../platform/x86/intel_ips.h"
  32. #include <linux/module.h>
  33. #include <drm/drm_atomic_helper.h>
  34. /**
  35. * DOC: RC6
  36. *
  37. * RC6 is a special power stage which allows the GPU to enter an very
  38. * low-voltage mode when idle, using down to 0V while at this stage. This
  39. * stage is entered automatically when the GPU is idle when RC6 support is
  40. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41. *
  42. * There are different RC6 modes available in Intel GPU, which differentiate
  43. * among each other with the latency required to enter and leave RC6 and
  44. * voltage consumed by the GPU in different states.
  45. *
  46. * The combination of the following flags define which states GPU is allowed
  47. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48. * RC6pp is deepest RC6. Their support by hardware varies according to the
  49. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50. * which brings the most power savings; deeper states save more power, but
  51. * require higher latency to switch to and wake up.
  52. */
  53. #define INTEL_RC6_ENABLE (1<<0)
  54. #define INTEL_RC6p_ENABLE (1<<1)
  55. #define INTEL_RC6pp_ENABLE (1<<2)
  56. static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  57. {
  58. /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
  59. I915_WRITE(CHICKEN_PAR1_1,
  60. I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  61. I915_WRITE(GEN8_CONFIG0,
  62. I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  63. /* WaEnableChickenDCPR:skl,bxt,kbl */
  64. I915_WRITE(GEN8_CHICKEN_DCPR_1,
  65. I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  66. /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
  67. /* WaFbcWakeMemOn:skl,bxt,kbl */
  68. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  69. DISP_FBC_WM_DIS |
  70. DISP_FBC_MEMORY_WAKE);
  71. /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
  72. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  73. ILK_DPFC_DISABLE_DUMMY0);
  74. }
  75. static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  76. {
  77. gen9_init_clock_gating(dev_priv);
  78. /* WaDisableSDEUnitClockGating:bxt */
  79. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  80. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  81. /*
  82. * FIXME:
  83. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  84. */
  85. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  86. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  87. /*
  88. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  89. * to stay fully on.
  90. */
  91. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  92. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  93. PWM1_GATING_DIS | PWM2_GATING_DIS);
  94. }
  95. static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
  96. {
  97. u32 tmp;
  98. tmp = I915_READ(CLKCFG);
  99. switch (tmp & CLKCFG_FSB_MASK) {
  100. case CLKCFG_FSB_533:
  101. dev_priv->fsb_freq = 533; /* 133*4 */
  102. break;
  103. case CLKCFG_FSB_800:
  104. dev_priv->fsb_freq = 800; /* 200*4 */
  105. break;
  106. case CLKCFG_FSB_667:
  107. dev_priv->fsb_freq = 667; /* 167*4 */
  108. break;
  109. case CLKCFG_FSB_400:
  110. dev_priv->fsb_freq = 400; /* 100*4 */
  111. break;
  112. }
  113. switch (tmp & CLKCFG_MEM_MASK) {
  114. case CLKCFG_MEM_533:
  115. dev_priv->mem_freq = 533;
  116. break;
  117. case CLKCFG_MEM_667:
  118. dev_priv->mem_freq = 667;
  119. break;
  120. case CLKCFG_MEM_800:
  121. dev_priv->mem_freq = 800;
  122. break;
  123. }
  124. /* detect pineview DDR3 setting */
  125. tmp = I915_READ(CSHRDDR3CTL);
  126. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  127. }
  128. static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
  129. {
  130. u16 ddrpll, csipll;
  131. ddrpll = I915_READ16(DDRMPLL1);
  132. csipll = I915_READ16(CSIPLL0);
  133. switch (ddrpll & 0xff) {
  134. case 0xc:
  135. dev_priv->mem_freq = 800;
  136. break;
  137. case 0x10:
  138. dev_priv->mem_freq = 1066;
  139. break;
  140. case 0x14:
  141. dev_priv->mem_freq = 1333;
  142. break;
  143. case 0x18:
  144. dev_priv->mem_freq = 1600;
  145. break;
  146. default:
  147. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  148. ddrpll & 0xff);
  149. dev_priv->mem_freq = 0;
  150. break;
  151. }
  152. dev_priv->ips.r_t = dev_priv->mem_freq;
  153. switch (csipll & 0x3ff) {
  154. case 0x00c:
  155. dev_priv->fsb_freq = 3200;
  156. break;
  157. case 0x00e:
  158. dev_priv->fsb_freq = 3733;
  159. break;
  160. case 0x010:
  161. dev_priv->fsb_freq = 4266;
  162. break;
  163. case 0x012:
  164. dev_priv->fsb_freq = 4800;
  165. break;
  166. case 0x014:
  167. dev_priv->fsb_freq = 5333;
  168. break;
  169. case 0x016:
  170. dev_priv->fsb_freq = 5866;
  171. break;
  172. case 0x018:
  173. dev_priv->fsb_freq = 6400;
  174. break;
  175. default:
  176. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  177. csipll & 0x3ff);
  178. dev_priv->fsb_freq = 0;
  179. break;
  180. }
  181. if (dev_priv->fsb_freq == 3200) {
  182. dev_priv->ips.c_m = 0;
  183. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  184. dev_priv->ips.c_m = 1;
  185. } else {
  186. dev_priv->ips.c_m = 2;
  187. }
  188. }
  189. static const struct cxsr_latency cxsr_latency_table[] = {
  190. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  191. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  192. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  193. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  194. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  195. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  196. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  197. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  198. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  199. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  200. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  201. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  202. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  203. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  204. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  205. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  206. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  207. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  208. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  209. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  210. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  211. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  212. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  213. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  214. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  215. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  216. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  217. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  218. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  219. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  220. };
  221. static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
  222. bool is_ddr3,
  223. int fsb,
  224. int mem)
  225. {
  226. const struct cxsr_latency *latency;
  227. int i;
  228. if (fsb == 0 || mem == 0)
  229. return NULL;
  230. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  231. latency = &cxsr_latency_table[i];
  232. if (is_desktop == latency->is_desktop &&
  233. is_ddr3 == latency->is_ddr3 &&
  234. fsb == latency->fsb_freq && mem == latency->mem_freq)
  235. return latency;
  236. }
  237. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  238. return NULL;
  239. }
  240. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  241. {
  242. u32 val;
  243. mutex_lock(&dev_priv->rps.hw_lock);
  244. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  245. if (enable)
  246. val &= ~FORCE_DDR_HIGH_FREQ;
  247. else
  248. val |= FORCE_DDR_HIGH_FREQ;
  249. val &= ~FORCE_DDR_LOW_FREQ;
  250. val |= FORCE_DDR_FREQ_REQ_ACK;
  251. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  252. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  253. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  254. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  255. mutex_unlock(&dev_priv->rps.hw_lock);
  256. }
  257. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  258. {
  259. u32 val;
  260. mutex_lock(&dev_priv->rps.hw_lock);
  261. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  262. if (enable)
  263. val |= DSP_MAXFIFO_PM5_ENABLE;
  264. else
  265. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  266. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  267. mutex_unlock(&dev_priv->rps.hw_lock);
  268. }
  269. #define FW_WM(value, plane) \
  270. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  271. static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  272. {
  273. bool was_enabled;
  274. u32 val;
  275. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  276. was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  277. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  278. POSTING_READ(FW_BLC_SELF_VLV);
  279. } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
  280. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  281. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  282. POSTING_READ(FW_BLC_SELF);
  283. } else if (IS_PINEVIEW(dev_priv)) {
  284. val = I915_READ(DSPFW3);
  285. was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
  286. if (enable)
  287. val |= PINEVIEW_SELF_REFRESH_EN;
  288. else
  289. val &= ~PINEVIEW_SELF_REFRESH_EN;
  290. I915_WRITE(DSPFW3, val);
  291. POSTING_READ(DSPFW3);
  292. } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
  293. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  294. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  295. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  296. I915_WRITE(FW_BLC_SELF, val);
  297. POSTING_READ(FW_BLC_SELF);
  298. } else if (IS_I915GM(dev_priv)) {
  299. /*
  300. * FIXME can't find a bit like this for 915G, and
  301. * and yet it does have the related watermark in
  302. * FW_BLC_SELF. What's going on?
  303. */
  304. was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  305. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  306. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  307. I915_WRITE(INSTPM, val);
  308. POSTING_READ(INSTPM);
  309. } else {
  310. return false;
  311. }
  312. DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
  313. enableddisabled(enable),
  314. enableddisabled(was_enabled));
  315. return was_enabled;
  316. }
  317. bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  318. {
  319. bool ret;
  320. mutex_lock(&dev_priv->wm.wm_mutex);
  321. ret = _intel_set_memory_cxsr(dev_priv, enable);
  322. dev_priv->wm.vlv.cxsr = enable;
  323. mutex_unlock(&dev_priv->wm.wm_mutex);
  324. return ret;
  325. }
  326. /*
  327. * Latency for FIFO fetches is dependent on several factors:
  328. * - memory configuration (speed, channels)
  329. * - chipset
  330. * - current MCH state
  331. * It can be fairly high in some situations, so here we assume a fairly
  332. * pessimal value. It's a tradeoff between extra memory fetches (if we
  333. * set this value too high, the FIFO will fetch frequently to stay full)
  334. * and power consumption (set it too low to save power and we might see
  335. * FIFO underruns and display "flicker").
  336. *
  337. * A value of 5us seems to be a good balance; safe for very low end
  338. * platforms but not overly aggressive on lower latency configs.
  339. */
  340. static const int pessimal_latency_ns = 5000;
  341. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  342. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  343. static int vlv_get_fifo_size(struct intel_plane *plane)
  344. {
  345. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  346. int sprite0_start, sprite1_start, size;
  347. if (plane->id == PLANE_CURSOR)
  348. return 63;
  349. switch (plane->pipe) {
  350. uint32_t dsparb, dsparb2, dsparb3;
  351. case PIPE_A:
  352. dsparb = I915_READ(DSPARB);
  353. dsparb2 = I915_READ(DSPARB2);
  354. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  355. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  356. break;
  357. case PIPE_B:
  358. dsparb = I915_READ(DSPARB);
  359. dsparb2 = I915_READ(DSPARB2);
  360. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  361. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  362. break;
  363. case PIPE_C:
  364. dsparb2 = I915_READ(DSPARB2);
  365. dsparb3 = I915_READ(DSPARB3);
  366. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  367. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  368. break;
  369. default:
  370. return 0;
  371. }
  372. switch (plane->id) {
  373. case PLANE_PRIMARY:
  374. size = sprite0_start;
  375. break;
  376. case PLANE_SPRITE0:
  377. size = sprite1_start - sprite0_start;
  378. break;
  379. case PLANE_SPRITE1:
  380. size = 512 - 1 - sprite1_start;
  381. break;
  382. default:
  383. return 0;
  384. }
  385. DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
  386. return size;
  387. }
  388. static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  389. {
  390. uint32_t dsparb = I915_READ(DSPARB);
  391. int size;
  392. size = dsparb & 0x7f;
  393. if (plane)
  394. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  395. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  396. plane ? "B" : "A", size);
  397. return size;
  398. }
  399. static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  400. {
  401. uint32_t dsparb = I915_READ(DSPARB);
  402. int size;
  403. size = dsparb & 0x1ff;
  404. if (plane)
  405. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  406. size >>= 1; /* Convert to cachelines */
  407. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  408. plane ? "B" : "A", size);
  409. return size;
  410. }
  411. static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  412. {
  413. uint32_t dsparb = I915_READ(DSPARB);
  414. int size;
  415. size = dsparb & 0x7f;
  416. size >>= 2; /* Convert to cachelines */
  417. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  418. plane ? "B" : "A",
  419. size);
  420. return size;
  421. }
  422. /* Pineview has different values for various configs */
  423. static const struct intel_watermark_params pineview_display_wm = {
  424. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  425. .max_wm = PINEVIEW_MAX_WM,
  426. .default_wm = PINEVIEW_DFT_WM,
  427. .guard_size = PINEVIEW_GUARD_WM,
  428. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  429. };
  430. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  431. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  432. .max_wm = PINEVIEW_MAX_WM,
  433. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  434. .guard_size = PINEVIEW_GUARD_WM,
  435. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  436. };
  437. static const struct intel_watermark_params pineview_cursor_wm = {
  438. .fifo_size = PINEVIEW_CURSOR_FIFO,
  439. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  440. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  441. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  442. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  443. };
  444. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  445. .fifo_size = PINEVIEW_CURSOR_FIFO,
  446. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  447. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  448. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  449. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  450. };
  451. static const struct intel_watermark_params g4x_wm_info = {
  452. .fifo_size = G4X_FIFO_SIZE,
  453. .max_wm = G4X_MAX_WM,
  454. .default_wm = G4X_MAX_WM,
  455. .guard_size = 2,
  456. .cacheline_size = G4X_FIFO_LINE_SIZE,
  457. };
  458. static const struct intel_watermark_params g4x_cursor_wm_info = {
  459. .fifo_size = I965_CURSOR_FIFO,
  460. .max_wm = I965_CURSOR_MAX_WM,
  461. .default_wm = I965_CURSOR_DFT_WM,
  462. .guard_size = 2,
  463. .cacheline_size = G4X_FIFO_LINE_SIZE,
  464. };
  465. static const struct intel_watermark_params i965_cursor_wm_info = {
  466. .fifo_size = I965_CURSOR_FIFO,
  467. .max_wm = I965_CURSOR_MAX_WM,
  468. .default_wm = I965_CURSOR_DFT_WM,
  469. .guard_size = 2,
  470. .cacheline_size = I915_FIFO_LINE_SIZE,
  471. };
  472. static const struct intel_watermark_params i945_wm_info = {
  473. .fifo_size = I945_FIFO_SIZE,
  474. .max_wm = I915_MAX_WM,
  475. .default_wm = 1,
  476. .guard_size = 2,
  477. .cacheline_size = I915_FIFO_LINE_SIZE,
  478. };
  479. static const struct intel_watermark_params i915_wm_info = {
  480. .fifo_size = I915_FIFO_SIZE,
  481. .max_wm = I915_MAX_WM,
  482. .default_wm = 1,
  483. .guard_size = 2,
  484. .cacheline_size = I915_FIFO_LINE_SIZE,
  485. };
  486. static const struct intel_watermark_params i830_a_wm_info = {
  487. .fifo_size = I855GM_FIFO_SIZE,
  488. .max_wm = I915_MAX_WM,
  489. .default_wm = 1,
  490. .guard_size = 2,
  491. .cacheline_size = I830_FIFO_LINE_SIZE,
  492. };
  493. static const struct intel_watermark_params i830_bc_wm_info = {
  494. .fifo_size = I855GM_FIFO_SIZE,
  495. .max_wm = I915_MAX_WM/2,
  496. .default_wm = 1,
  497. .guard_size = 2,
  498. .cacheline_size = I830_FIFO_LINE_SIZE,
  499. };
  500. static const struct intel_watermark_params i845_wm_info = {
  501. .fifo_size = I830_FIFO_SIZE,
  502. .max_wm = I915_MAX_WM,
  503. .default_wm = 1,
  504. .guard_size = 2,
  505. .cacheline_size = I830_FIFO_LINE_SIZE,
  506. };
  507. /**
  508. * intel_calculate_wm - calculate watermark level
  509. * @clock_in_khz: pixel clock
  510. * @wm: chip FIFO params
  511. * @cpp: bytes per pixel
  512. * @latency_ns: memory latency for the platform
  513. *
  514. * Calculate the watermark level (the level at which the display plane will
  515. * start fetching from memory again). Each chip has a different display
  516. * FIFO size and allocation, so the caller needs to figure that out and pass
  517. * in the correct intel_watermark_params structure.
  518. *
  519. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  520. * on the pixel size. When it reaches the watermark level, it'll start
  521. * fetching FIFO line sized based chunks from memory until the FIFO fills
  522. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  523. * will occur, and a display engine hang could result.
  524. */
  525. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  526. const struct intel_watermark_params *wm,
  527. int fifo_size, int cpp,
  528. unsigned long latency_ns)
  529. {
  530. long entries_required, wm_size;
  531. /*
  532. * Note: we need to make sure we don't overflow for various clock &
  533. * latency values.
  534. * clocks go from a few thousand to several hundred thousand.
  535. * latency is usually a few thousand
  536. */
  537. entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
  538. 1000;
  539. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  540. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  541. wm_size = fifo_size - (entries_required + wm->guard_size);
  542. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  543. /* Don't promote wm_size to unsigned... */
  544. if (wm_size > (long)wm->max_wm)
  545. wm_size = wm->max_wm;
  546. if (wm_size <= 0)
  547. wm_size = wm->default_wm;
  548. /*
  549. * Bspec seems to indicate that the value shouldn't be lower than
  550. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  551. * Lets go for 8 which is the burst size since certain platforms
  552. * already use a hardcoded 8 (which is what the spec says should be
  553. * done).
  554. */
  555. if (wm_size <= 8)
  556. wm_size = 8;
  557. return wm_size;
  558. }
  559. static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
  560. {
  561. struct intel_crtc *crtc, *enabled = NULL;
  562. for_each_intel_crtc(&dev_priv->drm, crtc) {
  563. if (intel_crtc_active(crtc)) {
  564. if (enabled)
  565. return NULL;
  566. enabled = crtc;
  567. }
  568. }
  569. return enabled;
  570. }
  571. static void pineview_update_wm(struct intel_crtc *unused_crtc)
  572. {
  573. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  574. struct intel_crtc *crtc;
  575. const struct cxsr_latency *latency;
  576. u32 reg;
  577. unsigned long wm;
  578. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  579. dev_priv->is_ddr3,
  580. dev_priv->fsb_freq,
  581. dev_priv->mem_freq);
  582. if (!latency) {
  583. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  584. intel_set_memory_cxsr(dev_priv, false);
  585. return;
  586. }
  587. crtc = single_enabled_crtc(dev_priv);
  588. if (crtc) {
  589. const struct drm_display_mode *adjusted_mode =
  590. &crtc->config->base.adjusted_mode;
  591. const struct drm_framebuffer *fb =
  592. crtc->base.primary->state->fb;
  593. int cpp = fb->format->cpp[0];
  594. int clock = adjusted_mode->crtc_clock;
  595. /* Display SR */
  596. wm = intel_calculate_wm(clock, &pineview_display_wm,
  597. pineview_display_wm.fifo_size,
  598. cpp, latency->display_sr);
  599. reg = I915_READ(DSPFW1);
  600. reg &= ~DSPFW_SR_MASK;
  601. reg |= FW_WM(wm, SR);
  602. I915_WRITE(DSPFW1, reg);
  603. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  604. /* cursor SR */
  605. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  606. pineview_display_wm.fifo_size,
  607. cpp, latency->cursor_sr);
  608. reg = I915_READ(DSPFW3);
  609. reg &= ~DSPFW_CURSOR_SR_MASK;
  610. reg |= FW_WM(wm, CURSOR_SR);
  611. I915_WRITE(DSPFW3, reg);
  612. /* Display HPLL off SR */
  613. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  614. pineview_display_hplloff_wm.fifo_size,
  615. cpp, latency->display_hpll_disable);
  616. reg = I915_READ(DSPFW3);
  617. reg &= ~DSPFW_HPLL_SR_MASK;
  618. reg |= FW_WM(wm, HPLL_SR);
  619. I915_WRITE(DSPFW3, reg);
  620. /* cursor HPLL off SR */
  621. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  622. pineview_display_hplloff_wm.fifo_size,
  623. cpp, latency->cursor_hpll_disable);
  624. reg = I915_READ(DSPFW3);
  625. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  626. reg |= FW_WM(wm, HPLL_CURSOR);
  627. I915_WRITE(DSPFW3, reg);
  628. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  629. intel_set_memory_cxsr(dev_priv, true);
  630. } else {
  631. intel_set_memory_cxsr(dev_priv, false);
  632. }
  633. }
  634. static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
  635. int plane,
  636. const struct intel_watermark_params *display,
  637. int display_latency_ns,
  638. const struct intel_watermark_params *cursor,
  639. int cursor_latency_ns,
  640. int *plane_wm,
  641. int *cursor_wm)
  642. {
  643. struct intel_crtc *crtc;
  644. const struct drm_display_mode *adjusted_mode;
  645. const struct drm_framebuffer *fb;
  646. int htotal, hdisplay, clock, cpp;
  647. int line_time_us, line_count;
  648. int entries, tlb_miss;
  649. crtc = intel_get_crtc_for_plane(dev_priv, plane);
  650. if (!intel_crtc_active(crtc)) {
  651. *cursor_wm = cursor->guard_size;
  652. *plane_wm = display->guard_size;
  653. return false;
  654. }
  655. adjusted_mode = &crtc->config->base.adjusted_mode;
  656. fb = crtc->base.primary->state->fb;
  657. clock = adjusted_mode->crtc_clock;
  658. htotal = adjusted_mode->crtc_htotal;
  659. hdisplay = crtc->config->pipe_src_w;
  660. cpp = fb->format->cpp[0];
  661. /* Use the small buffer method to calculate plane watermark */
  662. entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
  663. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  664. if (tlb_miss > 0)
  665. entries += tlb_miss;
  666. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  667. *plane_wm = entries + display->guard_size;
  668. if (*plane_wm > (int)display->max_wm)
  669. *plane_wm = display->max_wm;
  670. /* Use the large buffer method to calculate cursor watermark */
  671. line_time_us = max(htotal * 1000 / clock, 1);
  672. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  673. entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
  674. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  675. if (tlb_miss > 0)
  676. entries += tlb_miss;
  677. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  678. *cursor_wm = entries + cursor->guard_size;
  679. if (*cursor_wm > (int)cursor->max_wm)
  680. *cursor_wm = (int)cursor->max_wm;
  681. return true;
  682. }
  683. /*
  684. * Check the wm result.
  685. *
  686. * If any calculated watermark values is larger than the maximum value that
  687. * can be programmed into the associated watermark register, that watermark
  688. * must be disabled.
  689. */
  690. static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
  691. int display_wm, int cursor_wm,
  692. const struct intel_watermark_params *display,
  693. const struct intel_watermark_params *cursor)
  694. {
  695. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  696. display_wm, cursor_wm);
  697. if (display_wm > display->max_wm) {
  698. DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
  699. display_wm, display->max_wm);
  700. return false;
  701. }
  702. if (cursor_wm > cursor->max_wm) {
  703. DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
  704. cursor_wm, cursor->max_wm);
  705. return false;
  706. }
  707. if (!(display_wm || cursor_wm)) {
  708. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  709. return false;
  710. }
  711. return true;
  712. }
  713. static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
  714. int plane,
  715. int latency_ns,
  716. const struct intel_watermark_params *display,
  717. const struct intel_watermark_params *cursor,
  718. int *display_wm, int *cursor_wm)
  719. {
  720. struct intel_crtc *crtc;
  721. const struct drm_display_mode *adjusted_mode;
  722. const struct drm_framebuffer *fb;
  723. int hdisplay, htotal, cpp, clock;
  724. unsigned long line_time_us;
  725. int line_count, line_size;
  726. int small, large;
  727. int entries;
  728. if (!latency_ns) {
  729. *display_wm = *cursor_wm = 0;
  730. return false;
  731. }
  732. crtc = intel_get_crtc_for_plane(dev_priv, plane);
  733. adjusted_mode = &crtc->config->base.adjusted_mode;
  734. fb = crtc->base.primary->state->fb;
  735. clock = adjusted_mode->crtc_clock;
  736. htotal = adjusted_mode->crtc_htotal;
  737. hdisplay = crtc->config->pipe_src_w;
  738. cpp = fb->format->cpp[0];
  739. line_time_us = max(htotal * 1000 / clock, 1);
  740. line_count = (latency_ns / line_time_us + 1000) / 1000;
  741. line_size = hdisplay * cpp;
  742. /* Use the minimum of the small and large buffer method for primary */
  743. small = ((clock * cpp / 1000) * latency_ns) / 1000;
  744. large = line_count * line_size;
  745. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  746. *display_wm = entries + display->guard_size;
  747. /* calculate the self-refresh watermark for display cursor */
  748. entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
  749. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  750. *cursor_wm = entries + cursor->guard_size;
  751. return g4x_check_srwm(dev_priv,
  752. *display_wm, *cursor_wm,
  753. display, cursor);
  754. }
  755. #define FW_WM_VLV(value, plane) \
  756. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  757. static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
  758. const struct vlv_wm_values *wm)
  759. {
  760. enum pipe pipe;
  761. for_each_pipe(dev_priv, pipe) {
  762. I915_WRITE(VLV_DDL(pipe),
  763. (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
  764. (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
  765. (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
  766. (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
  767. }
  768. /*
  769. * Zero the (unused) WM1 watermarks, and also clear all the
  770. * high order bits so that there are no out of bounds values
  771. * present in the registers during the reprogramming.
  772. */
  773. I915_WRITE(DSPHOWM, 0);
  774. I915_WRITE(DSPHOWM1, 0);
  775. I915_WRITE(DSPFW4, 0);
  776. I915_WRITE(DSPFW5, 0);
  777. I915_WRITE(DSPFW6, 0);
  778. I915_WRITE(DSPFW1,
  779. FW_WM(wm->sr.plane, SR) |
  780. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  781. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  782. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  783. I915_WRITE(DSPFW2,
  784. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
  785. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  786. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  787. I915_WRITE(DSPFW3,
  788. FW_WM(wm->sr.cursor, CURSOR_SR));
  789. if (IS_CHERRYVIEW(dev_priv)) {
  790. I915_WRITE(DSPFW7_CHV,
  791. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  792. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  793. I915_WRITE(DSPFW8_CHV,
  794. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
  795. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
  796. I915_WRITE(DSPFW9_CHV,
  797. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
  798. FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
  799. I915_WRITE(DSPHOWM,
  800. FW_WM(wm->sr.plane >> 9, SR_HI) |
  801. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
  802. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
  803. FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
  804. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  805. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  806. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  807. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  808. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  809. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  810. } else {
  811. I915_WRITE(DSPFW7,
  812. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  813. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  814. I915_WRITE(DSPHOWM,
  815. FW_WM(wm->sr.plane >> 9, SR_HI) |
  816. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  817. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  818. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  819. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  820. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  821. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  822. }
  823. POSTING_READ(DSPFW1);
  824. }
  825. #undef FW_WM_VLV
  826. enum vlv_wm_level {
  827. VLV_WM_LEVEL_PM2,
  828. VLV_WM_LEVEL_PM5,
  829. VLV_WM_LEVEL_DDR_DVFS,
  830. };
  831. /* latency must be in 0.1us units. */
  832. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  833. unsigned int pipe_htotal,
  834. unsigned int horiz_pixels,
  835. unsigned int cpp,
  836. unsigned int latency)
  837. {
  838. unsigned int ret;
  839. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  840. ret = (ret + 1) * horiz_pixels * cpp;
  841. ret = DIV_ROUND_UP(ret, 64);
  842. return ret;
  843. }
  844. static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
  845. {
  846. /* all latencies in usec */
  847. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  848. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  849. if (IS_CHERRYVIEW(dev_priv)) {
  850. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  851. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  852. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  853. }
  854. }
  855. static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
  856. const struct intel_plane_state *plane_state,
  857. int level)
  858. {
  859. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  860. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  861. const struct drm_display_mode *adjusted_mode =
  862. &crtc_state->base.adjusted_mode;
  863. int clock, htotal, cpp, width, wm;
  864. if (dev_priv->wm.pri_latency[level] == 0)
  865. return USHRT_MAX;
  866. if (!plane_state->base.visible)
  867. return 0;
  868. cpp = plane_state->base.fb->format->cpp[0];
  869. clock = adjusted_mode->crtc_clock;
  870. htotal = adjusted_mode->crtc_htotal;
  871. width = crtc_state->pipe_src_w;
  872. if (WARN_ON(htotal == 0))
  873. htotal = 1;
  874. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  875. /*
  876. * FIXME the formula gives values that are
  877. * too big for the cursor FIFO, and hence we
  878. * would never be able to use cursors. For
  879. * now just hardcode the watermark.
  880. */
  881. wm = 63;
  882. } else {
  883. wm = vlv_wm_method2(clock, htotal, width, cpp,
  884. dev_priv->wm.pri_latency[level] * 10);
  885. }
  886. return min_t(int, wm, USHRT_MAX);
  887. }
  888. static void vlv_compute_fifo(struct intel_crtc *crtc)
  889. {
  890. struct drm_device *dev = crtc->base.dev;
  891. struct vlv_wm_state *wm_state = &crtc->wm_state;
  892. struct intel_plane *plane;
  893. unsigned int total_rate = 0;
  894. const int fifo_size = 512 - 1;
  895. int fifo_extra, fifo_left = fifo_size;
  896. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  897. struct intel_plane_state *state =
  898. to_intel_plane_state(plane->base.state);
  899. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  900. continue;
  901. if (state->base.visible) {
  902. wm_state->num_active_planes++;
  903. total_rate += state->base.fb->format->cpp[0];
  904. }
  905. }
  906. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  907. struct intel_plane_state *state =
  908. to_intel_plane_state(plane->base.state);
  909. unsigned int rate;
  910. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  911. plane->wm.fifo_size = 63;
  912. continue;
  913. }
  914. if (!state->base.visible) {
  915. plane->wm.fifo_size = 0;
  916. continue;
  917. }
  918. rate = state->base.fb->format->cpp[0];
  919. plane->wm.fifo_size = fifo_size * rate / total_rate;
  920. fifo_left -= plane->wm.fifo_size;
  921. }
  922. fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  923. /* spread the remainder evenly */
  924. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  925. int plane_extra;
  926. if (fifo_left == 0)
  927. break;
  928. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  929. continue;
  930. /* give it all to the first plane if none are active */
  931. if (plane->wm.fifo_size == 0 &&
  932. wm_state->num_active_planes)
  933. continue;
  934. plane_extra = min(fifo_extra, fifo_left);
  935. plane->wm.fifo_size += plane_extra;
  936. fifo_left -= plane_extra;
  937. }
  938. WARN_ON(fifo_left != 0);
  939. }
  940. static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
  941. {
  942. if (wm > fifo_size)
  943. return USHRT_MAX;
  944. else
  945. return fifo_size - wm;
  946. }
  947. static void vlv_invert_wms(struct intel_crtc *crtc)
  948. {
  949. struct vlv_wm_state *wm_state = &crtc->wm_state;
  950. int level;
  951. for (level = 0; level < wm_state->num_levels; level++) {
  952. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  953. const int sr_fifo_size =
  954. INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  955. struct intel_plane *plane;
  956. wm_state->sr[level].plane =
  957. vlv_invert_wm_value(wm_state->sr[level].plane,
  958. sr_fifo_size);
  959. wm_state->sr[level].cursor =
  960. vlv_invert_wm_value(wm_state->sr[level].cursor,
  961. 63);
  962. for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
  963. wm_state->wm[level].plane[plane->id] =
  964. vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
  965. plane->wm.fifo_size);
  966. }
  967. }
  968. }
  969. static void vlv_compute_wm(struct intel_crtc *crtc)
  970. {
  971. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  972. struct vlv_wm_state *wm_state = &crtc->wm_state;
  973. struct intel_plane *plane;
  974. int level;
  975. memset(wm_state, 0, sizeof(*wm_state));
  976. wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  977. wm_state->num_levels = dev_priv->wm.max_level + 1;
  978. wm_state->num_active_planes = 0;
  979. vlv_compute_fifo(crtc);
  980. if (wm_state->num_active_planes != 1)
  981. wm_state->cxsr = false;
  982. for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
  983. struct intel_plane_state *state =
  984. to_intel_plane_state(plane->base.state);
  985. int level;
  986. if (!state->base.visible)
  987. continue;
  988. /* normal watermarks */
  989. for (level = 0; level < wm_state->num_levels; level++) {
  990. int wm = vlv_compute_wm_level(crtc->config, state, level);
  991. int max_wm = plane->wm.fifo_size;
  992. /* hack */
  993. if (WARN_ON(level == 0 && wm > max_wm))
  994. wm = max_wm;
  995. if (wm > max_wm)
  996. break;
  997. wm_state->wm[level].plane[plane->id] = wm;
  998. }
  999. wm_state->num_levels = level;
  1000. if (!wm_state->cxsr)
  1001. continue;
  1002. /* maxfifo watermarks */
  1003. if (plane->id == PLANE_CURSOR) {
  1004. for (level = 0; level < wm_state->num_levels; level++)
  1005. wm_state->sr[level].cursor =
  1006. wm_state->wm[level].plane[PLANE_CURSOR];
  1007. } else {
  1008. for (level = 0; level < wm_state->num_levels; level++)
  1009. wm_state->sr[level].plane =
  1010. max(wm_state->sr[level].plane,
  1011. wm_state->wm[level].plane[plane->id]);
  1012. }
  1013. }
  1014. /* clear any (partially) filled invalid levels */
  1015. for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
  1016. memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  1017. memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  1018. }
  1019. vlv_invert_wms(crtc);
  1020. }
  1021. #define VLV_FIFO(plane, value) \
  1022. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1023. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1024. {
  1025. struct drm_device *dev = crtc->base.dev;
  1026. struct drm_i915_private *dev_priv = to_i915(dev);
  1027. struct intel_plane *plane;
  1028. int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1029. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1030. switch (plane->id) {
  1031. case PLANE_PRIMARY:
  1032. sprite0_start = plane->wm.fifo_size;
  1033. break;
  1034. case PLANE_SPRITE0:
  1035. sprite1_start = sprite0_start + plane->wm.fifo_size;
  1036. break;
  1037. case PLANE_SPRITE1:
  1038. fifo_size = sprite1_start + plane->wm.fifo_size;
  1039. break;
  1040. case PLANE_CURSOR:
  1041. WARN_ON(plane->wm.fifo_size != 63);
  1042. break;
  1043. default:
  1044. MISSING_CASE(plane->id);
  1045. break;
  1046. }
  1047. }
  1048. WARN_ON(fifo_size != 512 - 1);
  1049. DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1050. pipe_name(crtc->pipe), sprite0_start,
  1051. sprite1_start, fifo_size);
  1052. spin_lock(&dev_priv->wm.dsparb_lock);
  1053. switch (crtc->pipe) {
  1054. uint32_t dsparb, dsparb2, dsparb3;
  1055. case PIPE_A:
  1056. dsparb = I915_READ(DSPARB);
  1057. dsparb2 = I915_READ(DSPARB2);
  1058. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1059. VLV_FIFO(SPRITEB, 0xff));
  1060. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1061. VLV_FIFO(SPRITEB, sprite1_start));
  1062. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1063. VLV_FIFO(SPRITEB_HI, 0x1));
  1064. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1065. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1066. I915_WRITE(DSPARB, dsparb);
  1067. I915_WRITE(DSPARB2, dsparb2);
  1068. break;
  1069. case PIPE_B:
  1070. dsparb = I915_READ(DSPARB);
  1071. dsparb2 = I915_READ(DSPARB2);
  1072. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1073. VLV_FIFO(SPRITED, 0xff));
  1074. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1075. VLV_FIFO(SPRITED, sprite1_start));
  1076. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1077. VLV_FIFO(SPRITED_HI, 0xff));
  1078. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1079. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1080. I915_WRITE(DSPARB, dsparb);
  1081. I915_WRITE(DSPARB2, dsparb2);
  1082. break;
  1083. case PIPE_C:
  1084. dsparb3 = I915_READ(DSPARB3);
  1085. dsparb2 = I915_READ(DSPARB2);
  1086. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1087. VLV_FIFO(SPRITEF, 0xff));
  1088. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1089. VLV_FIFO(SPRITEF, sprite1_start));
  1090. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1091. VLV_FIFO(SPRITEF_HI, 0xff));
  1092. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1093. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1094. I915_WRITE(DSPARB3, dsparb3);
  1095. I915_WRITE(DSPARB2, dsparb2);
  1096. break;
  1097. default:
  1098. break;
  1099. }
  1100. POSTING_READ(DSPARB);
  1101. spin_unlock(&dev_priv->wm.dsparb_lock);
  1102. }
  1103. #undef VLV_FIFO
  1104. static void vlv_merge_wm(struct drm_i915_private *dev_priv,
  1105. struct vlv_wm_values *wm)
  1106. {
  1107. struct intel_crtc *crtc;
  1108. int num_active_crtcs = 0;
  1109. wm->level = dev_priv->wm.max_level;
  1110. wm->cxsr = true;
  1111. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1112. const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1113. if (!crtc->active)
  1114. continue;
  1115. if (!wm_state->cxsr)
  1116. wm->cxsr = false;
  1117. num_active_crtcs++;
  1118. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1119. }
  1120. if (num_active_crtcs != 1)
  1121. wm->cxsr = false;
  1122. if (num_active_crtcs > 1)
  1123. wm->level = VLV_WM_LEVEL_PM2;
  1124. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1125. struct vlv_wm_state *wm_state = &crtc->wm_state;
  1126. enum pipe pipe = crtc->pipe;
  1127. if (!crtc->active)
  1128. continue;
  1129. wm->pipe[pipe] = wm_state->wm[wm->level];
  1130. if (wm->cxsr)
  1131. wm->sr = wm_state->sr[wm->level];
  1132. wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
  1133. wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
  1134. wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
  1135. wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
  1136. }
  1137. }
  1138. static bool is_disabling(int old, int new, int threshold)
  1139. {
  1140. return old >= threshold && new < threshold;
  1141. }
  1142. static bool is_enabling(int old, int new, int threshold)
  1143. {
  1144. return old < threshold && new >= threshold;
  1145. }
  1146. static void vlv_update_wm(struct intel_crtc *crtc)
  1147. {
  1148. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1149. enum pipe pipe = crtc->pipe;
  1150. struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
  1151. struct vlv_wm_values new_wm = {};
  1152. vlv_compute_wm(crtc);
  1153. vlv_merge_wm(dev_priv, &new_wm);
  1154. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
  1155. /* FIXME should be part of crtc atomic commit */
  1156. vlv_pipe_set_fifo_size(crtc);
  1157. return;
  1158. }
  1159. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1160. chv_set_memory_dvfs(dev_priv, false);
  1161. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1162. chv_set_memory_pm5(dev_priv, false);
  1163. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1164. _intel_set_memory_cxsr(dev_priv, false);
  1165. /* FIXME should be part of crtc atomic commit */
  1166. vlv_pipe_set_fifo_size(crtc);
  1167. vlv_write_wm_values(dev_priv, &new_wm);
  1168. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1169. "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1170. pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
  1171. new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
  1172. new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
  1173. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1174. _intel_set_memory_cxsr(dev_priv, true);
  1175. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1176. chv_set_memory_pm5(dev_priv, true);
  1177. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1178. chv_set_memory_dvfs(dev_priv, true);
  1179. *old_wm = new_wm;
  1180. }
  1181. #define single_plane_enabled(mask) is_power_of_2(mask)
  1182. static void g4x_update_wm(struct intel_crtc *crtc)
  1183. {
  1184. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1185. static const int sr_latency_ns = 12000;
  1186. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1187. int plane_sr, cursor_sr;
  1188. unsigned int enabled = 0;
  1189. bool cxsr_enabled;
  1190. if (g4x_compute_wm0(dev_priv, PIPE_A,
  1191. &g4x_wm_info, pessimal_latency_ns,
  1192. &g4x_cursor_wm_info, pessimal_latency_ns,
  1193. &planea_wm, &cursora_wm))
  1194. enabled |= 1 << PIPE_A;
  1195. if (g4x_compute_wm0(dev_priv, PIPE_B,
  1196. &g4x_wm_info, pessimal_latency_ns,
  1197. &g4x_cursor_wm_info, pessimal_latency_ns,
  1198. &planeb_wm, &cursorb_wm))
  1199. enabled |= 1 << PIPE_B;
  1200. if (single_plane_enabled(enabled) &&
  1201. g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
  1202. sr_latency_ns,
  1203. &g4x_wm_info,
  1204. &g4x_cursor_wm_info,
  1205. &plane_sr, &cursor_sr)) {
  1206. cxsr_enabled = true;
  1207. } else {
  1208. cxsr_enabled = false;
  1209. intel_set_memory_cxsr(dev_priv, false);
  1210. plane_sr = cursor_sr = 0;
  1211. }
  1212. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1213. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1214. planea_wm, cursora_wm,
  1215. planeb_wm, cursorb_wm,
  1216. plane_sr, cursor_sr);
  1217. I915_WRITE(DSPFW1,
  1218. FW_WM(plane_sr, SR) |
  1219. FW_WM(cursorb_wm, CURSORB) |
  1220. FW_WM(planeb_wm, PLANEB) |
  1221. FW_WM(planea_wm, PLANEA));
  1222. I915_WRITE(DSPFW2,
  1223. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1224. FW_WM(cursora_wm, CURSORA));
  1225. /* HPLL off in SR has some issues on G4x... disable it */
  1226. I915_WRITE(DSPFW3,
  1227. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1228. FW_WM(cursor_sr, CURSOR_SR));
  1229. if (cxsr_enabled)
  1230. intel_set_memory_cxsr(dev_priv, true);
  1231. }
  1232. static void i965_update_wm(struct intel_crtc *unused_crtc)
  1233. {
  1234. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1235. struct intel_crtc *crtc;
  1236. int srwm = 1;
  1237. int cursor_sr = 16;
  1238. bool cxsr_enabled;
  1239. /* Calc sr entries for one plane configs */
  1240. crtc = single_enabled_crtc(dev_priv);
  1241. if (crtc) {
  1242. /* self-refresh has much higher latency */
  1243. static const int sr_latency_ns = 12000;
  1244. const struct drm_display_mode *adjusted_mode =
  1245. &crtc->config->base.adjusted_mode;
  1246. const struct drm_framebuffer *fb =
  1247. crtc->base.primary->state->fb;
  1248. int clock = adjusted_mode->crtc_clock;
  1249. int htotal = adjusted_mode->crtc_htotal;
  1250. int hdisplay = crtc->config->pipe_src_w;
  1251. int cpp = fb->format->cpp[0];
  1252. unsigned long line_time_us;
  1253. int entries;
  1254. line_time_us = max(htotal * 1000 / clock, 1);
  1255. /* Use ns/us then divide to preserve precision */
  1256. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1257. cpp * hdisplay;
  1258. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1259. srwm = I965_FIFO_SIZE - entries;
  1260. if (srwm < 0)
  1261. srwm = 1;
  1262. srwm &= 0x1ff;
  1263. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1264. entries, srwm);
  1265. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1266. cpp * crtc->base.cursor->state->crtc_w;
  1267. entries = DIV_ROUND_UP(entries,
  1268. i965_cursor_wm_info.cacheline_size);
  1269. cursor_sr = i965_cursor_wm_info.fifo_size -
  1270. (entries + i965_cursor_wm_info.guard_size);
  1271. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1272. cursor_sr = i965_cursor_wm_info.max_wm;
  1273. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1274. "cursor %d\n", srwm, cursor_sr);
  1275. cxsr_enabled = true;
  1276. } else {
  1277. cxsr_enabled = false;
  1278. /* Turn off self refresh if both pipes are enabled */
  1279. intel_set_memory_cxsr(dev_priv, false);
  1280. }
  1281. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1282. srwm);
  1283. /* 965 has limitations... */
  1284. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1285. FW_WM(8, CURSORB) |
  1286. FW_WM(8, PLANEB) |
  1287. FW_WM(8, PLANEA));
  1288. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1289. FW_WM(8, PLANEC_OLD));
  1290. /* update cursor SR watermark */
  1291. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1292. if (cxsr_enabled)
  1293. intel_set_memory_cxsr(dev_priv, true);
  1294. }
  1295. #undef FW_WM
  1296. static void i9xx_update_wm(struct intel_crtc *unused_crtc)
  1297. {
  1298. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1299. const struct intel_watermark_params *wm_info;
  1300. uint32_t fwater_lo;
  1301. uint32_t fwater_hi;
  1302. int cwm, srwm = 1;
  1303. int fifo_size;
  1304. int planea_wm, planeb_wm;
  1305. struct intel_crtc *crtc, *enabled = NULL;
  1306. if (IS_I945GM(dev_priv))
  1307. wm_info = &i945_wm_info;
  1308. else if (!IS_GEN2(dev_priv))
  1309. wm_info = &i915_wm_info;
  1310. else
  1311. wm_info = &i830_a_wm_info;
  1312. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
  1313. crtc = intel_get_crtc_for_plane(dev_priv, 0);
  1314. if (intel_crtc_active(crtc)) {
  1315. const struct drm_display_mode *adjusted_mode =
  1316. &crtc->config->base.adjusted_mode;
  1317. const struct drm_framebuffer *fb =
  1318. crtc->base.primary->state->fb;
  1319. int cpp;
  1320. if (IS_GEN2(dev_priv))
  1321. cpp = 4;
  1322. else
  1323. cpp = fb->format->cpp[0];
  1324. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1325. wm_info, fifo_size, cpp,
  1326. pessimal_latency_ns);
  1327. enabled = crtc;
  1328. } else {
  1329. planea_wm = fifo_size - wm_info->guard_size;
  1330. if (planea_wm > (long)wm_info->max_wm)
  1331. planea_wm = wm_info->max_wm;
  1332. }
  1333. if (IS_GEN2(dev_priv))
  1334. wm_info = &i830_bc_wm_info;
  1335. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
  1336. crtc = intel_get_crtc_for_plane(dev_priv, 1);
  1337. if (intel_crtc_active(crtc)) {
  1338. const struct drm_display_mode *adjusted_mode =
  1339. &crtc->config->base.adjusted_mode;
  1340. const struct drm_framebuffer *fb =
  1341. crtc->base.primary->state->fb;
  1342. int cpp;
  1343. if (IS_GEN2(dev_priv))
  1344. cpp = 4;
  1345. else
  1346. cpp = fb->format->cpp[0];
  1347. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1348. wm_info, fifo_size, cpp,
  1349. pessimal_latency_ns);
  1350. if (enabled == NULL)
  1351. enabled = crtc;
  1352. else
  1353. enabled = NULL;
  1354. } else {
  1355. planeb_wm = fifo_size - wm_info->guard_size;
  1356. if (planeb_wm > (long)wm_info->max_wm)
  1357. planeb_wm = wm_info->max_wm;
  1358. }
  1359. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1360. if (IS_I915GM(dev_priv) && enabled) {
  1361. struct drm_i915_gem_object *obj;
  1362. obj = intel_fb_obj(enabled->base.primary->state->fb);
  1363. /* self-refresh seems busted with untiled */
  1364. if (!i915_gem_object_is_tiled(obj))
  1365. enabled = NULL;
  1366. }
  1367. /*
  1368. * Overlay gets an aggressive default since video jitter is bad.
  1369. */
  1370. cwm = 2;
  1371. /* Play safe and disable self-refresh before adjusting watermarks. */
  1372. intel_set_memory_cxsr(dev_priv, false);
  1373. /* Calc sr entries for one plane configs */
  1374. if (HAS_FW_BLC(dev_priv) && enabled) {
  1375. /* self-refresh has much higher latency */
  1376. static const int sr_latency_ns = 6000;
  1377. const struct drm_display_mode *adjusted_mode =
  1378. &enabled->config->base.adjusted_mode;
  1379. const struct drm_framebuffer *fb =
  1380. enabled->base.primary->state->fb;
  1381. int clock = adjusted_mode->crtc_clock;
  1382. int htotal = adjusted_mode->crtc_htotal;
  1383. int hdisplay = enabled->config->pipe_src_w;
  1384. int cpp;
  1385. unsigned long line_time_us;
  1386. int entries;
  1387. if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
  1388. cpp = 4;
  1389. else
  1390. cpp = fb->format->cpp[0];
  1391. line_time_us = max(htotal * 1000 / clock, 1);
  1392. /* Use ns/us then divide to preserve precision */
  1393. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1394. cpp * hdisplay;
  1395. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1396. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1397. srwm = wm_info->fifo_size - entries;
  1398. if (srwm < 0)
  1399. srwm = 1;
  1400. if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1401. I915_WRITE(FW_BLC_SELF,
  1402. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1403. else
  1404. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1405. }
  1406. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1407. planea_wm, planeb_wm, cwm, srwm);
  1408. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1409. fwater_hi = (cwm & 0x1f);
  1410. /* Set request length to 8 cachelines per fetch */
  1411. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1412. fwater_hi = fwater_hi | (1 << 8);
  1413. I915_WRITE(FW_BLC, fwater_lo);
  1414. I915_WRITE(FW_BLC2, fwater_hi);
  1415. if (enabled)
  1416. intel_set_memory_cxsr(dev_priv, true);
  1417. }
  1418. static void i845_update_wm(struct intel_crtc *unused_crtc)
  1419. {
  1420. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1421. struct intel_crtc *crtc;
  1422. const struct drm_display_mode *adjusted_mode;
  1423. uint32_t fwater_lo;
  1424. int planea_wm;
  1425. crtc = single_enabled_crtc(dev_priv);
  1426. if (crtc == NULL)
  1427. return;
  1428. adjusted_mode = &crtc->config->base.adjusted_mode;
  1429. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1430. &i845_wm_info,
  1431. dev_priv->display.get_fifo_size(dev_priv, 0),
  1432. 4, pessimal_latency_ns);
  1433. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1434. fwater_lo |= (3<<8) | planea_wm;
  1435. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1436. I915_WRITE(FW_BLC, fwater_lo);
  1437. }
  1438. uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
  1439. {
  1440. uint32_t pixel_rate;
  1441. pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
  1442. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1443. * adjust the pixel_rate here. */
  1444. if (pipe_config->pch_pfit.enabled) {
  1445. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1446. uint32_t pfit_size = pipe_config->pch_pfit.size;
  1447. pipe_w = pipe_config->pipe_src_w;
  1448. pipe_h = pipe_config->pipe_src_h;
  1449. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1450. pfit_h = pfit_size & 0xFFFF;
  1451. if (pipe_w < pfit_w)
  1452. pipe_w = pfit_w;
  1453. if (pipe_h < pfit_h)
  1454. pipe_h = pfit_h;
  1455. if (WARN_ON(!pfit_w || !pfit_h))
  1456. return pixel_rate;
  1457. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1458. pfit_w * pfit_h);
  1459. }
  1460. return pixel_rate;
  1461. }
  1462. /* latency must be in 0.1us units. */
  1463. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  1464. {
  1465. uint64_t ret;
  1466. if (WARN(latency == 0, "Latency value missing\n"))
  1467. return UINT_MAX;
  1468. ret = (uint64_t) pixel_rate * cpp * latency;
  1469. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1470. return ret;
  1471. }
  1472. /* latency must be in 0.1us units. */
  1473. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1474. uint32_t horiz_pixels, uint8_t cpp,
  1475. uint32_t latency)
  1476. {
  1477. uint32_t ret;
  1478. if (WARN(latency == 0, "Latency value missing\n"))
  1479. return UINT_MAX;
  1480. if (WARN_ON(!pipe_htotal))
  1481. return UINT_MAX;
  1482. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1483. ret = (ret + 1) * horiz_pixels * cpp;
  1484. ret = DIV_ROUND_UP(ret, 64) + 2;
  1485. return ret;
  1486. }
  1487. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1488. uint8_t cpp)
  1489. {
  1490. /*
  1491. * Neither of these should be possible since this function shouldn't be
  1492. * called if the CRTC is off or the plane is invisible. But let's be
  1493. * extra paranoid to avoid a potential divide-by-zero if we screw up
  1494. * elsewhere in the driver.
  1495. */
  1496. if (WARN_ON(!cpp))
  1497. return 0;
  1498. if (WARN_ON(!horiz_pixels))
  1499. return 0;
  1500. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  1501. }
  1502. struct ilk_wm_maximums {
  1503. uint16_t pri;
  1504. uint16_t spr;
  1505. uint16_t cur;
  1506. uint16_t fbc;
  1507. };
  1508. /*
  1509. * For both WM_PIPE and WM_LP.
  1510. * mem_value must be in 0.1us units.
  1511. */
  1512. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1513. const struct intel_plane_state *pstate,
  1514. uint32_t mem_value,
  1515. bool is_lp)
  1516. {
  1517. uint32_t method1, method2;
  1518. int cpp;
  1519. if (!cstate->base.active || !pstate->base.visible)
  1520. return 0;
  1521. cpp = pstate->base.fb->format->cpp[0];
  1522. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1523. if (!is_lp)
  1524. return method1;
  1525. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1526. cstate->base.adjusted_mode.crtc_htotal,
  1527. drm_rect_width(&pstate->base.dst),
  1528. cpp, mem_value);
  1529. return min(method1, method2);
  1530. }
  1531. /*
  1532. * For both WM_PIPE and WM_LP.
  1533. * mem_value must be in 0.1us units.
  1534. */
  1535. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1536. const struct intel_plane_state *pstate,
  1537. uint32_t mem_value)
  1538. {
  1539. uint32_t method1, method2;
  1540. int cpp;
  1541. if (!cstate->base.active || !pstate->base.visible)
  1542. return 0;
  1543. cpp = pstate->base.fb->format->cpp[0];
  1544. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1545. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1546. cstate->base.adjusted_mode.crtc_htotal,
  1547. drm_rect_width(&pstate->base.dst),
  1548. cpp, mem_value);
  1549. return min(method1, method2);
  1550. }
  1551. /*
  1552. * For both WM_PIPE and WM_LP.
  1553. * mem_value must be in 0.1us units.
  1554. */
  1555. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1556. const struct intel_plane_state *pstate,
  1557. uint32_t mem_value)
  1558. {
  1559. /*
  1560. * We treat the cursor plane as always-on for the purposes of watermark
  1561. * calculation. Until we have two-stage watermark programming merged,
  1562. * this is necessary to avoid flickering.
  1563. */
  1564. int cpp = 4;
  1565. int width = pstate->base.visible ? pstate->base.crtc_w : 64;
  1566. if (!cstate->base.active)
  1567. return 0;
  1568. return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1569. cstate->base.adjusted_mode.crtc_htotal,
  1570. width, cpp, mem_value);
  1571. }
  1572. /* Only for WM_LP. */
  1573. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1574. const struct intel_plane_state *pstate,
  1575. uint32_t pri_val)
  1576. {
  1577. int cpp;
  1578. if (!cstate->base.active || !pstate->base.visible)
  1579. return 0;
  1580. cpp = pstate->base.fb->format->cpp[0];
  1581. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
  1582. }
  1583. static unsigned int
  1584. ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
  1585. {
  1586. if (INTEL_GEN(dev_priv) >= 8)
  1587. return 3072;
  1588. else if (INTEL_GEN(dev_priv) >= 7)
  1589. return 768;
  1590. else
  1591. return 512;
  1592. }
  1593. static unsigned int
  1594. ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
  1595. int level, bool is_sprite)
  1596. {
  1597. if (INTEL_GEN(dev_priv) >= 8)
  1598. /* BDW primary/sprite plane watermarks */
  1599. return level == 0 ? 255 : 2047;
  1600. else if (INTEL_GEN(dev_priv) >= 7)
  1601. /* IVB/HSW primary/sprite plane watermarks */
  1602. return level == 0 ? 127 : 1023;
  1603. else if (!is_sprite)
  1604. /* ILK/SNB primary plane watermarks */
  1605. return level == 0 ? 127 : 511;
  1606. else
  1607. /* ILK/SNB sprite plane watermarks */
  1608. return level == 0 ? 63 : 255;
  1609. }
  1610. static unsigned int
  1611. ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
  1612. {
  1613. if (INTEL_GEN(dev_priv) >= 7)
  1614. return level == 0 ? 63 : 255;
  1615. else
  1616. return level == 0 ? 31 : 63;
  1617. }
  1618. static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
  1619. {
  1620. if (INTEL_GEN(dev_priv) >= 8)
  1621. return 31;
  1622. else
  1623. return 15;
  1624. }
  1625. /* Calculate the maximum primary/sprite plane watermark */
  1626. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1627. int level,
  1628. const struct intel_wm_config *config,
  1629. enum intel_ddb_partitioning ddb_partitioning,
  1630. bool is_sprite)
  1631. {
  1632. struct drm_i915_private *dev_priv = to_i915(dev);
  1633. unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
  1634. /* if sprites aren't enabled, sprites get nothing */
  1635. if (is_sprite && !config->sprites_enabled)
  1636. return 0;
  1637. /* HSW allows LP1+ watermarks even with multiple pipes */
  1638. if (level == 0 || config->num_pipes_active > 1) {
  1639. fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
  1640. /*
  1641. * For some reason the non self refresh
  1642. * FIFO size is only half of the self
  1643. * refresh FIFO size on ILK/SNB.
  1644. */
  1645. if (INTEL_GEN(dev_priv) <= 6)
  1646. fifo_size /= 2;
  1647. }
  1648. if (config->sprites_enabled) {
  1649. /* level 0 is always calculated with 1:1 split */
  1650. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1651. if (is_sprite)
  1652. fifo_size *= 5;
  1653. fifo_size /= 6;
  1654. } else {
  1655. fifo_size /= 2;
  1656. }
  1657. }
  1658. /* clamp to max that the registers can hold */
  1659. return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
  1660. }
  1661. /* Calculate the maximum cursor plane watermark */
  1662. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1663. int level,
  1664. const struct intel_wm_config *config)
  1665. {
  1666. /* HSW LP1+ watermarks w/ multiple pipes */
  1667. if (level > 0 && config->num_pipes_active > 1)
  1668. return 64;
  1669. /* otherwise just report max that registers can hold */
  1670. return ilk_cursor_wm_reg_max(to_i915(dev), level);
  1671. }
  1672. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1673. int level,
  1674. const struct intel_wm_config *config,
  1675. enum intel_ddb_partitioning ddb_partitioning,
  1676. struct ilk_wm_maximums *max)
  1677. {
  1678. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1679. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1680. max->cur = ilk_cursor_wm_max(dev, level, config);
  1681. max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
  1682. }
  1683. static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
  1684. int level,
  1685. struct ilk_wm_maximums *max)
  1686. {
  1687. max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
  1688. max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
  1689. max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
  1690. max->fbc = ilk_fbc_wm_reg_max(dev_priv);
  1691. }
  1692. static bool ilk_validate_wm_level(int level,
  1693. const struct ilk_wm_maximums *max,
  1694. struct intel_wm_level *result)
  1695. {
  1696. bool ret;
  1697. /* already determined to be invalid? */
  1698. if (!result->enable)
  1699. return false;
  1700. result->enable = result->pri_val <= max->pri &&
  1701. result->spr_val <= max->spr &&
  1702. result->cur_val <= max->cur;
  1703. ret = result->enable;
  1704. /*
  1705. * HACK until we can pre-compute everything,
  1706. * and thus fail gracefully if LP0 watermarks
  1707. * are exceeded...
  1708. */
  1709. if (level == 0 && !result->enable) {
  1710. if (result->pri_val > max->pri)
  1711. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1712. level, result->pri_val, max->pri);
  1713. if (result->spr_val > max->spr)
  1714. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1715. level, result->spr_val, max->spr);
  1716. if (result->cur_val > max->cur)
  1717. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1718. level, result->cur_val, max->cur);
  1719. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1720. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1721. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1722. result->enable = true;
  1723. }
  1724. return ret;
  1725. }
  1726. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1727. const struct intel_crtc *intel_crtc,
  1728. int level,
  1729. struct intel_crtc_state *cstate,
  1730. struct intel_plane_state *pristate,
  1731. struct intel_plane_state *sprstate,
  1732. struct intel_plane_state *curstate,
  1733. struct intel_wm_level *result)
  1734. {
  1735. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1736. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1737. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1738. /* WM1+ latency values stored in 0.5us units */
  1739. if (level > 0) {
  1740. pri_latency *= 5;
  1741. spr_latency *= 5;
  1742. cur_latency *= 5;
  1743. }
  1744. if (pristate) {
  1745. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  1746. pri_latency, level);
  1747. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  1748. }
  1749. if (sprstate)
  1750. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  1751. if (curstate)
  1752. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  1753. result->enable = true;
  1754. }
  1755. static uint32_t
  1756. hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
  1757. {
  1758. const struct intel_atomic_state *intel_state =
  1759. to_intel_atomic_state(cstate->base.state);
  1760. const struct drm_display_mode *adjusted_mode =
  1761. &cstate->base.adjusted_mode;
  1762. u32 linetime, ips_linetime;
  1763. if (!cstate->base.active)
  1764. return 0;
  1765. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  1766. return 0;
  1767. if (WARN_ON(intel_state->cdclk == 0))
  1768. return 0;
  1769. /* The WM are computed with base on how long it takes to fill a single
  1770. * row at the given clock rate, multiplied by 8.
  1771. * */
  1772. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1773. adjusted_mode->crtc_clock);
  1774. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1775. intel_state->cdclk);
  1776. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1777. PIPE_WM_LINETIME_TIME(linetime);
  1778. }
  1779. static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
  1780. uint16_t wm[8])
  1781. {
  1782. if (IS_GEN9(dev_priv)) {
  1783. uint32_t val;
  1784. int ret, i;
  1785. int level, max_level = ilk_wm_max_level(dev_priv);
  1786. /* read the first set of memory latencies[0:3] */
  1787. val = 0; /* data0 to be programmed to 0 for first set */
  1788. mutex_lock(&dev_priv->rps.hw_lock);
  1789. ret = sandybridge_pcode_read(dev_priv,
  1790. GEN9_PCODE_READ_MEM_LATENCY,
  1791. &val);
  1792. mutex_unlock(&dev_priv->rps.hw_lock);
  1793. if (ret) {
  1794. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1795. return;
  1796. }
  1797. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1798. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1799. GEN9_MEM_LATENCY_LEVEL_MASK;
  1800. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1801. GEN9_MEM_LATENCY_LEVEL_MASK;
  1802. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1803. GEN9_MEM_LATENCY_LEVEL_MASK;
  1804. /* read the second set of memory latencies[4:7] */
  1805. val = 1; /* data0 to be programmed to 1 for second set */
  1806. mutex_lock(&dev_priv->rps.hw_lock);
  1807. ret = sandybridge_pcode_read(dev_priv,
  1808. GEN9_PCODE_READ_MEM_LATENCY,
  1809. &val);
  1810. mutex_unlock(&dev_priv->rps.hw_lock);
  1811. if (ret) {
  1812. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1813. return;
  1814. }
  1815. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1816. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1817. GEN9_MEM_LATENCY_LEVEL_MASK;
  1818. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1819. GEN9_MEM_LATENCY_LEVEL_MASK;
  1820. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1821. GEN9_MEM_LATENCY_LEVEL_MASK;
  1822. /*
  1823. * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
  1824. * need to be disabled. We make sure to sanitize the values out
  1825. * of the punit to satisfy this requirement.
  1826. */
  1827. for (level = 1; level <= max_level; level++) {
  1828. if (wm[level] == 0) {
  1829. for (i = level + 1; i <= max_level; i++)
  1830. wm[i] = 0;
  1831. break;
  1832. }
  1833. }
  1834. /*
  1835. * WaWmMemoryReadLatency:skl
  1836. *
  1837. * punit doesn't take into account the read latency so we need
  1838. * to add 2us to the various latency levels we retrieve from the
  1839. * punit when level 0 response data us 0us.
  1840. */
  1841. if (wm[0] == 0) {
  1842. wm[0] += 2;
  1843. for (level = 1; level <= max_level; level++) {
  1844. if (wm[level] == 0)
  1845. break;
  1846. wm[level] += 2;
  1847. }
  1848. }
  1849. } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  1850. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1851. wm[0] = (sskpd >> 56) & 0xFF;
  1852. if (wm[0] == 0)
  1853. wm[0] = sskpd & 0xF;
  1854. wm[1] = (sskpd >> 4) & 0xFF;
  1855. wm[2] = (sskpd >> 12) & 0xFF;
  1856. wm[3] = (sskpd >> 20) & 0x1FF;
  1857. wm[4] = (sskpd >> 32) & 0x1FF;
  1858. } else if (INTEL_GEN(dev_priv) >= 6) {
  1859. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1860. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1861. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1862. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1863. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1864. } else if (INTEL_GEN(dev_priv) >= 5) {
  1865. uint32_t mltr = I915_READ(MLTR_ILK);
  1866. /* ILK primary LP0 latency is 700 ns */
  1867. wm[0] = 7;
  1868. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1869. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1870. }
  1871. }
  1872. static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
  1873. uint16_t wm[5])
  1874. {
  1875. /* ILK sprite LP0 latency is 1300 ns */
  1876. if (IS_GEN5(dev_priv))
  1877. wm[0] = 13;
  1878. }
  1879. static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
  1880. uint16_t wm[5])
  1881. {
  1882. /* ILK cursor LP0 latency is 1300 ns */
  1883. if (IS_GEN5(dev_priv))
  1884. wm[0] = 13;
  1885. /* WaDoubleCursorLP3Latency:ivb */
  1886. if (IS_IVYBRIDGE(dev_priv))
  1887. wm[3] *= 2;
  1888. }
  1889. int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
  1890. {
  1891. /* how many WM levels are we expecting */
  1892. if (INTEL_GEN(dev_priv) >= 9)
  1893. return 7;
  1894. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  1895. return 4;
  1896. else if (INTEL_GEN(dev_priv) >= 6)
  1897. return 3;
  1898. else
  1899. return 2;
  1900. }
  1901. static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
  1902. const char *name,
  1903. const uint16_t wm[8])
  1904. {
  1905. int level, max_level = ilk_wm_max_level(dev_priv);
  1906. for (level = 0; level <= max_level; level++) {
  1907. unsigned int latency = wm[level];
  1908. if (latency == 0) {
  1909. DRM_ERROR("%s WM%d latency not provided\n",
  1910. name, level);
  1911. continue;
  1912. }
  1913. /*
  1914. * - latencies are in us on gen9.
  1915. * - before then, WM1+ latency values are in 0.5us units
  1916. */
  1917. if (IS_GEN9(dev_priv))
  1918. latency *= 10;
  1919. else if (level > 0)
  1920. latency *= 5;
  1921. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1922. name, level, wm[level],
  1923. latency / 10, latency % 10);
  1924. }
  1925. }
  1926. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1927. uint16_t wm[5], uint16_t min)
  1928. {
  1929. int level, max_level = ilk_wm_max_level(dev_priv);
  1930. if (wm[0] >= min)
  1931. return false;
  1932. wm[0] = max(wm[0], min);
  1933. for (level = 1; level <= max_level; level++)
  1934. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1935. return true;
  1936. }
  1937. static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
  1938. {
  1939. bool changed;
  1940. /*
  1941. * The BIOS provided WM memory latency values are often
  1942. * inadequate for high resolution displays. Adjust them.
  1943. */
  1944. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1945. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1946. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1947. if (!changed)
  1948. return;
  1949. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1950. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  1951. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  1952. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  1953. }
  1954. static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
  1955. {
  1956. intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
  1957. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1958. sizeof(dev_priv->wm.pri_latency));
  1959. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1960. sizeof(dev_priv->wm.pri_latency));
  1961. intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
  1962. intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
  1963. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  1964. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  1965. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  1966. if (IS_GEN6(dev_priv))
  1967. snb_wm_latency_quirk(dev_priv);
  1968. }
  1969. static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
  1970. {
  1971. intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
  1972. intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
  1973. }
  1974. static bool ilk_validate_pipe_wm(struct drm_device *dev,
  1975. struct intel_pipe_wm *pipe_wm)
  1976. {
  1977. /* LP0 watermark maximums depend on this pipe alone */
  1978. const struct intel_wm_config config = {
  1979. .num_pipes_active = 1,
  1980. .sprites_enabled = pipe_wm->sprites_enabled,
  1981. .sprites_scaled = pipe_wm->sprites_scaled,
  1982. };
  1983. struct ilk_wm_maximums max;
  1984. /* LP0 watermarks always use 1/2 DDB partitioning */
  1985. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1986. /* At least LP0 must be valid */
  1987. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
  1988. DRM_DEBUG_KMS("LP0 watermark invalid\n");
  1989. return false;
  1990. }
  1991. return true;
  1992. }
  1993. /* Compute new watermarks for the pipe */
  1994. static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
  1995. {
  1996. struct drm_atomic_state *state = cstate->base.state;
  1997. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  1998. struct intel_pipe_wm *pipe_wm;
  1999. struct drm_device *dev = state->dev;
  2000. const struct drm_i915_private *dev_priv = to_i915(dev);
  2001. struct intel_plane *intel_plane;
  2002. struct intel_plane_state *pristate = NULL;
  2003. struct intel_plane_state *sprstate = NULL;
  2004. struct intel_plane_state *curstate = NULL;
  2005. int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
  2006. struct ilk_wm_maximums max;
  2007. pipe_wm = &cstate->wm.ilk.optimal;
  2008. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2009. struct intel_plane_state *ps;
  2010. ps = intel_atomic_get_existing_plane_state(state,
  2011. intel_plane);
  2012. if (!ps)
  2013. continue;
  2014. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  2015. pristate = ps;
  2016. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  2017. sprstate = ps;
  2018. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2019. curstate = ps;
  2020. }
  2021. pipe_wm->pipe_enabled = cstate->base.active;
  2022. if (sprstate) {
  2023. pipe_wm->sprites_enabled = sprstate->base.visible;
  2024. pipe_wm->sprites_scaled = sprstate->base.visible &&
  2025. (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
  2026. drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
  2027. }
  2028. usable_level = max_level;
  2029. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2030. if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
  2031. usable_level = 1;
  2032. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2033. if (pipe_wm->sprites_scaled)
  2034. usable_level = 0;
  2035. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  2036. pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
  2037. memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
  2038. pipe_wm->wm[0] = pipe_wm->raw_wm[0];
  2039. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2040. pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
  2041. if (!ilk_validate_pipe_wm(dev, pipe_wm))
  2042. return -EINVAL;
  2043. ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
  2044. for (level = 1; level <= max_level; level++) {
  2045. struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
  2046. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  2047. pristate, sprstate, curstate, wm);
  2048. /*
  2049. * Disable any watermark level that exceeds the
  2050. * register maximums since such watermarks are
  2051. * always invalid.
  2052. */
  2053. if (level > usable_level)
  2054. continue;
  2055. if (ilk_validate_wm_level(level, &max, wm))
  2056. pipe_wm->wm[level] = *wm;
  2057. else
  2058. usable_level = level;
  2059. }
  2060. return 0;
  2061. }
  2062. /*
  2063. * Build a set of 'intermediate' watermark values that satisfy both the old
  2064. * state and the new state. These can be programmed to the hardware
  2065. * immediately.
  2066. */
  2067. static int ilk_compute_intermediate_wm(struct drm_device *dev,
  2068. struct intel_crtc *intel_crtc,
  2069. struct intel_crtc_state *newstate)
  2070. {
  2071. struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
  2072. struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
  2073. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2074. /*
  2075. * Start with the final, target watermarks, then combine with the
  2076. * currently active watermarks to get values that are safe both before
  2077. * and after the vblank.
  2078. */
  2079. *a = newstate->wm.ilk.optimal;
  2080. a->pipe_enabled |= b->pipe_enabled;
  2081. a->sprites_enabled |= b->sprites_enabled;
  2082. a->sprites_scaled |= b->sprites_scaled;
  2083. for (level = 0; level <= max_level; level++) {
  2084. struct intel_wm_level *a_wm = &a->wm[level];
  2085. const struct intel_wm_level *b_wm = &b->wm[level];
  2086. a_wm->enable &= b_wm->enable;
  2087. a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
  2088. a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
  2089. a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
  2090. a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
  2091. }
  2092. /*
  2093. * We need to make sure that these merged watermark values are
  2094. * actually a valid configuration themselves. If they're not,
  2095. * there's no safe way to transition from the old state to
  2096. * the new state, so we need to fail the atomic transaction.
  2097. */
  2098. if (!ilk_validate_pipe_wm(dev, a))
  2099. return -EINVAL;
  2100. /*
  2101. * If our intermediate WM are identical to the final WM, then we can
  2102. * omit the post-vblank programming; only update if it's different.
  2103. */
  2104. if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
  2105. newstate->wm.need_postvbl_update = false;
  2106. return 0;
  2107. }
  2108. /*
  2109. * Merge the watermarks from all active pipes for a specific level.
  2110. */
  2111. static void ilk_merge_wm_level(struct drm_device *dev,
  2112. int level,
  2113. struct intel_wm_level *ret_wm)
  2114. {
  2115. const struct intel_crtc *intel_crtc;
  2116. ret_wm->enable = true;
  2117. for_each_intel_crtc(dev, intel_crtc) {
  2118. const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
  2119. const struct intel_wm_level *wm = &active->wm[level];
  2120. if (!active->pipe_enabled)
  2121. continue;
  2122. /*
  2123. * The watermark values may have been used in the past,
  2124. * so we must maintain them in the registers for some
  2125. * time even if the level is now disabled.
  2126. */
  2127. if (!wm->enable)
  2128. ret_wm->enable = false;
  2129. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2130. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2131. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2132. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2133. }
  2134. }
  2135. /*
  2136. * Merge all low power watermarks for all active pipes.
  2137. */
  2138. static void ilk_wm_merge(struct drm_device *dev,
  2139. const struct intel_wm_config *config,
  2140. const struct ilk_wm_maximums *max,
  2141. struct intel_pipe_wm *merged)
  2142. {
  2143. struct drm_i915_private *dev_priv = to_i915(dev);
  2144. int level, max_level = ilk_wm_max_level(dev_priv);
  2145. int last_enabled_level = max_level;
  2146. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2147. if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
  2148. config->num_pipes_active > 1)
  2149. last_enabled_level = 0;
  2150. /* ILK: FBC WM must be disabled always */
  2151. merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
  2152. /* merge each WM1+ level */
  2153. for (level = 1; level <= max_level; level++) {
  2154. struct intel_wm_level *wm = &merged->wm[level];
  2155. ilk_merge_wm_level(dev, level, wm);
  2156. if (level > last_enabled_level)
  2157. wm->enable = false;
  2158. else if (!ilk_validate_wm_level(level, max, wm))
  2159. /* make sure all following levels get disabled */
  2160. last_enabled_level = level - 1;
  2161. /*
  2162. * The spec says it is preferred to disable
  2163. * FBC WMs instead of disabling a WM level.
  2164. */
  2165. if (wm->fbc_val > max->fbc) {
  2166. if (wm->enable)
  2167. merged->fbc_wm_enabled = false;
  2168. wm->fbc_val = 0;
  2169. }
  2170. }
  2171. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2172. /*
  2173. * FIXME this is racy. FBC might get enabled later.
  2174. * What we should check here is whether FBC can be
  2175. * enabled sometime later.
  2176. */
  2177. if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
  2178. intel_fbc_is_active(dev_priv)) {
  2179. for (level = 2; level <= max_level; level++) {
  2180. struct intel_wm_level *wm = &merged->wm[level];
  2181. wm->enable = false;
  2182. }
  2183. }
  2184. }
  2185. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2186. {
  2187. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2188. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2189. }
  2190. /* The value we need to program into the WM_LPx latency field */
  2191. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2192. {
  2193. struct drm_i915_private *dev_priv = to_i915(dev);
  2194. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2195. return 2 * level;
  2196. else
  2197. return dev_priv->wm.pri_latency[level];
  2198. }
  2199. static void ilk_compute_wm_results(struct drm_device *dev,
  2200. const struct intel_pipe_wm *merged,
  2201. enum intel_ddb_partitioning partitioning,
  2202. struct ilk_wm_values *results)
  2203. {
  2204. struct drm_i915_private *dev_priv = to_i915(dev);
  2205. struct intel_crtc *intel_crtc;
  2206. int level, wm_lp;
  2207. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2208. results->partitioning = partitioning;
  2209. /* LP1+ register values */
  2210. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2211. const struct intel_wm_level *r;
  2212. level = ilk_wm_lp_to_level(wm_lp, merged);
  2213. r = &merged->wm[level];
  2214. /*
  2215. * Maintain the watermark values even if the level is
  2216. * disabled. Doing otherwise could cause underruns.
  2217. */
  2218. results->wm_lp[wm_lp - 1] =
  2219. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2220. (r->pri_val << WM1_LP_SR_SHIFT) |
  2221. r->cur_val;
  2222. if (r->enable)
  2223. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2224. if (INTEL_GEN(dev_priv) >= 8)
  2225. results->wm_lp[wm_lp - 1] |=
  2226. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2227. else
  2228. results->wm_lp[wm_lp - 1] |=
  2229. r->fbc_val << WM1_LP_FBC_SHIFT;
  2230. /*
  2231. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2232. * level is disabled. Doing otherwise could cause underruns.
  2233. */
  2234. if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
  2235. WARN_ON(wm_lp != 1);
  2236. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2237. } else
  2238. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2239. }
  2240. /* LP0 register values */
  2241. for_each_intel_crtc(dev, intel_crtc) {
  2242. enum pipe pipe = intel_crtc->pipe;
  2243. const struct intel_wm_level *r =
  2244. &intel_crtc->wm.active.ilk.wm[0];
  2245. if (WARN_ON(!r->enable))
  2246. continue;
  2247. results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
  2248. results->wm_pipe[pipe] =
  2249. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2250. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2251. r->cur_val;
  2252. }
  2253. }
  2254. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2255. * case both are at the same level. Prefer r1 in case they're the same. */
  2256. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2257. struct intel_pipe_wm *r1,
  2258. struct intel_pipe_wm *r2)
  2259. {
  2260. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2261. int level1 = 0, level2 = 0;
  2262. for (level = 1; level <= max_level; level++) {
  2263. if (r1->wm[level].enable)
  2264. level1 = level;
  2265. if (r2->wm[level].enable)
  2266. level2 = level;
  2267. }
  2268. if (level1 == level2) {
  2269. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2270. return r2;
  2271. else
  2272. return r1;
  2273. } else if (level1 > level2) {
  2274. return r1;
  2275. } else {
  2276. return r2;
  2277. }
  2278. }
  2279. /* dirty bits used to track which watermarks need changes */
  2280. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2281. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2282. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2283. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2284. #define WM_DIRTY_FBC (1 << 24)
  2285. #define WM_DIRTY_DDB (1 << 25)
  2286. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2287. const struct ilk_wm_values *old,
  2288. const struct ilk_wm_values *new)
  2289. {
  2290. unsigned int dirty = 0;
  2291. enum pipe pipe;
  2292. int wm_lp;
  2293. for_each_pipe(dev_priv, pipe) {
  2294. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2295. dirty |= WM_DIRTY_LINETIME(pipe);
  2296. /* Must disable LP1+ watermarks too */
  2297. dirty |= WM_DIRTY_LP_ALL;
  2298. }
  2299. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2300. dirty |= WM_DIRTY_PIPE(pipe);
  2301. /* Must disable LP1+ watermarks too */
  2302. dirty |= WM_DIRTY_LP_ALL;
  2303. }
  2304. }
  2305. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2306. dirty |= WM_DIRTY_FBC;
  2307. /* Must disable LP1+ watermarks too */
  2308. dirty |= WM_DIRTY_LP_ALL;
  2309. }
  2310. if (old->partitioning != new->partitioning) {
  2311. dirty |= WM_DIRTY_DDB;
  2312. /* Must disable LP1+ watermarks too */
  2313. dirty |= WM_DIRTY_LP_ALL;
  2314. }
  2315. /* LP1+ watermarks already deemed dirty, no need to continue */
  2316. if (dirty & WM_DIRTY_LP_ALL)
  2317. return dirty;
  2318. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2319. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2320. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2321. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2322. break;
  2323. }
  2324. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2325. for (; wm_lp <= 3; wm_lp++)
  2326. dirty |= WM_DIRTY_LP(wm_lp);
  2327. return dirty;
  2328. }
  2329. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2330. unsigned int dirty)
  2331. {
  2332. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2333. bool changed = false;
  2334. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2335. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2336. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2337. changed = true;
  2338. }
  2339. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2340. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2341. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2342. changed = true;
  2343. }
  2344. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2345. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2346. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2347. changed = true;
  2348. }
  2349. /*
  2350. * Don't touch WM1S_LP_EN here.
  2351. * Doing so could cause underruns.
  2352. */
  2353. return changed;
  2354. }
  2355. /*
  2356. * The spec says we shouldn't write when we don't need, because every write
  2357. * causes WMs to be re-evaluated, expending some power.
  2358. */
  2359. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2360. struct ilk_wm_values *results)
  2361. {
  2362. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2363. unsigned int dirty;
  2364. uint32_t val;
  2365. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2366. if (!dirty)
  2367. return;
  2368. _ilk_disable_lp_wm(dev_priv, dirty);
  2369. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2370. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2371. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2372. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2373. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2374. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2375. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2376. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2377. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2378. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2379. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2380. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2381. if (dirty & WM_DIRTY_DDB) {
  2382. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2383. val = I915_READ(WM_MISC);
  2384. if (results->partitioning == INTEL_DDB_PART_1_2)
  2385. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2386. else
  2387. val |= WM_MISC_DATA_PARTITION_5_6;
  2388. I915_WRITE(WM_MISC, val);
  2389. } else {
  2390. val = I915_READ(DISP_ARB_CTL2);
  2391. if (results->partitioning == INTEL_DDB_PART_1_2)
  2392. val &= ~DISP_DATA_PARTITION_5_6;
  2393. else
  2394. val |= DISP_DATA_PARTITION_5_6;
  2395. I915_WRITE(DISP_ARB_CTL2, val);
  2396. }
  2397. }
  2398. if (dirty & WM_DIRTY_FBC) {
  2399. val = I915_READ(DISP_ARB_CTL);
  2400. if (results->enable_fbc_wm)
  2401. val &= ~DISP_FBC_WM_DIS;
  2402. else
  2403. val |= DISP_FBC_WM_DIS;
  2404. I915_WRITE(DISP_ARB_CTL, val);
  2405. }
  2406. if (dirty & WM_DIRTY_LP(1) &&
  2407. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2408. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2409. if (INTEL_GEN(dev_priv) >= 7) {
  2410. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2411. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2412. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2413. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2414. }
  2415. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2416. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2417. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2418. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2419. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2420. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2421. dev_priv->wm.hw = *results;
  2422. }
  2423. bool ilk_disable_lp_wm(struct drm_device *dev)
  2424. {
  2425. struct drm_i915_private *dev_priv = to_i915(dev);
  2426. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2427. }
  2428. #define SKL_SAGV_BLOCK_TIME 30 /* µs */
  2429. /*
  2430. * FIXME: We still don't have the proper code detect if we need to apply the WA,
  2431. * so assume we'll always need it in order to avoid underruns.
  2432. */
  2433. static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
  2434. {
  2435. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  2436. if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
  2437. IS_KABYLAKE(dev_priv))
  2438. return true;
  2439. return false;
  2440. }
  2441. static bool
  2442. intel_has_sagv(struct drm_i915_private *dev_priv)
  2443. {
  2444. if (IS_KABYLAKE(dev_priv))
  2445. return true;
  2446. if (IS_SKYLAKE(dev_priv) &&
  2447. dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
  2448. return true;
  2449. return false;
  2450. }
  2451. /*
  2452. * SAGV dynamically adjusts the system agent voltage and clock frequencies
  2453. * depending on power and performance requirements. The display engine access
  2454. * to system memory is blocked during the adjustment time. Because of the
  2455. * blocking time, having this enabled can cause full system hangs and/or pipe
  2456. * underruns if we don't meet all of the following requirements:
  2457. *
  2458. * - <= 1 pipe enabled
  2459. * - All planes can enable watermarks for latencies >= SAGV engine block time
  2460. * - We're not using an interlaced display configuration
  2461. */
  2462. int
  2463. intel_enable_sagv(struct drm_i915_private *dev_priv)
  2464. {
  2465. int ret;
  2466. if (!intel_has_sagv(dev_priv))
  2467. return 0;
  2468. if (dev_priv->sagv_status == I915_SAGV_ENABLED)
  2469. return 0;
  2470. DRM_DEBUG_KMS("Enabling the SAGV\n");
  2471. mutex_lock(&dev_priv->rps.hw_lock);
  2472. ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  2473. GEN9_SAGV_ENABLE);
  2474. /* We don't need to wait for the SAGV when enabling */
  2475. mutex_unlock(&dev_priv->rps.hw_lock);
  2476. /*
  2477. * Some skl systems, pre-release machines in particular,
  2478. * don't actually have an SAGV.
  2479. */
  2480. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  2481. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  2482. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  2483. return 0;
  2484. } else if (ret < 0) {
  2485. DRM_ERROR("Failed to enable the SAGV\n");
  2486. return ret;
  2487. }
  2488. dev_priv->sagv_status = I915_SAGV_ENABLED;
  2489. return 0;
  2490. }
  2491. int
  2492. intel_disable_sagv(struct drm_i915_private *dev_priv)
  2493. {
  2494. int ret;
  2495. if (!intel_has_sagv(dev_priv))
  2496. return 0;
  2497. if (dev_priv->sagv_status == I915_SAGV_DISABLED)
  2498. return 0;
  2499. DRM_DEBUG_KMS("Disabling the SAGV\n");
  2500. mutex_lock(&dev_priv->rps.hw_lock);
  2501. /* bspec says to keep retrying for at least 1 ms */
  2502. ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  2503. GEN9_SAGV_DISABLE,
  2504. GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
  2505. 1);
  2506. mutex_unlock(&dev_priv->rps.hw_lock);
  2507. /*
  2508. * Some skl systems, pre-release machines in particular,
  2509. * don't actually have an SAGV.
  2510. */
  2511. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  2512. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  2513. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  2514. return 0;
  2515. } else if (ret < 0) {
  2516. DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
  2517. return ret;
  2518. }
  2519. dev_priv->sagv_status = I915_SAGV_DISABLED;
  2520. return 0;
  2521. }
  2522. bool intel_can_enable_sagv(struct drm_atomic_state *state)
  2523. {
  2524. struct drm_device *dev = state->dev;
  2525. struct drm_i915_private *dev_priv = to_i915(dev);
  2526. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  2527. struct intel_crtc *crtc;
  2528. struct intel_plane *plane;
  2529. struct intel_crtc_state *cstate;
  2530. enum pipe pipe;
  2531. int level, latency;
  2532. if (!intel_has_sagv(dev_priv))
  2533. return false;
  2534. /*
  2535. * SKL workaround: bspec recommends we disable the SAGV when we have
  2536. * more then one pipe enabled
  2537. *
  2538. * If there are no active CRTCs, no additional checks need be performed
  2539. */
  2540. if (hweight32(intel_state->active_crtcs) == 0)
  2541. return true;
  2542. else if (hweight32(intel_state->active_crtcs) > 1)
  2543. return false;
  2544. /* Since we're now guaranteed to only have one active CRTC... */
  2545. pipe = ffs(intel_state->active_crtcs) - 1;
  2546. crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  2547. cstate = to_intel_crtc_state(crtc->base.state);
  2548. if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  2549. return false;
  2550. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  2551. struct skl_plane_wm *wm =
  2552. &cstate->wm.skl.optimal.planes[plane->id];
  2553. /* Skip this plane if it's not enabled */
  2554. if (!wm->wm[0].plane_en)
  2555. continue;
  2556. /* Find the highest enabled wm level for this plane */
  2557. for (level = ilk_wm_max_level(dev_priv);
  2558. !wm->wm[level].plane_en; --level)
  2559. { }
  2560. latency = dev_priv->wm.skl_latency[level];
  2561. if (skl_needs_memory_bw_wa(intel_state) &&
  2562. plane->base.state->fb->modifier ==
  2563. I915_FORMAT_MOD_X_TILED)
  2564. latency += 15;
  2565. /*
  2566. * If any of the planes on this pipe don't enable wm levels
  2567. * that incur memory latencies higher then 30µs we can't enable
  2568. * the SAGV
  2569. */
  2570. if (latency < SKL_SAGV_BLOCK_TIME)
  2571. return false;
  2572. }
  2573. return true;
  2574. }
  2575. static void
  2576. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2577. const struct intel_crtc_state *cstate,
  2578. struct skl_ddb_entry *alloc, /* out */
  2579. int *num_active /* out */)
  2580. {
  2581. struct drm_atomic_state *state = cstate->base.state;
  2582. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  2583. struct drm_i915_private *dev_priv = to_i915(dev);
  2584. struct drm_crtc *for_crtc = cstate->base.crtc;
  2585. unsigned int pipe_size, ddb_size;
  2586. int nth_active_pipe;
  2587. if (WARN_ON(!state) || !cstate->base.active) {
  2588. alloc->start = 0;
  2589. alloc->end = 0;
  2590. *num_active = hweight32(dev_priv->active_crtcs);
  2591. return;
  2592. }
  2593. if (intel_state->active_pipe_changes)
  2594. *num_active = hweight32(intel_state->active_crtcs);
  2595. else
  2596. *num_active = hweight32(dev_priv->active_crtcs);
  2597. ddb_size = INTEL_INFO(dev_priv)->ddb_size;
  2598. WARN_ON(ddb_size == 0);
  2599. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2600. /*
  2601. * If the state doesn't change the active CRTC's, then there's
  2602. * no need to recalculate; the existing pipe allocation limits
  2603. * should remain unchanged. Note that we're safe from racing
  2604. * commits since any racing commit that changes the active CRTC
  2605. * list would need to grab _all_ crtc locks, including the one
  2606. * we currently hold.
  2607. */
  2608. if (!intel_state->active_pipe_changes) {
  2609. /*
  2610. * alloc may be cleared by clear_intel_crtc_state,
  2611. * copy from old state to be sure
  2612. */
  2613. *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
  2614. return;
  2615. }
  2616. nth_active_pipe = hweight32(intel_state->active_crtcs &
  2617. (drm_crtc_mask(for_crtc) - 1));
  2618. pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
  2619. alloc->start = nth_active_pipe * ddb_size / *num_active;
  2620. alloc->end = alloc->start + pipe_size;
  2621. }
  2622. static unsigned int skl_cursor_allocation(int num_active)
  2623. {
  2624. if (num_active == 1)
  2625. return 32;
  2626. return 8;
  2627. }
  2628. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2629. {
  2630. entry->start = reg & 0x3ff;
  2631. entry->end = (reg >> 16) & 0x3ff;
  2632. if (entry->end)
  2633. entry->end += 1;
  2634. }
  2635. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2636. struct skl_ddb_allocation *ddb /* out */)
  2637. {
  2638. struct intel_crtc *crtc;
  2639. memset(ddb, 0, sizeof(*ddb));
  2640. for_each_intel_crtc(&dev_priv->drm, crtc) {
  2641. enum intel_display_power_domain power_domain;
  2642. enum plane_id plane_id;
  2643. enum pipe pipe = crtc->pipe;
  2644. power_domain = POWER_DOMAIN_PIPE(pipe);
  2645. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  2646. continue;
  2647. for_each_plane_id_on_crtc(crtc, plane_id) {
  2648. u32 val;
  2649. if (plane_id != PLANE_CURSOR)
  2650. val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
  2651. else
  2652. val = I915_READ(CUR_BUF_CFG(pipe));
  2653. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
  2654. }
  2655. intel_display_power_put(dev_priv, power_domain);
  2656. }
  2657. }
  2658. /*
  2659. * Determines the downscale amount of a plane for the purposes of watermark calculations.
  2660. * The bspec defines downscale amount as:
  2661. *
  2662. * """
  2663. * Horizontal down scale amount = maximum[1, Horizontal source size /
  2664. * Horizontal destination size]
  2665. * Vertical down scale amount = maximum[1, Vertical source size /
  2666. * Vertical destination size]
  2667. * Total down scale amount = Horizontal down scale amount *
  2668. * Vertical down scale amount
  2669. * """
  2670. *
  2671. * Return value is provided in 16.16 fixed point form to retain fractional part.
  2672. * Caller should take care of dividing & rounding off the value.
  2673. */
  2674. static uint32_t
  2675. skl_plane_downscale_amount(const struct intel_plane_state *pstate)
  2676. {
  2677. uint32_t downscale_h, downscale_w;
  2678. uint32_t src_w, src_h, dst_w, dst_h;
  2679. if (WARN_ON(!pstate->base.visible))
  2680. return DRM_PLANE_HELPER_NO_SCALING;
  2681. /* n.b., src is 16.16 fixed point, dst is whole integer */
  2682. src_w = drm_rect_width(&pstate->base.src);
  2683. src_h = drm_rect_height(&pstate->base.src);
  2684. dst_w = drm_rect_width(&pstate->base.dst);
  2685. dst_h = drm_rect_height(&pstate->base.dst);
  2686. if (drm_rotation_90_or_270(pstate->base.rotation))
  2687. swap(dst_w, dst_h);
  2688. downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
  2689. downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
  2690. /* Provide result in 16.16 fixed point */
  2691. return (uint64_t)downscale_w * downscale_h >> 16;
  2692. }
  2693. static unsigned int
  2694. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  2695. const struct drm_plane_state *pstate,
  2696. int y)
  2697. {
  2698. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  2699. uint32_t down_scale_amount, data_rate;
  2700. uint32_t width = 0, height = 0;
  2701. struct drm_framebuffer *fb;
  2702. u32 format;
  2703. if (!intel_pstate->base.visible)
  2704. return 0;
  2705. fb = pstate->fb;
  2706. format = fb->format->format;
  2707. if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
  2708. return 0;
  2709. if (y && format != DRM_FORMAT_NV12)
  2710. return 0;
  2711. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  2712. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  2713. if (drm_rotation_90_or_270(pstate->rotation))
  2714. swap(width, height);
  2715. /* for planar format */
  2716. if (format == DRM_FORMAT_NV12) {
  2717. if (y) /* y-plane data rate */
  2718. data_rate = width * height *
  2719. fb->format->cpp[0];
  2720. else /* uv-plane data rate */
  2721. data_rate = (width / 2) * (height / 2) *
  2722. fb->format->cpp[1];
  2723. } else {
  2724. /* for packed formats */
  2725. data_rate = width * height * fb->format->cpp[0];
  2726. }
  2727. down_scale_amount = skl_plane_downscale_amount(intel_pstate);
  2728. return (uint64_t)data_rate * down_scale_amount >> 16;
  2729. }
  2730. /*
  2731. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2732. * a 8192x4096@32bpp framebuffer:
  2733. * 3 * 4096 * 8192 * 4 < 2^32
  2734. */
  2735. static unsigned int
  2736. skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
  2737. unsigned *plane_data_rate,
  2738. unsigned *plane_y_data_rate)
  2739. {
  2740. struct drm_crtc_state *cstate = &intel_cstate->base;
  2741. struct drm_atomic_state *state = cstate->state;
  2742. struct drm_plane *plane;
  2743. const struct drm_plane_state *pstate;
  2744. unsigned int total_data_rate = 0;
  2745. if (WARN_ON(!state))
  2746. return 0;
  2747. /* Calculate and cache data rate for each plane */
  2748. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
  2749. enum plane_id plane_id = to_intel_plane(plane)->id;
  2750. unsigned int rate;
  2751. /* packed/uv */
  2752. rate = skl_plane_relative_data_rate(intel_cstate,
  2753. pstate, 0);
  2754. plane_data_rate[plane_id] = rate;
  2755. total_data_rate += rate;
  2756. /* y-plane */
  2757. rate = skl_plane_relative_data_rate(intel_cstate,
  2758. pstate, 1);
  2759. plane_y_data_rate[plane_id] = rate;
  2760. total_data_rate += rate;
  2761. }
  2762. return total_data_rate;
  2763. }
  2764. static uint16_t
  2765. skl_ddb_min_alloc(const struct drm_plane_state *pstate,
  2766. const int y)
  2767. {
  2768. struct drm_framebuffer *fb = pstate->fb;
  2769. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  2770. uint32_t src_w, src_h;
  2771. uint32_t min_scanlines = 8;
  2772. uint8_t plane_bpp;
  2773. if (WARN_ON(!fb))
  2774. return 0;
  2775. /* For packed formats, no y-plane, return 0 */
  2776. if (y && fb->format->format != DRM_FORMAT_NV12)
  2777. return 0;
  2778. /* For Non Y-tile return 8-blocks */
  2779. if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
  2780. fb->modifier != I915_FORMAT_MOD_Yf_TILED)
  2781. return 8;
  2782. src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
  2783. src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
  2784. if (drm_rotation_90_or_270(pstate->rotation))
  2785. swap(src_w, src_h);
  2786. /* Halve UV plane width and height for NV12 */
  2787. if (fb->format->format == DRM_FORMAT_NV12 && !y) {
  2788. src_w /= 2;
  2789. src_h /= 2;
  2790. }
  2791. if (fb->format->format == DRM_FORMAT_NV12 && !y)
  2792. plane_bpp = fb->format->cpp[1];
  2793. else
  2794. plane_bpp = fb->format->cpp[0];
  2795. if (drm_rotation_90_or_270(pstate->rotation)) {
  2796. switch (plane_bpp) {
  2797. case 1:
  2798. min_scanlines = 32;
  2799. break;
  2800. case 2:
  2801. min_scanlines = 16;
  2802. break;
  2803. case 4:
  2804. min_scanlines = 8;
  2805. break;
  2806. case 8:
  2807. min_scanlines = 4;
  2808. break;
  2809. default:
  2810. WARN(1, "Unsupported pixel depth %u for rotation",
  2811. plane_bpp);
  2812. min_scanlines = 32;
  2813. }
  2814. }
  2815. return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
  2816. }
  2817. static void
  2818. skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
  2819. uint16_t *minimum, uint16_t *y_minimum)
  2820. {
  2821. const struct drm_plane_state *pstate;
  2822. struct drm_plane *plane;
  2823. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
  2824. enum plane_id plane_id = to_intel_plane(plane)->id;
  2825. if (plane_id == PLANE_CURSOR)
  2826. continue;
  2827. if (!pstate->visible)
  2828. continue;
  2829. minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
  2830. y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
  2831. }
  2832. minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
  2833. }
  2834. static int
  2835. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  2836. struct skl_ddb_allocation *ddb /* out */)
  2837. {
  2838. struct drm_atomic_state *state = cstate->base.state;
  2839. struct drm_crtc *crtc = cstate->base.crtc;
  2840. struct drm_device *dev = crtc->dev;
  2841. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2842. enum pipe pipe = intel_crtc->pipe;
  2843. struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
  2844. uint16_t alloc_size, start;
  2845. uint16_t minimum[I915_MAX_PLANES] = {};
  2846. uint16_t y_minimum[I915_MAX_PLANES] = {};
  2847. unsigned int total_data_rate;
  2848. enum plane_id plane_id;
  2849. int num_active;
  2850. unsigned plane_data_rate[I915_MAX_PLANES] = {};
  2851. unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
  2852. /* Clear the partitioning for disabled planes. */
  2853. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2854. memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
  2855. if (WARN_ON(!state))
  2856. return 0;
  2857. if (!cstate->base.active) {
  2858. alloc->start = alloc->end = 0;
  2859. return 0;
  2860. }
  2861. skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
  2862. alloc_size = skl_ddb_entry_size(alloc);
  2863. if (alloc_size == 0) {
  2864. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2865. return 0;
  2866. }
  2867. skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
  2868. /*
  2869. * 1. Allocate the mininum required blocks for each active plane
  2870. * and allocate the cursor, it doesn't require extra allocation
  2871. * proportional to the data rate.
  2872. */
  2873. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  2874. alloc_size -= minimum[plane_id];
  2875. alloc_size -= y_minimum[plane_id];
  2876. }
  2877. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
  2878. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2879. /*
  2880. * 2. Distribute the remaining space in proportion to the amount of
  2881. * data each plane needs to fetch from memory.
  2882. *
  2883. * FIXME: we may not allocate every single block here.
  2884. */
  2885. total_data_rate = skl_get_total_relative_data_rate(cstate,
  2886. plane_data_rate,
  2887. plane_y_data_rate);
  2888. if (total_data_rate == 0)
  2889. return 0;
  2890. start = alloc->start;
  2891. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  2892. unsigned int data_rate, y_data_rate;
  2893. uint16_t plane_blocks, y_plane_blocks = 0;
  2894. if (plane_id == PLANE_CURSOR)
  2895. continue;
  2896. data_rate = plane_data_rate[plane_id];
  2897. /*
  2898. * allocation for (packed formats) or (uv-plane part of planar format):
  2899. * promote the expression to 64 bits to avoid overflowing, the
  2900. * result is < available as data_rate / total_data_rate < 1
  2901. */
  2902. plane_blocks = minimum[plane_id];
  2903. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2904. total_data_rate);
  2905. /* Leave disabled planes at (0,0) */
  2906. if (data_rate) {
  2907. ddb->plane[pipe][plane_id].start = start;
  2908. ddb->plane[pipe][plane_id].end = start + plane_blocks;
  2909. }
  2910. start += plane_blocks;
  2911. /*
  2912. * allocation for y_plane part of planar format:
  2913. */
  2914. y_data_rate = plane_y_data_rate[plane_id];
  2915. y_plane_blocks = y_minimum[plane_id];
  2916. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  2917. total_data_rate);
  2918. if (y_data_rate) {
  2919. ddb->y_plane[pipe][plane_id].start = start;
  2920. ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
  2921. }
  2922. start += y_plane_blocks;
  2923. }
  2924. return 0;
  2925. }
  2926. /*
  2927. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2928. * for the read latency) and cpp should always be <= 8, so that
  2929. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2930. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2931. */
  2932. static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
  2933. uint32_t latency)
  2934. {
  2935. uint32_t wm_intermediate_val;
  2936. uint_fixed_16_16_t ret;
  2937. if (latency == 0)
  2938. return FP_16_16_MAX;
  2939. wm_intermediate_val = latency * pixel_rate * cpp;
  2940. ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
  2941. return ret;
  2942. }
  2943. static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
  2944. uint32_t pipe_htotal,
  2945. uint32_t latency,
  2946. uint_fixed_16_16_t plane_blocks_per_line)
  2947. {
  2948. uint32_t wm_intermediate_val;
  2949. uint_fixed_16_16_t ret;
  2950. if (latency == 0)
  2951. return FP_16_16_MAX;
  2952. wm_intermediate_val = latency * pixel_rate;
  2953. wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
  2954. pipe_htotal * 1000);
  2955. ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
  2956. return ret;
  2957. }
  2958. static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
  2959. struct intel_plane_state *pstate)
  2960. {
  2961. uint64_t adjusted_pixel_rate;
  2962. uint64_t downscale_amount;
  2963. uint64_t pixel_rate;
  2964. /* Shouldn't reach here on disabled planes... */
  2965. if (WARN_ON(!pstate->base.visible))
  2966. return 0;
  2967. /*
  2968. * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
  2969. * with additional adjustments for plane-specific scaling.
  2970. */
  2971. adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
  2972. downscale_amount = skl_plane_downscale_amount(pstate);
  2973. pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
  2974. WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
  2975. return pixel_rate;
  2976. }
  2977. static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2978. struct intel_crtc_state *cstate,
  2979. struct intel_plane_state *intel_pstate,
  2980. uint16_t ddb_allocation,
  2981. int level,
  2982. uint16_t *out_blocks, /* out */
  2983. uint8_t *out_lines, /* out */
  2984. bool *enabled /* out */)
  2985. {
  2986. struct drm_plane_state *pstate = &intel_pstate->base;
  2987. struct drm_framebuffer *fb = pstate->fb;
  2988. uint32_t latency = dev_priv->wm.skl_latency[level];
  2989. uint_fixed_16_16_t method1, method2;
  2990. uint_fixed_16_16_t plane_blocks_per_line;
  2991. uint_fixed_16_16_t selected_result;
  2992. uint32_t interm_pbpl;
  2993. uint32_t plane_bytes_per_line;
  2994. uint32_t res_blocks, res_lines;
  2995. uint8_t cpp;
  2996. uint32_t width = 0, height = 0;
  2997. uint32_t plane_pixel_rate;
  2998. uint_fixed_16_16_t y_tile_minimum;
  2999. uint32_t y_min_scanlines;
  3000. struct intel_atomic_state *state =
  3001. to_intel_atomic_state(cstate->base.state);
  3002. bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
  3003. bool y_tiled, x_tiled;
  3004. if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
  3005. *enabled = false;
  3006. return 0;
  3007. }
  3008. y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
  3009. fb->modifier == I915_FORMAT_MOD_Yf_TILED;
  3010. x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
  3011. /* Display WA #1141: kbl. */
  3012. if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
  3013. latency += 4;
  3014. if (apply_memory_bw_wa && x_tiled)
  3015. latency += 15;
  3016. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3017. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  3018. if (drm_rotation_90_or_270(pstate->rotation))
  3019. swap(width, height);
  3020. cpp = fb->format->cpp[0];
  3021. plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
  3022. if (drm_rotation_90_or_270(pstate->rotation)) {
  3023. int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
  3024. fb->format->cpp[1] :
  3025. fb->format->cpp[0];
  3026. switch (cpp) {
  3027. case 1:
  3028. y_min_scanlines = 16;
  3029. break;
  3030. case 2:
  3031. y_min_scanlines = 8;
  3032. break;
  3033. case 4:
  3034. y_min_scanlines = 4;
  3035. break;
  3036. default:
  3037. MISSING_CASE(cpp);
  3038. return -EINVAL;
  3039. }
  3040. } else {
  3041. y_min_scanlines = 4;
  3042. }
  3043. if (apply_memory_bw_wa)
  3044. y_min_scanlines *= 2;
  3045. plane_bytes_per_line = width * cpp;
  3046. if (y_tiled) {
  3047. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
  3048. y_min_scanlines, 512);
  3049. plane_blocks_per_line =
  3050. fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
  3051. } else if (x_tiled) {
  3052. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3053. plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
  3054. } else {
  3055. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
  3056. plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
  3057. }
  3058. method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
  3059. method2 = skl_wm_method2(plane_pixel_rate,
  3060. cstate->base.adjusted_mode.crtc_htotal,
  3061. latency,
  3062. plane_blocks_per_line);
  3063. y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
  3064. plane_blocks_per_line);
  3065. if (y_tiled) {
  3066. selected_result = max_fixed_16_16(method2, y_tile_minimum);
  3067. } else {
  3068. if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
  3069. (plane_bytes_per_line / 512 < 1))
  3070. selected_result = method2;
  3071. else if ((ddb_allocation /
  3072. fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
  3073. selected_result = min_fixed_16_16(method1, method2);
  3074. else
  3075. selected_result = method1;
  3076. }
  3077. res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
  3078. res_lines = DIV_ROUND_UP(selected_result.val,
  3079. plane_blocks_per_line.val);
  3080. if (level >= 1 && level <= 7) {
  3081. if (y_tiled) {
  3082. res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
  3083. res_lines += y_min_scanlines;
  3084. } else {
  3085. res_blocks++;
  3086. }
  3087. }
  3088. if (res_blocks >= ddb_allocation || res_lines > 31) {
  3089. *enabled = false;
  3090. /*
  3091. * If there are no valid level 0 watermarks, then we can't
  3092. * support this display configuration.
  3093. */
  3094. if (level) {
  3095. return 0;
  3096. } else {
  3097. struct drm_plane *plane = pstate->plane;
  3098. DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
  3099. DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
  3100. plane->base.id, plane->name,
  3101. res_blocks, ddb_allocation, res_lines);
  3102. return -EINVAL;
  3103. }
  3104. }
  3105. *out_blocks = res_blocks;
  3106. *out_lines = res_lines;
  3107. *enabled = true;
  3108. return 0;
  3109. }
  3110. static int
  3111. skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  3112. struct skl_ddb_allocation *ddb,
  3113. struct intel_crtc_state *cstate,
  3114. struct intel_plane *intel_plane,
  3115. int level,
  3116. struct skl_wm_level *result)
  3117. {
  3118. struct drm_atomic_state *state = cstate->base.state;
  3119. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3120. struct drm_plane *plane = &intel_plane->base;
  3121. struct intel_plane_state *intel_pstate = NULL;
  3122. uint16_t ddb_blocks;
  3123. enum pipe pipe = intel_crtc->pipe;
  3124. int ret;
  3125. if (state)
  3126. intel_pstate =
  3127. intel_atomic_get_existing_plane_state(state,
  3128. intel_plane);
  3129. /*
  3130. * Note: If we start supporting multiple pending atomic commits against
  3131. * the same planes/CRTC's in the future, plane->state will no longer be
  3132. * the correct pre-state to use for the calculations here and we'll
  3133. * need to change where we get the 'unchanged' plane data from.
  3134. *
  3135. * For now this is fine because we only allow one queued commit against
  3136. * a CRTC. Even if the plane isn't modified by this transaction and we
  3137. * don't have a plane lock, we still have the CRTC's lock, so we know
  3138. * that no other transactions are racing with us to update it.
  3139. */
  3140. if (!intel_pstate)
  3141. intel_pstate = to_intel_plane_state(plane->state);
  3142. WARN_ON(!intel_pstate->base.fb);
  3143. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
  3144. ret = skl_compute_plane_wm(dev_priv,
  3145. cstate,
  3146. intel_pstate,
  3147. ddb_blocks,
  3148. level,
  3149. &result->plane_res_b,
  3150. &result->plane_res_l,
  3151. &result->plane_en);
  3152. if (ret)
  3153. return ret;
  3154. return 0;
  3155. }
  3156. static uint32_t
  3157. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  3158. {
  3159. struct drm_atomic_state *state = cstate->base.state;
  3160. struct drm_i915_private *dev_priv = to_i915(state->dev);
  3161. uint32_t pixel_rate;
  3162. uint32_t linetime_wm;
  3163. if (!cstate->base.active)
  3164. return 0;
  3165. pixel_rate = ilk_pipe_pixel_rate(cstate);
  3166. if (WARN_ON(pixel_rate == 0))
  3167. return 0;
  3168. linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
  3169. 1000, pixel_rate);
  3170. /* Display WA #1135: bxt. */
  3171. if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
  3172. linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
  3173. return linetime_wm;
  3174. }
  3175. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  3176. struct skl_wm_level *trans_wm /* out */)
  3177. {
  3178. if (!cstate->base.active)
  3179. return;
  3180. /* Until we know more, just disable transition WMs */
  3181. trans_wm->plane_en = false;
  3182. }
  3183. static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
  3184. struct skl_ddb_allocation *ddb,
  3185. struct skl_pipe_wm *pipe_wm)
  3186. {
  3187. struct drm_device *dev = cstate->base.crtc->dev;
  3188. const struct drm_i915_private *dev_priv = to_i915(dev);
  3189. struct intel_plane *intel_plane;
  3190. struct skl_plane_wm *wm;
  3191. int level, max_level = ilk_wm_max_level(dev_priv);
  3192. int ret;
  3193. /*
  3194. * We'll only calculate watermarks for planes that are actually
  3195. * enabled, so make sure all other planes are set as disabled.
  3196. */
  3197. memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
  3198. for_each_intel_plane_mask(&dev_priv->drm,
  3199. intel_plane,
  3200. cstate->base.plane_mask) {
  3201. wm = &pipe_wm->planes[intel_plane->id];
  3202. for (level = 0; level <= max_level; level++) {
  3203. ret = skl_compute_wm_level(dev_priv, ddb, cstate,
  3204. intel_plane, level,
  3205. &wm->wm[level]);
  3206. if (ret)
  3207. return ret;
  3208. }
  3209. skl_compute_transition_wm(cstate, &wm->trans_wm);
  3210. }
  3211. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  3212. return 0;
  3213. }
  3214. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  3215. i915_reg_t reg,
  3216. const struct skl_ddb_entry *entry)
  3217. {
  3218. if (entry->end)
  3219. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  3220. else
  3221. I915_WRITE(reg, 0);
  3222. }
  3223. static void skl_write_wm_level(struct drm_i915_private *dev_priv,
  3224. i915_reg_t reg,
  3225. const struct skl_wm_level *level)
  3226. {
  3227. uint32_t val = 0;
  3228. if (level->plane_en) {
  3229. val |= PLANE_WM_EN;
  3230. val |= level->plane_res_b;
  3231. val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
  3232. }
  3233. I915_WRITE(reg, val);
  3234. }
  3235. static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
  3236. const struct skl_plane_wm *wm,
  3237. const struct skl_ddb_allocation *ddb,
  3238. enum plane_id plane_id)
  3239. {
  3240. struct drm_crtc *crtc = &intel_crtc->base;
  3241. struct drm_device *dev = crtc->dev;
  3242. struct drm_i915_private *dev_priv = to_i915(dev);
  3243. int level, max_level = ilk_wm_max_level(dev_priv);
  3244. enum pipe pipe = intel_crtc->pipe;
  3245. for (level = 0; level <= max_level; level++) {
  3246. skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
  3247. &wm->wm[level]);
  3248. }
  3249. skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
  3250. &wm->trans_wm);
  3251. skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
  3252. &ddb->plane[pipe][plane_id]);
  3253. skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
  3254. &ddb->y_plane[pipe][plane_id]);
  3255. }
  3256. static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
  3257. const struct skl_plane_wm *wm,
  3258. const struct skl_ddb_allocation *ddb)
  3259. {
  3260. struct drm_crtc *crtc = &intel_crtc->base;
  3261. struct drm_device *dev = crtc->dev;
  3262. struct drm_i915_private *dev_priv = to_i915(dev);
  3263. int level, max_level = ilk_wm_max_level(dev_priv);
  3264. enum pipe pipe = intel_crtc->pipe;
  3265. for (level = 0; level <= max_level; level++) {
  3266. skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
  3267. &wm->wm[level]);
  3268. }
  3269. skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
  3270. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  3271. &ddb->plane[pipe][PLANE_CURSOR]);
  3272. }
  3273. bool skl_wm_level_equals(const struct skl_wm_level *l1,
  3274. const struct skl_wm_level *l2)
  3275. {
  3276. if (l1->plane_en != l2->plane_en)
  3277. return false;
  3278. /* If both planes aren't enabled, the rest shouldn't matter */
  3279. if (!l1->plane_en)
  3280. return true;
  3281. return (l1->plane_res_l == l2->plane_res_l &&
  3282. l1->plane_res_b == l2->plane_res_b);
  3283. }
  3284. static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
  3285. const struct skl_ddb_entry *b)
  3286. {
  3287. return a->start < b->end && b->start < a->end;
  3288. }
  3289. bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
  3290. const struct skl_ddb_entry *ddb,
  3291. int ignore)
  3292. {
  3293. int i;
  3294. for (i = 0; i < I915_MAX_PIPES; i++)
  3295. if (i != ignore && entries[i] &&
  3296. skl_ddb_entries_overlap(ddb, entries[i]))
  3297. return true;
  3298. return false;
  3299. }
  3300. static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
  3301. const struct skl_pipe_wm *old_pipe_wm,
  3302. struct skl_pipe_wm *pipe_wm, /* out */
  3303. struct skl_ddb_allocation *ddb, /* out */
  3304. bool *changed /* out */)
  3305. {
  3306. struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
  3307. int ret;
  3308. ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
  3309. if (ret)
  3310. return ret;
  3311. if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
  3312. *changed = false;
  3313. else
  3314. *changed = true;
  3315. return 0;
  3316. }
  3317. static uint32_t
  3318. pipes_modified(struct drm_atomic_state *state)
  3319. {
  3320. struct drm_crtc *crtc;
  3321. struct drm_crtc_state *cstate;
  3322. uint32_t i, ret = 0;
  3323. for_each_crtc_in_state(state, crtc, cstate, i)
  3324. ret |= drm_crtc_mask(crtc);
  3325. return ret;
  3326. }
  3327. static int
  3328. skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
  3329. {
  3330. struct drm_atomic_state *state = cstate->base.state;
  3331. struct drm_device *dev = state->dev;
  3332. struct drm_crtc *crtc = cstate->base.crtc;
  3333. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3334. struct drm_i915_private *dev_priv = to_i915(dev);
  3335. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3336. struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  3337. struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  3338. struct drm_plane_state *plane_state;
  3339. struct drm_plane *plane;
  3340. enum pipe pipe = intel_crtc->pipe;
  3341. WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
  3342. drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
  3343. enum plane_id plane_id = to_intel_plane(plane)->id;
  3344. if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
  3345. &new_ddb->plane[pipe][plane_id]) &&
  3346. skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
  3347. &new_ddb->y_plane[pipe][plane_id]))
  3348. continue;
  3349. plane_state = drm_atomic_get_plane_state(state, plane);
  3350. if (IS_ERR(plane_state))
  3351. return PTR_ERR(plane_state);
  3352. }
  3353. return 0;
  3354. }
  3355. static int
  3356. skl_compute_ddb(struct drm_atomic_state *state)
  3357. {
  3358. struct drm_device *dev = state->dev;
  3359. struct drm_i915_private *dev_priv = to_i915(dev);
  3360. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3361. struct intel_crtc *intel_crtc;
  3362. struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
  3363. uint32_t realloc_pipes = pipes_modified(state);
  3364. int ret;
  3365. /*
  3366. * If this is our first atomic update following hardware readout,
  3367. * we can't trust the DDB that the BIOS programmed for us. Let's
  3368. * pretend that all pipes switched active status so that we'll
  3369. * ensure a full DDB recompute.
  3370. */
  3371. if (dev_priv->wm.distrust_bios_wm) {
  3372. ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
  3373. state->acquire_ctx);
  3374. if (ret)
  3375. return ret;
  3376. intel_state->active_pipe_changes = ~0;
  3377. /*
  3378. * We usually only initialize intel_state->active_crtcs if we
  3379. * we're doing a modeset; make sure this field is always
  3380. * initialized during the sanitization process that happens
  3381. * on the first commit too.
  3382. */
  3383. if (!intel_state->modeset)
  3384. intel_state->active_crtcs = dev_priv->active_crtcs;
  3385. }
  3386. /*
  3387. * If the modeset changes which CRTC's are active, we need to
  3388. * recompute the DDB allocation for *all* active pipes, even
  3389. * those that weren't otherwise being modified in any way by this
  3390. * atomic commit. Due to the shrinking of the per-pipe allocations
  3391. * when new active CRTC's are added, it's possible for a pipe that
  3392. * we were already using and aren't changing at all here to suddenly
  3393. * become invalid if its DDB needs exceeds its new allocation.
  3394. *
  3395. * Note that if we wind up doing a full DDB recompute, we can't let
  3396. * any other display updates race with this transaction, so we need
  3397. * to grab the lock on *all* CRTC's.
  3398. */
  3399. if (intel_state->active_pipe_changes) {
  3400. realloc_pipes = ~0;
  3401. intel_state->wm_results.dirty_pipes = ~0;
  3402. }
  3403. /*
  3404. * We're not recomputing for the pipes not included in the commit, so
  3405. * make sure we start with the current state.
  3406. */
  3407. memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
  3408. for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
  3409. struct intel_crtc_state *cstate;
  3410. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  3411. if (IS_ERR(cstate))
  3412. return PTR_ERR(cstate);
  3413. ret = skl_allocate_pipe_ddb(cstate, ddb);
  3414. if (ret)
  3415. return ret;
  3416. ret = skl_ddb_add_affected_planes(cstate);
  3417. if (ret)
  3418. return ret;
  3419. }
  3420. return 0;
  3421. }
  3422. static void
  3423. skl_copy_wm_for_pipe(struct skl_wm_values *dst,
  3424. struct skl_wm_values *src,
  3425. enum pipe pipe)
  3426. {
  3427. memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
  3428. sizeof(dst->ddb.y_plane[pipe]));
  3429. memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
  3430. sizeof(dst->ddb.plane[pipe]));
  3431. }
  3432. static void
  3433. skl_print_wm_changes(const struct drm_atomic_state *state)
  3434. {
  3435. const struct drm_device *dev = state->dev;
  3436. const struct drm_i915_private *dev_priv = to_i915(dev);
  3437. const struct intel_atomic_state *intel_state =
  3438. to_intel_atomic_state(state);
  3439. const struct drm_crtc *crtc;
  3440. const struct drm_crtc_state *cstate;
  3441. const struct intel_plane *intel_plane;
  3442. const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
  3443. const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  3444. int i;
  3445. for_each_crtc_in_state(state, crtc, cstate, i) {
  3446. const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3447. enum pipe pipe = intel_crtc->pipe;
  3448. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  3449. enum plane_id plane_id = intel_plane->id;
  3450. const struct skl_ddb_entry *old, *new;
  3451. old = &old_ddb->plane[pipe][plane_id];
  3452. new = &new_ddb->plane[pipe][plane_id];
  3453. if (skl_ddb_entry_equal(old, new))
  3454. continue;
  3455. DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
  3456. intel_plane->base.base.id,
  3457. intel_plane->base.name,
  3458. old->start, old->end,
  3459. new->start, new->end);
  3460. }
  3461. }
  3462. }
  3463. static int
  3464. skl_compute_wm(struct drm_atomic_state *state)
  3465. {
  3466. struct drm_crtc *crtc;
  3467. struct drm_crtc_state *cstate;
  3468. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3469. struct skl_wm_values *results = &intel_state->wm_results;
  3470. struct skl_pipe_wm *pipe_wm;
  3471. bool changed = false;
  3472. int ret, i;
  3473. /*
  3474. * If this transaction isn't actually touching any CRTC's, don't
  3475. * bother with watermark calculation. Note that if we pass this
  3476. * test, we're guaranteed to hold at least one CRTC state mutex,
  3477. * which means we can safely use values like dev_priv->active_crtcs
  3478. * since any racing commits that want to update them would need to
  3479. * hold _all_ CRTC state mutexes.
  3480. */
  3481. for_each_crtc_in_state(state, crtc, cstate, i)
  3482. changed = true;
  3483. if (!changed)
  3484. return 0;
  3485. /* Clear all dirty flags */
  3486. results->dirty_pipes = 0;
  3487. ret = skl_compute_ddb(state);
  3488. if (ret)
  3489. return ret;
  3490. /*
  3491. * Calculate WM's for all pipes that are part of this transaction.
  3492. * Note that the DDB allocation above may have added more CRTC's that
  3493. * weren't otherwise being modified (and set bits in dirty_pipes) if
  3494. * pipe allocations had to change.
  3495. *
  3496. * FIXME: Now that we're doing this in the atomic check phase, we
  3497. * should allow skl_update_pipe_wm() to return failure in cases where
  3498. * no suitable watermark values can be found.
  3499. */
  3500. for_each_crtc_in_state(state, crtc, cstate, i) {
  3501. struct intel_crtc_state *intel_cstate =
  3502. to_intel_crtc_state(cstate);
  3503. const struct skl_pipe_wm *old_pipe_wm =
  3504. &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
  3505. pipe_wm = &intel_cstate->wm.skl.optimal;
  3506. ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
  3507. &results->ddb, &changed);
  3508. if (ret)
  3509. return ret;
  3510. if (changed)
  3511. results->dirty_pipes |= drm_crtc_mask(crtc);
  3512. if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
  3513. /* This pipe's WM's did not change */
  3514. continue;
  3515. intel_cstate->update_wm_pre = true;
  3516. }
  3517. skl_print_wm_changes(state);
  3518. return 0;
  3519. }
  3520. static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
  3521. struct intel_crtc_state *cstate)
  3522. {
  3523. struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
  3524. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  3525. struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
  3526. const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
  3527. enum pipe pipe = crtc->pipe;
  3528. enum plane_id plane_id;
  3529. if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
  3530. return;
  3531. I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
  3532. for_each_plane_id_on_crtc(crtc, plane_id) {
  3533. if (plane_id != PLANE_CURSOR)
  3534. skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
  3535. ddb, plane_id);
  3536. else
  3537. skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
  3538. ddb);
  3539. }
  3540. }
  3541. static void skl_initial_wm(struct intel_atomic_state *state,
  3542. struct intel_crtc_state *cstate)
  3543. {
  3544. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3545. struct drm_device *dev = intel_crtc->base.dev;
  3546. struct drm_i915_private *dev_priv = to_i915(dev);
  3547. struct skl_wm_values *results = &state->wm_results;
  3548. struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
  3549. enum pipe pipe = intel_crtc->pipe;
  3550. if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
  3551. return;
  3552. mutex_lock(&dev_priv->wm.wm_mutex);
  3553. if (cstate->base.active_changed)
  3554. skl_atomic_update_crtc_wm(state, cstate);
  3555. skl_copy_wm_for_pipe(hw_vals, results, pipe);
  3556. mutex_unlock(&dev_priv->wm.wm_mutex);
  3557. }
  3558. static void ilk_compute_wm_config(struct drm_device *dev,
  3559. struct intel_wm_config *config)
  3560. {
  3561. struct intel_crtc *crtc;
  3562. /* Compute the currently _active_ config */
  3563. for_each_intel_crtc(dev, crtc) {
  3564. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  3565. if (!wm->pipe_enabled)
  3566. continue;
  3567. config->sprites_enabled |= wm->sprites_enabled;
  3568. config->sprites_scaled |= wm->sprites_scaled;
  3569. config->num_pipes_active++;
  3570. }
  3571. }
  3572. static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
  3573. {
  3574. struct drm_device *dev = &dev_priv->drm;
  3575. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3576. struct ilk_wm_maximums max;
  3577. struct intel_wm_config config = {};
  3578. struct ilk_wm_values results = {};
  3579. enum intel_ddb_partitioning partitioning;
  3580. ilk_compute_wm_config(dev, &config);
  3581. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3582. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3583. /* 5/6 split only in single pipe config on IVB+ */
  3584. if (INTEL_GEN(dev_priv) >= 7 &&
  3585. config.num_pipes_active == 1 && config.sprites_enabled) {
  3586. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3587. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3588. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3589. } else {
  3590. best_lp_wm = &lp_wm_1_2;
  3591. }
  3592. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3593. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3594. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3595. ilk_write_wm_values(dev_priv, &results);
  3596. }
  3597. static void ilk_initial_watermarks(struct intel_atomic_state *state,
  3598. struct intel_crtc_state *cstate)
  3599. {
  3600. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  3601. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3602. mutex_lock(&dev_priv->wm.wm_mutex);
  3603. intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
  3604. ilk_program_watermarks(dev_priv);
  3605. mutex_unlock(&dev_priv->wm.wm_mutex);
  3606. }
  3607. static void ilk_optimize_watermarks(struct intel_atomic_state *state,
  3608. struct intel_crtc_state *cstate)
  3609. {
  3610. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  3611. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3612. mutex_lock(&dev_priv->wm.wm_mutex);
  3613. if (cstate->wm.need_postvbl_update) {
  3614. intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
  3615. ilk_program_watermarks(dev_priv);
  3616. }
  3617. mutex_unlock(&dev_priv->wm.wm_mutex);
  3618. }
  3619. static inline void skl_wm_level_from_reg_val(uint32_t val,
  3620. struct skl_wm_level *level)
  3621. {
  3622. level->plane_en = val & PLANE_WM_EN;
  3623. level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
  3624. level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
  3625. PLANE_WM_LINES_MASK;
  3626. }
  3627. void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
  3628. struct skl_pipe_wm *out)
  3629. {
  3630. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  3631. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3632. enum pipe pipe = intel_crtc->pipe;
  3633. int level, max_level;
  3634. enum plane_id plane_id;
  3635. uint32_t val;
  3636. max_level = ilk_wm_max_level(dev_priv);
  3637. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3638. struct skl_plane_wm *wm = &out->planes[plane_id];
  3639. for (level = 0; level <= max_level; level++) {
  3640. if (plane_id != PLANE_CURSOR)
  3641. val = I915_READ(PLANE_WM(pipe, plane_id, level));
  3642. else
  3643. val = I915_READ(CUR_WM(pipe, level));
  3644. skl_wm_level_from_reg_val(val, &wm->wm[level]);
  3645. }
  3646. if (plane_id != PLANE_CURSOR)
  3647. val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
  3648. else
  3649. val = I915_READ(CUR_WM_TRANS(pipe));
  3650. skl_wm_level_from_reg_val(val, &wm->trans_wm);
  3651. }
  3652. if (!intel_crtc->active)
  3653. return;
  3654. out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
  3655. }
  3656. void skl_wm_get_hw_state(struct drm_device *dev)
  3657. {
  3658. struct drm_i915_private *dev_priv = to_i915(dev);
  3659. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3660. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3661. struct drm_crtc *crtc;
  3662. struct intel_crtc *intel_crtc;
  3663. struct intel_crtc_state *cstate;
  3664. skl_ddb_get_hw_state(dev_priv, ddb);
  3665. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3666. intel_crtc = to_intel_crtc(crtc);
  3667. cstate = to_intel_crtc_state(crtc->state);
  3668. skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
  3669. if (intel_crtc->active)
  3670. hw->dirty_pipes |= drm_crtc_mask(crtc);
  3671. }
  3672. if (dev_priv->active_crtcs) {
  3673. /* Fully recompute DDB on first atomic commit */
  3674. dev_priv->wm.distrust_bios_wm = true;
  3675. } else {
  3676. /* Easy/common case; just sanitize DDB now if everything off */
  3677. memset(ddb, 0, sizeof(*ddb));
  3678. }
  3679. }
  3680. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3681. {
  3682. struct drm_device *dev = crtc->dev;
  3683. struct drm_i915_private *dev_priv = to_i915(dev);
  3684. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3686. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3687. struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
  3688. enum pipe pipe = intel_crtc->pipe;
  3689. static const i915_reg_t wm0_pipe_reg[] = {
  3690. [PIPE_A] = WM0_PIPEA_ILK,
  3691. [PIPE_B] = WM0_PIPEB_ILK,
  3692. [PIPE_C] = WM0_PIPEC_IVB,
  3693. };
  3694. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3695. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  3696. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3697. memset(active, 0, sizeof(*active));
  3698. active->pipe_enabled = intel_crtc->active;
  3699. if (active->pipe_enabled) {
  3700. u32 tmp = hw->wm_pipe[pipe];
  3701. /*
  3702. * For active pipes LP0 watermark is marked as
  3703. * enabled, and LP1+ watermaks as disabled since
  3704. * we can't really reverse compute them in case
  3705. * multiple pipes are active.
  3706. */
  3707. active->wm[0].enable = true;
  3708. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3709. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3710. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3711. active->linetime = hw->wm_linetime[pipe];
  3712. } else {
  3713. int level, max_level = ilk_wm_max_level(dev_priv);
  3714. /*
  3715. * For inactive pipes, all watermark levels
  3716. * should be marked as enabled but zeroed,
  3717. * which is what we'd compute them to.
  3718. */
  3719. for (level = 0; level <= max_level; level++)
  3720. active->wm[level].enable = true;
  3721. }
  3722. intel_crtc->wm.active.ilk = *active;
  3723. }
  3724. #define _FW_WM(value, plane) \
  3725. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3726. #define _FW_WM_VLV(value, plane) \
  3727. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3728. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3729. struct vlv_wm_values *wm)
  3730. {
  3731. enum pipe pipe;
  3732. uint32_t tmp;
  3733. for_each_pipe(dev_priv, pipe) {
  3734. tmp = I915_READ(VLV_DDL(pipe));
  3735. wm->ddl[pipe].plane[PLANE_PRIMARY] =
  3736. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3737. wm->ddl[pipe].plane[PLANE_CURSOR] =
  3738. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3739. wm->ddl[pipe].plane[PLANE_SPRITE0] =
  3740. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3741. wm->ddl[pipe].plane[PLANE_SPRITE1] =
  3742. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3743. }
  3744. tmp = I915_READ(DSPFW1);
  3745. wm->sr.plane = _FW_WM(tmp, SR);
  3746. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  3747. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
  3748. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
  3749. tmp = I915_READ(DSPFW2);
  3750. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
  3751. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  3752. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
  3753. tmp = I915_READ(DSPFW3);
  3754. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3755. if (IS_CHERRYVIEW(dev_priv)) {
  3756. tmp = I915_READ(DSPFW7_CHV);
  3757. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  3758. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  3759. tmp = I915_READ(DSPFW8_CHV);
  3760. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
  3761. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
  3762. tmp = I915_READ(DSPFW9_CHV);
  3763. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
  3764. wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
  3765. tmp = I915_READ(DSPHOWM);
  3766. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3767. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3768. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3769. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
  3770. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3771. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3772. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  3773. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3774. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3775. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  3776. } else {
  3777. tmp = I915_READ(DSPFW7);
  3778. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  3779. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  3780. tmp = I915_READ(DSPHOWM);
  3781. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3782. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3783. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3784. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  3785. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3786. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3787. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  3788. }
  3789. }
  3790. #undef _FW_WM
  3791. #undef _FW_WM_VLV
  3792. void vlv_wm_get_hw_state(struct drm_device *dev)
  3793. {
  3794. struct drm_i915_private *dev_priv = to_i915(dev);
  3795. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3796. struct intel_plane *plane;
  3797. enum pipe pipe;
  3798. u32 val;
  3799. vlv_read_wm_values(dev_priv, wm);
  3800. for_each_intel_plane(dev, plane)
  3801. plane->wm.fifo_size = vlv_get_fifo_size(plane);
  3802. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3803. wm->level = VLV_WM_LEVEL_PM2;
  3804. if (IS_CHERRYVIEW(dev_priv)) {
  3805. mutex_lock(&dev_priv->rps.hw_lock);
  3806. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  3807. if (val & DSP_MAXFIFO_PM5_ENABLE)
  3808. wm->level = VLV_WM_LEVEL_PM5;
  3809. /*
  3810. * If DDR DVFS is disabled in the BIOS, Punit
  3811. * will never ack the request. So if that happens
  3812. * assume we don't have to enable/disable DDR DVFS
  3813. * dynamically. To test that just set the REQ_ACK
  3814. * bit to poke the Punit, but don't change the
  3815. * HIGH/LOW bits so that we don't actually change
  3816. * the current state.
  3817. */
  3818. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3819. val |= FORCE_DDR_FREQ_REQ_ACK;
  3820. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  3821. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  3822. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  3823. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  3824. "assuming DDR DVFS is disabled\n");
  3825. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  3826. } else {
  3827. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3828. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  3829. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  3830. }
  3831. mutex_unlock(&dev_priv->rps.hw_lock);
  3832. }
  3833. for_each_pipe(dev_priv, pipe)
  3834. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  3835. pipe_name(pipe),
  3836. wm->pipe[pipe].plane[PLANE_PRIMARY],
  3837. wm->pipe[pipe].plane[PLANE_CURSOR],
  3838. wm->pipe[pipe].plane[PLANE_SPRITE0],
  3839. wm->pipe[pipe].plane[PLANE_SPRITE1]);
  3840. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  3841. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  3842. }
  3843. void ilk_wm_get_hw_state(struct drm_device *dev)
  3844. {
  3845. struct drm_i915_private *dev_priv = to_i915(dev);
  3846. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3847. struct drm_crtc *crtc;
  3848. for_each_crtc(dev, crtc)
  3849. ilk_pipe_wm_get_hw_state(crtc);
  3850. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3851. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3852. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3853. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3854. if (INTEL_GEN(dev_priv) >= 7) {
  3855. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3856. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3857. }
  3858. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  3859. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3860. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3861. else if (IS_IVYBRIDGE(dev_priv))
  3862. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3863. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3864. hw->enable_fbc_wm =
  3865. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3866. }
  3867. /**
  3868. * intel_update_watermarks - update FIFO watermark values based on current modes
  3869. *
  3870. * Calculate watermark values for the various WM regs based on current mode
  3871. * and plane configuration.
  3872. *
  3873. * There are several cases to deal with here:
  3874. * - normal (i.e. non-self-refresh)
  3875. * - self-refresh (SR) mode
  3876. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3877. * - lines are small relative to FIFO size (buffer can hold more than 2
  3878. * lines), so need to account for TLB latency
  3879. *
  3880. * The normal calculation is:
  3881. * watermark = dotclock * bytes per pixel * latency
  3882. * where latency is platform & configuration dependent (we assume pessimal
  3883. * values here).
  3884. *
  3885. * The SR calculation is:
  3886. * watermark = (trunc(latency/line time)+1) * surface width *
  3887. * bytes per pixel
  3888. * where
  3889. * line time = htotal / dotclock
  3890. * surface width = hdisplay for normal plane and 64 for cursor
  3891. * and latency is assumed to be high, as above.
  3892. *
  3893. * The final value programmed to the register should always be rounded up,
  3894. * and include an extra 2 entries to account for clock crossings.
  3895. *
  3896. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3897. * to set the non-SR watermarks to 8.
  3898. */
  3899. void intel_update_watermarks(struct intel_crtc *crtc)
  3900. {
  3901. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  3902. if (dev_priv->display.update_wm)
  3903. dev_priv->display.update_wm(crtc);
  3904. }
  3905. /*
  3906. * Lock protecting IPS related data structures
  3907. */
  3908. DEFINE_SPINLOCK(mchdev_lock);
  3909. /* Global for IPS driver to get at the current i915 device. Protected by
  3910. * mchdev_lock. */
  3911. static struct drm_i915_private *i915_mch_dev;
  3912. bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
  3913. {
  3914. u16 rgvswctl;
  3915. assert_spin_locked(&mchdev_lock);
  3916. rgvswctl = I915_READ16(MEMSWCTL);
  3917. if (rgvswctl & MEMCTL_CMD_STS) {
  3918. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3919. return false; /* still busy with another command */
  3920. }
  3921. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3922. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3923. I915_WRITE16(MEMSWCTL, rgvswctl);
  3924. POSTING_READ16(MEMSWCTL);
  3925. rgvswctl |= MEMCTL_CMD_STS;
  3926. I915_WRITE16(MEMSWCTL, rgvswctl);
  3927. return true;
  3928. }
  3929. static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
  3930. {
  3931. u32 rgvmodectl;
  3932. u8 fmax, fmin, fstart, vstart;
  3933. spin_lock_irq(&mchdev_lock);
  3934. rgvmodectl = I915_READ(MEMMODECTL);
  3935. /* Enable temp reporting */
  3936. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3937. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3938. /* 100ms RC evaluation intervals */
  3939. I915_WRITE(RCUPEI, 100000);
  3940. I915_WRITE(RCDNEI, 100000);
  3941. /* Set max/min thresholds to 90ms and 80ms respectively */
  3942. I915_WRITE(RCBMAXAVG, 90000);
  3943. I915_WRITE(RCBMINAVG, 80000);
  3944. I915_WRITE(MEMIHYST, 1);
  3945. /* Set up min, max, and cur for interrupt handling */
  3946. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3947. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3948. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3949. MEMMODE_FSTART_SHIFT;
  3950. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  3951. PXVFREQ_PX_SHIFT;
  3952. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3953. dev_priv->ips.fstart = fstart;
  3954. dev_priv->ips.max_delay = fstart;
  3955. dev_priv->ips.min_delay = fmin;
  3956. dev_priv->ips.cur_delay = fstart;
  3957. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3958. fmax, fmin, fstart);
  3959. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3960. /*
  3961. * Interrupts will be enabled in ironlake_irq_postinstall
  3962. */
  3963. I915_WRITE(VIDSTART, vstart);
  3964. POSTING_READ(VIDSTART);
  3965. rgvmodectl |= MEMMODE_SWMODE_EN;
  3966. I915_WRITE(MEMMODECTL, rgvmodectl);
  3967. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3968. DRM_ERROR("stuck trying to change perf mode\n");
  3969. mdelay(1);
  3970. ironlake_set_drps(dev_priv, fstart);
  3971. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  3972. I915_READ(DDREC) + I915_READ(CSIEC);
  3973. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3974. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  3975. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3976. spin_unlock_irq(&mchdev_lock);
  3977. }
  3978. static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
  3979. {
  3980. u16 rgvswctl;
  3981. spin_lock_irq(&mchdev_lock);
  3982. rgvswctl = I915_READ16(MEMSWCTL);
  3983. /* Ack interrupts, disable EFC interrupt */
  3984. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3985. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3986. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3987. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3988. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3989. /* Go back to the starting frequency */
  3990. ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
  3991. mdelay(1);
  3992. rgvswctl |= MEMCTL_CMD_STS;
  3993. I915_WRITE(MEMSWCTL, rgvswctl);
  3994. mdelay(1);
  3995. spin_unlock_irq(&mchdev_lock);
  3996. }
  3997. /* There's a funny hw issue where the hw returns all 0 when reading from
  3998. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3999. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  4000. * all limits and the gpu stuck at whatever frequency it is at atm).
  4001. */
  4002. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  4003. {
  4004. u32 limits;
  4005. /* Only set the down limit when we've reached the lowest level to avoid
  4006. * getting more interrupts, otherwise leave this clear. This prevents a
  4007. * race in the hw when coming out of rc6: There's a tiny window where
  4008. * the hw runs at the minimal clock before selecting the desired
  4009. * frequency, if the down threshold expires in that window we will not
  4010. * receive a down interrupt. */
  4011. if (IS_GEN9(dev_priv)) {
  4012. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  4013. if (val <= dev_priv->rps.min_freq_softlimit)
  4014. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  4015. } else {
  4016. limits = dev_priv->rps.max_freq_softlimit << 24;
  4017. if (val <= dev_priv->rps.min_freq_softlimit)
  4018. limits |= dev_priv->rps.min_freq_softlimit << 16;
  4019. }
  4020. return limits;
  4021. }
  4022. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  4023. {
  4024. int new_power;
  4025. u32 threshold_up = 0, threshold_down = 0; /* in % */
  4026. u32 ei_up = 0, ei_down = 0;
  4027. new_power = dev_priv->rps.power;
  4028. switch (dev_priv->rps.power) {
  4029. case LOW_POWER:
  4030. if (val > dev_priv->rps.efficient_freq + 1 &&
  4031. val > dev_priv->rps.cur_freq)
  4032. new_power = BETWEEN;
  4033. break;
  4034. case BETWEEN:
  4035. if (val <= dev_priv->rps.efficient_freq &&
  4036. val < dev_priv->rps.cur_freq)
  4037. new_power = LOW_POWER;
  4038. else if (val >= dev_priv->rps.rp0_freq &&
  4039. val > dev_priv->rps.cur_freq)
  4040. new_power = HIGH_POWER;
  4041. break;
  4042. case HIGH_POWER:
  4043. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
  4044. val < dev_priv->rps.cur_freq)
  4045. new_power = BETWEEN;
  4046. break;
  4047. }
  4048. /* Max/min bins are special */
  4049. if (val <= dev_priv->rps.min_freq_softlimit)
  4050. new_power = LOW_POWER;
  4051. if (val >= dev_priv->rps.max_freq_softlimit)
  4052. new_power = HIGH_POWER;
  4053. if (new_power == dev_priv->rps.power)
  4054. return;
  4055. /* Note the units here are not exactly 1us, but 1280ns. */
  4056. switch (new_power) {
  4057. case LOW_POWER:
  4058. /* Upclock if more than 95% busy over 16ms */
  4059. ei_up = 16000;
  4060. threshold_up = 95;
  4061. /* Downclock if less than 85% busy over 32ms */
  4062. ei_down = 32000;
  4063. threshold_down = 85;
  4064. break;
  4065. case BETWEEN:
  4066. /* Upclock if more than 90% busy over 13ms */
  4067. ei_up = 13000;
  4068. threshold_up = 90;
  4069. /* Downclock if less than 75% busy over 32ms */
  4070. ei_down = 32000;
  4071. threshold_down = 75;
  4072. break;
  4073. case HIGH_POWER:
  4074. /* Upclock if more than 85% busy over 10ms */
  4075. ei_up = 10000;
  4076. threshold_up = 85;
  4077. /* Downclock if less than 60% busy over 32ms */
  4078. ei_down = 32000;
  4079. threshold_down = 60;
  4080. break;
  4081. }
  4082. I915_WRITE(GEN6_RP_UP_EI,
  4083. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  4084. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  4085. GT_INTERVAL_FROM_US(dev_priv,
  4086. ei_up * threshold_up / 100));
  4087. I915_WRITE(GEN6_RP_DOWN_EI,
  4088. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  4089. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  4090. GT_INTERVAL_FROM_US(dev_priv,
  4091. ei_down * threshold_down / 100));
  4092. I915_WRITE(GEN6_RP_CONTROL,
  4093. GEN6_RP_MEDIA_TURBO |
  4094. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4095. GEN6_RP_MEDIA_IS_GFX |
  4096. GEN6_RP_ENABLE |
  4097. GEN6_RP_UP_BUSY_AVG |
  4098. GEN6_RP_DOWN_IDLE_AVG);
  4099. dev_priv->rps.power = new_power;
  4100. dev_priv->rps.up_threshold = threshold_up;
  4101. dev_priv->rps.down_threshold = threshold_down;
  4102. dev_priv->rps.last_adj = 0;
  4103. }
  4104. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  4105. {
  4106. u32 mask = 0;
  4107. if (val > dev_priv->rps.min_freq_softlimit)
  4108. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  4109. if (val < dev_priv->rps.max_freq_softlimit)
  4110. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  4111. mask &= dev_priv->pm_rps_events;
  4112. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  4113. }
  4114. /* gen6_set_rps is called to update the frequency request, but should also be
  4115. * called when the range (min_delay and max_delay) is modified so that we can
  4116. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  4117. static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4118. {
  4119. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  4120. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  4121. return;
  4122. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4123. WARN_ON(val > dev_priv->rps.max_freq);
  4124. WARN_ON(val < dev_priv->rps.min_freq);
  4125. /* min/max delay may still have been modified so be sure to
  4126. * write the limits value.
  4127. */
  4128. if (val != dev_priv->rps.cur_freq) {
  4129. gen6_set_rps_thresholds(dev_priv, val);
  4130. if (IS_GEN9(dev_priv))
  4131. I915_WRITE(GEN6_RPNSWREQ,
  4132. GEN9_FREQUENCY(val));
  4133. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4134. I915_WRITE(GEN6_RPNSWREQ,
  4135. HSW_FREQUENCY(val));
  4136. else
  4137. I915_WRITE(GEN6_RPNSWREQ,
  4138. GEN6_FREQUENCY(val) |
  4139. GEN6_OFFSET(0) |
  4140. GEN6_AGGRESSIVE_TURBO);
  4141. }
  4142. /* Make sure we continue to get interrupts
  4143. * until we hit the minimum or maximum frequencies.
  4144. */
  4145. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  4146. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4147. POSTING_READ(GEN6_RPNSWREQ);
  4148. dev_priv->rps.cur_freq = val;
  4149. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4150. }
  4151. static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4152. {
  4153. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4154. WARN_ON(val > dev_priv->rps.max_freq);
  4155. WARN_ON(val < dev_priv->rps.min_freq);
  4156. if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
  4157. "Odd GPU freq value\n"))
  4158. val &= ~1;
  4159. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4160. if (val != dev_priv->rps.cur_freq) {
  4161. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  4162. if (!IS_CHERRYVIEW(dev_priv))
  4163. gen6_set_rps_thresholds(dev_priv, val);
  4164. }
  4165. dev_priv->rps.cur_freq = val;
  4166. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4167. }
  4168. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  4169. *
  4170. * * If Gfx is Idle, then
  4171. * 1. Forcewake Media well.
  4172. * 2. Request idle freq.
  4173. * 3. Release Forcewake of Media well.
  4174. */
  4175. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  4176. {
  4177. u32 val = dev_priv->rps.idle_freq;
  4178. if (dev_priv->rps.cur_freq <= val)
  4179. return;
  4180. /* The punit delays the write of the frequency and voltage until it
  4181. * determines the GPU is awake. During normal usage we don't want to
  4182. * waste power changing the frequency if the GPU is sleeping (rc6).
  4183. * However, the GPU and driver is now idle and we do not want to delay
  4184. * switching to minimum voltage (reducing power whilst idle) as we do
  4185. * not expect to be woken in the near future and so must flush the
  4186. * change by waking the device.
  4187. *
  4188. * We choose to take the media powerwell (either would do to trick the
  4189. * punit into committing the voltage change) as that takes a lot less
  4190. * power than the render powerwell.
  4191. */
  4192. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  4193. valleyview_set_rps(dev_priv, val);
  4194. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  4195. }
  4196. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  4197. {
  4198. mutex_lock(&dev_priv->rps.hw_lock);
  4199. if (dev_priv->rps.enabled) {
  4200. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  4201. gen6_rps_reset_ei(dev_priv);
  4202. I915_WRITE(GEN6_PMINTRMSK,
  4203. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  4204. gen6_enable_rps_interrupts(dev_priv);
  4205. /* Ensure we start at the user's desired frequency */
  4206. intel_set_rps(dev_priv,
  4207. clamp(dev_priv->rps.cur_freq,
  4208. dev_priv->rps.min_freq_softlimit,
  4209. dev_priv->rps.max_freq_softlimit));
  4210. }
  4211. mutex_unlock(&dev_priv->rps.hw_lock);
  4212. }
  4213. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  4214. {
  4215. /* Flush our bottom-half so that it does not race with us
  4216. * setting the idle frequency and so that it is bounded by
  4217. * our rpm wakeref. And then disable the interrupts to stop any
  4218. * futher RPS reclocking whilst we are asleep.
  4219. */
  4220. gen6_disable_rps_interrupts(dev_priv);
  4221. mutex_lock(&dev_priv->rps.hw_lock);
  4222. if (dev_priv->rps.enabled) {
  4223. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  4224. vlv_set_rps_idle(dev_priv);
  4225. else
  4226. gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
  4227. dev_priv->rps.last_adj = 0;
  4228. I915_WRITE(GEN6_PMINTRMSK,
  4229. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  4230. }
  4231. mutex_unlock(&dev_priv->rps.hw_lock);
  4232. spin_lock(&dev_priv->rps.client_lock);
  4233. while (!list_empty(&dev_priv->rps.clients))
  4234. list_del_init(dev_priv->rps.clients.next);
  4235. spin_unlock(&dev_priv->rps.client_lock);
  4236. }
  4237. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  4238. struct intel_rps_client *rps,
  4239. unsigned long submitted)
  4240. {
  4241. /* This is intentionally racy! We peek at the state here, then
  4242. * validate inside the RPS worker.
  4243. */
  4244. if (!(dev_priv->gt.awake &&
  4245. dev_priv->rps.enabled &&
  4246. dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
  4247. return;
  4248. /* Force a RPS boost (and don't count it against the client) if
  4249. * the GPU is severely congested.
  4250. */
  4251. if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  4252. rps = NULL;
  4253. spin_lock(&dev_priv->rps.client_lock);
  4254. if (rps == NULL || list_empty(&rps->link)) {
  4255. spin_lock_irq(&dev_priv->irq_lock);
  4256. if (dev_priv->rps.interrupts_enabled) {
  4257. dev_priv->rps.client_boost = true;
  4258. schedule_work(&dev_priv->rps.work);
  4259. }
  4260. spin_unlock_irq(&dev_priv->irq_lock);
  4261. if (rps != NULL) {
  4262. list_add(&rps->link, &dev_priv->rps.clients);
  4263. rps->boosts++;
  4264. } else
  4265. dev_priv->rps.boosts++;
  4266. }
  4267. spin_unlock(&dev_priv->rps.client_lock);
  4268. }
  4269. void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4270. {
  4271. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  4272. valleyview_set_rps(dev_priv, val);
  4273. else
  4274. gen6_set_rps(dev_priv, val);
  4275. }
  4276. static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
  4277. {
  4278. I915_WRITE(GEN6_RC_CONTROL, 0);
  4279. I915_WRITE(GEN9_PG_ENABLE, 0);
  4280. }
  4281. static void gen9_disable_rps(struct drm_i915_private *dev_priv)
  4282. {
  4283. I915_WRITE(GEN6_RP_CONTROL, 0);
  4284. }
  4285. static void gen6_disable_rps(struct drm_i915_private *dev_priv)
  4286. {
  4287. I915_WRITE(GEN6_RC_CONTROL, 0);
  4288. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  4289. I915_WRITE(GEN6_RP_CONTROL, 0);
  4290. }
  4291. static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
  4292. {
  4293. I915_WRITE(GEN6_RC_CONTROL, 0);
  4294. }
  4295. static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
  4296. {
  4297. /* we're doing forcewake before Disabling RC6,
  4298. * This what the BIOS expects when going into suspend */
  4299. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4300. I915_WRITE(GEN6_RC_CONTROL, 0);
  4301. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4302. }
  4303. static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
  4304. {
  4305. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  4306. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  4307. mode = GEN6_RC_CTL_RC6_ENABLE;
  4308. else
  4309. mode = 0;
  4310. }
  4311. if (HAS_RC6p(dev_priv))
  4312. DRM_DEBUG_DRIVER("Enabling RC6 states: "
  4313. "RC6 %s RC6p %s RC6pp %s\n",
  4314. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  4315. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  4316. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  4317. else
  4318. DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
  4319. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  4320. }
  4321. static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
  4322. {
  4323. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  4324. bool enable_rc6 = true;
  4325. unsigned long rc6_ctx_base;
  4326. u32 rc_ctl;
  4327. int rc_sw_target;
  4328. rc_ctl = I915_READ(GEN6_RC_CONTROL);
  4329. rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
  4330. RC_SW_TARGET_STATE_SHIFT;
  4331. DRM_DEBUG_DRIVER("BIOS enabled RC states: "
  4332. "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
  4333. onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
  4334. onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
  4335. rc_sw_target);
  4336. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  4337. DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
  4338. enable_rc6 = false;
  4339. }
  4340. /*
  4341. * The exact context size is not known for BXT, so assume a page size
  4342. * for this check.
  4343. */
  4344. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  4345. if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
  4346. (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
  4347. ggtt->stolen_reserved_size))) {
  4348. DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
  4349. enable_rc6 = false;
  4350. }
  4351. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  4352. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  4353. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  4354. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  4355. DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
  4356. enable_rc6 = false;
  4357. }
  4358. if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
  4359. !I915_READ(GEN8_PUSHBUS_ENABLE) ||
  4360. !I915_READ(GEN8_PUSHBUS_SHIFT)) {
  4361. DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
  4362. enable_rc6 = false;
  4363. }
  4364. if (!I915_READ(GEN6_GFXPAUSE)) {
  4365. DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
  4366. enable_rc6 = false;
  4367. }
  4368. if (!I915_READ(GEN8_MISC_CTRL0)) {
  4369. DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
  4370. enable_rc6 = false;
  4371. }
  4372. return enable_rc6;
  4373. }
  4374. int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
  4375. {
  4376. /* No RC6 before Ironlake and code is gone for ilk. */
  4377. if (INTEL_INFO(dev_priv)->gen < 6)
  4378. return 0;
  4379. if (!enable_rc6)
  4380. return 0;
  4381. if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
  4382. DRM_INFO("RC6 disabled by BIOS\n");
  4383. return 0;
  4384. }
  4385. /* Respect the kernel parameter if it is set */
  4386. if (enable_rc6 >= 0) {
  4387. int mask;
  4388. if (HAS_RC6p(dev_priv))
  4389. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  4390. INTEL_RC6pp_ENABLE;
  4391. else
  4392. mask = INTEL_RC6_ENABLE;
  4393. if ((enable_rc6 & mask) != enable_rc6)
  4394. DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
  4395. "(requested %d, valid %d)\n",
  4396. enable_rc6 & mask, enable_rc6, mask);
  4397. return enable_rc6 & mask;
  4398. }
  4399. if (IS_IVYBRIDGE(dev_priv))
  4400. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  4401. return INTEL_RC6_ENABLE;
  4402. }
  4403. static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
  4404. {
  4405. /* All of these values are in units of 50MHz */
  4406. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  4407. if (IS_GEN9_LP(dev_priv)) {
  4408. u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  4409. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  4410. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  4411. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  4412. } else {
  4413. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  4414. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  4415. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  4416. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  4417. }
  4418. /* hw_max = RP0 until we check for overclocking */
  4419. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  4420. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  4421. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
  4422. IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  4423. u32 ddcc_status = 0;
  4424. if (sandybridge_pcode_read(dev_priv,
  4425. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  4426. &ddcc_status) == 0)
  4427. dev_priv->rps.efficient_freq =
  4428. clamp_t(u8,
  4429. ((ddcc_status >> 8) & 0xff),
  4430. dev_priv->rps.min_freq,
  4431. dev_priv->rps.max_freq);
  4432. }
  4433. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  4434. /* Store the frequency values in 16.66 MHZ units, which is
  4435. * the natural hardware unit for SKL
  4436. */
  4437. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  4438. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  4439. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  4440. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  4441. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  4442. }
  4443. }
  4444. static void reset_rps(struct drm_i915_private *dev_priv,
  4445. void (*set)(struct drm_i915_private *, u8))
  4446. {
  4447. u8 freq = dev_priv->rps.cur_freq;
  4448. /* force a reset */
  4449. dev_priv->rps.power = -1;
  4450. dev_priv->rps.cur_freq = -1;
  4451. set(dev_priv, freq);
  4452. }
  4453. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  4454. static void gen9_enable_rps(struct drm_i915_private *dev_priv)
  4455. {
  4456. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4457. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  4458. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  4459. /*
  4460. * BIOS could leave the Hw Turbo enabled, so need to explicitly
  4461. * clear out the Control register just to avoid inconsitency
  4462. * with debugfs interface, which will show Turbo as enabled
  4463. * only and that is not expected by the User after adding the
  4464. * WaGsvDisableTurbo. Apart from this there is no problem even
  4465. * if the Turbo is left enabled in the Control register, as the
  4466. * Up/Down interrupts would remain masked.
  4467. */
  4468. gen9_disable_rps(dev_priv);
  4469. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4470. return;
  4471. }
  4472. /* Program defaults and thresholds for RPS*/
  4473. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4474. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  4475. /* 1 second timeout*/
  4476. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  4477. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  4478. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  4479. /* Leaning on the below call to gen6_set_rps to program/setup the
  4480. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  4481. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  4482. reset_rps(dev_priv, gen6_set_rps);
  4483. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4484. }
  4485. static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
  4486. {
  4487. struct intel_engine_cs *engine;
  4488. enum intel_engine_id id;
  4489. uint32_t rc6_mask = 0;
  4490. /* 1a: Software RC state - RC0 */
  4491. I915_WRITE(GEN6_RC_STATE, 0);
  4492. /* 1b: Get forcewake during program sequence. Although the driver
  4493. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4495. /* 2a: Disable RC states. */
  4496. I915_WRITE(GEN6_RC_CONTROL, 0);
  4497. /* 2b: Program RC6 thresholds.*/
  4498. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  4499. if (IS_SKYLAKE(dev_priv))
  4500. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  4501. else
  4502. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  4503. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4504. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4505. for_each_engine(engine, dev_priv, id)
  4506. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4507. if (HAS_GUC(dev_priv))
  4508. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  4509. I915_WRITE(GEN6_RC_SLEEP, 0);
  4510. /* 2c: Program Coarse Power Gating Policies. */
  4511. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  4512. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  4513. /* 3a: Enable RC6 */
  4514. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  4515. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4516. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  4517. /* WaRsUseTimeoutMode:bxt */
  4518. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  4519. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
  4520. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4521. GEN7_RC_CTL_TO_MODE |
  4522. rc6_mask);
  4523. } else {
  4524. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  4525. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4526. GEN6_RC_CTL_EI_MODE(1) |
  4527. rc6_mask);
  4528. }
  4529. /*
  4530. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  4531. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  4532. */
  4533. if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
  4534. I915_WRITE(GEN9_PG_ENABLE, 0);
  4535. else
  4536. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4537. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  4538. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4539. }
  4540. static void gen8_enable_rps(struct drm_i915_private *dev_priv)
  4541. {
  4542. struct intel_engine_cs *engine;
  4543. enum intel_engine_id id;
  4544. uint32_t rc6_mask = 0;
  4545. /* 1a: Software RC state - RC0 */
  4546. I915_WRITE(GEN6_RC_STATE, 0);
  4547. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  4548. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4549. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4550. /* 2a: Disable RC states. */
  4551. I915_WRITE(GEN6_RC_CONTROL, 0);
  4552. /* 2b: Program RC6 thresholds.*/
  4553. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4554. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4555. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4556. for_each_engine(engine, dev_priv, id)
  4557. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4558. I915_WRITE(GEN6_RC_SLEEP, 0);
  4559. if (IS_BROADWELL(dev_priv))
  4560. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4561. else
  4562. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4563. /* 3: Enable RC6 */
  4564. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  4565. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4566. intel_print_rc6_info(dev_priv, rc6_mask);
  4567. if (IS_BROADWELL(dev_priv))
  4568. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4569. GEN7_RC_CTL_TO_MODE |
  4570. rc6_mask);
  4571. else
  4572. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4573. GEN6_RC_CTL_EI_MODE(1) |
  4574. rc6_mask);
  4575. /* 4 Program defaults and thresholds for RPS*/
  4576. I915_WRITE(GEN6_RPNSWREQ,
  4577. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4578. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4579. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4580. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4581. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4582. /* Docs recommend 900MHz, and 300 MHz respectively */
  4583. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4584. dev_priv->rps.max_freq_softlimit << 24 |
  4585. dev_priv->rps.min_freq_softlimit << 16);
  4586. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4587. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4588. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4589. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4590. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4591. /* 5: Enable RPS */
  4592. I915_WRITE(GEN6_RP_CONTROL,
  4593. GEN6_RP_MEDIA_TURBO |
  4594. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4595. GEN6_RP_MEDIA_IS_GFX |
  4596. GEN6_RP_ENABLE |
  4597. GEN6_RP_UP_BUSY_AVG |
  4598. GEN6_RP_DOWN_IDLE_AVG);
  4599. /* 6: Ring frequency + overclocking (our driver does this later */
  4600. reset_rps(dev_priv, gen6_set_rps);
  4601. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4602. }
  4603. static void gen6_enable_rps(struct drm_i915_private *dev_priv)
  4604. {
  4605. struct intel_engine_cs *engine;
  4606. enum intel_engine_id id;
  4607. u32 rc6vids, rc6_mask = 0;
  4608. u32 gtfifodbg;
  4609. int rc6_mode;
  4610. int ret;
  4611. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4612. /* Here begins a magic sequence of register writes to enable
  4613. * auto-downclocking.
  4614. *
  4615. * Perhaps there might be some value in exposing these to
  4616. * userspace...
  4617. */
  4618. I915_WRITE(GEN6_RC_STATE, 0);
  4619. /* Clear the DBG now so we don't confuse earlier errors */
  4620. gtfifodbg = I915_READ(GTFIFODBG);
  4621. if (gtfifodbg) {
  4622. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4623. I915_WRITE(GTFIFODBG, gtfifodbg);
  4624. }
  4625. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4626. /* disable the counters and set deterministic thresholds */
  4627. I915_WRITE(GEN6_RC_CONTROL, 0);
  4628. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4629. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4630. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4631. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4632. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4633. for_each_engine(engine, dev_priv, id)
  4634. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4635. I915_WRITE(GEN6_RC_SLEEP, 0);
  4636. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4637. if (IS_IVYBRIDGE(dev_priv))
  4638. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4639. else
  4640. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4641. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4642. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4643. /* Check if we are enabling RC6 */
  4644. rc6_mode = intel_enable_rc6();
  4645. if (rc6_mode & INTEL_RC6_ENABLE)
  4646. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4647. /* We don't use those on Haswell */
  4648. if (!IS_HASWELL(dev_priv)) {
  4649. if (rc6_mode & INTEL_RC6p_ENABLE)
  4650. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4651. if (rc6_mode & INTEL_RC6pp_ENABLE)
  4652. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4653. }
  4654. intel_print_rc6_info(dev_priv, rc6_mask);
  4655. I915_WRITE(GEN6_RC_CONTROL,
  4656. rc6_mask |
  4657. GEN6_RC_CTL_EI_MODE(1) |
  4658. GEN6_RC_CTL_HW_ENABLE);
  4659. /* Power down if completely idle for over 50ms */
  4660. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  4661. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4662. reset_rps(dev_priv, gen6_set_rps);
  4663. rc6vids = 0;
  4664. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  4665. if (IS_GEN6(dev_priv) && ret) {
  4666. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  4667. } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  4668. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  4669. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  4670. rc6vids &= 0xffff00;
  4671. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  4672. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  4673. if (ret)
  4674. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  4675. }
  4676. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4677. }
  4678. static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  4679. {
  4680. int min_freq = 15;
  4681. unsigned int gpu_freq;
  4682. unsigned int max_ia_freq, min_ring_freq;
  4683. unsigned int max_gpu_freq, min_gpu_freq;
  4684. int scaling_factor = 180;
  4685. struct cpufreq_policy *policy;
  4686. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4687. policy = cpufreq_cpu_get(0);
  4688. if (policy) {
  4689. max_ia_freq = policy->cpuinfo.max_freq;
  4690. cpufreq_cpu_put(policy);
  4691. } else {
  4692. /*
  4693. * Default to measured freq if none found, PCU will ensure we
  4694. * don't go over
  4695. */
  4696. max_ia_freq = tsc_khz;
  4697. }
  4698. /* Convert from kHz to MHz */
  4699. max_ia_freq /= 1000;
  4700. min_ring_freq = I915_READ(DCLK) & 0xf;
  4701. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  4702. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  4703. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  4704. /* Convert GT frequency to 50 HZ units */
  4705. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  4706. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  4707. } else {
  4708. min_gpu_freq = dev_priv->rps.min_freq;
  4709. max_gpu_freq = dev_priv->rps.max_freq;
  4710. }
  4711. /*
  4712. * For each potential GPU frequency, load a ring frequency we'd like
  4713. * to use for memory access. We do this by specifying the IA frequency
  4714. * the PCU should use as a reference to determine the ring frequency.
  4715. */
  4716. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  4717. int diff = max_gpu_freq - gpu_freq;
  4718. unsigned int ia_freq = 0, ring_freq = 0;
  4719. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  4720. /*
  4721. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  4722. * No floor required for ring frequency on SKL.
  4723. */
  4724. ring_freq = gpu_freq;
  4725. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  4726. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  4727. ring_freq = max(min_ring_freq, gpu_freq);
  4728. } else if (IS_HASWELL(dev_priv)) {
  4729. ring_freq = mult_frac(gpu_freq, 5, 4);
  4730. ring_freq = max(min_ring_freq, ring_freq);
  4731. /* leave ia_freq as the default, chosen by cpufreq */
  4732. } else {
  4733. /* On older processors, there is no separate ring
  4734. * clock domain, so in order to boost the bandwidth
  4735. * of the ring, we need to upclock the CPU (ia_freq).
  4736. *
  4737. * For GPU frequencies less than 750MHz,
  4738. * just use the lowest ring freq.
  4739. */
  4740. if (gpu_freq < min_freq)
  4741. ia_freq = 800;
  4742. else
  4743. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  4744. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  4745. }
  4746. sandybridge_pcode_write(dev_priv,
  4747. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  4748. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  4749. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  4750. gpu_freq);
  4751. }
  4752. }
  4753. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  4754. {
  4755. u32 val, rp0;
  4756. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4757. switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
  4758. case 8:
  4759. /* (2 * 4) config */
  4760. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  4761. break;
  4762. case 12:
  4763. /* (2 * 6) config */
  4764. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  4765. break;
  4766. case 16:
  4767. /* (2 * 8) config */
  4768. default:
  4769. /* Setting (2 * 8) Min RP0 for any other combination */
  4770. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  4771. break;
  4772. }
  4773. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  4774. return rp0;
  4775. }
  4776. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4777. {
  4778. u32 val, rpe;
  4779. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  4780. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  4781. return rpe;
  4782. }
  4783. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4784. {
  4785. u32 val, rp1;
  4786. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4787. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  4788. return rp1;
  4789. }
  4790. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4791. {
  4792. u32 val, rp1;
  4793. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4794. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  4795. return rp1;
  4796. }
  4797. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  4798. {
  4799. u32 val, rp0;
  4800. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4801. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  4802. /* Clamp to max */
  4803. rp0 = min_t(u32, rp0, 0xea);
  4804. return rp0;
  4805. }
  4806. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4807. {
  4808. u32 val, rpe;
  4809. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  4810. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  4811. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  4812. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  4813. return rpe;
  4814. }
  4815. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  4816. {
  4817. u32 val;
  4818. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  4819. /*
  4820. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  4821. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  4822. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  4823. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  4824. * to make sure it matches what Punit accepts.
  4825. */
  4826. return max_t(u32, val, 0xc0);
  4827. }
  4828. /* Check that the pctx buffer wasn't move under us. */
  4829. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  4830. {
  4831. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4832. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  4833. dev_priv->vlv_pctx->stolen->start);
  4834. }
  4835. /* Check that the pcbr address is not empty. */
  4836. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  4837. {
  4838. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4839. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  4840. }
  4841. static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
  4842. {
  4843. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  4844. unsigned long pctx_paddr, paddr;
  4845. u32 pcbr;
  4846. int pctx_size = 32*1024;
  4847. pcbr = I915_READ(VLV_PCBR);
  4848. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  4849. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4850. paddr = (dev_priv->mm.stolen_base +
  4851. (ggtt->stolen_size - pctx_size));
  4852. pctx_paddr = (paddr & (~4095));
  4853. I915_WRITE(VLV_PCBR, pctx_paddr);
  4854. }
  4855. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4856. }
  4857. static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
  4858. {
  4859. struct drm_i915_gem_object *pctx;
  4860. unsigned long pctx_paddr;
  4861. u32 pcbr;
  4862. int pctx_size = 24*1024;
  4863. pcbr = I915_READ(VLV_PCBR);
  4864. if (pcbr) {
  4865. /* BIOS set it up already, grab the pre-alloc'd space */
  4866. int pcbr_offset;
  4867. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4868. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
  4869. pcbr_offset,
  4870. I915_GTT_OFFSET_NONE,
  4871. pctx_size);
  4872. goto out;
  4873. }
  4874. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4875. /*
  4876. * From the Gunit register HAS:
  4877. * The Gfx driver is expected to program this register and ensure
  4878. * proper allocation within Gfx stolen memory. For example, this
  4879. * register should be programmed such than the PCBR range does not
  4880. * overlap with other ranges, such as the frame buffer, protected
  4881. * memory, or any other relevant ranges.
  4882. */
  4883. pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
  4884. if (!pctx) {
  4885. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4886. goto out;
  4887. }
  4888. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4889. I915_WRITE(VLV_PCBR, pctx_paddr);
  4890. out:
  4891. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4892. dev_priv->vlv_pctx = pctx;
  4893. }
  4894. static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
  4895. {
  4896. if (WARN_ON(!dev_priv->vlv_pctx))
  4897. return;
  4898. i915_gem_object_put(dev_priv->vlv_pctx);
  4899. dev_priv->vlv_pctx = NULL;
  4900. }
  4901. static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
  4902. {
  4903. dev_priv->rps.gpll_ref_freq =
  4904. vlv_get_cck_clock(dev_priv, "GPLL ref",
  4905. CCK_GPLL_CLOCK_CONTROL,
  4906. dev_priv->czclk_freq);
  4907. DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
  4908. dev_priv->rps.gpll_ref_freq);
  4909. }
  4910. static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
  4911. {
  4912. u32 val;
  4913. valleyview_setup_pctx(dev_priv);
  4914. vlv_init_gpll_ref_freq(dev_priv);
  4915. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4916. switch ((val >> 6) & 3) {
  4917. case 0:
  4918. case 1:
  4919. dev_priv->mem_freq = 800;
  4920. break;
  4921. case 2:
  4922. dev_priv->mem_freq = 1066;
  4923. break;
  4924. case 3:
  4925. dev_priv->mem_freq = 1333;
  4926. break;
  4927. }
  4928. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4929. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4930. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4931. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4932. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4933. dev_priv->rps.max_freq);
  4934. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4935. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4936. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4937. dev_priv->rps.efficient_freq);
  4938. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4939. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4940. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4941. dev_priv->rps.rp1_freq);
  4942. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4943. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4944. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4945. dev_priv->rps.min_freq);
  4946. }
  4947. static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
  4948. {
  4949. u32 val;
  4950. cherryview_setup_pctx(dev_priv);
  4951. vlv_init_gpll_ref_freq(dev_priv);
  4952. mutex_lock(&dev_priv->sb_lock);
  4953. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4954. mutex_unlock(&dev_priv->sb_lock);
  4955. switch ((val >> 2) & 0x7) {
  4956. case 3:
  4957. dev_priv->mem_freq = 2000;
  4958. break;
  4959. default:
  4960. dev_priv->mem_freq = 1600;
  4961. break;
  4962. }
  4963. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4964. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4965. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4966. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4967. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4968. dev_priv->rps.max_freq);
  4969. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4970. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4971. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4972. dev_priv->rps.efficient_freq);
  4973. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4974. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4975. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4976. dev_priv->rps.rp1_freq);
  4977. /* PUnit validated range is only [RPe, RP0] */
  4978. dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
  4979. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4980. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4981. dev_priv->rps.min_freq);
  4982. WARN_ONCE((dev_priv->rps.max_freq |
  4983. dev_priv->rps.efficient_freq |
  4984. dev_priv->rps.rp1_freq |
  4985. dev_priv->rps.min_freq) & 1,
  4986. "Odd GPU freq values\n");
  4987. }
  4988. static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  4989. {
  4990. valleyview_cleanup_pctx(dev_priv);
  4991. }
  4992. static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
  4993. {
  4994. struct intel_engine_cs *engine;
  4995. enum intel_engine_id id;
  4996. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4997. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4998. gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
  4999. GT_FIFO_FREE_ENTRIES_CHV);
  5000. if (gtfifodbg) {
  5001. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5002. gtfifodbg);
  5003. I915_WRITE(GTFIFODBG, gtfifodbg);
  5004. }
  5005. cherryview_check_pctx(dev_priv);
  5006. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  5007. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5008. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5009. /* Disable RC states. */
  5010. I915_WRITE(GEN6_RC_CONTROL, 0);
  5011. /* 2a: Program RC6 thresholds.*/
  5012. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5013. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5014. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5015. for_each_engine(engine, dev_priv, id)
  5016. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5017. I915_WRITE(GEN6_RC_SLEEP, 0);
  5018. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  5019. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  5020. /* allows RC6 residency counter to work */
  5021. I915_WRITE(VLV_COUNTER_CONTROL,
  5022. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5023. VLV_MEDIA_RC6_COUNT_EN |
  5024. VLV_RENDER_RC6_COUNT_EN));
  5025. /* For now we assume BIOS is allocating and populating the PCBR */
  5026. pcbr = I915_READ(VLV_PCBR);
  5027. /* 3: Enable RC6 */
  5028. if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
  5029. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  5030. rc6_mode = GEN7_RC_CTL_TO_MODE;
  5031. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5032. /* 4 Program defaults and thresholds for RPS*/
  5033. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5034. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5035. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5036. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5037. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5038. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5039. /* 5: Enable RPS */
  5040. I915_WRITE(GEN6_RP_CONTROL,
  5041. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5042. GEN6_RP_MEDIA_IS_GFX |
  5043. GEN6_RP_ENABLE |
  5044. GEN6_RP_UP_BUSY_AVG |
  5045. GEN6_RP_DOWN_IDLE_AVG);
  5046. /* Setting Fixed Bias */
  5047. val = VLV_OVERRIDE_EN |
  5048. VLV_SOC_TDP_EN |
  5049. CHV_BIAS_CPU_50_SOC_50;
  5050. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5051. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5052. /* RPS code assumes GPLL is used */
  5053. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5054. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5055. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5056. reset_rps(dev_priv, valleyview_set_rps);
  5057. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5058. }
  5059. static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
  5060. {
  5061. struct intel_engine_cs *engine;
  5062. enum intel_engine_id id;
  5063. u32 gtfifodbg, val, rc6_mode = 0;
  5064. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5065. valleyview_check_pctx(dev_priv);
  5066. gtfifodbg = I915_READ(GTFIFODBG);
  5067. if (gtfifodbg) {
  5068. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5069. gtfifodbg);
  5070. I915_WRITE(GTFIFODBG, gtfifodbg);
  5071. }
  5072. /* If VLV, Forcewake all wells, else re-direct to regular path */
  5073. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5074. /* Disable RC states. */
  5075. I915_WRITE(GEN6_RC_CONTROL, 0);
  5076. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5077. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5078. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5079. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5080. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5081. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5082. I915_WRITE(GEN6_RP_CONTROL,
  5083. GEN6_RP_MEDIA_TURBO |
  5084. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5085. GEN6_RP_MEDIA_IS_GFX |
  5086. GEN6_RP_ENABLE |
  5087. GEN6_RP_UP_BUSY_AVG |
  5088. GEN6_RP_DOWN_IDLE_CONT);
  5089. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  5090. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5091. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5092. for_each_engine(engine, dev_priv, id)
  5093. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5094. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  5095. /* allows RC6 residency counter to work */
  5096. I915_WRITE(VLV_COUNTER_CONTROL,
  5097. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  5098. VLV_RENDER_RC0_COUNT_EN |
  5099. VLV_MEDIA_RC6_COUNT_EN |
  5100. VLV_RENDER_RC6_COUNT_EN));
  5101. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5102. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  5103. intel_print_rc6_info(dev_priv, rc6_mode);
  5104. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5105. /* Setting Fixed Bias */
  5106. val = VLV_OVERRIDE_EN |
  5107. VLV_SOC_TDP_EN |
  5108. VLV_BIAS_CPU_125_SOC_875;
  5109. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5110. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5111. /* RPS code assumes GPLL is used */
  5112. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5113. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5114. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5115. reset_rps(dev_priv, valleyview_set_rps);
  5116. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5117. }
  5118. static unsigned long intel_pxfreq(u32 vidfreq)
  5119. {
  5120. unsigned long freq;
  5121. int div = (vidfreq & 0x3f0000) >> 16;
  5122. int post = (vidfreq & 0x3000) >> 12;
  5123. int pre = (vidfreq & 0x7);
  5124. if (!pre)
  5125. return 0;
  5126. freq = ((div * 133333) / ((1<<post) * pre));
  5127. return freq;
  5128. }
  5129. static const struct cparams {
  5130. u16 i;
  5131. u16 t;
  5132. u16 m;
  5133. u16 c;
  5134. } cparams[] = {
  5135. { 1, 1333, 301, 28664 },
  5136. { 1, 1066, 294, 24460 },
  5137. { 1, 800, 294, 25192 },
  5138. { 0, 1333, 276, 27605 },
  5139. { 0, 1066, 276, 27605 },
  5140. { 0, 800, 231, 23784 },
  5141. };
  5142. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  5143. {
  5144. u64 total_count, diff, ret;
  5145. u32 count1, count2, count3, m = 0, c = 0;
  5146. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  5147. int i;
  5148. assert_spin_locked(&mchdev_lock);
  5149. diff1 = now - dev_priv->ips.last_time1;
  5150. /* Prevent division-by-zero if we are asking too fast.
  5151. * Also, we don't get interesting results if we are polling
  5152. * faster than once in 10ms, so just return the saved value
  5153. * in such cases.
  5154. */
  5155. if (diff1 <= 10)
  5156. return dev_priv->ips.chipset_power;
  5157. count1 = I915_READ(DMIEC);
  5158. count2 = I915_READ(DDREC);
  5159. count3 = I915_READ(CSIEC);
  5160. total_count = count1 + count2 + count3;
  5161. /* FIXME: handle per-counter overflow */
  5162. if (total_count < dev_priv->ips.last_count1) {
  5163. diff = ~0UL - dev_priv->ips.last_count1;
  5164. diff += total_count;
  5165. } else {
  5166. diff = total_count - dev_priv->ips.last_count1;
  5167. }
  5168. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  5169. if (cparams[i].i == dev_priv->ips.c_m &&
  5170. cparams[i].t == dev_priv->ips.r_t) {
  5171. m = cparams[i].m;
  5172. c = cparams[i].c;
  5173. break;
  5174. }
  5175. }
  5176. diff = div_u64(diff, diff1);
  5177. ret = ((m * diff) + c);
  5178. ret = div_u64(ret, 10);
  5179. dev_priv->ips.last_count1 = total_count;
  5180. dev_priv->ips.last_time1 = now;
  5181. dev_priv->ips.chipset_power = ret;
  5182. return ret;
  5183. }
  5184. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  5185. {
  5186. unsigned long val;
  5187. if (INTEL_INFO(dev_priv)->gen != 5)
  5188. return 0;
  5189. spin_lock_irq(&mchdev_lock);
  5190. val = __i915_chipset_val(dev_priv);
  5191. spin_unlock_irq(&mchdev_lock);
  5192. return val;
  5193. }
  5194. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  5195. {
  5196. unsigned long m, x, b;
  5197. u32 tsfs;
  5198. tsfs = I915_READ(TSFS);
  5199. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  5200. x = I915_READ8(TR1);
  5201. b = tsfs & TSFS_INTR_MASK;
  5202. return ((m * x) / 127) - b;
  5203. }
  5204. static int _pxvid_to_vd(u8 pxvid)
  5205. {
  5206. if (pxvid == 0)
  5207. return 0;
  5208. if (pxvid >= 8 && pxvid < 31)
  5209. pxvid = 31;
  5210. return (pxvid + 2) * 125;
  5211. }
  5212. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  5213. {
  5214. const int vd = _pxvid_to_vd(pxvid);
  5215. const int vm = vd - 1125;
  5216. if (INTEL_INFO(dev_priv)->is_mobile)
  5217. return vm > 0 ? vm : 0;
  5218. return vd;
  5219. }
  5220. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  5221. {
  5222. u64 now, diff, diffms;
  5223. u32 count;
  5224. assert_spin_locked(&mchdev_lock);
  5225. now = ktime_get_raw_ns();
  5226. diffms = now - dev_priv->ips.last_time2;
  5227. do_div(diffms, NSEC_PER_MSEC);
  5228. /* Don't divide by 0 */
  5229. if (!diffms)
  5230. return;
  5231. count = I915_READ(GFXEC);
  5232. if (count < dev_priv->ips.last_count2) {
  5233. diff = ~0UL - dev_priv->ips.last_count2;
  5234. diff += count;
  5235. } else {
  5236. diff = count - dev_priv->ips.last_count2;
  5237. }
  5238. dev_priv->ips.last_count2 = count;
  5239. dev_priv->ips.last_time2 = now;
  5240. /* More magic constants... */
  5241. diff = diff * 1181;
  5242. diff = div_u64(diff, diffms * 10);
  5243. dev_priv->ips.gfx_power = diff;
  5244. }
  5245. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  5246. {
  5247. if (INTEL_INFO(dev_priv)->gen != 5)
  5248. return;
  5249. spin_lock_irq(&mchdev_lock);
  5250. __i915_update_gfx_val(dev_priv);
  5251. spin_unlock_irq(&mchdev_lock);
  5252. }
  5253. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  5254. {
  5255. unsigned long t, corr, state1, corr2, state2;
  5256. u32 pxvid, ext_v;
  5257. assert_spin_locked(&mchdev_lock);
  5258. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  5259. pxvid = (pxvid >> 24) & 0x7f;
  5260. ext_v = pvid_to_extvid(dev_priv, pxvid);
  5261. state1 = ext_v;
  5262. t = i915_mch_val(dev_priv);
  5263. /* Revel in the empirically derived constants */
  5264. /* Correction factor in 1/100000 units */
  5265. if (t > 80)
  5266. corr = ((t * 2349) + 135940);
  5267. else if (t >= 50)
  5268. corr = ((t * 964) + 29317);
  5269. else /* < 50 */
  5270. corr = ((t * 301) + 1004);
  5271. corr = corr * ((150142 * state1) / 10000 - 78642);
  5272. corr /= 100000;
  5273. corr2 = (corr * dev_priv->ips.corr);
  5274. state2 = (corr2 * state1) / 10000;
  5275. state2 /= 100; /* convert to mW */
  5276. __i915_update_gfx_val(dev_priv);
  5277. return dev_priv->ips.gfx_power + state2;
  5278. }
  5279. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  5280. {
  5281. unsigned long val;
  5282. if (INTEL_INFO(dev_priv)->gen != 5)
  5283. return 0;
  5284. spin_lock_irq(&mchdev_lock);
  5285. val = __i915_gfx_val(dev_priv);
  5286. spin_unlock_irq(&mchdev_lock);
  5287. return val;
  5288. }
  5289. /**
  5290. * i915_read_mch_val - return value for IPS use
  5291. *
  5292. * Calculate and return a value for the IPS driver to use when deciding whether
  5293. * we have thermal and power headroom to increase CPU or GPU power budget.
  5294. */
  5295. unsigned long i915_read_mch_val(void)
  5296. {
  5297. struct drm_i915_private *dev_priv;
  5298. unsigned long chipset_val, graphics_val, ret = 0;
  5299. spin_lock_irq(&mchdev_lock);
  5300. if (!i915_mch_dev)
  5301. goto out_unlock;
  5302. dev_priv = i915_mch_dev;
  5303. chipset_val = __i915_chipset_val(dev_priv);
  5304. graphics_val = __i915_gfx_val(dev_priv);
  5305. ret = chipset_val + graphics_val;
  5306. out_unlock:
  5307. spin_unlock_irq(&mchdev_lock);
  5308. return ret;
  5309. }
  5310. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  5311. /**
  5312. * i915_gpu_raise - raise GPU frequency limit
  5313. *
  5314. * Raise the limit; IPS indicates we have thermal headroom.
  5315. */
  5316. bool i915_gpu_raise(void)
  5317. {
  5318. struct drm_i915_private *dev_priv;
  5319. bool ret = true;
  5320. spin_lock_irq(&mchdev_lock);
  5321. if (!i915_mch_dev) {
  5322. ret = false;
  5323. goto out_unlock;
  5324. }
  5325. dev_priv = i915_mch_dev;
  5326. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  5327. dev_priv->ips.max_delay--;
  5328. out_unlock:
  5329. spin_unlock_irq(&mchdev_lock);
  5330. return ret;
  5331. }
  5332. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  5333. /**
  5334. * i915_gpu_lower - lower GPU frequency limit
  5335. *
  5336. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  5337. * frequency maximum.
  5338. */
  5339. bool i915_gpu_lower(void)
  5340. {
  5341. struct drm_i915_private *dev_priv;
  5342. bool ret = true;
  5343. spin_lock_irq(&mchdev_lock);
  5344. if (!i915_mch_dev) {
  5345. ret = false;
  5346. goto out_unlock;
  5347. }
  5348. dev_priv = i915_mch_dev;
  5349. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  5350. dev_priv->ips.max_delay++;
  5351. out_unlock:
  5352. spin_unlock_irq(&mchdev_lock);
  5353. return ret;
  5354. }
  5355. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  5356. /**
  5357. * i915_gpu_busy - indicate GPU business to IPS
  5358. *
  5359. * Tell the IPS driver whether or not the GPU is busy.
  5360. */
  5361. bool i915_gpu_busy(void)
  5362. {
  5363. bool ret = false;
  5364. spin_lock_irq(&mchdev_lock);
  5365. if (i915_mch_dev)
  5366. ret = i915_mch_dev->gt.awake;
  5367. spin_unlock_irq(&mchdev_lock);
  5368. return ret;
  5369. }
  5370. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  5371. /**
  5372. * i915_gpu_turbo_disable - disable graphics turbo
  5373. *
  5374. * Disable graphics turbo by resetting the max frequency and setting the
  5375. * current frequency to the default.
  5376. */
  5377. bool i915_gpu_turbo_disable(void)
  5378. {
  5379. struct drm_i915_private *dev_priv;
  5380. bool ret = true;
  5381. spin_lock_irq(&mchdev_lock);
  5382. if (!i915_mch_dev) {
  5383. ret = false;
  5384. goto out_unlock;
  5385. }
  5386. dev_priv = i915_mch_dev;
  5387. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  5388. if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
  5389. ret = false;
  5390. out_unlock:
  5391. spin_unlock_irq(&mchdev_lock);
  5392. return ret;
  5393. }
  5394. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  5395. /**
  5396. * Tells the intel_ips driver that the i915 driver is now loaded, if
  5397. * IPS got loaded first.
  5398. *
  5399. * This awkward dance is so that neither module has to depend on the
  5400. * other in order for IPS to do the appropriate communication of
  5401. * GPU turbo limits to i915.
  5402. */
  5403. static void
  5404. ips_ping_for_i915_load(void)
  5405. {
  5406. void (*link)(void);
  5407. link = symbol_get(ips_link_to_i915_driver);
  5408. if (link) {
  5409. link();
  5410. symbol_put(ips_link_to_i915_driver);
  5411. }
  5412. }
  5413. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  5414. {
  5415. /* We only register the i915 ips part with intel-ips once everything is
  5416. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  5417. spin_lock_irq(&mchdev_lock);
  5418. i915_mch_dev = dev_priv;
  5419. spin_unlock_irq(&mchdev_lock);
  5420. ips_ping_for_i915_load();
  5421. }
  5422. void intel_gpu_ips_teardown(void)
  5423. {
  5424. spin_lock_irq(&mchdev_lock);
  5425. i915_mch_dev = NULL;
  5426. spin_unlock_irq(&mchdev_lock);
  5427. }
  5428. static void intel_init_emon(struct drm_i915_private *dev_priv)
  5429. {
  5430. u32 lcfuse;
  5431. u8 pxw[16];
  5432. int i;
  5433. /* Disable to program */
  5434. I915_WRITE(ECR, 0);
  5435. POSTING_READ(ECR);
  5436. /* Program energy weights for various events */
  5437. I915_WRITE(SDEW, 0x15040d00);
  5438. I915_WRITE(CSIEW0, 0x007f0000);
  5439. I915_WRITE(CSIEW1, 0x1e220004);
  5440. I915_WRITE(CSIEW2, 0x04000004);
  5441. for (i = 0; i < 5; i++)
  5442. I915_WRITE(PEW(i), 0);
  5443. for (i = 0; i < 3; i++)
  5444. I915_WRITE(DEW(i), 0);
  5445. /* Program P-state weights to account for frequency power adjustment */
  5446. for (i = 0; i < 16; i++) {
  5447. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  5448. unsigned long freq = intel_pxfreq(pxvidfreq);
  5449. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  5450. PXVFREQ_PX_SHIFT;
  5451. unsigned long val;
  5452. val = vid * vid;
  5453. val *= (freq / 1000);
  5454. val *= 255;
  5455. val /= (127*127*900);
  5456. if (val > 0xff)
  5457. DRM_ERROR("bad pxval: %ld\n", val);
  5458. pxw[i] = val;
  5459. }
  5460. /* Render standby states get 0 weight */
  5461. pxw[14] = 0;
  5462. pxw[15] = 0;
  5463. for (i = 0; i < 4; i++) {
  5464. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  5465. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  5466. I915_WRITE(PXW(i), val);
  5467. }
  5468. /* Adjust magic regs to magic values (more experimental results) */
  5469. I915_WRITE(OGW0, 0);
  5470. I915_WRITE(OGW1, 0);
  5471. I915_WRITE(EG0, 0x00007f00);
  5472. I915_WRITE(EG1, 0x0000000e);
  5473. I915_WRITE(EG2, 0x000e0000);
  5474. I915_WRITE(EG3, 0x68000300);
  5475. I915_WRITE(EG4, 0x42000000);
  5476. I915_WRITE(EG5, 0x00140031);
  5477. I915_WRITE(EG6, 0);
  5478. I915_WRITE(EG7, 0);
  5479. for (i = 0; i < 8; i++)
  5480. I915_WRITE(PXWL(i), 0);
  5481. /* Enable PMON + select events */
  5482. I915_WRITE(ECR, 0x80000019);
  5483. lcfuse = I915_READ(LCFUSE02);
  5484. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  5485. }
  5486. void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
  5487. {
  5488. /*
  5489. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5490. * requirement.
  5491. */
  5492. if (!i915.enable_rc6) {
  5493. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5494. intel_runtime_pm_get(dev_priv);
  5495. }
  5496. mutex_lock(&dev_priv->drm.struct_mutex);
  5497. mutex_lock(&dev_priv->rps.hw_lock);
  5498. /* Initialize RPS limits (for userspace) */
  5499. if (IS_CHERRYVIEW(dev_priv))
  5500. cherryview_init_gt_powersave(dev_priv);
  5501. else if (IS_VALLEYVIEW(dev_priv))
  5502. valleyview_init_gt_powersave(dev_priv);
  5503. else if (INTEL_GEN(dev_priv) >= 6)
  5504. gen6_init_rps_frequencies(dev_priv);
  5505. /* Derive initial user preferences/limits from the hardware limits */
  5506. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  5507. dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
  5508. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  5509. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  5510. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5511. dev_priv->rps.min_freq_softlimit =
  5512. max_t(int,
  5513. dev_priv->rps.efficient_freq,
  5514. intel_freq_opcode(dev_priv, 450));
  5515. /* After setting max-softlimit, find the overclock max freq */
  5516. if (IS_GEN6(dev_priv) ||
  5517. IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
  5518. u32 params = 0;
  5519. sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
  5520. if (params & BIT(31)) { /* OC supported */
  5521. DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
  5522. (dev_priv->rps.max_freq & 0xff) * 50,
  5523. (params & 0xff) * 50);
  5524. dev_priv->rps.max_freq = params & 0xff;
  5525. }
  5526. }
  5527. /* Finally allow us to boost to max by default */
  5528. dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
  5529. mutex_unlock(&dev_priv->rps.hw_lock);
  5530. mutex_unlock(&dev_priv->drm.struct_mutex);
  5531. intel_autoenable_gt_powersave(dev_priv);
  5532. }
  5533. void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  5534. {
  5535. if (IS_VALLEYVIEW(dev_priv))
  5536. valleyview_cleanup_gt_powersave(dev_priv);
  5537. if (!i915.enable_rc6)
  5538. intel_runtime_pm_put(dev_priv);
  5539. }
  5540. /**
  5541. * intel_suspend_gt_powersave - suspend PM work and helper threads
  5542. * @dev_priv: i915 device
  5543. *
  5544. * We don't want to disable RC6 or other features here, we just want
  5545. * to make sure any work we've queued has finished and won't bother
  5546. * us while we're suspended.
  5547. */
  5548. void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
  5549. {
  5550. if (INTEL_GEN(dev_priv) < 6)
  5551. return;
  5552. if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
  5553. intel_runtime_pm_put(dev_priv);
  5554. /* gen6_rps_idle() will be called later to disable interrupts */
  5555. }
  5556. void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
  5557. {
  5558. dev_priv->rps.enabled = true; /* force disabling */
  5559. intel_disable_gt_powersave(dev_priv);
  5560. gen6_reset_rps_interrupts(dev_priv);
  5561. }
  5562. void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
  5563. {
  5564. if (!READ_ONCE(dev_priv->rps.enabled))
  5565. return;
  5566. mutex_lock(&dev_priv->rps.hw_lock);
  5567. if (INTEL_GEN(dev_priv) >= 9) {
  5568. gen9_disable_rc6(dev_priv);
  5569. gen9_disable_rps(dev_priv);
  5570. } else if (IS_CHERRYVIEW(dev_priv)) {
  5571. cherryview_disable_rps(dev_priv);
  5572. } else if (IS_VALLEYVIEW(dev_priv)) {
  5573. valleyview_disable_rps(dev_priv);
  5574. } else if (INTEL_GEN(dev_priv) >= 6) {
  5575. gen6_disable_rps(dev_priv);
  5576. } else if (IS_IRONLAKE_M(dev_priv)) {
  5577. ironlake_disable_drps(dev_priv);
  5578. }
  5579. dev_priv->rps.enabled = false;
  5580. mutex_unlock(&dev_priv->rps.hw_lock);
  5581. }
  5582. void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
  5583. {
  5584. /* We shouldn't be disabling as we submit, so this should be less
  5585. * racy than it appears!
  5586. */
  5587. if (READ_ONCE(dev_priv->rps.enabled))
  5588. return;
  5589. /* Powersaving is controlled by the host when inside a VM */
  5590. if (intel_vgpu_active(dev_priv))
  5591. return;
  5592. mutex_lock(&dev_priv->rps.hw_lock);
  5593. if (IS_CHERRYVIEW(dev_priv)) {
  5594. cherryview_enable_rps(dev_priv);
  5595. } else if (IS_VALLEYVIEW(dev_priv)) {
  5596. valleyview_enable_rps(dev_priv);
  5597. } else if (INTEL_GEN(dev_priv) >= 9) {
  5598. gen9_enable_rc6(dev_priv);
  5599. gen9_enable_rps(dev_priv);
  5600. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  5601. gen6_update_ring_freq(dev_priv);
  5602. } else if (IS_BROADWELL(dev_priv)) {
  5603. gen8_enable_rps(dev_priv);
  5604. gen6_update_ring_freq(dev_priv);
  5605. } else if (INTEL_GEN(dev_priv) >= 6) {
  5606. gen6_enable_rps(dev_priv);
  5607. gen6_update_ring_freq(dev_priv);
  5608. } else if (IS_IRONLAKE_M(dev_priv)) {
  5609. ironlake_enable_drps(dev_priv);
  5610. intel_init_emon(dev_priv);
  5611. }
  5612. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  5613. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  5614. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  5615. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  5616. dev_priv->rps.enabled = true;
  5617. mutex_unlock(&dev_priv->rps.hw_lock);
  5618. }
  5619. static void __intel_autoenable_gt_powersave(struct work_struct *work)
  5620. {
  5621. struct drm_i915_private *dev_priv =
  5622. container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
  5623. struct intel_engine_cs *rcs;
  5624. struct drm_i915_gem_request *req;
  5625. if (READ_ONCE(dev_priv->rps.enabled))
  5626. goto out;
  5627. rcs = dev_priv->engine[RCS];
  5628. if (rcs->last_retired_context)
  5629. goto out;
  5630. if (!rcs->init_context)
  5631. goto out;
  5632. mutex_lock(&dev_priv->drm.struct_mutex);
  5633. req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
  5634. if (IS_ERR(req))
  5635. goto unlock;
  5636. if (!i915.enable_execlists && i915_switch_context(req) == 0)
  5637. rcs->init_context(req);
  5638. /* Mark the device busy, calling intel_enable_gt_powersave() */
  5639. i915_add_request_no_flush(req);
  5640. unlock:
  5641. mutex_unlock(&dev_priv->drm.struct_mutex);
  5642. out:
  5643. intel_runtime_pm_put(dev_priv);
  5644. }
  5645. void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
  5646. {
  5647. if (READ_ONCE(dev_priv->rps.enabled))
  5648. return;
  5649. if (IS_IRONLAKE_M(dev_priv)) {
  5650. ironlake_enable_drps(dev_priv);
  5651. intel_init_emon(dev_priv);
  5652. } else if (INTEL_INFO(dev_priv)->gen >= 6) {
  5653. /*
  5654. * PCU communication is slow and this doesn't need to be
  5655. * done at any specific time, so do this out of our fast path
  5656. * to make resume and init faster.
  5657. *
  5658. * We depend on the HW RC6 power context save/restore
  5659. * mechanism when entering D3 through runtime PM suspend. So
  5660. * disable RPM until RPS/RC6 is properly setup. We can only
  5661. * get here via the driver load/system resume/runtime resume
  5662. * paths, so the _noresume version is enough (and in case of
  5663. * runtime resume it's necessary).
  5664. */
  5665. if (queue_delayed_work(dev_priv->wq,
  5666. &dev_priv->rps.autoenable_work,
  5667. round_jiffies_up_relative(HZ)))
  5668. intel_runtime_pm_get_noresume(dev_priv);
  5669. }
  5670. }
  5671. static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
  5672. {
  5673. /*
  5674. * On Ibex Peak and Cougar Point, we need to disable clock
  5675. * gating for the panel power sequencer or it will fail to
  5676. * start up when no ports are active.
  5677. */
  5678. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  5679. }
  5680. static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
  5681. {
  5682. enum pipe pipe;
  5683. for_each_pipe(dev_priv, pipe) {
  5684. I915_WRITE(DSPCNTR(pipe),
  5685. I915_READ(DSPCNTR(pipe)) |
  5686. DISPPLANE_TRICKLE_FEED_DISABLE);
  5687. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  5688. POSTING_READ(DSPSURF(pipe));
  5689. }
  5690. }
  5691. static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
  5692. {
  5693. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  5694. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  5695. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  5696. /*
  5697. * Don't touch WM1S_LP_EN here.
  5698. * Doing so could cause underruns.
  5699. */
  5700. }
  5701. static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
  5702. {
  5703. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5704. /*
  5705. * Required for FBC
  5706. * WaFbcDisableDpfcClockGating:ilk
  5707. */
  5708. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  5709. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  5710. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  5711. I915_WRITE(PCH_3DCGDIS0,
  5712. MARIUNIT_CLOCK_GATE_DISABLE |
  5713. SVSMUNIT_CLOCK_GATE_DISABLE);
  5714. I915_WRITE(PCH_3DCGDIS1,
  5715. VFMUNIT_CLOCK_GATE_DISABLE);
  5716. /*
  5717. * According to the spec the following bits should be set in
  5718. * order to enable memory self-refresh
  5719. * The bit 22/21 of 0x42004
  5720. * The bit 5 of 0x42020
  5721. * The bit 15 of 0x45000
  5722. */
  5723. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5724. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  5725. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  5726. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  5727. I915_WRITE(DISP_ARB_CTL,
  5728. (I915_READ(DISP_ARB_CTL) |
  5729. DISP_FBC_WM_DIS));
  5730. ilk_init_lp_watermarks(dev_priv);
  5731. /*
  5732. * Based on the document from hardware guys the following bits
  5733. * should be set unconditionally in order to enable FBC.
  5734. * The bit 22 of 0x42000
  5735. * The bit 22 of 0x42004
  5736. * The bit 7,8,9 of 0x42020.
  5737. */
  5738. if (IS_IRONLAKE_M(dev_priv)) {
  5739. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  5740. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5741. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5742. ILK_FBCQ_DIS);
  5743. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5744. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5745. ILK_DPARB_GATE);
  5746. }
  5747. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5748. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5749. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5750. ILK_ELPIN_409_SELECT);
  5751. I915_WRITE(_3D_CHICKEN2,
  5752. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  5753. _3D_CHICKEN2_WM_READ_PIPELINED);
  5754. /* WaDisableRenderCachePipelinedFlush:ilk */
  5755. I915_WRITE(CACHE_MODE_0,
  5756. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5757. /* WaDisable_RenderCache_OperationalFlush:ilk */
  5758. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5759. g4x_disable_trickle_feed(dev_priv);
  5760. ibx_init_clock_gating(dev_priv);
  5761. }
  5762. static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
  5763. {
  5764. int pipe;
  5765. uint32_t val;
  5766. /*
  5767. * On Ibex Peak and Cougar Point, we need to disable clock
  5768. * gating for the panel power sequencer or it will fail to
  5769. * start up when no ports are active.
  5770. */
  5771. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  5772. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  5773. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  5774. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  5775. DPLS_EDP_PPS_FIX_DIS);
  5776. /* The below fixes the weird display corruption, a few pixels shifted
  5777. * downward, on (only) LVDS of some HP laptops with IVY.
  5778. */
  5779. for_each_pipe(dev_priv, pipe) {
  5780. val = I915_READ(TRANS_CHICKEN2(pipe));
  5781. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  5782. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5783. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  5784. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5785. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  5786. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  5787. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  5788. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  5789. }
  5790. /* WADP0ClockGatingDisable */
  5791. for_each_pipe(dev_priv, pipe) {
  5792. I915_WRITE(TRANS_CHICKEN1(pipe),
  5793. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5794. }
  5795. }
  5796. static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
  5797. {
  5798. uint32_t tmp;
  5799. tmp = I915_READ(MCH_SSKPD);
  5800. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  5801. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  5802. tmp);
  5803. }
  5804. static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
  5805. {
  5806. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5807. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5808. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5809. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5810. ILK_ELPIN_409_SELECT);
  5811. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  5812. I915_WRITE(_3D_CHICKEN,
  5813. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  5814. /* WaDisable_RenderCache_OperationalFlush:snb */
  5815. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5816. /*
  5817. * BSpec recoomends 8x4 when MSAA is used,
  5818. * however in practice 16x4 seems fastest.
  5819. *
  5820. * Note that PS/WM thread counts depend on the WIZ hashing
  5821. * disable bit, which we don't touch here, but it's good
  5822. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5823. */
  5824. I915_WRITE(GEN6_GT_MODE,
  5825. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5826. ilk_init_lp_watermarks(dev_priv);
  5827. I915_WRITE(CACHE_MODE_0,
  5828. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  5829. I915_WRITE(GEN6_UCGCTL1,
  5830. I915_READ(GEN6_UCGCTL1) |
  5831. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  5832. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5833. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  5834. * gating disable must be set. Failure to set it results in
  5835. * flickering pixels due to Z write ordering failures after
  5836. * some amount of runtime in the Mesa "fire" demo, and Unigine
  5837. * Sanctuary and Tropics, and apparently anything else with
  5838. * alpha test or pixel discard.
  5839. *
  5840. * According to the spec, bit 11 (RCCUNIT) must also be set,
  5841. * but we didn't debug actual testcases to find it out.
  5842. *
  5843. * WaDisableRCCUnitClockGating:snb
  5844. * WaDisableRCPBUnitClockGating:snb
  5845. */
  5846. I915_WRITE(GEN6_UCGCTL2,
  5847. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  5848. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  5849. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  5850. I915_WRITE(_3D_CHICKEN3,
  5851. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  5852. /*
  5853. * Bspec says:
  5854. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  5855. * 3DSTATE_SF number of SF output attributes is more than 16."
  5856. */
  5857. I915_WRITE(_3D_CHICKEN3,
  5858. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  5859. /*
  5860. * According to the spec the following bits should be
  5861. * set in order to enable memory self-refresh and fbc:
  5862. * The bit21 and bit22 of 0x42000
  5863. * The bit21 and bit22 of 0x42004
  5864. * The bit5 and bit7 of 0x42020
  5865. * The bit14 of 0x70180
  5866. * The bit14 of 0x71180
  5867. *
  5868. * WaFbcAsynchFlipDisableFbcQueue:snb
  5869. */
  5870. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5871. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5872. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  5873. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5874. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5875. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5876. I915_WRITE(ILK_DSPCLK_GATE_D,
  5877. I915_READ(ILK_DSPCLK_GATE_D) |
  5878. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5879. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5880. g4x_disable_trickle_feed(dev_priv);
  5881. cpt_init_clock_gating(dev_priv);
  5882. gen6_check_mch_setup(dev_priv);
  5883. }
  5884. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5885. {
  5886. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5887. /*
  5888. * WaVSThreadDispatchOverride:ivb,vlv
  5889. *
  5890. * This actually overrides the dispatch
  5891. * mode for all thread types.
  5892. */
  5893. reg &= ~GEN7_FF_SCHED_MASK;
  5894. reg |= GEN7_FF_TS_SCHED_HW;
  5895. reg |= GEN7_FF_VS_SCHED_HW;
  5896. reg |= GEN7_FF_DS_SCHED_HW;
  5897. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5898. }
  5899. static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
  5900. {
  5901. /*
  5902. * TODO: this bit should only be enabled when really needed, then
  5903. * disabled when not needed anymore in order to save power.
  5904. */
  5905. if (HAS_PCH_LPT_LP(dev_priv))
  5906. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5907. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5908. PCH_LP_PARTITION_LEVEL_DISABLE);
  5909. /* WADPOClockGatingDisable:hsw */
  5910. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  5911. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  5912. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5913. }
  5914. static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
  5915. {
  5916. if (HAS_PCH_LPT_LP(dev_priv)) {
  5917. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5918. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5919. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5920. }
  5921. }
  5922. static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
  5923. int general_prio_credits,
  5924. int high_prio_credits)
  5925. {
  5926. u32 misccpctl;
  5927. /* WaTempDisableDOPClkGating:bdw */
  5928. misccpctl = I915_READ(GEN7_MISCCPCTL);
  5929. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  5930. I915_WRITE(GEN8_L3SQCREG1,
  5931. L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
  5932. L3_HIGH_PRIO_CREDITS(high_prio_credits));
  5933. /*
  5934. * Wait at least 100 clocks before re-enabling clock gating.
  5935. * See the definition of L3SQCREG1 in BSpec.
  5936. */
  5937. POSTING_READ(GEN8_L3SQCREG1);
  5938. udelay(1);
  5939. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  5940. }
  5941. static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
  5942. {
  5943. gen9_init_clock_gating(dev_priv);
  5944. /* WaDisableSDEUnitClockGating:kbl */
  5945. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  5946. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5947. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5948. /* WaDisableGamClockGating:kbl */
  5949. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  5950. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5951. GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
  5952. /* WaFbcNukeOnHostModify:kbl */
  5953. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  5954. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  5955. }
  5956. static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
  5957. {
  5958. gen9_init_clock_gating(dev_priv);
  5959. /* WAC6entrylatency:skl */
  5960. I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
  5961. FBC_LLC_FULLY_OPEN);
  5962. /* WaFbcNukeOnHostModify:skl */
  5963. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  5964. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  5965. }
  5966. static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
  5967. {
  5968. enum pipe pipe;
  5969. ilk_init_lp_watermarks(dev_priv);
  5970. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5971. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5972. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5973. I915_WRITE(CHICKEN_PAR1_1,
  5974. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5975. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5976. for_each_pipe(dev_priv, pipe) {
  5977. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5978. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5979. BDW_DPRS_MASK_VBLANK_SRD);
  5980. }
  5981. /* WaVSRefCountFullforceMissDisable:bdw */
  5982. /* WaDSRefCountFullforceMissDisable:bdw */
  5983. I915_WRITE(GEN7_FF_THREAD_MODE,
  5984. I915_READ(GEN7_FF_THREAD_MODE) &
  5985. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5986. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5987. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5988. /* WaDisableSDEUnitClockGating:bdw */
  5989. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5990. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5991. /* WaProgramL3SqcReg1Default:bdw */
  5992. gen8_set_l3sqc_credits(dev_priv, 30, 2);
  5993. /*
  5994. * WaGttCachingOffByDefault:bdw
  5995. * GTT cache may not work with big pages, so if those
  5996. * are ever enabled GTT cache may need to be disabled.
  5997. */
  5998. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5999. /* WaKVMNotificationOnConfigChange:bdw */
  6000. I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
  6001. | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
  6002. lpt_init_clock_gating(dev_priv);
  6003. }
  6004. static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
  6005. {
  6006. ilk_init_lp_watermarks(dev_priv);
  6007. /* L3 caching of data atomics doesn't work -- disable it. */
  6008. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  6009. I915_WRITE(HSW_ROW_CHICKEN3,
  6010. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  6011. /* This is required by WaCatErrorRejectionIssue:hsw */
  6012. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6013. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6014. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6015. /* WaVSRefCountFullforceMissDisable:hsw */
  6016. I915_WRITE(GEN7_FF_THREAD_MODE,
  6017. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  6018. /* WaDisable_RenderCache_OperationalFlush:hsw */
  6019. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6020. /* enable HiZ Raw Stall Optimization */
  6021. I915_WRITE(CACHE_MODE_0_GEN7,
  6022. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6023. /* WaDisable4x2SubspanOptimization:hsw */
  6024. I915_WRITE(CACHE_MODE_1,
  6025. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6026. /*
  6027. * BSpec recommends 8x4 when MSAA is used,
  6028. * however in practice 16x4 seems fastest.
  6029. *
  6030. * Note that PS/WM thread counts depend on the WIZ hashing
  6031. * disable bit, which we don't touch here, but it's good
  6032. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6033. */
  6034. I915_WRITE(GEN7_GT_MODE,
  6035. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6036. /* WaSampleCChickenBitEnable:hsw */
  6037. I915_WRITE(HALF_SLICE_CHICKEN3,
  6038. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  6039. /* WaSwitchSolVfFArbitrationPriority:hsw */
  6040. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6041. /* WaRsPkgCStateDisplayPMReq:hsw */
  6042. I915_WRITE(CHICKEN_PAR1_1,
  6043. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  6044. lpt_init_clock_gating(dev_priv);
  6045. }
  6046. static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
  6047. {
  6048. uint32_t snpcr;
  6049. ilk_init_lp_watermarks(dev_priv);
  6050. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  6051. /* WaDisableEarlyCull:ivb */
  6052. I915_WRITE(_3D_CHICKEN3,
  6053. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6054. /* WaDisableBackToBackFlipFix:ivb */
  6055. I915_WRITE(IVB_CHICKEN3,
  6056. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6057. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6058. /* WaDisablePSDDualDispatchEnable:ivb */
  6059. if (IS_IVB_GT1(dev_priv))
  6060. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6061. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6062. /* WaDisable_RenderCache_OperationalFlush:ivb */
  6063. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6064. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  6065. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  6066. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  6067. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  6068. I915_WRITE(GEN7_L3CNTLREG1,
  6069. GEN7_WA_FOR_GEN7_L3_CONTROL);
  6070. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  6071. GEN7_WA_L3_CHICKEN_MODE);
  6072. if (IS_IVB_GT1(dev_priv))
  6073. I915_WRITE(GEN7_ROW_CHICKEN2,
  6074. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6075. else {
  6076. /* must write both registers */
  6077. I915_WRITE(GEN7_ROW_CHICKEN2,
  6078. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6079. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  6080. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6081. }
  6082. /* WaForceL3Serialization:ivb */
  6083. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6084. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6085. /*
  6086. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6087. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  6088. */
  6089. I915_WRITE(GEN6_UCGCTL2,
  6090. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6091. /* This is required by WaCatErrorRejectionIssue:ivb */
  6092. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6093. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6094. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6095. g4x_disable_trickle_feed(dev_priv);
  6096. gen7_setup_fixed_func_scheduler(dev_priv);
  6097. if (0) { /* causes HiZ corruption on ivb:gt1 */
  6098. /* enable HiZ Raw Stall Optimization */
  6099. I915_WRITE(CACHE_MODE_0_GEN7,
  6100. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6101. }
  6102. /* WaDisable4x2SubspanOptimization:ivb */
  6103. I915_WRITE(CACHE_MODE_1,
  6104. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6105. /*
  6106. * BSpec recommends 8x4 when MSAA is used,
  6107. * however in practice 16x4 seems fastest.
  6108. *
  6109. * Note that PS/WM thread counts depend on the WIZ hashing
  6110. * disable bit, which we don't touch here, but it's good
  6111. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6112. */
  6113. I915_WRITE(GEN7_GT_MODE,
  6114. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6115. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  6116. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  6117. snpcr |= GEN6_MBC_SNPCR_MED;
  6118. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  6119. if (!HAS_PCH_NOP(dev_priv))
  6120. cpt_init_clock_gating(dev_priv);
  6121. gen6_check_mch_setup(dev_priv);
  6122. }
  6123. static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
  6124. {
  6125. /* WaDisableEarlyCull:vlv */
  6126. I915_WRITE(_3D_CHICKEN3,
  6127. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6128. /* WaDisableBackToBackFlipFix:vlv */
  6129. I915_WRITE(IVB_CHICKEN3,
  6130. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6131. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6132. /* WaPsdDispatchEnable:vlv */
  6133. /* WaDisablePSDDualDispatchEnable:vlv */
  6134. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6135. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  6136. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6137. /* WaDisable_RenderCache_OperationalFlush:vlv */
  6138. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6139. /* WaForceL3Serialization:vlv */
  6140. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6141. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6142. /* WaDisableDopClockGating:vlv */
  6143. I915_WRITE(GEN7_ROW_CHICKEN2,
  6144. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6145. /* This is required by WaCatErrorRejectionIssue:vlv */
  6146. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6147. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6148. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6149. gen7_setup_fixed_func_scheduler(dev_priv);
  6150. /*
  6151. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6152. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  6153. */
  6154. I915_WRITE(GEN6_UCGCTL2,
  6155. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6156. /* WaDisableL3Bank2xClockGate:vlv
  6157. * Disabling L3 clock gating- MMIO 940c[25] = 1
  6158. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  6159. I915_WRITE(GEN7_UCGCTL4,
  6160. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  6161. /*
  6162. * BSpec says this must be set, even though
  6163. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  6164. */
  6165. I915_WRITE(CACHE_MODE_1,
  6166. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6167. /*
  6168. * BSpec recommends 8x4 when MSAA is used,
  6169. * however in practice 16x4 seems fastest.
  6170. *
  6171. * Note that PS/WM thread counts depend on the WIZ hashing
  6172. * disable bit, which we don't touch here, but it's good
  6173. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6174. */
  6175. I915_WRITE(GEN7_GT_MODE,
  6176. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6177. /*
  6178. * WaIncreaseL3CreditsForVLVB0:vlv
  6179. * This is the hardware default actually.
  6180. */
  6181. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  6182. /*
  6183. * WaDisableVLVClockGating_VBIIssue:vlv
  6184. * Disable clock gating on th GCFG unit to prevent a delay
  6185. * in the reporting of vblank events.
  6186. */
  6187. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  6188. }
  6189. static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
  6190. {
  6191. /* WaVSRefCountFullforceMissDisable:chv */
  6192. /* WaDSRefCountFullforceMissDisable:chv */
  6193. I915_WRITE(GEN7_FF_THREAD_MODE,
  6194. I915_READ(GEN7_FF_THREAD_MODE) &
  6195. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  6196. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  6197. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  6198. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  6199. /* WaDisableCSUnitClockGating:chv */
  6200. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  6201. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6202. /* WaDisableSDEUnitClockGating:chv */
  6203. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6204. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6205. /*
  6206. * WaProgramL3SqcReg1Default:chv
  6207. * See gfxspecs/Related Documents/Performance Guide/
  6208. * LSQC Setting Recommendations.
  6209. */
  6210. gen8_set_l3sqc_credits(dev_priv, 38, 2);
  6211. /*
  6212. * GTT cache may not work with big pages, so if those
  6213. * are ever enabled GTT cache may need to be disabled.
  6214. */
  6215. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  6216. }
  6217. static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
  6218. {
  6219. uint32_t dspclk_gate;
  6220. I915_WRITE(RENCLK_GATE_D1, 0);
  6221. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  6222. GS_UNIT_CLOCK_GATE_DISABLE |
  6223. CL_UNIT_CLOCK_GATE_DISABLE);
  6224. I915_WRITE(RAMCLK_GATE_D, 0);
  6225. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  6226. OVRUNIT_CLOCK_GATE_DISABLE |
  6227. OVCUNIT_CLOCK_GATE_DISABLE;
  6228. if (IS_GM45(dev_priv))
  6229. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  6230. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  6231. /* WaDisableRenderCachePipelinedFlush */
  6232. I915_WRITE(CACHE_MODE_0,
  6233. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6234. /* WaDisable_RenderCache_OperationalFlush:g4x */
  6235. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6236. g4x_disable_trickle_feed(dev_priv);
  6237. }
  6238. static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
  6239. {
  6240. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  6241. I915_WRITE(RENCLK_GATE_D2, 0);
  6242. I915_WRITE(DSPCLK_GATE_D, 0);
  6243. I915_WRITE(RAMCLK_GATE_D, 0);
  6244. I915_WRITE16(DEUC, 0);
  6245. I915_WRITE(MI_ARB_STATE,
  6246. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6247. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  6248. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6249. }
  6250. static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
  6251. {
  6252. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  6253. I965_RCC_CLOCK_GATE_DISABLE |
  6254. I965_RCPB_CLOCK_GATE_DISABLE |
  6255. I965_ISC_CLOCK_GATE_DISABLE |
  6256. I965_FBC_CLOCK_GATE_DISABLE);
  6257. I915_WRITE(RENCLK_GATE_D2, 0);
  6258. I915_WRITE(MI_ARB_STATE,
  6259. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6260. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  6261. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6262. }
  6263. static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
  6264. {
  6265. u32 dstate = I915_READ(D_STATE);
  6266. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  6267. DSTATE_DOT_CLOCK_GATING;
  6268. I915_WRITE(D_STATE, dstate);
  6269. if (IS_PINEVIEW(dev_priv))
  6270. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  6271. /* IIR "flip pending" means done if this bit is set */
  6272. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  6273. /* interrupts should cause a wake up from C3 */
  6274. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  6275. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  6276. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  6277. I915_WRITE(MI_ARB_STATE,
  6278. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6279. }
  6280. static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
  6281. {
  6282. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  6283. /* interrupts should cause a wake up from C3 */
  6284. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  6285. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  6286. I915_WRITE(MEM_MODE,
  6287. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  6288. }
  6289. static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
  6290. {
  6291. I915_WRITE(MEM_MODE,
  6292. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  6293. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  6294. }
  6295. void intel_init_clock_gating(struct drm_i915_private *dev_priv)
  6296. {
  6297. dev_priv->display.init_clock_gating(dev_priv);
  6298. }
  6299. void intel_suspend_hw(struct drm_i915_private *dev_priv)
  6300. {
  6301. if (HAS_PCH_LPT(dev_priv))
  6302. lpt_suspend_hw(dev_priv);
  6303. }
  6304. static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
  6305. {
  6306. DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
  6307. }
  6308. /**
  6309. * intel_init_clock_gating_hooks - setup the clock gating hooks
  6310. * @dev_priv: device private
  6311. *
  6312. * Setup the hooks that configure which clocks of a given platform can be
  6313. * gated and also apply various GT and display specific workarounds for these
  6314. * platforms. Note that some GT specific workarounds are applied separately
  6315. * when GPU contexts or batchbuffers start their execution.
  6316. */
  6317. void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
  6318. {
  6319. if (IS_SKYLAKE(dev_priv))
  6320. dev_priv->display.init_clock_gating = skylake_init_clock_gating;
  6321. else if (IS_KABYLAKE(dev_priv))
  6322. dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
  6323. else if (IS_GEN9_LP(dev_priv))
  6324. dev_priv->display.init_clock_gating = bxt_init_clock_gating;
  6325. else if (IS_BROADWELL(dev_priv))
  6326. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  6327. else if (IS_CHERRYVIEW(dev_priv))
  6328. dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
  6329. else if (IS_HASWELL(dev_priv))
  6330. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  6331. else if (IS_IVYBRIDGE(dev_priv))
  6332. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  6333. else if (IS_VALLEYVIEW(dev_priv))
  6334. dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
  6335. else if (IS_GEN6(dev_priv))
  6336. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  6337. else if (IS_GEN5(dev_priv))
  6338. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  6339. else if (IS_G4X(dev_priv))
  6340. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  6341. else if (IS_I965GM(dev_priv))
  6342. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  6343. else if (IS_I965G(dev_priv))
  6344. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  6345. else if (IS_GEN3(dev_priv))
  6346. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6347. else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
  6348. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  6349. else if (IS_GEN2(dev_priv))
  6350. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  6351. else {
  6352. MISSING_CASE(INTEL_DEVID(dev_priv));
  6353. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  6354. }
  6355. }
  6356. /* Set up chip specific power management-related functions */
  6357. void intel_init_pm(struct drm_i915_private *dev_priv)
  6358. {
  6359. intel_fbc_init(dev_priv);
  6360. /* For cxsr */
  6361. if (IS_PINEVIEW(dev_priv))
  6362. i915_pineview_get_mem_freq(dev_priv);
  6363. else if (IS_GEN5(dev_priv))
  6364. i915_ironlake_get_mem_freq(dev_priv);
  6365. /* For FIFO watermark updates */
  6366. if (INTEL_GEN(dev_priv) >= 9) {
  6367. skl_setup_wm_latency(dev_priv);
  6368. dev_priv->display.initial_watermarks = skl_initial_wm;
  6369. dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
  6370. dev_priv->display.compute_global_watermarks = skl_compute_wm;
  6371. } else if (HAS_PCH_SPLIT(dev_priv)) {
  6372. ilk_setup_wm_latency(dev_priv);
  6373. if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
  6374. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  6375. (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
  6376. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  6377. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  6378. dev_priv->display.compute_intermediate_wm =
  6379. ilk_compute_intermediate_wm;
  6380. dev_priv->display.initial_watermarks =
  6381. ilk_initial_watermarks;
  6382. dev_priv->display.optimize_watermarks =
  6383. ilk_optimize_watermarks;
  6384. } else {
  6385. DRM_DEBUG_KMS("Failed to read display plane latency. "
  6386. "Disable CxSR\n");
  6387. }
  6388. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  6389. vlv_setup_wm_latency(dev_priv);
  6390. dev_priv->display.update_wm = vlv_update_wm;
  6391. } else if (IS_PINEVIEW(dev_priv)) {
  6392. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  6393. dev_priv->is_ddr3,
  6394. dev_priv->fsb_freq,
  6395. dev_priv->mem_freq)) {
  6396. DRM_INFO("failed to find known CxSR latency "
  6397. "(found ddr%s fsb freq %d, mem freq %d), "
  6398. "disabling CxSR\n",
  6399. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  6400. dev_priv->fsb_freq, dev_priv->mem_freq);
  6401. /* Disable CxSR and never update its watermark again */
  6402. intel_set_memory_cxsr(dev_priv, false);
  6403. dev_priv->display.update_wm = NULL;
  6404. } else
  6405. dev_priv->display.update_wm = pineview_update_wm;
  6406. } else if (IS_G4X(dev_priv)) {
  6407. dev_priv->display.update_wm = g4x_update_wm;
  6408. } else if (IS_GEN4(dev_priv)) {
  6409. dev_priv->display.update_wm = i965_update_wm;
  6410. } else if (IS_GEN3(dev_priv)) {
  6411. dev_priv->display.update_wm = i9xx_update_wm;
  6412. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  6413. } else if (IS_GEN2(dev_priv)) {
  6414. if (INTEL_INFO(dev_priv)->num_pipes == 1) {
  6415. dev_priv->display.update_wm = i845_update_wm;
  6416. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  6417. } else {
  6418. dev_priv->display.update_wm = i9xx_update_wm;
  6419. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  6420. }
  6421. } else {
  6422. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  6423. }
  6424. }
  6425. static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
  6426. {
  6427. uint32_t flags =
  6428. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  6429. switch (flags) {
  6430. case GEN6_PCODE_SUCCESS:
  6431. return 0;
  6432. case GEN6_PCODE_UNIMPLEMENTED_CMD:
  6433. case GEN6_PCODE_ILLEGAL_CMD:
  6434. return -ENXIO;
  6435. case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  6436. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  6437. return -EOVERFLOW;
  6438. case GEN6_PCODE_TIMEOUT:
  6439. return -ETIMEDOUT;
  6440. default:
  6441. MISSING_CASE(flags)
  6442. return 0;
  6443. }
  6444. }
  6445. static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
  6446. {
  6447. uint32_t flags =
  6448. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  6449. switch (flags) {
  6450. case GEN6_PCODE_SUCCESS:
  6451. return 0;
  6452. case GEN6_PCODE_ILLEGAL_CMD:
  6453. return -ENXIO;
  6454. case GEN7_PCODE_TIMEOUT:
  6455. return -ETIMEDOUT;
  6456. case GEN7_PCODE_ILLEGAL_DATA:
  6457. return -EINVAL;
  6458. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  6459. return -EOVERFLOW;
  6460. default:
  6461. MISSING_CASE(flags);
  6462. return 0;
  6463. }
  6464. }
  6465. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  6466. {
  6467. int status;
  6468. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6469. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  6470. * use te fw I915_READ variants to reduce the amount of work
  6471. * required when reading/writing.
  6472. */
  6473. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6474. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  6475. return -EAGAIN;
  6476. }
  6477. I915_WRITE_FW(GEN6_PCODE_DATA, *val);
  6478. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  6479. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6480. if (intel_wait_for_register_fw(dev_priv,
  6481. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  6482. 500)) {
  6483. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  6484. return -ETIMEDOUT;
  6485. }
  6486. *val = I915_READ_FW(GEN6_PCODE_DATA);
  6487. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  6488. if (INTEL_GEN(dev_priv) > 6)
  6489. status = gen7_check_mailbox_status(dev_priv);
  6490. else
  6491. status = gen6_check_mailbox_status(dev_priv);
  6492. if (status) {
  6493. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
  6494. status);
  6495. return status;
  6496. }
  6497. return 0;
  6498. }
  6499. int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
  6500. u32 mbox, u32 val)
  6501. {
  6502. int status;
  6503. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6504. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  6505. * use te fw I915_READ variants to reduce the amount of work
  6506. * required when reading/writing.
  6507. */
  6508. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6509. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  6510. return -EAGAIN;
  6511. }
  6512. I915_WRITE_FW(GEN6_PCODE_DATA, val);
  6513. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  6514. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6515. if (intel_wait_for_register_fw(dev_priv,
  6516. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  6517. 500)) {
  6518. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  6519. return -ETIMEDOUT;
  6520. }
  6521. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  6522. if (INTEL_GEN(dev_priv) > 6)
  6523. status = gen7_check_mailbox_status(dev_priv);
  6524. else
  6525. status = gen6_check_mailbox_status(dev_priv);
  6526. if (status) {
  6527. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
  6528. status);
  6529. return status;
  6530. }
  6531. return 0;
  6532. }
  6533. static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
  6534. u32 request, u32 reply_mask, u32 reply,
  6535. u32 *status)
  6536. {
  6537. u32 val = request;
  6538. *status = sandybridge_pcode_read(dev_priv, mbox, &val);
  6539. return *status || ((val & reply_mask) == reply);
  6540. }
  6541. /**
  6542. * skl_pcode_request - send PCODE request until acknowledgment
  6543. * @dev_priv: device private
  6544. * @mbox: PCODE mailbox ID the request is targeted for
  6545. * @request: request ID
  6546. * @reply_mask: mask used to check for request acknowledgment
  6547. * @reply: value used to check for request acknowledgment
  6548. * @timeout_base_ms: timeout for polling with preemption enabled
  6549. *
  6550. * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
  6551. * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
  6552. * The request is acknowledged once the PCODE reply dword equals @reply after
  6553. * applying @reply_mask. Polling is first attempted with preemption enabled
  6554. * for @timeout_base_ms and if this times out for another 10 ms with
  6555. * preemption disabled.
  6556. *
  6557. * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
  6558. * other error as reported by PCODE.
  6559. */
  6560. int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
  6561. u32 reply_mask, u32 reply, int timeout_base_ms)
  6562. {
  6563. u32 status;
  6564. int ret;
  6565. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6566. #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
  6567. &status)
  6568. /*
  6569. * Prime the PCODE by doing a request first. Normally it guarantees
  6570. * that a subsequent request, at most @timeout_base_ms later, succeeds.
  6571. * _wait_for() doesn't guarantee when its passed condition is evaluated
  6572. * first, so send the first request explicitly.
  6573. */
  6574. if (COND) {
  6575. ret = 0;
  6576. goto out;
  6577. }
  6578. ret = _wait_for(COND, timeout_base_ms * 1000, 10);
  6579. if (!ret)
  6580. goto out;
  6581. /*
  6582. * The above can time out if the number of requests was low (2 in the
  6583. * worst case) _and_ PCODE was busy for some reason even after a
  6584. * (queued) request and @timeout_base_ms delay. As a workaround retry
  6585. * the poll with preemption disabled to maximize the number of
  6586. * requests. Increase the timeout from @timeout_base_ms to 10ms to
  6587. * account for interrupts that could reduce the number of these
  6588. * requests.
  6589. */
  6590. DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
  6591. WARN_ON_ONCE(timeout_base_ms > 3);
  6592. preempt_disable();
  6593. ret = wait_for_atomic(COND, 10);
  6594. preempt_enable();
  6595. out:
  6596. return ret ? ret : status;
  6597. #undef COND
  6598. }
  6599. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6600. {
  6601. /*
  6602. * N = val - 0xb7
  6603. * Slow = Fast = GPLL ref * N
  6604. */
  6605. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
  6606. }
  6607. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6608. {
  6609. return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
  6610. }
  6611. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6612. {
  6613. /*
  6614. * N = val / 2
  6615. * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
  6616. */
  6617. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
  6618. }
  6619. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6620. {
  6621. /* CHV needs even values */
  6622. return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
  6623. }
  6624. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6625. {
  6626. if (IS_GEN9(dev_priv))
  6627. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  6628. GEN9_FREQ_SCALER);
  6629. else if (IS_CHERRYVIEW(dev_priv))
  6630. return chv_gpu_freq(dev_priv, val);
  6631. else if (IS_VALLEYVIEW(dev_priv))
  6632. return byt_gpu_freq(dev_priv, val);
  6633. else
  6634. return val * GT_FREQUENCY_MULTIPLIER;
  6635. }
  6636. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6637. {
  6638. if (IS_GEN9(dev_priv))
  6639. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  6640. GT_FREQUENCY_MULTIPLIER);
  6641. else if (IS_CHERRYVIEW(dev_priv))
  6642. return chv_freq_opcode(dev_priv, val);
  6643. else if (IS_VALLEYVIEW(dev_priv))
  6644. return byt_freq_opcode(dev_priv, val);
  6645. else
  6646. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  6647. }
  6648. struct request_boost {
  6649. struct work_struct work;
  6650. struct drm_i915_gem_request *req;
  6651. };
  6652. static void __intel_rps_boost_work(struct work_struct *work)
  6653. {
  6654. struct request_boost *boost = container_of(work, struct request_boost, work);
  6655. struct drm_i915_gem_request *req = boost->req;
  6656. if (!i915_gem_request_completed(req))
  6657. gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
  6658. i915_gem_request_put(req);
  6659. kfree(boost);
  6660. }
  6661. void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
  6662. {
  6663. struct request_boost *boost;
  6664. if (req == NULL || INTEL_GEN(req->i915) < 6)
  6665. return;
  6666. if (i915_gem_request_completed(req))
  6667. return;
  6668. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  6669. if (boost == NULL)
  6670. return;
  6671. boost->req = i915_gem_request_get(req);
  6672. INIT_WORK(&boost->work, __intel_rps_boost_work);
  6673. queue_work(req->i915->wq, &boost->work);
  6674. }
  6675. void intel_pm_setup(struct drm_i915_private *dev_priv)
  6676. {
  6677. mutex_init(&dev_priv->rps.hw_lock);
  6678. spin_lock_init(&dev_priv->rps.client_lock);
  6679. INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
  6680. __intel_autoenable_gt_powersave);
  6681. INIT_LIST_HEAD(&dev_priv->rps.clients);
  6682. dev_priv->pm.suspended = false;
  6683. atomic_set(&dev_priv->pm.wakeref_count, 0);
  6684. }