i915_debugfs.c 134 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/list_sort.h>
  30. #include "intel_drv.h"
  31. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  32. {
  33. return to_i915(node->minor->dev);
  34. }
  35. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  36. * allocated we need to hook into the minor for release. */
  37. static int
  38. drm_add_fake_info_node(struct drm_minor *minor,
  39. struct dentry *ent,
  40. const void *key)
  41. {
  42. struct drm_info_node *node;
  43. node = kmalloc(sizeof(*node), GFP_KERNEL);
  44. if (node == NULL) {
  45. debugfs_remove(ent);
  46. return -ENOMEM;
  47. }
  48. node->minor = minor;
  49. node->dent = ent;
  50. node->info_ent = (void *)key;
  51. mutex_lock(&minor->debugfs_lock);
  52. list_add(&node->list, &minor->debugfs_list);
  53. mutex_unlock(&minor->debugfs_lock);
  54. return 0;
  55. }
  56. static int i915_capabilities(struct seq_file *m, void *data)
  57. {
  58. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  59. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  60. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  61. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  62. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  63. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  64. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  65. #undef PRINT_FLAG
  66. return 0;
  67. }
  68. static char get_active_flag(struct drm_i915_gem_object *obj)
  69. {
  70. return i915_gem_object_is_active(obj) ? '*' : ' ';
  71. }
  72. static char get_pin_flag(struct drm_i915_gem_object *obj)
  73. {
  74. return obj->pin_display ? 'p' : ' ';
  75. }
  76. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  77. {
  78. switch (i915_gem_object_get_tiling(obj)) {
  79. default:
  80. case I915_TILING_NONE: return ' ';
  81. case I915_TILING_X: return 'X';
  82. case I915_TILING_Y: return 'Y';
  83. }
  84. }
  85. static char get_global_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return !list_empty(&obj->userfault_link) ? 'g' : ' ';
  88. }
  89. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  90. {
  91. return obj->mm.mapping ? 'M' : ' ';
  92. }
  93. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  94. {
  95. u64 size = 0;
  96. struct i915_vma *vma;
  97. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  98. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  99. size += vma->node.size;
  100. }
  101. return size;
  102. }
  103. static void
  104. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  105. {
  106. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  107. struct intel_engine_cs *engine;
  108. struct i915_vma *vma;
  109. unsigned int frontbuffer_bits;
  110. int pin_count = 0;
  111. lockdep_assert_held(&obj->base.dev->struct_mutex);
  112. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  113. &obj->base,
  114. get_active_flag(obj),
  115. get_pin_flag(obj),
  116. get_tiling_flag(obj),
  117. get_global_flag(obj),
  118. get_pin_mapped_flag(obj),
  119. obj->base.size / 1024,
  120. obj->base.read_domains,
  121. obj->base.write_domain,
  122. i915_cache_level_str(dev_priv, obj->cache_level),
  123. obj->mm.dirty ? " dirty" : "",
  124. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  125. if (obj->base.name)
  126. seq_printf(m, " (name: %d)", obj->base.name);
  127. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  128. if (i915_vma_is_pinned(vma))
  129. pin_count++;
  130. }
  131. seq_printf(m, " (pinned x %d)", pin_count);
  132. if (obj->pin_display)
  133. seq_printf(m, " (display)");
  134. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  135. if (!drm_mm_node_allocated(&vma->node))
  136. continue;
  137. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  138. i915_vma_is_ggtt(vma) ? "g" : "pp",
  139. vma->node.start, vma->node.size);
  140. if (i915_vma_is_ggtt(vma)) {
  141. switch (vma->ggtt_view.type) {
  142. case I915_GGTT_VIEW_NORMAL:
  143. seq_puts(m, ", normal");
  144. break;
  145. case I915_GGTT_VIEW_PARTIAL:
  146. seq_printf(m, ", partial [%08llx+%x]",
  147. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  148. vma->ggtt_view.partial.size << PAGE_SHIFT);
  149. break;
  150. case I915_GGTT_VIEW_ROTATED:
  151. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  152. vma->ggtt_view.rotated.plane[0].width,
  153. vma->ggtt_view.rotated.plane[0].height,
  154. vma->ggtt_view.rotated.plane[0].stride,
  155. vma->ggtt_view.rotated.plane[0].offset,
  156. vma->ggtt_view.rotated.plane[1].width,
  157. vma->ggtt_view.rotated.plane[1].height,
  158. vma->ggtt_view.rotated.plane[1].stride,
  159. vma->ggtt_view.rotated.plane[1].offset);
  160. break;
  161. default:
  162. MISSING_CASE(vma->ggtt_view.type);
  163. break;
  164. }
  165. }
  166. if (vma->fence)
  167. seq_printf(m, " , fence: %d%s",
  168. vma->fence->id,
  169. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  170. seq_puts(m, ")");
  171. }
  172. if (obj->stolen)
  173. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  174. engine = i915_gem_object_last_write_engine(obj);
  175. if (engine)
  176. seq_printf(m, " (%s)", engine->name);
  177. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  178. if (frontbuffer_bits)
  179. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  180. }
  181. static int obj_rank_by_stolen(void *priv,
  182. struct list_head *A, struct list_head *B)
  183. {
  184. struct drm_i915_gem_object *a =
  185. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  186. struct drm_i915_gem_object *b =
  187. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  188. if (a->stolen->start < b->stolen->start)
  189. return -1;
  190. if (a->stolen->start > b->stolen->start)
  191. return 1;
  192. return 0;
  193. }
  194. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  195. {
  196. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  197. struct drm_device *dev = &dev_priv->drm;
  198. struct drm_i915_gem_object *obj;
  199. u64 total_obj_size, total_gtt_size;
  200. LIST_HEAD(stolen);
  201. int count, ret;
  202. ret = mutex_lock_interruptible(&dev->struct_mutex);
  203. if (ret)
  204. return ret;
  205. total_obj_size = total_gtt_size = count = 0;
  206. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  207. if (obj->stolen == NULL)
  208. continue;
  209. list_add(&obj->obj_exec_link, &stolen);
  210. total_obj_size += obj->base.size;
  211. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  212. count++;
  213. }
  214. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  215. if (obj->stolen == NULL)
  216. continue;
  217. list_add(&obj->obj_exec_link, &stolen);
  218. total_obj_size += obj->base.size;
  219. count++;
  220. }
  221. list_sort(NULL, &stolen, obj_rank_by_stolen);
  222. seq_puts(m, "Stolen:\n");
  223. while (!list_empty(&stolen)) {
  224. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  225. seq_puts(m, " ");
  226. describe_obj(m, obj);
  227. seq_putc(m, '\n');
  228. list_del_init(&obj->obj_exec_link);
  229. }
  230. mutex_unlock(&dev->struct_mutex);
  231. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  232. count, total_obj_size, total_gtt_size);
  233. return 0;
  234. }
  235. struct file_stats {
  236. struct drm_i915_file_private *file_priv;
  237. unsigned long count;
  238. u64 total, unbound;
  239. u64 global, shared;
  240. u64 active, inactive;
  241. };
  242. static int per_file_stats(int id, void *ptr, void *data)
  243. {
  244. struct drm_i915_gem_object *obj = ptr;
  245. struct file_stats *stats = data;
  246. struct i915_vma *vma;
  247. stats->count++;
  248. stats->total += obj->base.size;
  249. if (!obj->bind_count)
  250. stats->unbound += obj->base.size;
  251. if (obj->base.name || obj->base.dma_buf)
  252. stats->shared += obj->base.size;
  253. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  254. if (!drm_mm_node_allocated(&vma->node))
  255. continue;
  256. if (i915_vma_is_ggtt(vma)) {
  257. stats->global += vma->node.size;
  258. } else {
  259. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  260. if (ppgtt->base.file != stats->file_priv)
  261. continue;
  262. }
  263. if (i915_vma_is_active(vma))
  264. stats->active += vma->node.size;
  265. else
  266. stats->inactive += vma->node.size;
  267. }
  268. return 0;
  269. }
  270. #define print_file_stats(m, name, stats) do { \
  271. if (stats.count) \
  272. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  273. name, \
  274. stats.count, \
  275. stats.total, \
  276. stats.active, \
  277. stats.inactive, \
  278. stats.global, \
  279. stats.shared, \
  280. stats.unbound); \
  281. } while (0)
  282. static void print_batch_pool_stats(struct seq_file *m,
  283. struct drm_i915_private *dev_priv)
  284. {
  285. struct drm_i915_gem_object *obj;
  286. struct file_stats stats;
  287. struct intel_engine_cs *engine;
  288. enum intel_engine_id id;
  289. int j;
  290. memset(&stats, 0, sizeof(stats));
  291. for_each_engine(engine, dev_priv, id) {
  292. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  293. list_for_each_entry(obj,
  294. &engine->batch_pool.cache_list[j],
  295. batch_pool_link)
  296. per_file_stats(0, obj, &stats);
  297. }
  298. }
  299. print_file_stats(m, "[k]batch pool", stats);
  300. }
  301. static int per_file_ctx_stats(int id, void *ptr, void *data)
  302. {
  303. struct i915_gem_context *ctx = ptr;
  304. int n;
  305. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  306. if (ctx->engine[n].state)
  307. per_file_stats(0, ctx->engine[n].state->obj, data);
  308. if (ctx->engine[n].ring)
  309. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  310. }
  311. return 0;
  312. }
  313. static void print_context_stats(struct seq_file *m,
  314. struct drm_i915_private *dev_priv)
  315. {
  316. struct drm_device *dev = &dev_priv->drm;
  317. struct file_stats stats;
  318. struct drm_file *file;
  319. memset(&stats, 0, sizeof(stats));
  320. mutex_lock(&dev->struct_mutex);
  321. if (dev_priv->kernel_context)
  322. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  323. list_for_each_entry(file, &dev->filelist, lhead) {
  324. struct drm_i915_file_private *fpriv = file->driver_priv;
  325. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  326. }
  327. mutex_unlock(&dev->struct_mutex);
  328. print_file_stats(m, "[k]contexts", stats);
  329. }
  330. static int i915_gem_object_info(struct seq_file *m, void *data)
  331. {
  332. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  333. struct drm_device *dev = &dev_priv->drm;
  334. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  335. u32 count, mapped_count, purgeable_count, dpy_count;
  336. u64 size, mapped_size, purgeable_size, dpy_size;
  337. struct drm_i915_gem_object *obj;
  338. struct drm_file *file;
  339. int ret;
  340. ret = mutex_lock_interruptible(&dev->struct_mutex);
  341. if (ret)
  342. return ret;
  343. seq_printf(m, "%u objects, %llu bytes\n",
  344. dev_priv->mm.object_count,
  345. dev_priv->mm.object_memory);
  346. size = count = 0;
  347. mapped_size = mapped_count = 0;
  348. purgeable_size = purgeable_count = 0;
  349. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  350. size += obj->base.size;
  351. ++count;
  352. if (obj->mm.madv == I915_MADV_DONTNEED) {
  353. purgeable_size += obj->base.size;
  354. ++purgeable_count;
  355. }
  356. if (obj->mm.mapping) {
  357. mapped_count++;
  358. mapped_size += obj->base.size;
  359. }
  360. }
  361. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  362. size = count = dpy_size = dpy_count = 0;
  363. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  364. size += obj->base.size;
  365. ++count;
  366. if (obj->pin_display) {
  367. dpy_size += obj->base.size;
  368. ++dpy_count;
  369. }
  370. if (obj->mm.madv == I915_MADV_DONTNEED) {
  371. purgeable_size += obj->base.size;
  372. ++purgeable_count;
  373. }
  374. if (obj->mm.mapping) {
  375. mapped_count++;
  376. mapped_size += obj->base.size;
  377. }
  378. }
  379. seq_printf(m, "%u bound objects, %llu bytes\n",
  380. count, size);
  381. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  382. purgeable_count, purgeable_size);
  383. seq_printf(m, "%u mapped objects, %llu bytes\n",
  384. mapped_count, mapped_size);
  385. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  386. dpy_count, dpy_size);
  387. seq_printf(m, "%llu [%llu] gtt total\n",
  388. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  389. seq_putc(m, '\n');
  390. print_batch_pool_stats(m, dev_priv);
  391. mutex_unlock(&dev->struct_mutex);
  392. mutex_lock(&dev->filelist_mutex);
  393. print_context_stats(m, dev_priv);
  394. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  395. struct file_stats stats;
  396. struct drm_i915_file_private *file_priv = file->driver_priv;
  397. struct drm_i915_gem_request *request;
  398. struct task_struct *task;
  399. memset(&stats, 0, sizeof(stats));
  400. stats.file_priv = file->driver_priv;
  401. spin_lock(&file->table_lock);
  402. idr_for_each(&file->object_idr, per_file_stats, &stats);
  403. spin_unlock(&file->table_lock);
  404. /*
  405. * Although we have a valid reference on file->pid, that does
  406. * not guarantee that the task_struct who called get_pid() is
  407. * still alive (e.g. get_pid(current) => fork() => exit()).
  408. * Therefore, we need to protect this ->comm access using RCU.
  409. */
  410. mutex_lock(&dev->struct_mutex);
  411. request = list_first_entry_or_null(&file_priv->mm.request_list,
  412. struct drm_i915_gem_request,
  413. client_list);
  414. rcu_read_lock();
  415. task = pid_task(request && request->ctx->pid ?
  416. request->ctx->pid : file->pid,
  417. PIDTYPE_PID);
  418. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  419. rcu_read_unlock();
  420. mutex_unlock(&dev->struct_mutex);
  421. }
  422. mutex_unlock(&dev->filelist_mutex);
  423. return 0;
  424. }
  425. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  426. {
  427. struct drm_info_node *node = m->private;
  428. struct drm_i915_private *dev_priv = node_to_i915(node);
  429. struct drm_device *dev = &dev_priv->drm;
  430. bool show_pin_display_only = !!node->info_ent->data;
  431. struct drm_i915_gem_object *obj;
  432. u64 total_obj_size, total_gtt_size;
  433. int count, ret;
  434. ret = mutex_lock_interruptible(&dev->struct_mutex);
  435. if (ret)
  436. return ret;
  437. total_obj_size = total_gtt_size = count = 0;
  438. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  439. if (show_pin_display_only && !obj->pin_display)
  440. continue;
  441. seq_puts(m, " ");
  442. describe_obj(m, obj);
  443. seq_putc(m, '\n');
  444. total_obj_size += obj->base.size;
  445. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  446. count++;
  447. }
  448. mutex_unlock(&dev->struct_mutex);
  449. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  450. count, total_obj_size, total_gtt_size);
  451. return 0;
  452. }
  453. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  454. {
  455. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  456. struct drm_device *dev = &dev_priv->drm;
  457. struct intel_crtc *crtc;
  458. int ret;
  459. ret = mutex_lock_interruptible(&dev->struct_mutex);
  460. if (ret)
  461. return ret;
  462. for_each_intel_crtc(dev, crtc) {
  463. const char pipe = pipe_name(crtc->pipe);
  464. const char plane = plane_name(crtc->plane);
  465. struct intel_flip_work *work;
  466. spin_lock_irq(&dev->event_lock);
  467. work = crtc->flip_work;
  468. if (work == NULL) {
  469. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  470. pipe, plane);
  471. } else {
  472. u32 pending;
  473. u32 addr;
  474. pending = atomic_read(&work->pending);
  475. if (pending) {
  476. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  477. pipe, plane);
  478. } else {
  479. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  480. pipe, plane);
  481. }
  482. if (work->flip_queued_req) {
  483. struct intel_engine_cs *engine = work->flip_queued_req->engine;
  484. seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
  485. engine->name,
  486. work->flip_queued_req->global_seqno,
  487. intel_engine_last_submit(engine),
  488. intel_engine_get_seqno(engine),
  489. i915_gem_request_completed(work->flip_queued_req));
  490. } else
  491. seq_printf(m, "Flip not associated with any ring\n");
  492. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  493. work->flip_queued_vblank,
  494. work->flip_ready_vblank,
  495. intel_crtc_get_vblank_counter(crtc));
  496. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  497. if (INTEL_GEN(dev_priv) >= 4)
  498. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  499. else
  500. addr = I915_READ(DSPADDR(crtc->plane));
  501. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  502. if (work->pending_flip_obj) {
  503. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  504. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  505. }
  506. }
  507. spin_unlock_irq(&dev->event_lock);
  508. }
  509. mutex_unlock(&dev->struct_mutex);
  510. return 0;
  511. }
  512. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  513. {
  514. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  515. struct drm_device *dev = &dev_priv->drm;
  516. struct drm_i915_gem_object *obj;
  517. struct intel_engine_cs *engine;
  518. enum intel_engine_id id;
  519. int total = 0;
  520. int ret, j;
  521. ret = mutex_lock_interruptible(&dev->struct_mutex);
  522. if (ret)
  523. return ret;
  524. for_each_engine(engine, dev_priv, id) {
  525. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  526. int count;
  527. count = 0;
  528. list_for_each_entry(obj,
  529. &engine->batch_pool.cache_list[j],
  530. batch_pool_link)
  531. count++;
  532. seq_printf(m, "%s cache[%d]: %d objects\n",
  533. engine->name, j, count);
  534. list_for_each_entry(obj,
  535. &engine->batch_pool.cache_list[j],
  536. batch_pool_link) {
  537. seq_puts(m, " ");
  538. describe_obj(m, obj);
  539. seq_putc(m, '\n');
  540. }
  541. total += count;
  542. }
  543. }
  544. seq_printf(m, "total: %d\n", total);
  545. mutex_unlock(&dev->struct_mutex);
  546. return 0;
  547. }
  548. static void print_request(struct seq_file *m,
  549. struct drm_i915_gem_request *rq,
  550. const char *prefix)
  551. {
  552. seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
  553. rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
  554. rq->priotree.priority,
  555. jiffies_to_msecs(jiffies - rq->emitted_jiffies),
  556. rq->timeline->common->name);
  557. }
  558. static int i915_gem_request_info(struct seq_file *m, void *data)
  559. {
  560. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  561. struct drm_device *dev = &dev_priv->drm;
  562. struct drm_i915_gem_request *req;
  563. struct intel_engine_cs *engine;
  564. enum intel_engine_id id;
  565. int ret, any;
  566. ret = mutex_lock_interruptible(&dev->struct_mutex);
  567. if (ret)
  568. return ret;
  569. any = 0;
  570. for_each_engine(engine, dev_priv, id) {
  571. int count;
  572. count = 0;
  573. list_for_each_entry(req, &engine->timeline->requests, link)
  574. count++;
  575. if (count == 0)
  576. continue;
  577. seq_printf(m, "%s requests: %d\n", engine->name, count);
  578. list_for_each_entry(req, &engine->timeline->requests, link)
  579. print_request(m, req, " ");
  580. any++;
  581. }
  582. mutex_unlock(&dev->struct_mutex);
  583. if (any == 0)
  584. seq_puts(m, "No requests\n");
  585. return 0;
  586. }
  587. static void i915_ring_seqno_info(struct seq_file *m,
  588. struct intel_engine_cs *engine)
  589. {
  590. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  591. struct rb_node *rb;
  592. seq_printf(m, "Current sequence (%s): %x\n",
  593. engine->name, intel_engine_get_seqno(engine));
  594. spin_lock_irq(&b->lock);
  595. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  596. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  597. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  598. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  599. }
  600. spin_unlock_irq(&b->lock);
  601. }
  602. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  603. {
  604. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  605. struct intel_engine_cs *engine;
  606. enum intel_engine_id id;
  607. for_each_engine(engine, dev_priv, id)
  608. i915_ring_seqno_info(m, engine);
  609. return 0;
  610. }
  611. static int i915_interrupt_info(struct seq_file *m, void *data)
  612. {
  613. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  614. struct intel_engine_cs *engine;
  615. enum intel_engine_id id;
  616. int i, pipe;
  617. intel_runtime_pm_get(dev_priv);
  618. if (IS_CHERRYVIEW(dev_priv)) {
  619. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  620. I915_READ(GEN8_MASTER_IRQ));
  621. seq_printf(m, "Display IER:\t%08x\n",
  622. I915_READ(VLV_IER));
  623. seq_printf(m, "Display IIR:\t%08x\n",
  624. I915_READ(VLV_IIR));
  625. seq_printf(m, "Display IIR_RW:\t%08x\n",
  626. I915_READ(VLV_IIR_RW));
  627. seq_printf(m, "Display IMR:\t%08x\n",
  628. I915_READ(VLV_IMR));
  629. for_each_pipe(dev_priv, pipe) {
  630. enum intel_display_power_domain power_domain;
  631. power_domain = POWER_DOMAIN_PIPE(pipe);
  632. if (!intel_display_power_get_if_enabled(dev_priv,
  633. power_domain)) {
  634. seq_printf(m, "Pipe %c power disabled\n",
  635. pipe_name(pipe));
  636. continue;
  637. }
  638. seq_printf(m, "Pipe %c stat:\t%08x\n",
  639. pipe_name(pipe),
  640. I915_READ(PIPESTAT(pipe)));
  641. intel_display_power_put(dev_priv, power_domain);
  642. }
  643. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  644. seq_printf(m, "Port hotplug:\t%08x\n",
  645. I915_READ(PORT_HOTPLUG_EN));
  646. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  647. I915_READ(VLV_DPFLIPSTAT));
  648. seq_printf(m, "DPINVGTT:\t%08x\n",
  649. I915_READ(DPINVGTT));
  650. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  651. for (i = 0; i < 4; i++) {
  652. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  653. i, I915_READ(GEN8_GT_IMR(i)));
  654. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  655. i, I915_READ(GEN8_GT_IIR(i)));
  656. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  657. i, I915_READ(GEN8_GT_IER(i)));
  658. }
  659. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  660. I915_READ(GEN8_PCU_IMR));
  661. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  662. I915_READ(GEN8_PCU_IIR));
  663. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  664. I915_READ(GEN8_PCU_IER));
  665. } else if (INTEL_GEN(dev_priv) >= 8) {
  666. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  667. I915_READ(GEN8_MASTER_IRQ));
  668. for (i = 0; i < 4; i++) {
  669. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  670. i, I915_READ(GEN8_GT_IMR(i)));
  671. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  672. i, I915_READ(GEN8_GT_IIR(i)));
  673. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  674. i, I915_READ(GEN8_GT_IER(i)));
  675. }
  676. for_each_pipe(dev_priv, pipe) {
  677. enum intel_display_power_domain power_domain;
  678. power_domain = POWER_DOMAIN_PIPE(pipe);
  679. if (!intel_display_power_get_if_enabled(dev_priv,
  680. power_domain)) {
  681. seq_printf(m, "Pipe %c power disabled\n",
  682. pipe_name(pipe));
  683. continue;
  684. }
  685. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  686. pipe_name(pipe),
  687. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  688. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  689. pipe_name(pipe),
  690. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  691. seq_printf(m, "Pipe %c IER:\t%08x\n",
  692. pipe_name(pipe),
  693. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  694. intel_display_power_put(dev_priv, power_domain);
  695. }
  696. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  697. I915_READ(GEN8_DE_PORT_IMR));
  698. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  699. I915_READ(GEN8_DE_PORT_IIR));
  700. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  701. I915_READ(GEN8_DE_PORT_IER));
  702. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  703. I915_READ(GEN8_DE_MISC_IMR));
  704. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  705. I915_READ(GEN8_DE_MISC_IIR));
  706. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  707. I915_READ(GEN8_DE_MISC_IER));
  708. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  709. I915_READ(GEN8_PCU_IMR));
  710. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  711. I915_READ(GEN8_PCU_IIR));
  712. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  713. I915_READ(GEN8_PCU_IER));
  714. } else if (IS_VALLEYVIEW(dev_priv)) {
  715. seq_printf(m, "Display IER:\t%08x\n",
  716. I915_READ(VLV_IER));
  717. seq_printf(m, "Display IIR:\t%08x\n",
  718. I915_READ(VLV_IIR));
  719. seq_printf(m, "Display IIR_RW:\t%08x\n",
  720. I915_READ(VLV_IIR_RW));
  721. seq_printf(m, "Display IMR:\t%08x\n",
  722. I915_READ(VLV_IMR));
  723. for_each_pipe(dev_priv, pipe)
  724. seq_printf(m, "Pipe %c stat:\t%08x\n",
  725. pipe_name(pipe),
  726. I915_READ(PIPESTAT(pipe)));
  727. seq_printf(m, "Master IER:\t%08x\n",
  728. I915_READ(VLV_MASTER_IER));
  729. seq_printf(m, "Render IER:\t%08x\n",
  730. I915_READ(GTIER));
  731. seq_printf(m, "Render IIR:\t%08x\n",
  732. I915_READ(GTIIR));
  733. seq_printf(m, "Render IMR:\t%08x\n",
  734. I915_READ(GTIMR));
  735. seq_printf(m, "PM IER:\t\t%08x\n",
  736. I915_READ(GEN6_PMIER));
  737. seq_printf(m, "PM IIR:\t\t%08x\n",
  738. I915_READ(GEN6_PMIIR));
  739. seq_printf(m, "PM IMR:\t\t%08x\n",
  740. I915_READ(GEN6_PMIMR));
  741. seq_printf(m, "Port hotplug:\t%08x\n",
  742. I915_READ(PORT_HOTPLUG_EN));
  743. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  744. I915_READ(VLV_DPFLIPSTAT));
  745. seq_printf(m, "DPINVGTT:\t%08x\n",
  746. I915_READ(DPINVGTT));
  747. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  748. seq_printf(m, "Interrupt enable: %08x\n",
  749. I915_READ(IER));
  750. seq_printf(m, "Interrupt identity: %08x\n",
  751. I915_READ(IIR));
  752. seq_printf(m, "Interrupt mask: %08x\n",
  753. I915_READ(IMR));
  754. for_each_pipe(dev_priv, pipe)
  755. seq_printf(m, "Pipe %c stat: %08x\n",
  756. pipe_name(pipe),
  757. I915_READ(PIPESTAT(pipe)));
  758. } else {
  759. seq_printf(m, "North Display Interrupt enable: %08x\n",
  760. I915_READ(DEIER));
  761. seq_printf(m, "North Display Interrupt identity: %08x\n",
  762. I915_READ(DEIIR));
  763. seq_printf(m, "North Display Interrupt mask: %08x\n",
  764. I915_READ(DEIMR));
  765. seq_printf(m, "South Display Interrupt enable: %08x\n",
  766. I915_READ(SDEIER));
  767. seq_printf(m, "South Display Interrupt identity: %08x\n",
  768. I915_READ(SDEIIR));
  769. seq_printf(m, "South Display Interrupt mask: %08x\n",
  770. I915_READ(SDEIMR));
  771. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  772. I915_READ(GTIER));
  773. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  774. I915_READ(GTIIR));
  775. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  776. I915_READ(GTIMR));
  777. }
  778. for_each_engine(engine, dev_priv, id) {
  779. if (INTEL_GEN(dev_priv) >= 6) {
  780. seq_printf(m,
  781. "Graphics Interrupt mask (%s): %08x\n",
  782. engine->name, I915_READ_IMR(engine));
  783. }
  784. i915_ring_seqno_info(m, engine);
  785. }
  786. intel_runtime_pm_put(dev_priv);
  787. return 0;
  788. }
  789. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  790. {
  791. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  792. struct drm_device *dev = &dev_priv->drm;
  793. int i, ret;
  794. ret = mutex_lock_interruptible(&dev->struct_mutex);
  795. if (ret)
  796. return ret;
  797. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  798. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  799. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  800. seq_printf(m, "Fence %d, pin count = %d, object = ",
  801. i, dev_priv->fence_regs[i].pin_count);
  802. if (!vma)
  803. seq_puts(m, "unused");
  804. else
  805. describe_obj(m, vma->obj);
  806. seq_putc(m, '\n');
  807. }
  808. mutex_unlock(&dev->struct_mutex);
  809. return 0;
  810. }
  811. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  812. static ssize_t
  813. i915_error_state_write(struct file *filp,
  814. const char __user *ubuf,
  815. size_t cnt,
  816. loff_t *ppos)
  817. {
  818. struct i915_error_state_file_priv *error_priv = filp->private_data;
  819. DRM_DEBUG_DRIVER("Resetting error state\n");
  820. i915_destroy_error_state(error_priv->i915);
  821. return cnt;
  822. }
  823. static int i915_error_state_open(struct inode *inode, struct file *file)
  824. {
  825. struct drm_i915_private *dev_priv = inode->i_private;
  826. struct i915_error_state_file_priv *error_priv;
  827. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  828. if (!error_priv)
  829. return -ENOMEM;
  830. error_priv->i915 = dev_priv;
  831. i915_error_state_get(&dev_priv->drm, error_priv);
  832. file->private_data = error_priv;
  833. return 0;
  834. }
  835. static int i915_error_state_release(struct inode *inode, struct file *file)
  836. {
  837. struct i915_error_state_file_priv *error_priv = file->private_data;
  838. i915_error_state_put(error_priv);
  839. kfree(error_priv);
  840. return 0;
  841. }
  842. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  843. size_t count, loff_t *pos)
  844. {
  845. struct i915_error_state_file_priv *error_priv = file->private_data;
  846. struct drm_i915_error_state_buf error_str;
  847. loff_t tmp_pos = 0;
  848. ssize_t ret_count = 0;
  849. int ret;
  850. ret = i915_error_state_buf_init(&error_str, error_priv->i915,
  851. count, *pos);
  852. if (ret)
  853. return ret;
  854. ret = i915_error_state_to_str(&error_str, error_priv);
  855. if (ret)
  856. goto out;
  857. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  858. error_str.buf,
  859. error_str.bytes);
  860. if (ret_count < 0)
  861. ret = ret_count;
  862. else
  863. *pos = error_str.start + ret_count;
  864. out:
  865. i915_error_state_buf_release(&error_str);
  866. return ret ?: ret_count;
  867. }
  868. static const struct file_operations i915_error_state_fops = {
  869. .owner = THIS_MODULE,
  870. .open = i915_error_state_open,
  871. .read = i915_error_state_read,
  872. .write = i915_error_state_write,
  873. .llseek = default_llseek,
  874. .release = i915_error_state_release,
  875. };
  876. #endif
  877. static int
  878. i915_next_seqno_get(void *data, u64 *val)
  879. {
  880. struct drm_i915_private *dev_priv = data;
  881. *val = 1 + atomic_read(&dev_priv->gt.global_timeline.seqno);
  882. return 0;
  883. }
  884. static int
  885. i915_next_seqno_set(void *data, u64 val)
  886. {
  887. struct drm_i915_private *dev_priv = data;
  888. struct drm_device *dev = &dev_priv->drm;
  889. int ret;
  890. ret = mutex_lock_interruptible(&dev->struct_mutex);
  891. if (ret)
  892. return ret;
  893. ret = i915_gem_set_global_seqno(dev, val);
  894. mutex_unlock(&dev->struct_mutex);
  895. return ret;
  896. }
  897. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  898. i915_next_seqno_get, i915_next_seqno_set,
  899. "0x%llx\n");
  900. static int i915_frequency_info(struct seq_file *m, void *unused)
  901. {
  902. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  903. struct drm_device *dev = &dev_priv->drm;
  904. int ret = 0;
  905. intel_runtime_pm_get(dev_priv);
  906. if (IS_GEN5(dev_priv)) {
  907. u16 rgvswctl = I915_READ16(MEMSWCTL);
  908. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  909. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  910. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  911. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  912. MEMSTAT_VID_SHIFT);
  913. seq_printf(m, "Current P-state: %d\n",
  914. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  915. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  916. u32 freq_sts;
  917. mutex_lock(&dev_priv->rps.hw_lock);
  918. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  919. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  920. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  921. seq_printf(m, "actual GPU freq: %d MHz\n",
  922. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  923. seq_printf(m, "current GPU freq: %d MHz\n",
  924. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  925. seq_printf(m, "max GPU freq: %d MHz\n",
  926. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  927. seq_printf(m, "min GPU freq: %d MHz\n",
  928. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  929. seq_printf(m, "idle GPU freq: %d MHz\n",
  930. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  931. seq_printf(m,
  932. "efficient (RPe) frequency: %d MHz\n",
  933. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  934. mutex_unlock(&dev_priv->rps.hw_lock);
  935. } else if (INTEL_GEN(dev_priv) >= 6) {
  936. u32 rp_state_limits;
  937. u32 gt_perf_status;
  938. u32 rp_state_cap;
  939. u32 rpmodectl, rpinclimit, rpdeclimit;
  940. u32 rpstat, cagf, reqf;
  941. u32 rpupei, rpcurup, rpprevup;
  942. u32 rpdownei, rpcurdown, rpprevdown;
  943. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  944. int max_freq;
  945. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  946. if (IS_GEN9_LP(dev_priv)) {
  947. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  948. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  949. } else {
  950. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  951. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  952. }
  953. /* RPSTAT1 is in the GT power well */
  954. ret = mutex_lock_interruptible(&dev->struct_mutex);
  955. if (ret)
  956. goto out;
  957. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  958. reqf = I915_READ(GEN6_RPNSWREQ);
  959. if (IS_GEN9(dev_priv))
  960. reqf >>= 23;
  961. else {
  962. reqf &= ~GEN6_TURBO_DISABLE;
  963. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  964. reqf >>= 24;
  965. else
  966. reqf >>= 25;
  967. }
  968. reqf = intel_gpu_freq(dev_priv, reqf);
  969. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  970. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  971. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  972. rpstat = I915_READ(GEN6_RPSTAT1);
  973. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  974. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  975. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  976. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  977. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  978. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  979. if (IS_GEN9(dev_priv))
  980. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  981. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  982. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  983. else
  984. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  985. cagf = intel_gpu_freq(dev_priv, cagf);
  986. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  987. mutex_unlock(&dev->struct_mutex);
  988. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  989. pm_ier = I915_READ(GEN6_PMIER);
  990. pm_imr = I915_READ(GEN6_PMIMR);
  991. pm_isr = I915_READ(GEN6_PMISR);
  992. pm_iir = I915_READ(GEN6_PMIIR);
  993. pm_mask = I915_READ(GEN6_PMINTRMSK);
  994. } else {
  995. pm_ier = I915_READ(GEN8_GT_IER(2));
  996. pm_imr = I915_READ(GEN8_GT_IMR(2));
  997. pm_isr = I915_READ(GEN8_GT_ISR(2));
  998. pm_iir = I915_READ(GEN8_GT_IIR(2));
  999. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1000. }
  1001. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1002. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1003. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1004. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1005. seq_printf(m, "Render p-state ratio: %d\n",
  1006. (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
  1007. seq_printf(m, "Render p-state VID: %d\n",
  1008. gt_perf_status & 0xff);
  1009. seq_printf(m, "Render p-state limit: %d\n",
  1010. rp_state_limits & 0xff);
  1011. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1012. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1013. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1014. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1015. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1016. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1017. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1018. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1019. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1020. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1021. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1022. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1023. seq_printf(m, "Up threshold: %d%%\n",
  1024. dev_priv->rps.up_threshold);
  1025. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1026. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1027. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1028. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1029. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1030. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1031. seq_printf(m, "Down threshold: %d%%\n",
  1032. dev_priv->rps.down_threshold);
  1033. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  1034. rp_state_cap >> 16) & 0xff;
  1035. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1036. GEN9_FREQ_SCALER : 1);
  1037. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1038. intel_gpu_freq(dev_priv, max_freq));
  1039. max_freq = (rp_state_cap & 0xff00) >> 8;
  1040. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1041. GEN9_FREQ_SCALER : 1);
  1042. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1043. intel_gpu_freq(dev_priv, max_freq));
  1044. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1045. rp_state_cap >> 0) & 0xff;
  1046. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1047. GEN9_FREQ_SCALER : 1);
  1048. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1049. intel_gpu_freq(dev_priv, max_freq));
  1050. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1051. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1052. seq_printf(m, "Current freq: %d MHz\n",
  1053. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1054. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1055. seq_printf(m, "Idle freq: %d MHz\n",
  1056. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1057. seq_printf(m, "Min freq: %d MHz\n",
  1058. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1059. seq_printf(m, "Boost freq: %d MHz\n",
  1060. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1061. seq_printf(m, "Max freq: %d MHz\n",
  1062. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1063. seq_printf(m,
  1064. "efficient (RPe) frequency: %d MHz\n",
  1065. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1066. } else {
  1067. seq_puts(m, "no P-state info available\n");
  1068. }
  1069. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1070. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1071. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1072. out:
  1073. intel_runtime_pm_put(dev_priv);
  1074. return ret;
  1075. }
  1076. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1077. struct seq_file *m,
  1078. struct intel_instdone *instdone)
  1079. {
  1080. int slice;
  1081. int subslice;
  1082. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1083. instdone->instdone);
  1084. if (INTEL_GEN(dev_priv) <= 3)
  1085. return;
  1086. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1087. instdone->slice_common);
  1088. if (INTEL_GEN(dev_priv) <= 6)
  1089. return;
  1090. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1091. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1092. slice, subslice, instdone->sampler[slice][subslice]);
  1093. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1094. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1095. slice, subslice, instdone->row[slice][subslice]);
  1096. }
  1097. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1098. {
  1099. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1100. struct intel_engine_cs *engine;
  1101. u64 acthd[I915_NUM_ENGINES];
  1102. u32 seqno[I915_NUM_ENGINES];
  1103. struct intel_instdone instdone;
  1104. enum intel_engine_id id;
  1105. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1106. seq_printf(m, "Wedged\n");
  1107. if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
  1108. seq_printf(m, "Reset in progress\n");
  1109. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1110. seq_printf(m, "Waiter holding struct mutex\n");
  1111. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1112. seq_printf(m, "struct_mutex blocked for reset\n");
  1113. if (!i915.enable_hangcheck) {
  1114. seq_printf(m, "Hangcheck disabled\n");
  1115. return 0;
  1116. }
  1117. intel_runtime_pm_get(dev_priv);
  1118. for_each_engine(engine, dev_priv, id) {
  1119. acthd[id] = intel_engine_get_active_head(engine);
  1120. seqno[id] = intel_engine_get_seqno(engine);
  1121. }
  1122. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1123. intel_runtime_pm_put(dev_priv);
  1124. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1125. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1126. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1127. jiffies));
  1128. } else
  1129. seq_printf(m, "Hangcheck inactive\n");
  1130. for_each_engine(engine, dev_priv, id) {
  1131. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1132. struct rb_node *rb;
  1133. seq_printf(m, "%s:\n", engine->name);
  1134. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1135. engine->hangcheck.seqno, seqno[id],
  1136. intel_engine_last_submit(engine));
  1137. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1138. yesno(intel_engine_has_waiter(engine)),
  1139. yesno(test_bit(engine->id,
  1140. &dev_priv->gpu_error.missed_irq_rings)),
  1141. yesno(engine->hangcheck.stalled));
  1142. spin_lock_irq(&b->lock);
  1143. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1144. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1145. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1146. w->tsk->comm, w->tsk->pid, w->seqno);
  1147. }
  1148. spin_unlock_irq(&b->lock);
  1149. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1150. (long long)engine->hangcheck.acthd,
  1151. (long long)acthd[id]);
  1152. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1153. hangcheck_action_to_str(engine->hangcheck.action),
  1154. engine->hangcheck.action,
  1155. jiffies_to_msecs(jiffies -
  1156. engine->hangcheck.action_timestamp));
  1157. if (engine->id == RCS) {
  1158. seq_puts(m, "\tinstdone read =\n");
  1159. i915_instdone_info(dev_priv, m, &instdone);
  1160. seq_puts(m, "\tinstdone accu =\n");
  1161. i915_instdone_info(dev_priv, m,
  1162. &engine->hangcheck.instdone);
  1163. }
  1164. }
  1165. return 0;
  1166. }
  1167. static int ironlake_drpc_info(struct seq_file *m)
  1168. {
  1169. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1170. u32 rgvmodectl, rstdbyctl;
  1171. u16 crstandvid;
  1172. intel_runtime_pm_get(dev_priv);
  1173. rgvmodectl = I915_READ(MEMMODECTL);
  1174. rstdbyctl = I915_READ(RSTDBYCTL);
  1175. crstandvid = I915_READ16(CRSTANDVID);
  1176. intel_runtime_pm_put(dev_priv);
  1177. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1178. seq_printf(m, "Boost freq: %d\n",
  1179. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1180. MEMMODE_BOOST_FREQ_SHIFT);
  1181. seq_printf(m, "HW control enabled: %s\n",
  1182. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1183. seq_printf(m, "SW control enabled: %s\n",
  1184. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1185. seq_printf(m, "Gated voltage change: %s\n",
  1186. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1187. seq_printf(m, "Starting frequency: P%d\n",
  1188. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1189. seq_printf(m, "Max P-state: P%d\n",
  1190. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1191. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1192. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1193. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1194. seq_printf(m, "Render standby enabled: %s\n",
  1195. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1196. seq_puts(m, "Current RS state: ");
  1197. switch (rstdbyctl & RSX_STATUS_MASK) {
  1198. case RSX_STATUS_ON:
  1199. seq_puts(m, "on\n");
  1200. break;
  1201. case RSX_STATUS_RC1:
  1202. seq_puts(m, "RC1\n");
  1203. break;
  1204. case RSX_STATUS_RC1E:
  1205. seq_puts(m, "RC1E\n");
  1206. break;
  1207. case RSX_STATUS_RS1:
  1208. seq_puts(m, "RS1\n");
  1209. break;
  1210. case RSX_STATUS_RS2:
  1211. seq_puts(m, "RS2 (RC6)\n");
  1212. break;
  1213. case RSX_STATUS_RS3:
  1214. seq_puts(m, "RC3 (RC6+)\n");
  1215. break;
  1216. default:
  1217. seq_puts(m, "unknown\n");
  1218. break;
  1219. }
  1220. return 0;
  1221. }
  1222. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1223. {
  1224. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1225. struct intel_uncore_forcewake_domain *fw_domain;
  1226. spin_lock_irq(&dev_priv->uncore.lock);
  1227. for_each_fw_domain(fw_domain, dev_priv) {
  1228. seq_printf(m, "%s.wake_count = %u\n",
  1229. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1230. fw_domain->wake_count);
  1231. }
  1232. spin_unlock_irq(&dev_priv->uncore.lock);
  1233. return 0;
  1234. }
  1235. static int vlv_drpc_info(struct seq_file *m)
  1236. {
  1237. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1238. u32 rpmodectl1, rcctl1, pw_status;
  1239. intel_runtime_pm_get(dev_priv);
  1240. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1241. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1242. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1243. intel_runtime_pm_put(dev_priv);
  1244. seq_printf(m, "Video Turbo Mode: %s\n",
  1245. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1246. seq_printf(m, "Turbo enabled: %s\n",
  1247. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1248. seq_printf(m, "HW control enabled: %s\n",
  1249. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1250. seq_printf(m, "SW control enabled: %s\n",
  1251. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1252. GEN6_RP_MEDIA_SW_MODE));
  1253. seq_printf(m, "RC6 Enabled: %s\n",
  1254. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1255. GEN6_RC_CTL_EI_MODE(1))));
  1256. seq_printf(m, "Render Power Well: %s\n",
  1257. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1258. seq_printf(m, "Media Power Well: %s\n",
  1259. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1260. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1261. I915_READ(VLV_GT_RENDER_RC6));
  1262. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1263. I915_READ(VLV_GT_MEDIA_RC6));
  1264. return i915_forcewake_domains(m, NULL);
  1265. }
  1266. static int gen6_drpc_info(struct seq_file *m)
  1267. {
  1268. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1269. struct drm_device *dev = &dev_priv->drm;
  1270. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1271. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1272. unsigned forcewake_count;
  1273. int count = 0, ret;
  1274. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1275. if (ret)
  1276. return ret;
  1277. intel_runtime_pm_get(dev_priv);
  1278. spin_lock_irq(&dev_priv->uncore.lock);
  1279. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1280. spin_unlock_irq(&dev_priv->uncore.lock);
  1281. if (forcewake_count) {
  1282. seq_puts(m, "RC information inaccurate because somebody "
  1283. "holds a forcewake reference \n");
  1284. } else {
  1285. /* NB: we cannot use forcewake, else we read the wrong values */
  1286. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1287. udelay(10);
  1288. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1289. }
  1290. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1291. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1292. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1293. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1294. if (INTEL_GEN(dev_priv) >= 9) {
  1295. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1296. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1297. }
  1298. mutex_unlock(&dev->struct_mutex);
  1299. mutex_lock(&dev_priv->rps.hw_lock);
  1300. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1301. mutex_unlock(&dev_priv->rps.hw_lock);
  1302. intel_runtime_pm_put(dev_priv);
  1303. seq_printf(m, "Video Turbo Mode: %s\n",
  1304. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1305. seq_printf(m, "HW control enabled: %s\n",
  1306. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1307. seq_printf(m, "SW control enabled: %s\n",
  1308. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1309. GEN6_RP_MEDIA_SW_MODE));
  1310. seq_printf(m, "RC1e Enabled: %s\n",
  1311. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1312. seq_printf(m, "RC6 Enabled: %s\n",
  1313. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1314. if (INTEL_GEN(dev_priv) >= 9) {
  1315. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1316. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1317. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1318. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1319. }
  1320. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1321. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1322. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1323. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1324. seq_puts(m, "Current RC state: ");
  1325. switch (gt_core_status & GEN6_RCn_MASK) {
  1326. case GEN6_RC0:
  1327. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1328. seq_puts(m, "Core Power Down\n");
  1329. else
  1330. seq_puts(m, "on\n");
  1331. break;
  1332. case GEN6_RC3:
  1333. seq_puts(m, "RC3\n");
  1334. break;
  1335. case GEN6_RC6:
  1336. seq_puts(m, "RC6\n");
  1337. break;
  1338. case GEN6_RC7:
  1339. seq_puts(m, "RC7\n");
  1340. break;
  1341. default:
  1342. seq_puts(m, "Unknown\n");
  1343. break;
  1344. }
  1345. seq_printf(m, "Core Power Down: %s\n",
  1346. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1347. if (INTEL_GEN(dev_priv) >= 9) {
  1348. seq_printf(m, "Render Power Well: %s\n",
  1349. (gen9_powergate_status &
  1350. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1351. seq_printf(m, "Media Power Well: %s\n",
  1352. (gen9_powergate_status &
  1353. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1354. }
  1355. /* Not exactly sure what this is */
  1356. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1357. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1358. seq_printf(m, "RC6 residency since boot: %u\n",
  1359. I915_READ(GEN6_GT_GFX_RC6));
  1360. seq_printf(m, "RC6+ residency since boot: %u\n",
  1361. I915_READ(GEN6_GT_GFX_RC6p));
  1362. seq_printf(m, "RC6++ residency since boot: %u\n",
  1363. I915_READ(GEN6_GT_GFX_RC6pp));
  1364. seq_printf(m, "RC6 voltage: %dmV\n",
  1365. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1366. seq_printf(m, "RC6+ voltage: %dmV\n",
  1367. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1368. seq_printf(m, "RC6++ voltage: %dmV\n",
  1369. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1370. return i915_forcewake_domains(m, NULL);
  1371. }
  1372. static int i915_drpc_info(struct seq_file *m, void *unused)
  1373. {
  1374. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1375. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1376. return vlv_drpc_info(m);
  1377. else if (INTEL_GEN(dev_priv) >= 6)
  1378. return gen6_drpc_info(m);
  1379. else
  1380. return ironlake_drpc_info(m);
  1381. }
  1382. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1383. {
  1384. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1385. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1386. dev_priv->fb_tracking.busy_bits);
  1387. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1388. dev_priv->fb_tracking.flip_bits);
  1389. return 0;
  1390. }
  1391. static int i915_fbc_status(struct seq_file *m, void *unused)
  1392. {
  1393. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1394. if (!HAS_FBC(dev_priv)) {
  1395. seq_puts(m, "FBC unsupported on this chipset\n");
  1396. return 0;
  1397. }
  1398. intel_runtime_pm_get(dev_priv);
  1399. mutex_lock(&dev_priv->fbc.lock);
  1400. if (intel_fbc_is_active(dev_priv))
  1401. seq_puts(m, "FBC enabled\n");
  1402. else
  1403. seq_printf(m, "FBC disabled: %s\n",
  1404. dev_priv->fbc.no_fbc_reason);
  1405. if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
  1406. uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
  1407. BDW_FBC_COMPRESSION_MASK :
  1408. IVB_FBC_COMPRESSION_MASK;
  1409. seq_printf(m, "Compressing: %s\n",
  1410. yesno(I915_READ(FBC_STATUS2) & mask));
  1411. }
  1412. mutex_unlock(&dev_priv->fbc.lock);
  1413. intel_runtime_pm_put(dev_priv);
  1414. return 0;
  1415. }
  1416. static int i915_fbc_fc_get(void *data, u64 *val)
  1417. {
  1418. struct drm_i915_private *dev_priv = data;
  1419. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1420. return -ENODEV;
  1421. *val = dev_priv->fbc.false_color;
  1422. return 0;
  1423. }
  1424. static int i915_fbc_fc_set(void *data, u64 val)
  1425. {
  1426. struct drm_i915_private *dev_priv = data;
  1427. u32 reg;
  1428. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1429. return -ENODEV;
  1430. mutex_lock(&dev_priv->fbc.lock);
  1431. reg = I915_READ(ILK_DPFC_CONTROL);
  1432. dev_priv->fbc.false_color = val;
  1433. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1434. (reg | FBC_CTL_FALSE_COLOR) :
  1435. (reg & ~FBC_CTL_FALSE_COLOR));
  1436. mutex_unlock(&dev_priv->fbc.lock);
  1437. return 0;
  1438. }
  1439. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1440. i915_fbc_fc_get, i915_fbc_fc_set,
  1441. "%llu\n");
  1442. static int i915_ips_status(struct seq_file *m, void *unused)
  1443. {
  1444. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1445. if (!HAS_IPS(dev_priv)) {
  1446. seq_puts(m, "not supported\n");
  1447. return 0;
  1448. }
  1449. intel_runtime_pm_get(dev_priv);
  1450. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1451. yesno(i915.enable_ips));
  1452. if (INTEL_GEN(dev_priv) >= 8) {
  1453. seq_puts(m, "Currently: unknown\n");
  1454. } else {
  1455. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1456. seq_puts(m, "Currently: enabled\n");
  1457. else
  1458. seq_puts(m, "Currently: disabled\n");
  1459. }
  1460. intel_runtime_pm_put(dev_priv);
  1461. return 0;
  1462. }
  1463. static int i915_sr_status(struct seq_file *m, void *unused)
  1464. {
  1465. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1466. bool sr_enabled = false;
  1467. intel_runtime_pm_get(dev_priv);
  1468. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1469. if (HAS_PCH_SPLIT(dev_priv))
  1470. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1471. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1472. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1473. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1474. else if (IS_I915GM(dev_priv))
  1475. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1476. else if (IS_PINEVIEW(dev_priv))
  1477. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1478. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1479. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1480. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1481. intel_runtime_pm_put(dev_priv);
  1482. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1483. return 0;
  1484. }
  1485. static int i915_emon_status(struct seq_file *m, void *unused)
  1486. {
  1487. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1488. struct drm_device *dev = &dev_priv->drm;
  1489. unsigned long temp, chipset, gfx;
  1490. int ret;
  1491. if (!IS_GEN5(dev_priv))
  1492. return -ENODEV;
  1493. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1494. if (ret)
  1495. return ret;
  1496. temp = i915_mch_val(dev_priv);
  1497. chipset = i915_chipset_val(dev_priv);
  1498. gfx = i915_gfx_val(dev_priv);
  1499. mutex_unlock(&dev->struct_mutex);
  1500. seq_printf(m, "GMCH temp: %ld\n", temp);
  1501. seq_printf(m, "Chipset power: %ld\n", chipset);
  1502. seq_printf(m, "GFX power: %ld\n", gfx);
  1503. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1504. return 0;
  1505. }
  1506. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1507. {
  1508. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1509. int ret = 0;
  1510. int gpu_freq, ia_freq;
  1511. unsigned int max_gpu_freq, min_gpu_freq;
  1512. if (!HAS_LLC(dev_priv)) {
  1513. seq_puts(m, "unsupported on this chipset\n");
  1514. return 0;
  1515. }
  1516. intel_runtime_pm_get(dev_priv);
  1517. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1518. if (ret)
  1519. goto out;
  1520. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1521. /* Convert GT frequency to 50 HZ units */
  1522. min_gpu_freq =
  1523. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1524. max_gpu_freq =
  1525. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1526. } else {
  1527. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1528. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1529. }
  1530. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1531. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1532. ia_freq = gpu_freq;
  1533. sandybridge_pcode_read(dev_priv,
  1534. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1535. &ia_freq);
  1536. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1537. intel_gpu_freq(dev_priv, (gpu_freq *
  1538. (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1539. GEN9_FREQ_SCALER : 1))),
  1540. ((ia_freq >> 0) & 0xff) * 100,
  1541. ((ia_freq >> 8) & 0xff) * 100);
  1542. }
  1543. mutex_unlock(&dev_priv->rps.hw_lock);
  1544. out:
  1545. intel_runtime_pm_put(dev_priv);
  1546. return ret;
  1547. }
  1548. static int i915_opregion(struct seq_file *m, void *unused)
  1549. {
  1550. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1551. struct drm_device *dev = &dev_priv->drm;
  1552. struct intel_opregion *opregion = &dev_priv->opregion;
  1553. int ret;
  1554. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1555. if (ret)
  1556. goto out;
  1557. if (opregion->header)
  1558. seq_write(m, opregion->header, OPREGION_SIZE);
  1559. mutex_unlock(&dev->struct_mutex);
  1560. out:
  1561. return 0;
  1562. }
  1563. static int i915_vbt(struct seq_file *m, void *unused)
  1564. {
  1565. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1566. if (opregion->vbt)
  1567. seq_write(m, opregion->vbt, opregion->vbt_size);
  1568. return 0;
  1569. }
  1570. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1571. {
  1572. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1573. struct drm_device *dev = &dev_priv->drm;
  1574. struct intel_framebuffer *fbdev_fb = NULL;
  1575. struct drm_framebuffer *drm_fb;
  1576. int ret;
  1577. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1578. if (ret)
  1579. return ret;
  1580. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1581. if (dev_priv->fbdev) {
  1582. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1583. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1584. fbdev_fb->base.width,
  1585. fbdev_fb->base.height,
  1586. fbdev_fb->base.format->depth,
  1587. fbdev_fb->base.format->cpp[0] * 8,
  1588. fbdev_fb->base.modifier,
  1589. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1590. describe_obj(m, fbdev_fb->obj);
  1591. seq_putc(m, '\n');
  1592. }
  1593. #endif
  1594. mutex_lock(&dev->mode_config.fb_lock);
  1595. drm_for_each_fb(drm_fb, dev) {
  1596. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1597. if (fb == fbdev_fb)
  1598. continue;
  1599. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1600. fb->base.width,
  1601. fb->base.height,
  1602. fb->base.format->depth,
  1603. fb->base.format->cpp[0] * 8,
  1604. fb->base.modifier,
  1605. drm_framebuffer_read_refcount(&fb->base));
  1606. describe_obj(m, fb->obj);
  1607. seq_putc(m, '\n');
  1608. }
  1609. mutex_unlock(&dev->mode_config.fb_lock);
  1610. mutex_unlock(&dev->struct_mutex);
  1611. return 0;
  1612. }
  1613. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1614. {
  1615. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1616. ring->space, ring->head, ring->tail,
  1617. ring->last_retired_head);
  1618. }
  1619. static int i915_context_status(struct seq_file *m, void *unused)
  1620. {
  1621. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1622. struct drm_device *dev = &dev_priv->drm;
  1623. struct intel_engine_cs *engine;
  1624. struct i915_gem_context *ctx;
  1625. enum intel_engine_id id;
  1626. int ret;
  1627. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1628. if (ret)
  1629. return ret;
  1630. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1631. seq_printf(m, "HW context %u ", ctx->hw_id);
  1632. if (ctx->pid) {
  1633. struct task_struct *task;
  1634. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1635. if (task) {
  1636. seq_printf(m, "(%s [%d]) ",
  1637. task->comm, task->pid);
  1638. put_task_struct(task);
  1639. }
  1640. } else if (IS_ERR(ctx->file_priv)) {
  1641. seq_puts(m, "(deleted) ");
  1642. } else {
  1643. seq_puts(m, "(kernel) ");
  1644. }
  1645. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1646. seq_putc(m, '\n');
  1647. for_each_engine(engine, dev_priv, id) {
  1648. struct intel_context *ce = &ctx->engine[engine->id];
  1649. seq_printf(m, "%s: ", engine->name);
  1650. seq_putc(m, ce->initialised ? 'I' : 'i');
  1651. if (ce->state)
  1652. describe_obj(m, ce->state->obj);
  1653. if (ce->ring)
  1654. describe_ctx_ring(m, ce->ring);
  1655. seq_putc(m, '\n');
  1656. }
  1657. seq_putc(m, '\n');
  1658. }
  1659. mutex_unlock(&dev->struct_mutex);
  1660. return 0;
  1661. }
  1662. static void i915_dump_lrc_obj(struct seq_file *m,
  1663. struct i915_gem_context *ctx,
  1664. struct intel_engine_cs *engine)
  1665. {
  1666. struct i915_vma *vma = ctx->engine[engine->id].state;
  1667. struct page *page;
  1668. int j;
  1669. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1670. if (!vma) {
  1671. seq_puts(m, "\tFake context\n");
  1672. return;
  1673. }
  1674. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1675. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1676. i915_ggtt_offset(vma));
  1677. if (i915_gem_object_pin_pages(vma->obj)) {
  1678. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1679. return;
  1680. }
  1681. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1682. if (page) {
  1683. u32 *reg_state = kmap_atomic(page);
  1684. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1685. seq_printf(m,
  1686. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1687. j * 4,
  1688. reg_state[j], reg_state[j + 1],
  1689. reg_state[j + 2], reg_state[j + 3]);
  1690. }
  1691. kunmap_atomic(reg_state);
  1692. }
  1693. i915_gem_object_unpin_pages(vma->obj);
  1694. seq_putc(m, '\n');
  1695. }
  1696. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1697. {
  1698. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1699. struct drm_device *dev = &dev_priv->drm;
  1700. struct intel_engine_cs *engine;
  1701. struct i915_gem_context *ctx;
  1702. enum intel_engine_id id;
  1703. int ret;
  1704. if (!i915.enable_execlists) {
  1705. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1706. return 0;
  1707. }
  1708. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1709. if (ret)
  1710. return ret;
  1711. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1712. for_each_engine(engine, dev_priv, id)
  1713. i915_dump_lrc_obj(m, ctx, engine);
  1714. mutex_unlock(&dev->struct_mutex);
  1715. return 0;
  1716. }
  1717. static const char *swizzle_string(unsigned swizzle)
  1718. {
  1719. switch (swizzle) {
  1720. case I915_BIT_6_SWIZZLE_NONE:
  1721. return "none";
  1722. case I915_BIT_6_SWIZZLE_9:
  1723. return "bit9";
  1724. case I915_BIT_6_SWIZZLE_9_10:
  1725. return "bit9/bit10";
  1726. case I915_BIT_6_SWIZZLE_9_11:
  1727. return "bit9/bit11";
  1728. case I915_BIT_6_SWIZZLE_9_10_11:
  1729. return "bit9/bit10/bit11";
  1730. case I915_BIT_6_SWIZZLE_9_17:
  1731. return "bit9/bit17";
  1732. case I915_BIT_6_SWIZZLE_9_10_17:
  1733. return "bit9/bit10/bit17";
  1734. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1735. return "unknown";
  1736. }
  1737. return "bug";
  1738. }
  1739. static int i915_swizzle_info(struct seq_file *m, void *data)
  1740. {
  1741. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1742. intel_runtime_pm_get(dev_priv);
  1743. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1744. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1745. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1746. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1747. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1748. seq_printf(m, "DDC = 0x%08x\n",
  1749. I915_READ(DCC));
  1750. seq_printf(m, "DDC2 = 0x%08x\n",
  1751. I915_READ(DCC2));
  1752. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1753. I915_READ16(C0DRB3));
  1754. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1755. I915_READ16(C1DRB3));
  1756. } else if (INTEL_GEN(dev_priv) >= 6) {
  1757. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1758. I915_READ(MAD_DIMM_C0));
  1759. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1760. I915_READ(MAD_DIMM_C1));
  1761. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1762. I915_READ(MAD_DIMM_C2));
  1763. seq_printf(m, "TILECTL = 0x%08x\n",
  1764. I915_READ(TILECTL));
  1765. if (INTEL_GEN(dev_priv) >= 8)
  1766. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1767. I915_READ(GAMTARBMODE));
  1768. else
  1769. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1770. I915_READ(ARB_MODE));
  1771. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1772. I915_READ(DISP_ARB_CTL));
  1773. }
  1774. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1775. seq_puts(m, "L-shaped memory detected\n");
  1776. intel_runtime_pm_put(dev_priv);
  1777. return 0;
  1778. }
  1779. static int per_file_ctx(int id, void *ptr, void *data)
  1780. {
  1781. struct i915_gem_context *ctx = ptr;
  1782. struct seq_file *m = data;
  1783. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1784. if (!ppgtt) {
  1785. seq_printf(m, " no ppgtt for context %d\n",
  1786. ctx->user_handle);
  1787. return 0;
  1788. }
  1789. if (i915_gem_context_is_default(ctx))
  1790. seq_puts(m, " default context:\n");
  1791. else
  1792. seq_printf(m, " context %d:\n", ctx->user_handle);
  1793. ppgtt->debug_dump(ppgtt, m);
  1794. return 0;
  1795. }
  1796. static void gen8_ppgtt_info(struct seq_file *m,
  1797. struct drm_i915_private *dev_priv)
  1798. {
  1799. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1800. struct intel_engine_cs *engine;
  1801. enum intel_engine_id id;
  1802. int i;
  1803. if (!ppgtt)
  1804. return;
  1805. for_each_engine(engine, dev_priv, id) {
  1806. seq_printf(m, "%s\n", engine->name);
  1807. for (i = 0; i < 4; i++) {
  1808. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1809. pdp <<= 32;
  1810. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1811. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1812. }
  1813. }
  1814. }
  1815. static void gen6_ppgtt_info(struct seq_file *m,
  1816. struct drm_i915_private *dev_priv)
  1817. {
  1818. struct intel_engine_cs *engine;
  1819. enum intel_engine_id id;
  1820. if (IS_GEN6(dev_priv))
  1821. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1822. for_each_engine(engine, dev_priv, id) {
  1823. seq_printf(m, "%s\n", engine->name);
  1824. if (IS_GEN7(dev_priv))
  1825. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1826. I915_READ(RING_MODE_GEN7(engine)));
  1827. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1828. I915_READ(RING_PP_DIR_BASE(engine)));
  1829. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1830. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1831. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1832. I915_READ(RING_PP_DIR_DCLV(engine)));
  1833. }
  1834. if (dev_priv->mm.aliasing_ppgtt) {
  1835. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1836. seq_puts(m, "aliasing PPGTT:\n");
  1837. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1838. ppgtt->debug_dump(ppgtt, m);
  1839. }
  1840. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1841. }
  1842. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1843. {
  1844. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1845. struct drm_device *dev = &dev_priv->drm;
  1846. struct drm_file *file;
  1847. int ret;
  1848. mutex_lock(&dev->filelist_mutex);
  1849. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1850. if (ret)
  1851. goto out_unlock;
  1852. intel_runtime_pm_get(dev_priv);
  1853. if (INTEL_GEN(dev_priv) >= 8)
  1854. gen8_ppgtt_info(m, dev_priv);
  1855. else if (INTEL_GEN(dev_priv) >= 6)
  1856. gen6_ppgtt_info(m, dev_priv);
  1857. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1858. struct drm_i915_file_private *file_priv = file->driver_priv;
  1859. struct task_struct *task;
  1860. task = get_pid_task(file->pid, PIDTYPE_PID);
  1861. if (!task) {
  1862. ret = -ESRCH;
  1863. goto out_rpm;
  1864. }
  1865. seq_printf(m, "\nproc: %s\n", task->comm);
  1866. put_task_struct(task);
  1867. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1868. (void *)(unsigned long)m);
  1869. }
  1870. out_rpm:
  1871. intel_runtime_pm_put(dev_priv);
  1872. mutex_unlock(&dev->struct_mutex);
  1873. out_unlock:
  1874. mutex_unlock(&dev->filelist_mutex);
  1875. return ret;
  1876. }
  1877. static int count_irq_waiters(struct drm_i915_private *i915)
  1878. {
  1879. struct intel_engine_cs *engine;
  1880. enum intel_engine_id id;
  1881. int count = 0;
  1882. for_each_engine(engine, i915, id)
  1883. count += intel_engine_has_waiter(engine);
  1884. return count;
  1885. }
  1886. static const char *rps_power_to_str(unsigned int power)
  1887. {
  1888. static const char * const strings[] = {
  1889. [LOW_POWER] = "low power",
  1890. [BETWEEN] = "mixed",
  1891. [HIGH_POWER] = "high power",
  1892. };
  1893. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1894. return "unknown";
  1895. return strings[power];
  1896. }
  1897. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1898. {
  1899. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1900. struct drm_device *dev = &dev_priv->drm;
  1901. struct drm_file *file;
  1902. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1903. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1904. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1905. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1906. seq_printf(m, "Frequency requested %d\n",
  1907. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1908. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1909. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1910. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1911. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1912. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1913. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1914. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1915. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1916. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1917. mutex_lock(&dev->filelist_mutex);
  1918. spin_lock(&dev_priv->rps.client_lock);
  1919. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1920. struct drm_i915_file_private *file_priv = file->driver_priv;
  1921. struct task_struct *task;
  1922. rcu_read_lock();
  1923. task = pid_task(file->pid, PIDTYPE_PID);
  1924. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1925. task ? task->comm : "<unknown>",
  1926. task ? task->pid : -1,
  1927. file_priv->rps.boosts,
  1928. list_empty(&file_priv->rps.link) ? "" : ", active");
  1929. rcu_read_unlock();
  1930. }
  1931. seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
  1932. spin_unlock(&dev_priv->rps.client_lock);
  1933. mutex_unlock(&dev->filelist_mutex);
  1934. if (INTEL_GEN(dev_priv) >= 6 &&
  1935. dev_priv->rps.enabled &&
  1936. dev_priv->gt.active_requests) {
  1937. u32 rpup, rpupei;
  1938. u32 rpdown, rpdownei;
  1939. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1940. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1941. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1942. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1943. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1944. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1945. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1946. rps_power_to_str(dev_priv->rps.power));
  1947. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1948. 100 * rpup / rpupei,
  1949. dev_priv->rps.up_threshold);
  1950. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1951. 100 * rpdown / rpdownei,
  1952. dev_priv->rps.down_threshold);
  1953. } else {
  1954. seq_puts(m, "\nRPS Autotuning inactive\n");
  1955. }
  1956. return 0;
  1957. }
  1958. static int i915_llc(struct seq_file *m, void *data)
  1959. {
  1960. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1961. const bool edram = INTEL_GEN(dev_priv) > 8;
  1962. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1963. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1964. intel_uncore_edram_size(dev_priv)/1024/1024);
  1965. return 0;
  1966. }
  1967. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1968. {
  1969. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1970. struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
  1971. if (!HAS_HUC_UCODE(dev_priv))
  1972. return 0;
  1973. seq_puts(m, "HuC firmware status:\n");
  1974. seq_printf(m, "\tpath: %s\n", huc_fw->path);
  1975. seq_printf(m, "\tfetch: %s\n",
  1976. intel_uc_fw_status_repr(huc_fw->fetch_status));
  1977. seq_printf(m, "\tload: %s\n",
  1978. intel_uc_fw_status_repr(huc_fw->load_status));
  1979. seq_printf(m, "\tversion wanted: %d.%d\n",
  1980. huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
  1981. seq_printf(m, "\tversion found: %d.%d\n",
  1982. huc_fw->major_ver_found, huc_fw->minor_ver_found);
  1983. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1984. huc_fw->header_offset, huc_fw->header_size);
  1985. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1986. huc_fw->ucode_offset, huc_fw->ucode_size);
  1987. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  1988. huc_fw->rsa_offset, huc_fw->rsa_size);
  1989. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1990. return 0;
  1991. }
  1992. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1993. {
  1994. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1995. struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
  1996. u32 tmp, i;
  1997. if (!HAS_GUC_UCODE(dev_priv))
  1998. return 0;
  1999. seq_printf(m, "GuC firmware status:\n");
  2000. seq_printf(m, "\tpath: %s\n",
  2001. guc_fw->path);
  2002. seq_printf(m, "\tfetch: %s\n",
  2003. intel_uc_fw_status_repr(guc_fw->fetch_status));
  2004. seq_printf(m, "\tload: %s\n",
  2005. intel_uc_fw_status_repr(guc_fw->load_status));
  2006. seq_printf(m, "\tversion wanted: %d.%d\n",
  2007. guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
  2008. seq_printf(m, "\tversion found: %d.%d\n",
  2009. guc_fw->major_ver_found, guc_fw->minor_ver_found);
  2010. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2011. guc_fw->header_offset, guc_fw->header_size);
  2012. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2013. guc_fw->ucode_offset, guc_fw->ucode_size);
  2014. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2015. guc_fw->rsa_offset, guc_fw->rsa_size);
  2016. tmp = I915_READ(GUC_STATUS);
  2017. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2018. seq_printf(m, "\tBootrom status = 0x%x\n",
  2019. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2020. seq_printf(m, "\tuKernel status = 0x%x\n",
  2021. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2022. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2023. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2024. seq_puts(m, "\nScratch registers:\n");
  2025. for (i = 0; i < 16; i++)
  2026. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2027. return 0;
  2028. }
  2029. static void i915_guc_log_info(struct seq_file *m,
  2030. struct drm_i915_private *dev_priv)
  2031. {
  2032. struct intel_guc *guc = &dev_priv->guc;
  2033. seq_puts(m, "\nGuC logging stats:\n");
  2034. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2035. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2036. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2037. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2038. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2039. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2040. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2041. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2042. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2043. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2044. guc->log.flush_interrupt_count);
  2045. seq_printf(m, "\tCapture miss count: %u\n",
  2046. guc->log.capture_miss_count);
  2047. }
  2048. static void i915_guc_client_info(struct seq_file *m,
  2049. struct drm_i915_private *dev_priv,
  2050. struct i915_guc_client *client)
  2051. {
  2052. struct intel_engine_cs *engine;
  2053. enum intel_engine_id id;
  2054. uint64_t tot = 0;
  2055. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2056. client->priority, client->ctx_index, client->proc_desc_offset);
  2057. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2058. client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
  2059. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2060. client->wq_size, client->wq_offset, client->wq_tail);
  2061. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2062. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2063. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2064. for_each_engine(engine, dev_priv, id) {
  2065. u64 submissions = client->submissions[id];
  2066. tot += submissions;
  2067. seq_printf(m, "\tSubmissions: %llu %s\n",
  2068. submissions, engine->name);
  2069. }
  2070. seq_printf(m, "\tTotal: %llu\n", tot);
  2071. }
  2072. static int i915_guc_info(struct seq_file *m, void *data)
  2073. {
  2074. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2075. const struct intel_guc *guc = &dev_priv->guc;
  2076. struct intel_engine_cs *engine;
  2077. enum intel_engine_id id;
  2078. u64 total;
  2079. if (!guc->execbuf_client) {
  2080. seq_printf(m, "GuC submission %s\n",
  2081. HAS_GUC_SCHED(dev_priv) ?
  2082. "disabled" :
  2083. "not supported");
  2084. return 0;
  2085. }
  2086. seq_printf(m, "Doorbell map:\n");
  2087. seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc->doorbell_bitmap);
  2088. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  2089. seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
  2090. seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
  2091. seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
  2092. seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
  2093. seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
  2094. total = 0;
  2095. seq_printf(m, "\nGuC submissions:\n");
  2096. for_each_engine(engine, dev_priv, id) {
  2097. u64 submissions = guc->submissions[id];
  2098. total += submissions;
  2099. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2100. engine->name, submissions, guc->last_seqno[id]);
  2101. }
  2102. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2103. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2104. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2105. i915_guc_log_info(m, dev_priv);
  2106. /* Add more as required ... */
  2107. return 0;
  2108. }
  2109. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2110. {
  2111. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2112. struct drm_i915_gem_object *obj;
  2113. int i = 0, pg;
  2114. if (!dev_priv->guc.log.vma)
  2115. return 0;
  2116. obj = dev_priv->guc.log.vma->obj;
  2117. for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
  2118. u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
  2119. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2120. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2121. *(log + i), *(log + i + 1),
  2122. *(log + i + 2), *(log + i + 3));
  2123. kunmap_atomic(log);
  2124. }
  2125. seq_putc(m, '\n');
  2126. return 0;
  2127. }
  2128. static int i915_guc_log_control_get(void *data, u64 *val)
  2129. {
  2130. struct drm_device *dev = data;
  2131. struct drm_i915_private *dev_priv = to_i915(dev);
  2132. if (!dev_priv->guc.log.vma)
  2133. return -EINVAL;
  2134. *val = i915.guc_log_level;
  2135. return 0;
  2136. }
  2137. static int i915_guc_log_control_set(void *data, u64 val)
  2138. {
  2139. struct drm_device *dev = data;
  2140. struct drm_i915_private *dev_priv = to_i915(dev);
  2141. int ret;
  2142. if (!dev_priv->guc.log.vma)
  2143. return -EINVAL;
  2144. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2145. if (ret)
  2146. return ret;
  2147. intel_runtime_pm_get(dev_priv);
  2148. ret = i915_guc_log_control(dev_priv, val);
  2149. intel_runtime_pm_put(dev_priv);
  2150. mutex_unlock(&dev->struct_mutex);
  2151. return ret;
  2152. }
  2153. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2154. i915_guc_log_control_get, i915_guc_log_control_set,
  2155. "%lld\n");
  2156. static const char *psr2_live_status(u32 val)
  2157. {
  2158. static const char * const live_status[] = {
  2159. "IDLE",
  2160. "CAPTURE",
  2161. "CAPTURE_FS",
  2162. "SLEEP",
  2163. "BUFON_FW",
  2164. "ML_UP",
  2165. "SU_STANDBY",
  2166. "FAST_SLEEP",
  2167. "DEEP_SLEEP",
  2168. "BUF_ON",
  2169. "TG_ON"
  2170. };
  2171. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2172. if (val < ARRAY_SIZE(live_status))
  2173. return live_status[val];
  2174. return "unknown";
  2175. }
  2176. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2177. {
  2178. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2179. u32 psrperf = 0;
  2180. u32 stat[3];
  2181. enum pipe pipe;
  2182. bool enabled = false;
  2183. if (!HAS_PSR(dev_priv)) {
  2184. seq_puts(m, "PSR not supported\n");
  2185. return 0;
  2186. }
  2187. intel_runtime_pm_get(dev_priv);
  2188. mutex_lock(&dev_priv->psr.lock);
  2189. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2190. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2191. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2192. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2193. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2194. dev_priv->psr.busy_frontbuffer_bits);
  2195. seq_printf(m, "Re-enable work scheduled: %s\n",
  2196. yesno(work_busy(&dev_priv->psr.work.work)));
  2197. if (HAS_DDI(dev_priv)) {
  2198. if (dev_priv->psr.psr2_support)
  2199. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2200. else
  2201. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2202. } else {
  2203. for_each_pipe(dev_priv, pipe) {
  2204. enum transcoder cpu_transcoder =
  2205. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2206. enum intel_display_power_domain power_domain;
  2207. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2208. if (!intel_display_power_get_if_enabled(dev_priv,
  2209. power_domain))
  2210. continue;
  2211. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2212. VLV_EDP_PSR_CURR_STATE_MASK;
  2213. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2214. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2215. enabled = true;
  2216. intel_display_power_put(dev_priv, power_domain);
  2217. }
  2218. }
  2219. seq_printf(m, "Main link in standby mode: %s\n",
  2220. yesno(dev_priv->psr.link_standby));
  2221. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2222. if (!HAS_DDI(dev_priv))
  2223. for_each_pipe(dev_priv, pipe) {
  2224. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2225. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2226. seq_printf(m, " pipe %c", pipe_name(pipe));
  2227. }
  2228. seq_puts(m, "\n");
  2229. /*
  2230. * VLV/CHV PSR has no kind of performance counter
  2231. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2232. */
  2233. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2234. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2235. EDP_PSR_PERF_CNT_MASK;
  2236. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2237. }
  2238. if (dev_priv->psr.psr2_support) {
  2239. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2240. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2241. psr2, psr2_live_status(psr2));
  2242. }
  2243. mutex_unlock(&dev_priv->psr.lock);
  2244. intel_runtime_pm_put(dev_priv);
  2245. return 0;
  2246. }
  2247. static int i915_sink_crc(struct seq_file *m, void *data)
  2248. {
  2249. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2250. struct drm_device *dev = &dev_priv->drm;
  2251. struct intel_connector *connector;
  2252. struct intel_dp *intel_dp = NULL;
  2253. int ret;
  2254. u8 crc[6];
  2255. drm_modeset_lock_all(dev);
  2256. for_each_intel_connector(dev, connector) {
  2257. struct drm_crtc *crtc;
  2258. if (!connector->base.state->best_encoder)
  2259. continue;
  2260. crtc = connector->base.state->crtc;
  2261. if (!crtc->state->active)
  2262. continue;
  2263. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2264. continue;
  2265. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2266. ret = intel_dp_sink_crc(intel_dp, crc);
  2267. if (ret)
  2268. goto out;
  2269. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2270. crc[0], crc[1], crc[2],
  2271. crc[3], crc[4], crc[5]);
  2272. goto out;
  2273. }
  2274. ret = -ENODEV;
  2275. out:
  2276. drm_modeset_unlock_all(dev);
  2277. return ret;
  2278. }
  2279. static int i915_energy_uJ(struct seq_file *m, void *data)
  2280. {
  2281. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2282. u64 power;
  2283. u32 units;
  2284. if (INTEL_GEN(dev_priv) < 6)
  2285. return -ENODEV;
  2286. intel_runtime_pm_get(dev_priv);
  2287. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2288. power = (power & 0x1f00) >> 8;
  2289. units = 1000000 / (1 << power); /* convert to uJ */
  2290. power = I915_READ(MCH_SECP_NRG_STTS);
  2291. power *= units;
  2292. intel_runtime_pm_put(dev_priv);
  2293. seq_printf(m, "%llu", (long long unsigned)power);
  2294. return 0;
  2295. }
  2296. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2297. {
  2298. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2299. struct pci_dev *pdev = dev_priv->drm.pdev;
  2300. if (!HAS_RUNTIME_PM(dev_priv))
  2301. seq_puts(m, "Runtime power management not supported\n");
  2302. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2303. seq_printf(m, "IRQs disabled: %s\n",
  2304. yesno(!intel_irqs_enabled(dev_priv)));
  2305. #ifdef CONFIG_PM
  2306. seq_printf(m, "Usage count: %d\n",
  2307. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2308. #else
  2309. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2310. #endif
  2311. seq_printf(m, "PCI device power state: %s [%d]\n",
  2312. pci_power_name(pdev->current_state),
  2313. pdev->current_state);
  2314. return 0;
  2315. }
  2316. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2317. {
  2318. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2319. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2320. int i;
  2321. mutex_lock(&power_domains->lock);
  2322. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2323. for (i = 0; i < power_domains->power_well_count; i++) {
  2324. struct i915_power_well *power_well;
  2325. enum intel_display_power_domain power_domain;
  2326. power_well = &power_domains->power_wells[i];
  2327. seq_printf(m, "%-25s %d\n", power_well->name,
  2328. power_well->count);
  2329. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2330. power_domain++) {
  2331. if (!(BIT(power_domain) & power_well->domains))
  2332. continue;
  2333. seq_printf(m, " %-23s %d\n",
  2334. intel_display_power_domain_str(power_domain),
  2335. power_domains->domain_use_count[power_domain]);
  2336. }
  2337. }
  2338. mutex_unlock(&power_domains->lock);
  2339. return 0;
  2340. }
  2341. static int i915_dmc_info(struct seq_file *m, void *unused)
  2342. {
  2343. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2344. struct intel_csr *csr;
  2345. if (!HAS_CSR(dev_priv)) {
  2346. seq_puts(m, "not supported\n");
  2347. return 0;
  2348. }
  2349. csr = &dev_priv->csr;
  2350. intel_runtime_pm_get(dev_priv);
  2351. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2352. seq_printf(m, "path: %s\n", csr->fw_path);
  2353. if (!csr->dmc_payload)
  2354. goto out;
  2355. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2356. CSR_VERSION_MINOR(csr->version));
  2357. if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
  2358. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2359. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2360. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2361. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2362. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2363. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2364. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2365. }
  2366. out:
  2367. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2368. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2369. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2370. intel_runtime_pm_put(dev_priv);
  2371. return 0;
  2372. }
  2373. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2374. struct drm_display_mode *mode)
  2375. {
  2376. int i;
  2377. for (i = 0; i < tabs; i++)
  2378. seq_putc(m, '\t');
  2379. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2380. mode->base.id, mode->name,
  2381. mode->vrefresh, mode->clock,
  2382. mode->hdisplay, mode->hsync_start,
  2383. mode->hsync_end, mode->htotal,
  2384. mode->vdisplay, mode->vsync_start,
  2385. mode->vsync_end, mode->vtotal,
  2386. mode->type, mode->flags);
  2387. }
  2388. static void intel_encoder_info(struct seq_file *m,
  2389. struct intel_crtc *intel_crtc,
  2390. struct intel_encoder *intel_encoder)
  2391. {
  2392. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2393. struct drm_device *dev = &dev_priv->drm;
  2394. struct drm_crtc *crtc = &intel_crtc->base;
  2395. struct intel_connector *intel_connector;
  2396. struct drm_encoder *encoder;
  2397. encoder = &intel_encoder->base;
  2398. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2399. encoder->base.id, encoder->name);
  2400. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2401. struct drm_connector *connector = &intel_connector->base;
  2402. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2403. connector->base.id,
  2404. connector->name,
  2405. drm_get_connector_status_name(connector->status));
  2406. if (connector->status == connector_status_connected) {
  2407. struct drm_display_mode *mode = &crtc->mode;
  2408. seq_printf(m, ", mode:\n");
  2409. intel_seq_print_mode(m, 2, mode);
  2410. } else {
  2411. seq_putc(m, '\n');
  2412. }
  2413. }
  2414. }
  2415. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2416. {
  2417. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2418. struct drm_device *dev = &dev_priv->drm;
  2419. struct drm_crtc *crtc = &intel_crtc->base;
  2420. struct intel_encoder *intel_encoder;
  2421. struct drm_plane_state *plane_state = crtc->primary->state;
  2422. struct drm_framebuffer *fb = plane_state->fb;
  2423. if (fb)
  2424. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2425. fb->base.id, plane_state->src_x >> 16,
  2426. plane_state->src_y >> 16, fb->width, fb->height);
  2427. else
  2428. seq_puts(m, "\tprimary plane disabled\n");
  2429. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2430. intel_encoder_info(m, intel_crtc, intel_encoder);
  2431. }
  2432. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2433. {
  2434. struct drm_display_mode *mode = panel->fixed_mode;
  2435. seq_printf(m, "\tfixed mode:\n");
  2436. intel_seq_print_mode(m, 2, mode);
  2437. }
  2438. static void intel_dp_info(struct seq_file *m,
  2439. struct intel_connector *intel_connector)
  2440. {
  2441. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2442. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2443. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2444. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2445. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2446. intel_panel_info(m, &intel_connector->panel);
  2447. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2448. &intel_dp->aux);
  2449. }
  2450. static void intel_dp_mst_info(struct seq_file *m,
  2451. struct intel_connector *intel_connector)
  2452. {
  2453. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2454. struct intel_dp_mst_encoder *intel_mst =
  2455. enc_to_mst(&intel_encoder->base);
  2456. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2457. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2458. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2459. intel_connector->port);
  2460. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2461. }
  2462. static void intel_hdmi_info(struct seq_file *m,
  2463. struct intel_connector *intel_connector)
  2464. {
  2465. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2466. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2467. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2468. }
  2469. static void intel_lvds_info(struct seq_file *m,
  2470. struct intel_connector *intel_connector)
  2471. {
  2472. intel_panel_info(m, &intel_connector->panel);
  2473. }
  2474. static void intel_connector_info(struct seq_file *m,
  2475. struct drm_connector *connector)
  2476. {
  2477. struct intel_connector *intel_connector = to_intel_connector(connector);
  2478. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2479. struct drm_display_mode *mode;
  2480. seq_printf(m, "connector %d: type %s, status: %s\n",
  2481. connector->base.id, connector->name,
  2482. drm_get_connector_status_name(connector->status));
  2483. if (connector->status == connector_status_connected) {
  2484. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2485. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2486. connector->display_info.width_mm,
  2487. connector->display_info.height_mm);
  2488. seq_printf(m, "\tsubpixel order: %s\n",
  2489. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2490. seq_printf(m, "\tCEA rev: %d\n",
  2491. connector->display_info.cea_rev);
  2492. }
  2493. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2494. return;
  2495. switch (connector->connector_type) {
  2496. case DRM_MODE_CONNECTOR_DisplayPort:
  2497. case DRM_MODE_CONNECTOR_eDP:
  2498. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2499. intel_dp_mst_info(m, intel_connector);
  2500. else
  2501. intel_dp_info(m, intel_connector);
  2502. break;
  2503. case DRM_MODE_CONNECTOR_LVDS:
  2504. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2505. intel_lvds_info(m, intel_connector);
  2506. break;
  2507. case DRM_MODE_CONNECTOR_HDMIA:
  2508. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2509. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2510. intel_hdmi_info(m, intel_connector);
  2511. break;
  2512. default:
  2513. break;
  2514. }
  2515. seq_printf(m, "\tmodes:\n");
  2516. list_for_each_entry(mode, &connector->modes, head)
  2517. intel_seq_print_mode(m, 2, mode);
  2518. }
  2519. static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
  2520. {
  2521. u32 state;
  2522. if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
  2523. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2524. else
  2525. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2526. return state;
  2527. }
  2528. static bool cursor_position(struct drm_i915_private *dev_priv,
  2529. int pipe, int *x, int *y)
  2530. {
  2531. u32 pos;
  2532. pos = I915_READ(CURPOS(pipe));
  2533. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2534. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2535. *x = -*x;
  2536. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2537. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2538. *y = -*y;
  2539. return cursor_active(dev_priv, pipe);
  2540. }
  2541. static const char *plane_type(enum drm_plane_type type)
  2542. {
  2543. switch (type) {
  2544. case DRM_PLANE_TYPE_OVERLAY:
  2545. return "OVL";
  2546. case DRM_PLANE_TYPE_PRIMARY:
  2547. return "PRI";
  2548. case DRM_PLANE_TYPE_CURSOR:
  2549. return "CUR";
  2550. /*
  2551. * Deliberately omitting default: to generate compiler warnings
  2552. * when a new drm_plane_type gets added.
  2553. */
  2554. }
  2555. return "unknown";
  2556. }
  2557. static const char *plane_rotation(unsigned int rotation)
  2558. {
  2559. static char buf[48];
  2560. /*
  2561. * According to doc only one DRM_ROTATE_ is allowed but this
  2562. * will print them all to visualize if the values are misused
  2563. */
  2564. snprintf(buf, sizeof(buf),
  2565. "%s%s%s%s%s%s(0x%08x)",
  2566. (rotation & DRM_ROTATE_0) ? "0 " : "",
  2567. (rotation & DRM_ROTATE_90) ? "90 " : "",
  2568. (rotation & DRM_ROTATE_180) ? "180 " : "",
  2569. (rotation & DRM_ROTATE_270) ? "270 " : "",
  2570. (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
  2571. (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
  2572. rotation);
  2573. return buf;
  2574. }
  2575. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2576. {
  2577. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2578. struct drm_device *dev = &dev_priv->drm;
  2579. struct intel_plane *intel_plane;
  2580. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2581. struct drm_plane_state *state;
  2582. struct drm_plane *plane = &intel_plane->base;
  2583. struct drm_format_name_buf format_name;
  2584. if (!plane->state) {
  2585. seq_puts(m, "plane->state is NULL!\n");
  2586. continue;
  2587. }
  2588. state = plane->state;
  2589. if (state->fb) {
  2590. drm_get_format_name(state->fb->format->format,
  2591. &format_name);
  2592. } else {
  2593. sprintf(format_name.str, "N/A");
  2594. }
  2595. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2596. plane->base.id,
  2597. plane_type(intel_plane->base.type),
  2598. state->crtc_x, state->crtc_y,
  2599. state->crtc_w, state->crtc_h,
  2600. (state->src_x >> 16),
  2601. ((state->src_x & 0xffff) * 15625) >> 10,
  2602. (state->src_y >> 16),
  2603. ((state->src_y & 0xffff) * 15625) >> 10,
  2604. (state->src_w >> 16),
  2605. ((state->src_w & 0xffff) * 15625) >> 10,
  2606. (state->src_h >> 16),
  2607. ((state->src_h & 0xffff) * 15625) >> 10,
  2608. format_name.str,
  2609. plane_rotation(state->rotation));
  2610. }
  2611. }
  2612. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2613. {
  2614. struct intel_crtc_state *pipe_config;
  2615. int num_scalers = intel_crtc->num_scalers;
  2616. int i;
  2617. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2618. /* Not all platformas have a scaler */
  2619. if (num_scalers) {
  2620. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2621. num_scalers,
  2622. pipe_config->scaler_state.scaler_users,
  2623. pipe_config->scaler_state.scaler_id);
  2624. for (i = 0; i < num_scalers; i++) {
  2625. struct intel_scaler *sc =
  2626. &pipe_config->scaler_state.scalers[i];
  2627. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2628. i, yesno(sc->in_use), sc->mode);
  2629. }
  2630. seq_puts(m, "\n");
  2631. } else {
  2632. seq_puts(m, "\tNo scalers available on this platform\n");
  2633. }
  2634. }
  2635. static int i915_display_info(struct seq_file *m, void *unused)
  2636. {
  2637. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2638. struct drm_device *dev = &dev_priv->drm;
  2639. struct intel_crtc *crtc;
  2640. struct drm_connector *connector;
  2641. intel_runtime_pm_get(dev_priv);
  2642. drm_modeset_lock_all(dev);
  2643. seq_printf(m, "CRTC info\n");
  2644. seq_printf(m, "---------\n");
  2645. for_each_intel_crtc(dev, crtc) {
  2646. bool active;
  2647. struct intel_crtc_state *pipe_config;
  2648. int x, y;
  2649. pipe_config = to_intel_crtc_state(crtc->base.state);
  2650. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2651. crtc->base.base.id, pipe_name(crtc->pipe),
  2652. yesno(pipe_config->base.active),
  2653. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2654. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2655. if (pipe_config->base.active) {
  2656. intel_crtc_info(m, crtc);
  2657. active = cursor_position(dev_priv, crtc->pipe, &x, &y);
  2658. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2659. yesno(crtc->cursor_base),
  2660. x, y, crtc->base.cursor->state->crtc_w,
  2661. crtc->base.cursor->state->crtc_h,
  2662. crtc->cursor_addr, yesno(active));
  2663. intel_scaler_info(m, crtc);
  2664. intel_plane_info(m, crtc);
  2665. }
  2666. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2667. yesno(!crtc->cpu_fifo_underrun_disabled),
  2668. yesno(!crtc->pch_fifo_underrun_disabled));
  2669. }
  2670. seq_printf(m, "\n");
  2671. seq_printf(m, "Connector info\n");
  2672. seq_printf(m, "--------------\n");
  2673. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2674. intel_connector_info(m, connector);
  2675. }
  2676. drm_modeset_unlock_all(dev);
  2677. intel_runtime_pm_put(dev_priv);
  2678. return 0;
  2679. }
  2680. static int i915_engine_info(struct seq_file *m, void *unused)
  2681. {
  2682. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2683. struct intel_engine_cs *engine;
  2684. enum intel_engine_id id;
  2685. intel_runtime_pm_get(dev_priv);
  2686. for_each_engine(engine, dev_priv, id) {
  2687. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  2688. struct drm_i915_gem_request *rq;
  2689. struct rb_node *rb;
  2690. u64 addr;
  2691. seq_printf(m, "%s\n", engine->name);
  2692. seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
  2693. intel_engine_get_seqno(engine),
  2694. intel_engine_last_submit(engine),
  2695. engine->hangcheck.seqno,
  2696. jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
  2697. rcu_read_lock();
  2698. seq_printf(m, "\tRequests:\n");
  2699. rq = list_first_entry(&engine->timeline->requests,
  2700. struct drm_i915_gem_request, link);
  2701. if (&rq->link != &engine->timeline->requests)
  2702. print_request(m, rq, "\t\tfirst ");
  2703. rq = list_last_entry(&engine->timeline->requests,
  2704. struct drm_i915_gem_request, link);
  2705. if (&rq->link != &engine->timeline->requests)
  2706. print_request(m, rq, "\t\tlast ");
  2707. rq = i915_gem_find_active_request(engine);
  2708. if (rq) {
  2709. print_request(m, rq, "\t\tactive ");
  2710. seq_printf(m,
  2711. "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
  2712. rq->head, rq->postfix, rq->tail,
  2713. rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
  2714. rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
  2715. }
  2716. seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
  2717. I915_READ(RING_START(engine->mmio_base)),
  2718. rq ? i915_ggtt_offset(rq->ring->vma) : 0);
  2719. seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
  2720. I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
  2721. rq ? rq->ring->head : 0);
  2722. seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
  2723. I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
  2724. rq ? rq->ring->tail : 0);
  2725. seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
  2726. I915_READ(RING_CTL(engine->mmio_base)),
  2727. I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
  2728. rcu_read_unlock();
  2729. addr = intel_engine_get_active_head(engine);
  2730. seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
  2731. upper_32_bits(addr), lower_32_bits(addr));
  2732. addr = intel_engine_get_last_batch_head(engine);
  2733. seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
  2734. upper_32_bits(addr), lower_32_bits(addr));
  2735. if (i915.enable_execlists) {
  2736. u32 ptr, read, write;
  2737. struct rb_node *rb;
  2738. seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
  2739. I915_READ(RING_EXECLIST_STATUS_LO(engine)),
  2740. I915_READ(RING_EXECLIST_STATUS_HI(engine)));
  2741. ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  2742. read = GEN8_CSB_READ_PTR(ptr);
  2743. write = GEN8_CSB_WRITE_PTR(ptr);
  2744. seq_printf(m, "\tExeclist CSB read %d, write %d\n",
  2745. read, write);
  2746. if (read >= GEN8_CSB_ENTRIES)
  2747. read = 0;
  2748. if (write >= GEN8_CSB_ENTRIES)
  2749. write = 0;
  2750. if (read > write)
  2751. write += GEN8_CSB_ENTRIES;
  2752. while (read < write) {
  2753. unsigned int idx = ++read % GEN8_CSB_ENTRIES;
  2754. seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
  2755. idx,
  2756. I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
  2757. I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
  2758. }
  2759. rcu_read_lock();
  2760. rq = READ_ONCE(engine->execlist_port[0].request);
  2761. if (rq)
  2762. print_request(m, rq, "\t\tELSP[0] ");
  2763. else
  2764. seq_printf(m, "\t\tELSP[0] idle\n");
  2765. rq = READ_ONCE(engine->execlist_port[1].request);
  2766. if (rq)
  2767. print_request(m, rq, "\t\tELSP[1] ");
  2768. else
  2769. seq_printf(m, "\t\tELSP[1] idle\n");
  2770. rcu_read_unlock();
  2771. spin_lock_irq(&engine->timeline->lock);
  2772. for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
  2773. rq = rb_entry(rb, typeof(*rq), priotree.node);
  2774. print_request(m, rq, "\t\tQ ");
  2775. }
  2776. spin_unlock_irq(&engine->timeline->lock);
  2777. } else if (INTEL_GEN(dev_priv) > 6) {
  2778. seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
  2779. I915_READ(RING_PP_DIR_BASE(engine)));
  2780. seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
  2781. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2782. seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
  2783. I915_READ(RING_PP_DIR_DCLV(engine)));
  2784. }
  2785. spin_lock_irq(&b->lock);
  2786. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  2787. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  2788. seq_printf(m, "\t%s [%d] waiting for %x\n",
  2789. w->tsk->comm, w->tsk->pid, w->seqno);
  2790. }
  2791. spin_unlock_irq(&b->lock);
  2792. seq_puts(m, "\n");
  2793. }
  2794. intel_runtime_pm_put(dev_priv);
  2795. return 0;
  2796. }
  2797. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2798. {
  2799. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2800. struct drm_device *dev = &dev_priv->drm;
  2801. struct intel_engine_cs *engine;
  2802. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2803. enum intel_engine_id id;
  2804. int j, ret;
  2805. if (!i915.semaphores) {
  2806. seq_puts(m, "Semaphores are disabled\n");
  2807. return 0;
  2808. }
  2809. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2810. if (ret)
  2811. return ret;
  2812. intel_runtime_pm_get(dev_priv);
  2813. if (IS_BROADWELL(dev_priv)) {
  2814. struct page *page;
  2815. uint64_t *seqno;
  2816. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2817. seqno = (uint64_t *)kmap_atomic(page);
  2818. for_each_engine(engine, dev_priv, id) {
  2819. uint64_t offset;
  2820. seq_printf(m, "%s\n", engine->name);
  2821. seq_puts(m, " Last signal:");
  2822. for (j = 0; j < num_rings; j++) {
  2823. offset = id * I915_NUM_ENGINES + j;
  2824. seq_printf(m, "0x%08llx (0x%02llx) ",
  2825. seqno[offset], offset * 8);
  2826. }
  2827. seq_putc(m, '\n');
  2828. seq_puts(m, " Last wait: ");
  2829. for (j = 0; j < num_rings; j++) {
  2830. offset = id + (j * I915_NUM_ENGINES);
  2831. seq_printf(m, "0x%08llx (0x%02llx) ",
  2832. seqno[offset], offset * 8);
  2833. }
  2834. seq_putc(m, '\n');
  2835. }
  2836. kunmap_atomic(seqno);
  2837. } else {
  2838. seq_puts(m, " Last signal:");
  2839. for_each_engine(engine, dev_priv, id)
  2840. for (j = 0; j < num_rings; j++)
  2841. seq_printf(m, "0x%08x\n",
  2842. I915_READ(engine->semaphore.mbox.signal[j]));
  2843. seq_putc(m, '\n');
  2844. }
  2845. intel_runtime_pm_put(dev_priv);
  2846. mutex_unlock(&dev->struct_mutex);
  2847. return 0;
  2848. }
  2849. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2850. {
  2851. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2852. struct drm_device *dev = &dev_priv->drm;
  2853. int i;
  2854. drm_modeset_lock_all(dev);
  2855. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2856. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2857. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2858. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2859. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2860. seq_printf(m, " tracked hardware state:\n");
  2861. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2862. seq_printf(m, " dpll_md: 0x%08x\n",
  2863. pll->state.hw_state.dpll_md);
  2864. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2865. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2866. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2867. }
  2868. drm_modeset_unlock_all(dev);
  2869. return 0;
  2870. }
  2871. static int i915_wa_registers(struct seq_file *m, void *unused)
  2872. {
  2873. int i;
  2874. int ret;
  2875. struct intel_engine_cs *engine;
  2876. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2877. struct drm_device *dev = &dev_priv->drm;
  2878. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2879. enum intel_engine_id id;
  2880. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2881. if (ret)
  2882. return ret;
  2883. intel_runtime_pm_get(dev_priv);
  2884. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2885. for_each_engine(engine, dev_priv, id)
  2886. seq_printf(m, "HW whitelist count for %s: %d\n",
  2887. engine->name, workarounds->hw_whitelist_count[id]);
  2888. for (i = 0; i < workarounds->count; ++i) {
  2889. i915_reg_t addr;
  2890. u32 mask, value, read;
  2891. bool ok;
  2892. addr = workarounds->reg[i].addr;
  2893. mask = workarounds->reg[i].mask;
  2894. value = workarounds->reg[i].value;
  2895. read = I915_READ(addr);
  2896. ok = (value & mask) == (read & mask);
  2897. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2898. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2899. }
  2900. intel_runtime_pm_put(dev_priv);
  2901. mutex_unlock(&dev->struct_mutex);
  2902. return 0;
  2903. }
  2904. static int i915_ddb_info(struct seq_file *m, void *unused)
  2905. {
  2906. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2907. struct drm_device *dev = &dev_priv->drm;
  2908. struct skl_ddb_allocation *ddb;
  2909. struct skl_ddb_entry *entry;
  2910. enum pipe pipe;
  2911. int plane;
  2912. if (INTEL_GEN(dev_priv) < 9)
  2913. return 0;
  2914. drm_modeset_lock_all(dev);
  2915. ddb = &dev_priv->wm.skl_hw.ddb;
  2916. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2917. for_each_pipe(dev_priv, pipe) {
  2918. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2919. for_each_universal_plane(dev_priv, pipe, plane) {
  2920. entry = &ddb->plane[pipe][plane];
  2921. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2922. entry->start, entry->end,
  2923. skl_ddb_entry_size(entry));
  2924. }
  2925. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2926. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2927. entry->end, skl_ddb_entry_size(entry));
  2928. }
  2929. drm_modeset_unlock_all(dev);
  2930. return 0;
  2931. }
  2932. static void drrs_status_per_crtc(struct seq_file *m,
  2933. struct drm_device *dev,
  2934. struct intel_crtc *intel_crtc)
  2935. {
  2936. struct drm_i915_private *dev_priv = to_i915(dev);
  2937. struct i915_drrs *drrs = &dev_priv->drrs;
  2938. int vrefresh = 0;
  2939. struct drm_connector *connector;
  2940. drm_for_each_connector(connector, dev) {
  2941. if (connector->state->crtc != &intel_crtc->base)
  2942. continue;
  2943. seq_printf(m, "%s:\n", connector->name);
  2944. }
  2945. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2946. seq_puts(m, "\tVBT: DRRS_type: Static");
  2947. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2948. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2949. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2950. seq_puts(m, "\tVBT: DRRS_type: None");
  2951. else
  2952. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2953. seq_puts(m, "\n\n");
  2954. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2955. struct intel_panel *panel;
  2956. mutex_lock(&drrs->mutex);
  2957. /* DRRS Supported */
  2958. seq_puts(m, "\tDRRS Supported: Yes\n");
  2959. /* disable_drrs() will make drrs->dp NULL */
  2960. if (!drrs->dp) {
  2961. seq_puts(m, "Idleness DRRS: Disabled");
  2962. mutex_unlock(&drrs->mutex);
  2963. return;
  2964. }
  2965. panel = &drrs->dp->attached_connector->panel;
  2966. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2967. drrs->busy_frontbuffer_bits);
  2968. seq_puts(m, "\n\t\t");
  2969. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2970. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2971. vrefresh = panel->fixed_mode->vrefresh;
  2972. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2973. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2974. vrefresh = panel->downclock_mode->vrefresh;
  2975. } else {
  2976. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2977. drrs->refresh_rate_type);
  2978. mutex_unlock(&drrs->mutex);
  2979. return;
  2980. }
  2981. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2982. seq_puts(m, "\n\t\t");
  2983. mutex_unlock(&drrs->mutex);
  2984. } else {
  2985. /* DRRS not supported. Print the VBT parameter*/
  2986. seq_puts(m, "\tDRRS Supported : No");
  2987. }
  2988. seq_puts(m, "\n");
  2989. }
  2990. static int i915_drrs_status(struct seq_file *m, void *unused)
  2991. {
  2992. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2993. struct drm_device *dev = &dev_priv->drm;
  2994. struct intel_crtc *intel_crtc;
  2995. int active_crtc_cnt = 0;
  2996. drm_modeset_lock_all(dev);
  2997. for_each_intel_crtc(dev, intel_crtc) {
  2998. if (intel_crtc->base.state->active) {
  2999. active_crtc_cnt++;
  3000. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  3001. drrs_status_per_crtc(m, dev, intel_crtc);
  3002. }
  3003. }
  3004. drm_modeset_unlock_all(dev);
  3005. if (!active_crtc_cnt)
  3006. seq_puts(m, "No active crtc found\n");
  3007. return 0;
  3008. }
  3009. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  3010. {
  3011. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3012. struct drm_device *dev = &dev_priv->drm;
  3013. struct intel_encoder *intel_encoder;
  3014. struct intel_digital_port *intel_dig_port;
  3015. struct drm_connector *connector;
  3016. drm_modeset_lock_all(dev);
  3017. drm_for_each_connector(connector, dev) {
  3018. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  3019. continue;
  3020. intel_encoder = intel_attached_encoder(connector);
  3021. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  3022. continue;
  3023. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  3024. if (!intel_dig_port->dp.can_mst)
  3025. continue;
  3026. seq_printf(m, "MST Source Port %c\n",
  3027. port_name(intel_dig_port->port));
  3028. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  3029. }
  3030. drm_modeset_unlock_all(dev);
  3031. return 0;
  3032. }
  3033. static ssize_t i915_displayport_test_active_write(struct file *file,
  3034. const char __user *ubuf,
  3035. size_t len, loff_t *offp)
  3036. {
  3037. char *input_buffer;
  3038. int status = 0;
  3039. struct drm_device *dev;
  3040. struct drm_connector *connector;
  3041. struct list_head *connector_list;
  3042. struct intel_dp *intel_dp;
  3043. int val = 0;
  3044. dev = ((struct seq_file *)file->private_data)->private;
  3045. connector_list = &dev->mode_config.connector_list;
  3046. if (len == 0)
  3047. return 0;
  3048. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3049. if (!input_buffer)
  3050. return -ENOMEM;
  3051. if (copy_from_user(input_buffer, ubuf, len)) {
  3052. status = -EFAULT;
  3053. goto out;
  3054. }
  3055. input_buffer[len] = '\0';
  3056. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3057. list_for_each_entry(connector, connector_list, head) {
  3058. if (connector->connector_type !=
  3059. DRM_MODE_CONNECTOR_DisplayPort)
  3060. continue;
  3061. if (connector->status == connector_status_connected &&
  3062. connector->encoder != NULL) {
  3063. intel_dp = enc_to_intel_dp(connector->encoder);
  3064. status = kstrtoint(input_buffer, 10, &val);
  3065. if (status < 0)
  3066. goto out;
  3067. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3068. /* To prevent erroneous activation of the compliance
  3069. * testing code, only accept an actual value of 1 here
  3070. */
  3071. if (val == 1)
  3072. intel_dp->compliance.test_active = 1;
  3073. else
  3074. intel_dp->compliance.test_active = 0;
  3075. }
  3076. }
  3077. out:
  3078. kfree(input_buffer);
  3079. if (status < 0)
  3080. return status;
  3081. *offp += len;
  3082. return len;
  3083. }
  3084. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3085. {
  3086. struct drm_device *dev = m->private;
  3087. struct drm_connector *connector;
  3088. struct list_head *connector_list = &dev->mode_config.connector_list;
  3089. struct intel_dp *intel_dp;
  3090. list_for_each_entry(connector, connector_list, head) {
  3091. if (connector->connector_type !=
  3092. DRM_MODE_CONNECTOR_DisplayPort)
  3093. continue;
  3094. if (connector->status == connector_status_connected &&
  3095. connector->encoder != NULL) {
  3096. intel_dp = enc_to_intel_dp(connector->encoder);
  3097. if (intel_dp->compliance.test_active)
  3098. seq_puts(m, "1");
  3099. else
  3100. seq_puts(m, "0");
  3101. } else
  3102. seq_puts(m, "0");
  3103. }
  3104. return 0;
  3105. }
  3106. static int i915_displayport_test_active_open(struct inode *inode,
  3107. struct file *file)
  3108. {
  3109. struct drm_i915_private *dev_priv = inode->i_private;
  3110. return single_open(file, i915_displayport_test_active_show,
  3111. &dev_priv->drm);
  3112. }
  3113. static const struct file_operations i915_displayport_test_active_fops = {
  3114. .owner = THIS_MODULE,
  3115. .open = i915_displayport_test_active_open,
  3116. .read = seq_read,
  3117. .llseek = seq_lseek,
  3118. .release = single_release,
  3119. .write = i915_displayport_test_active_write
  3120. };
  3121. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3122. {
  3123. struct drm_device *dev = m->private;
  3124. struct drm_connector *connector;
  3125. struct list_head *connector_list = &dev->mode_config.connector_list;
  3126. struct intel_dp *intel_dp;
  3127. list_for_each_entry(connector, connector_list, head) {
  3128. if (connector->connector_type !=
  3129. DRM_MODE_CONNECTOR_DisplayPort)
  3130. continue;
  3131. if (connector->status == connector_status_connected &&
  3132. connector->encoder != NULL) {
  3133. intel_dp = enc_to_intel_dp(connector->encoder);
  3134. seq_printf(m, "%lx", intel_dp->compliance.test_data.edid);
  3135. } else
  3136. seq_puts(m, "0");
  3137. }
  3138. return 0;
  3139. }
  3140. static int i915_displayport_test_data_open(struct inode *inode,
  3141. struct file *file)
  3142. {
  3143. struct drm_i915_private *dev_priv = inode->i_private;
  3144. return single_open(file, i915_displayport_test_data_show,
  3145. &dev_priv->drm);
  3146. }
  3147. static const struct file_operations i915_displayport_test_data_fops = {
  3148. .owner = THIS_MODULE,
  3149. .open = i915_displayport_test_data_open,
  3150. .read = seq_read,
  3151. .llseek = seq_lseek,
  3152. .release = single_release
  3153. };
  3154. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3155. {
  3156. struct drm_device *dev = m->private;
  3157. struct drm_connector *connector;
  3158. struct list_head *connector_list = &dev->mode_config.connector_list;
  3159. struct intel_dp *intel_dp;
  3160. list_for_each_entry(connector, connector_list, head) {
  3161. if (connector->connector_type !=
  3162. DRM_MODE_CONNECTOR_DisplayPort)
  3163. continue;
  3164. if (connector->status == connector_status_connected &&
  3165. connector->encoder != NULL) {
  3166. intel_dp = enc_to_intel_dp(connector->encoder);
  3167. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3168. } else
  3169. seq_puts(m, "0");
  3170. }
  3171. return 0;
  3172. }
  3173. static int i915_displayport_test_type_open(struct inode *inode,
  3174. struct file *file)
  3175. {
  3176. struct drm_i915_private *dev_priv = inode->i_private;
  3177. return single_open(file, i915_displayport_test_type_show,
  3178. &dev_priv->drm);
  3179. }
  3180. static const struct file_operations i915_displayport_test_type_fops = {
  3181. .owner = THIS_MODULE,
  3182. .open = i915_displayport_test_type_open,
  3183. .read = seq_read,
  3184. .llseek = seq_lseek,
  3185. .release = single_release
  3186. };
  3187. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3188. {
  3189. struct drm_i915_private *dev_priv = m->private;
  3190. struct drm_device *dev = &dev_priv->drm;
  3191. int level;
  3192. int num_levels;
  3193. if (IS_CHERRYVIEW(dev_priv))
  3194. num_levels = 3;
  3195. else if (IS_VALLEYVIEW(dev_priv))
  3196. num_levels = 1;
  3197. else
  3198. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3199. drm_modeset_lock_all(dev);
  3200. for (level = 0; level < num_levels; level++) {
  3201. unsigned int latency = wm[level];
  3202. /*
  3203. * - WM1+ latency values in 0.5us units
  3204. * - latencies are in us on gen9/vlv/chv
  3205. */
  3206. if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
  3207. IS_CHERRYVIEW(dev_priv))
  3208. latency *= 10;
  3209. else if (level > 0)
  3210. latency *= 5;
  3211. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3212. level, wm[level], latency / 10, latency % 10);
  3213. }
  3214. drm_modeset_unlock_all(dev);
  3215. }
  3216. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3217. {
  3218. struct drm_i915_private *dev_priv = m->private;
  3219. const uint16_t *latencies;
  3220. if (INTEL_GEN(dev_priv) >= 9)
  3221. latencies = dev_priv->wm.skl_latency;
  3222. else
  3223. latencies = dev_priv->wm.pri_latency;
  3224. wm_latency_show(m, latencies);
  3225. return 0;
  3226. }
  3227. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3228. {
  3229. struct drm_i915_private *dev_priv = m->private;
  3230. const uint16_t *latencies;
  3231. if (INTEL_GEN(dev_priv) >= 9)
  3232. latencies = dev_priv->wm.skl_latency;
  3233. else
  3234. latencies = dev_priv->wm.spr_latency;
  3235. wm_latency_show(m, latencies);
  3236. return 0;
  3237. }
  3238. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3239. {
  3240. struct drm_i915_private *dev_priv = m->private;
  3241. const uint16_t *latencies;
  3242. if (INTEL_GEN(dev_priv) >= 9)
  3243. latencies = dev_priv->wm.skl_latency;
  3244. else
  3245. latencies = dev_priv->wm.cur_latency;
  3246. wm_latency_show(m, latencies);
  3247. return 0;
  3248. }
  3249. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3250. {
  3251. struct drm_i915_private *dev_priv = inode->i_private;
  3252. if (INTEL_GEN(dev_priv) < 5)
  3253. return -ENODEV;
  3254. return single_open(file, pri_wm_latency_show, dev_priv);
  3255. }
  3256. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3257. {
  3258. struct drm_i915_private *dev_priv = inode->i_private;
  3259. if (HAS_GMCH_DISPLAY(dev_priv))
  3260. return -ENODEV;
  3261. return single_open(file, spr_wm_latency_show, dev_priv);
  3262. }
  3263. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3264. {
  3265. struct drm_i915_private *dev_priv = inode->i_private;
  3266. if (HAS_GMCH_DISPLAY(dev_priv))
  3267. return -ENODEV;
  3268. return single_open(file, cur_wm_latency_show, dev_priv);
  3269. }
  3270. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3271. size_t len, loff_t *offp, uint16_t wm[8])
  3272. {
  3273. struct seq_file *m = file->private_data;
  3274. struct drm_i915_private *dev_priv = m->private;
  3275. struct drm_device *dev = &dev_priv->drm;
  3276. uint16_t new[8] = { 0 };
  3277. int num_levels;
  3278. int level;
  3279. int ret;
  3280. char tmp[32];
  3281. if (IS_CHERRYVIEW(dev_priv))
  3282. num_levels = 3;
  3283. else if (IS_VALLEYVIEW(dev_priv))
  3284. num_levels = 1;
  3285. else
  3286. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3287. if (len >= sizeof(tmp))
  3288. return -EINVAL;
  3289. if (copy_from_user(tmp, ubuf, len))
  3290. return -EFAULT;
  3291. tmp[len] = '\0';
  3292. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3293. &new[0], &new[1], &new[2], &new[3],
  3294. &new[4], &new[5], &new[6], &new[7]);
  3295. if (ret != num_levels)
  3296. return -EINVAL;
  3297. drm_modeset_lock_all(dev);
  3298. for (level = 0; level < num_levels; level++)
  3299. wm[level] = new[level];
  3300. drm_modeset_unlock_all(dev);
  3301. return len;
  3302. }
  3303. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3304. size_t len, loff_t *offp)
  3305. {
  3306. struct seq_file *m = file->private_data;
  3307. struct drm_i915_private *dev_priv = m->private;
  3308. uint16_t *latencies;
  3309. if (INTEL_GEN(dev_priv) >= 9)
  3310. latencies = dev_priv->wm.skl_latency;
  3311. else
  3312. latencies = dev_priv->wm.pri_latency;
  3313. return wm_latency_write(file, ubuf, len, offp, latencies);
  3314. }
  3315. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3316. size_t len, loff_t *offp)
  3317. {
  3318. struct seq_file *m = file->private_data;
  3319. struct drm_i915_private *dev_priv = m->private;
  3320. uint16_t *latencies;
  3321. if (INTEL_GEN(dev_priv) >= 9)
  3322. latencies = dev_priv->wm.skl_latency;
  3323. else
  3324. latencies = dev_priv->wm.spr_latency;
  3325. return wm_latency_write(file, ubuf, len, offp, latencies);
  3326. }
  3327. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3328. size_t len, loff_t *offp)
  3329. {
  3330. struct seq_file *m = file->private_data;
  3331. struct drm_i915_private *dev_priv = m->private;
  3332. uint16_t *latencies;
  3333. if (INTEL_GEN(dev_priv) >= 9)
  3334. latencies = dev_priv->wm.skl_latency;
  3335. else
  3336. latencies = dev_priv->wm.cur_latency;
  3337. return wm_latency_write(file, ubuf, len, offp, latencies);
  3338. }
  3339. static const struct file_operations i915_pri_wm_latency_fops = {
  3340. .owner = THIS_MODULE,
  3341. .open = pri_wm_latency_open,
  3342. .read = seq_read,
  3343. .llseek = seq_lseek,
  3344. .release = single_release,
  3345. .write = pri_wm_latency_write
  3346. };
  3347. static const struct file_operations i915_spr_wm_latency_fops = {
  3348. .owner = THIS_MODULE,
  3349. .open = spr_wm_latency_open,
  3350. .read = seq_read,
  3351. .llseek = seq_lseek,
  3352. .release = single_release,
  3353. .write = spr_wm_latency_write
  3354. };
  3355. static const struct file_operations i915_cur_wm_latency_fops = {
  3356. .owner = THIS_MODULE,
  3357. .open = cur_wm_latency_open,
  3358. .read = seq_read,
  3359. .llseek = seq_lseek,
  3360. .release = single_release,
  3361. .write = cur_wm_latency_write
  3362. };
  3363. static int
  3364. i915_wedged_get(void *data, u64 *val)
  3365. {
  3366. struct drm_i915_private *dev_priv = data;
  3367. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3368. return 0;
  3369. }
  3370. static int
  3371. i915_wedged_set(void *data, u64 val)
  3372. {
  3373. struct drm_i915_private *dev_priv = data;
  3374. /*
  3375. * There is no safeguard against this debugfs entry colliding
  3376. * with the hangcheck calling same i915_handle_error() in
  3377. * parallel, causing an explosion. For now we assume that the
  3378. * test harness is responsible enough not to inject gpu hangs
  3379. * while it is writing to 'i915_wedged'
  3380. */
  3381. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3382. return -EAGAIN;
  3383. i915_handle_error(dev_priv, val,
  3384. "Manually setting wedged to %llu", val);
  3385. return 0;
  3386. }
  3387. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3388. i915_wedged_get, i915_wedged_set,
  3389. "%llu\n");
  3390. static int
  3391. i915_ring_missed_irq_get(void *data, u64 *val)
  3392. {
  3393. struct drm_i915_private *dev_priv = data;
  3394. *val = dev_priv->gpu_error.missed_irq_rings;
  3395. return 0;
  3396. }
  3397. static int
  3398. i915_ring_missed_irq_set(void *data, u64 val)
  3399. {
  3400. struct drm_i915_private *dev_priv = data;
  3401. struct drm_device *dev = &dev_priv->drm;
  3402. int ret;
  3403. /* Lock against concurrent debugfs callers */
  3404. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3405. if (ret)
  3406. return ret;
  3407. dev_priv->gpu_error.missed_irq_rings = val;
  3408. mutex_unlock(&dev->struct_mutex);
  3409. return 0;
  3410. }
  3411. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3412. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3413. "0x%08llx\n");
  3414. static int
  3415. i915_ring_test_irq_get(void *data, u64 *val)
  3416. {
  3417. struct drm_i915_private *dev_priv = data;
  3418. *val = dev_priv->gpu_error.test_irq_rings;
  3419. return 0;
  3420. }
  3421. static int
  3422. i915_ring_test_irq_set(void *data, u64 val)
  3423. {
  3424. struct drm_i915_private *dev_priv = data;
  3425. val &= INTEL_INFO(dev_priv)->ring_mask;
  3426. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3427. dev_priv->gpu_error.test_irq_rings = val;
  3428. return 0;
  3429. }
  3430. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3431. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3432. "0x%08llx\n");
  3433. #define DROP_UNBOUND 0x1
  3434. #define DROP_BOUND 0x2
  3435. #define DROP_RETIRE 0x4
  3436. #define DROP_ACTIVE 0x8
  3437. #define DROP_FREED 0x10
  3438. #define DROP_ALL (DROP_UNBOUND | \
  3439. DROP_BOUND | \
  3440. DROP_RETIRE | \
  3441. DROP_ACTIVE | \
  3442. DROP_FREED)
  3443. static int
  3444. i915_drop_caches_get(void *data, u64 *val)
  3445. {
  3446. *val = DROP_ALL;
  3447. return 0;
  3448. }
  3449. static int
  3450. i915_drop_caches_set(void *data, u64 val)
  3451. {
  3452. struct drm_i915_private *dev_priv = data;
  3453. struct drm_device *dev = &dev_priv->drm;
  3454. int ret;
  3455. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3456. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3457. * on ioctls on -EAGAIN. */
  3458. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3459. if (ret)
  3460. return ret;
  3461. if (val & DROP_ACTIVE) {
  3462. ret = i915_gem_wait_for_idle(dev_priv,
  3463. I915_WAIT_INTERRUPTIBLE |
  3464. I915_WAIT_LOCKED);
  3465. if (ret)
  3466. goto unlock;
  3467. }
  3468. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3469. i915_gem_retire_requests(dev_priv);
  3470. if (val & DROP_BOUND)
  3471. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3472. if (val & DROP_UNBOUND)
  3473. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3474. unlock:
  3475. mutex_unlock(&dev->struct_mutex);
  3476. if (val & DROP_FREED) {
  3477. synchronize_rcu();
  3478. i915_gem_drain_freed_objects(dev_priv);
  3479. }
  3480. return ret;
  3481. }
  3482. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3483. i915_drop_caches_get, i915_drop_caches_set,
  3484. "0x%08llx\n");
  3485. static int
  3486. i915_max_freq_get(void *data, u64 *val)
  3487. {
  3488. struct drm_i915_private *dev_priv = data;
  3489. if (INTEL_GEN(dev_priv) < 6)
  3490. return -ENODEV;
  3491. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3492. return 0;
  3493. }
  3494. static int
  3495. i915_max_freq_set(void *data, u64 val)
  3496. {
  3497. struct drm_i915_private *dev_priv = data;
  3498. u32 hw_max, hw_min;
  3499. int ret;
  3500. if (INTEL_GEN(dev_priv) < 6)
  3501. return -ENODEV;
  3502. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3503. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3504. if (ret)
  3505. return ret;
  3506. /*
  3507. * Turbo will still be enabled, but won't go above the set value.
  3508. */
  3509. val = intel_freq_opcode(dev_priv, val);
  3510. hw_max = dev_priv->rps.max_freq;
  3511. hw_min = dev_priv->rps.min_freq;
  3512. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3513. mutex_unlock(&dev_priv->rps.hw_lock);
  3514. return -EINVAL;
  3515. }
  3516. dev_priv->rps.max_freq_softlimit = val;
  3517. intel_set_rps(dev_priv, val);
  3518. mutex_unlock(&dev_priv->rps.hw_lock);
  3519. return 0;
  3520. }
  3521. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3522. i915_max_freq_get, i915_max_freq_set,
  3523. "%llu\n");
  3524. static int
  3525. i915_min_freq_get(void *data, u64 *val)
  3526. {
  3527. struct drm_i915_private *dev_priv = data;
  3528. if (INTEL_GEN(dev_priv) < 6)
  3529. return -ENODEV;
  3530. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3531. return 0;
  3532. }
  3533. static int
  3534. i915_min_freq_set(void *data, u64 val)
  3535. {
  3536. struct drm_i915_private *dev_priv = data;
  3537. u32 hw_max, hw_min;
  3538. int ret;
  3539. if (INTEL_GEN(dev_priv) < 6)
  3540. return -ENODEV;
  3541. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3542. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3543. if (ret)
  3544. return ret;
  3545. /*
  3546. * Turbo will still be enabled, but won't go below the set value.
  3547. */
  3548. val = intel_freq_opcode(dev_priv, val);
  3549. hw_max = dev_priv->rps.max_freq;
  3550. hw_min = dev_priv->rps.min_freq;
  3551. if (val < hw_min ||
  3552. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3553. mutex_unlock(&dev_priv->rps.hw_lock);
  3554. return -EINVAL;
  3555. }
  3556. dev_priv->rps.min_freq_softlimit = val;
  3557. intel_set_rps(dev_priv, val);
  3558. mutex_unlock(&dev_priv->rps.hw_lock);
  3559. return 0;
  3560. }
  3561. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3562. i915_min_freq_get, i915_min_freq_set,
  3563. "%llu\n");
  3564. static int
  3565. i915_cache_sharing_get(void *data, u64 *val)
  3566. {
  3567. struct drm_i915_private *dev_priv = data;
  3568. u32 snpcr;
  3569. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3570. return -ENODEV;
  3571. intel_runtime_pm_get(dev_priv);
  3572. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3573. intel_runtime_pm_put(dev_priv);
  3574. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3575. return 0;
  3576. }
  3577. static int
  3578. i915_cache_sharing_set(void *data, u64 val)
  3579. {
  3580. struct drm_i915_private *dev_priv = data;
  3581. u32 snpcr;
  3582. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3583. return -ENODEV;
  3584. if (val > 3)
  3585. return -EINVAL;
  3586. intel_runtime_pm_get(dev_priv);
  3587. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3588. /* Update the cache sharing policy here as well */
  3589. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3590. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3591. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3592. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3593. intel_runtime_pm_put(dev_priv);
  3594. return 0;
  3595. }
  3596. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3597. i915_cache_sharing_get, i915_cache_sharing_set,
  3598. "%llu\n");
  3599. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3600. struct sseu_dev_info *sseu)
  3601. {
  3602. int ss_max = 2;
  3603. int ss;
  3604. u32 sig1[ss_max], sig2[ss_max];
  3605. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3606. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3607. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3608. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3609. for (ss = 0; ss < ss_max; ss++) {
  3610. unsigned int eu_cnt;
  3611. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3612. /* skip disabled subslice */
  3613. continue;
  3614. sseu->slice_mask = BIT(0);
  3615. sseu->subslice_mask |= BIT(ss);
  3616. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3617. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3618. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3619. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3620. sseu->eu_total += eu_cnt;
  3621. sseu->eu_per_subslice = max_t(unsigned int,
  3622. sseu->eu_per_subslice, eu_cnt);
  3623. }
  3624. }
  3625. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3626. struct sseu_dev_info *sseu)
  3627. {
  3628. int s_max = 3, ss_max = 4;
  3629. int s, ss;
  3630. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3631. /* BXT has a single slice and at most 3 subslices. */
  3632. if (IS_GEN9_LP(dev_priv)) {
  3633. s_max = 1;
  3634. ss_max = 3;
  3635. }
  3636. for (s = 0; s < s_max; s++) {
  3637. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3638. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3639. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3640. }
  3641. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3642. GEN9_PGCTL_SSA_EU19_ACK |
  3643. GEN9_PGCTL_SSA_EU210_ACK |
  3644. GEN9_PGCTL_SSA_EU311_ACK;
  3645. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3646. GEN9_PGCTL_SSB_EU19_ACK |
  3647. GEN9_PGCTL_SSB_EU210_ACK |
  3648. GEN9_PGCTL_SSB_EU311_ACK;
  3649. for (s = 0; s < s_max; s++) {
  3650. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3651. /* skip disabled slice */
  3652. continue;
  3653. sseu->slice_mask |= BIT(s);
  3654. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  3655. sseu->subslice_mask =
  3656. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3657. for (ss = 0; ss < ss_max; ss++) {
  3658. unsigned int eu_cnt;
  3659. if (IS_GEN9_LP(dev_priv)) {
  3660. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3661. /* skip disabled subslice */
  3662. continue;
  3663. sseu->subslice_mask |= BIT(ss);
  3664. }
  3665. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3666. eu_mask[ss%2]);
  3667. sseu->eu_total += eu_cnt;
  3668. sseu->eu_per_subslice = max_t(unsigned int,
  3669. sseu->eu_per_subslice,
  3670. eu_cnt);
  3671. }
  3672. }
  3673. }
  3674. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3675. struct sseu_dev_info *sseu)
  3676. {
  3677. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3678. int s;
  3679. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3680. if (sseu->slice_mask) {
  3681. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3682. sseu->eu_per_subslice =
  3683. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3684. sseu->eu_total = sseu->eu_per_subslice *
  3685. sseu_subslice_total(sseu);
  3686. /* subtract fused off EU(s) from enabled slice(s) */
  3687. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3688. u8 subslice_7eu =
  3689. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3690. sseu->eu_total -= hweight8(subslice_7eu);
  3691. }
  3692. }
  3693. }
  3694. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3695. const struct sseu_dev_info *sseu)
  3696. {
  3697. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3698. const char *type = is_available_info ? "Available" : "Enabled";
  3699. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3700. sseu->slice_mask);
  3701. seq_printf(m, " %s Slice Total: %u\n", type,
  3702. hweight8(sseu->slice_mask));
  3703. seq_printf(m, " %s Subslice Total: %u\n", type,
  3704. sseu_subslice_total(sseu));
  3705. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3706. sseu->subslice_mask);
  3707. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3708. hweight8(sseu->subslice_mask));
  3709. seq_printf(m, " %s EU Total: %u\n", type,
  3710. sseu->eu_total);
  3711. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3712. sseu->eu_per_subslice);
  3713. if (!is_available_info)
  3714. return;
  3715. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3716. if (HAS_POOLED_EU(dev_priv))
  3717. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3718. seq_printf(m, " Has Slice Power Gating: %s\n",
  3719. yesno(sseu->has_slice_pg));
  3720. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3721. yesno(sseu->has_subslice_pg));
  3722. seq_printf(m, " Has EU Power Gating: %s\n",
  3723. yesno(sseu->has_eu_pg));
  3724. }
  3725. static int i915_sseu_status(struct seq_file *m, void *unused)
  3726. {
  3727. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3728. struct sseu_dev_info sseu;
  3729. if (INTEL_GEN(dev_priv) < 8)
  3730. return -ENODEV;
  3731. seq_puts(m, "SSEU Device Info\n");
  3732. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3733. seq_puts(m, "SSEU Device Status\n");
  3734. memset(&sseu, 0, sizeof(sseu));
  3735. intel_runtime_pm_get(dev_priv);
  3736. if (IS_CHERRYVIEW(dev_priv)) {
  3737. cherryview_sseu_device_status(dev_priv, &sseu);
  3738. } else if (IS_BROADWELL(dev_priv)) {
  3739. broadwell_sseu_device_status(dev_priv, &sseu);
  3740. } else if (INTEL_GEN(dev_priv) >= 9) {
  3741. gen9_sseu_device_status(dev_priv, &sseu);
  3742. }
  3743. intel_runtime_pm_put(dev_priv);
  3744. i915_print_sseu_info(m, false, &sseu);
  3745. return 0;
  3746. }
  3747. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3748. {
  3749. struct drm_i915_private *dev_priv = inode->i_private;
  3750. if (INTEL_GEN(dev_priv) < 6)
  3751. return 0;
  3752. intel_runtime_pm_get(dev_priv);
  3753. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3754. return 0;
  3755. }
  3756. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3757. {
  3758. struct drm_i915_private *dev_priv = inode->i_private;
  3759. if (INTEL_GEN(dev_priv) < 6)
  3760. return 0;
  3761. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3762. intel_runtime_pm_put(dev_priv);
  3763. return 0;
  3764. }
  3765. static const struct file_operations i915_forcewake_fops = {
  3766. .owner = THIS_MODULE,
  3767. .open = i915_forcewake_open,
  3768. .release = i915_forcewake_release,
  3769. };
  3770. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3771. {
  3772. struct dentry *ent;
  3773. ent = debugfs_create_file("i915_forcewake_user",
  3774. S_IRUSR,
  3775. root, to_i915(minor->dev),
  3776. &i915_forcewake_fops);
  3777. if (!ent)
  3778. return -ENOMEM;
  3779. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3780. }
  3781. static int i915_debugfs_create(struct dentry *root,
  3782. struct drm_minor *minor,
  3783. const char *name,
  3784. const struct file_operations *fops)
  3785. {
  3786. struct dentry *ent;
  3787. ent = debugfs_create_file(name,
  3788. S_IRUGO | S_IWUSR,
  3789. root, to_i915(minor->dev),
  3790. fops);
  3791. if (!ent)
  3792. return -ENOMEM;
  3793. return drm_add_fake_info_node(minor, ent, fops);
  3794. }
  3795. static const struct drm_info_list i915_debugfs_list[] = {
  3796. {"i915_capabilities", i915_capabilities, 0},
  3797. {"i915_gem_objects", i915_gem_object_info, 0},
  3798. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3799. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  3800. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3801. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3802. {"i915_gem_request", i915_gem_request_info, 0},
  3803. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3804. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3805. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3806. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3807. {"i915_guc_info", i915_guc_info, 0},
  3808. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3809. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3810. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3811. {"i915_frequency_info", i915_frequency_info, 0},
  3812. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3813. {"i915_drpc_info", i915_drpc_info, 0},
  3814. {"i915_emon_status", i915_emon_status, 0},
  3815. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3816. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3817. {"i915_fbc_status", i915_fbc_status, 0},
  3818. {"i915_ips_status", i915_ips_status, 0},
  3819. {"i915_sr_status", i915_sr_status, 0},
  3820. {"i915_opregion", i915_opregion, 0},
  3821. {"i915_vbt", i915_vbt, 0},
  3822. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3823. {"i915_context_status", i915_context_status, 0},
  3824. {"i915_dump_lrc", i915_dump_lrc, 0},
  3825. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3826. {"i915_swizzle_info", i915_swizzle_info, 0},
  3827. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3828. {"i915_llc", i915_llc, 0},
  3829. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3830. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3831. {"i915_energy_uJ", i915_energy_uJ, 0},
  3832. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3833. {"i915_power_domain_info", i915_power_domain_info, 0},
  3834. {"i915_dmc_info", i915_dmc_info, 0},
  3835. {"i915_display_info", i915_display_info, 0},
  3836. {"i915_engine_info", i915_engine_info, 0},
  3837. {"i915_semaphore_status", i915_semaphore_status, 0},
  3838. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3839. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3840. {"i915_wa_registers", i915_wa_registers, 0},
  3841. {"i915_ddb_info", i915_ddb_info, 0},
  3842. {"i915_sseu_status", i915_sseu_status, 0},
  3843. {"i915_drrs_status", i915_drrs_status, 0},
  3844. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3845. };
  3846. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3847. static const struct i915_debugfs_files {
  3848. const char *name;
  3849. const struct file_operations *fops;
  3850. } i915_debugfs_files[] = {
  3851. {"i915_wedged", &i915_wedged_fops},
  3852. {"i915_max_freq", &i915_max_freq_fops},
  3853. {"i915_min_freq", &i915_min_freq_fops},
  3854. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3855. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3856. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3857. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3858. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3859. {"i915_error_state", &i915_error_state_fops},
  3860. #endif
  3861. {"i915_next_seqno", &i915_next_seqno_fops},
  3862. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3863. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3864. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3865. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3866. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  3867. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3868. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3869. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3870. {"i915_guc_log_control", &i915_guc_log_control_fops}
  3871. };
  3872. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  3873. {
  3874. struct drm_minor *minor = dev_priv->drm.primary;
  3875. int ret, i;
  3876. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3877. if (ret)
  3878. return ret;
  3879. ret = intel_pipe_crc_create(minor);
  3880. if (ret)
  3881. return ret;
  3882. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3883. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3884. i915_debugfs_files[i].name,
  3885. i915_debugfs_files[i].fops);
  3886. if (ret)
  3887. return ret;
  3888. }
  3889. return drm_debugfs_create_files(i915_debugfs_list,
  3890. I915_DEBUGFS_ENTRIES,
  3891. minor->debugfs_root, minor);
  3892. }
  3893. void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
  3894. {
  3895. struct drm_minor *minor = dev_priv->drm.primary;
  3896. int i;
  3897. drm_debugfs_remove_files(i915_debugfs_list,
  3898. I915_DEBUGFS_ENTRIES, minor);
  3899. drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
  3900. 1, minor);
  3901. intel_pipe_crc_cleanup(minor);
  3902. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3903. struct drm_info_list *info_list =
  3904. (struct drm_info_list *)i915_debugfs_files[i].fops;
  3905. drm_debugfs_remove_files(info_list, 1, minor);
  3906. }
  3907. }
  3908. struct dpcd_block {
  3909. /* DPCD dump start address. */
  3910. unsigned int offset;
  3911. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  3912. unsigned int end;
  3913. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  3914. size_t size;
  3915. /* Only valid for eDP. */
  3916. bool edp;
  3917. };
  3918. static const struct dpcd_block i915_dpcd_debug[] = {
  3919. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  3920. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  3921. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  3922. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  3923. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  3924. { .offset = DP_SET_POWER },
  3925. { .offset = DP_EDP_DPCD_REV },
  3926. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  3927. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  3928. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  3929. };
  3930. static int i915_dpcd_show(struct seq_file *m, void *data)
  3931. {
  3932. struct drm_connector *connector = m->private;
  3933. struct intel_dp *intel_dp =
  3934. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  3935. uint8_t buf[16];
  3936. ssize_t err;
  3937. int i;
  3938. if (connector->status != connector_status_connected)
  3939. return -ENODEV;
  3940. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  3941. const struct dpcd_block *b = &i915_dpcd_debug[i];
  3942. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  3943. if (b->edp &&
  3944. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  3945. continue;
  3946. /* low tech for now */
  3947. if (WARN_ON(size > sizeof(buf)))
  3948. continue;
  3949. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  3950. if (err <= 0) {
  3951. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  3952. size, b->offset, err);
  3953. continue;
  3954. }
  3955. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  3956. }
  3957. return 0;
  3958. }
  3959. static int i915_dpcd_open(struct inode *inode, struct file *file)
  3960. {
  3961. return single_open(file, i915_dpcd_show, inode->i_private);
  3962. }
  3963. static const struct file_operations i915_dpcd_fops = {
  3964. .owner = THIS_MODULE,
  3965. .open = i915_dpcd_open,
  3966. .read = seq_read,
  3967. .llseek = seq_lseek,
  3968. .release = single_release,
  3969. };
  3970. static int i915_panel_show(struct seq_file *m, void *data)
  3971. {
  3972. struct drm_connector *connector = m->private;
  3973. struct intel_dp *intel_dp =
  3974. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  3975. if (connector->status != connector_status_connected)
  3976. return -ENODEV;
  3977. seq_printf(m, "Panel power up delay: %d\n",
  3978. intel_dp->panel_power_up_delay);
  3979. seq_printf(m, "Panel power down delay: %d\n",
  3980. intel_dp->panel_power_down_delay);
  3981. seq_printf(m, "Backlight on delay: %d\n",
  3982. intel_dp->backlight_on_delay);
  3983. seq_printf(m, "Backlight off delay: %d\n",
  3984. intel_dp->backlight_off_delay);
  3985. return 0;
  3986. }
  3987. static int i915_panel_open(struct inode *inode, struct file *file)
  3988. {
  3989. return single_open(file, i915_panel_show, inode->i_private);
  3990. }
  3991. static const struct file_operations i915_panel_fops = {
  3992. .owner = THIS_MODULE,
  3993. .open = i915_panel_open,
  3994. .read = seq_read,
  3995. .llseek = seq_lseek,
  3996. .release = single_release,
  3997. };
  3998. /**
  3999. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4000. * @connector: pointer to a registered drm_connector
  4001. *
  4002. * Cleanup will be done by drm_connector_unregister() through a call to
  4003. * drm_debugfs_connector_remove().
  4004. *
  4005. * Returns 0 on success, negative error codes on error.
  4006. */
  4007. int i915_debugfs_connector_add(struct drm_connector *connector)
  4008. {
  4009. struct dentry *root = connector->debugfs_entry;
  4010. /* The connector must have been registered beforehands. */
  4011. if (!root)
  4012. return -ENODEV;
  4013. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4014. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4015. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4016. connector, &i915_dpcd_fops);
  4017. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4018. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4019. connector, &i915_panel_fops);
  4020. return 0;
  4021. }