sdma_v3_0.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  58. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  59. {
  60. SDMA0_REGISTER_OFFSET,
  61. SDMA1_REGISTER_OFFSET
  62. };
  63. static const u32 golden_settings_tonga_a11[] =
  64. {
  65. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  66. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  67. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  69. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  70. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  71. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  72. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  73. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  74. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  75. };
  76. static const u32 tonga_mgcg_cgcg_init[] =
  77. {
  78. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  79. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  80. };
  81. static const u32 golden_settings_fiji_a10[] =
  82. {
  83. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  84. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  86. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  88. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  90. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  91. };
  92. static const u32 fiji_mgcg_cgcg_init[] =
  93. {
  94. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  95. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  96. };
  97. static const u32 golden_settings_polaris11_a11[] =
  98. {
  99. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  103. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  105. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  106. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  107. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  108. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  109. };
  110. static const u32 golden_settings_polaris10_a11[] =
  111. {
  112. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  113. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  114. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  118. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  119. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  120. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  121. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  122. };
  123. static const u32 cz_golden_settings_a11[] =
  124. {
  125. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  126. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  127. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  129. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  131. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  132. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  133. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  135. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  136. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  137. };
  138. static const u32 cz_mgcg_cgcg_init[] =
  139. {
  140. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  141. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  142. };
  143. static const u32 stoney_golden_settings_a11[] =
  144. {
  145. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  147. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  148. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  149. };
  150. static const u32 stoney_mgcg_cgcg_init[] =
  151. {
  152. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  153. };
  154. /*
  155. * sDMA - System DMA
  156. * Starting with CIK, the GPU has new asynchronous
  157. * DMA engines. These engines are used for compute
  158. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  159. * and each one supports 1 ring buffer used for gfx
  160. * and 2 queues used for compute.
  161. *
  162. * The programming model is very similar to the CP
  163. * (ring buffer, IBs, etc.), but sDMA has it's own
  164. * packet format that is different from the PM4 format
  165. * used by the CP. sDMA supports copying data, writing
  166. * embedded data, solid fills, and a number of other
  167. * things. It also has support for tiling/detiling of
  168. * buffers.
  169. */
  170. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  171. {
  172. switch (adev->asic_type) {
  173. case CHIP_FIJI:
  174. amdgpu_program_register_sequence(adev,
  175. fiji_mgcg_cgcg_init,
  176. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  177. amdgpu_program_register_sequence(adev,
  178. golden_settings_fiji_a10,
  179. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  180. break;
  181. case CHIP_TONGA:
  182. amdgpu_program_register_sequence(adev,
  183. tonga_mgcg_cgcg_init,
  184. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  185. amdgpu_program_register_sequence(adev,
  186. golden_settings_tonga_a11,
  187. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  188. break;
  189. case CHIP_POLARIS11:
  190. case CHIP_POLARIS12:
  191. amdgpu_program_register_sequence(adev,
  192. golden_settings_polaris11_a11,
  193. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  194. break;
  195. case CHIP_POLARIS10:
  196. amdgpu_program_register_sequence(adev,
  197. golden_settings_polaris10_a11,
  198. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  199. break;
  200. case CHIP_CARRIZO:
  201. amdgpu_program_register_sequence(adev,
  202. cz_mgcg_cgcg_init,
  203. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  204. amdgpu_program_register_sequence(adev,
  205. cz_golden_settings_a11,
  206. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  207. break;
  208. case CHIP_STONEY:
  209. amdgpu_program_register_sequence(adev,
  210. stoney_mgcg_cgcg_init,
  211. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  212. amdgpu_program_register_sequence(adev,
  213. stoney_golden_settings_a11,
  214. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  215. break;
  216. default:
  217. break;
  218. }
  219. }
  220. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  221. {
  222. int i;
  223. for (i = 0; i < adev->sdma.num_instances; i++) {
  224. release_firmware(adev->sdma.instance[i].fw);
  225. adev->sdma.instance[i].fw = NULL;
  226. }
  227. }
  228. /**
  229. * sdma_v3_0_init_microcode - load ucode images from disk
  230. *
  231. * @adev: amdgpu_device pointer
  232. *
  233. * Use the firmware interface to load the ucode images into
  234. * the driver (not loaded into hw).
  235. * Returns 0 on success, error on failure.
  236. */
  237. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  238. {
  239. const char *chip_name;
  240. char fw_name[30];
  241. int err = 0, i;
  242. struct amdgpu_firmware_info *info = NULL;
  243. const struct common_firmware_header *header = NULL;
  244. const struct sdma_firmware_header_v1_0 *hdr;
  245. DRM_DEBUG("\n");
  246. switch (adev->asic_type) {
  247. case CHIP_TONGA:
  248. chip_name = "tonga";
  249. break;
  250. case CHIP_FIJI:
  251. chip_name = "fiji";
  252. break;
  253. case CHIP_POLARIS11:
  254. chip_name = "polaris11";
  255. break;
  256. case CHIP_POLARIS10:
  257. chip_name = "polaris10";
  258. break;
  259. case CHIP_POLARIS12:
  260. chip_name = "polaris12";
  261. break;
  262. case CHIP_CARRIZO:
  263. chip_name = "carrizo";
  264. break;
  265. case CHIP_STONEY:
  266. chip_name = "stoney";
  267. break;
  268. default: BUG();
  269. }
  270. for (i = 0; i < adev->sdma.num_instances; i++) {
  271. if (i == 0)
  272. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  273. else
  274. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  275. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  276. if (err)
  277. goto out;
  278. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  279. if (err)
  280. goto out;
  281. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  282. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  283. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  284. if (adev->sdma.instance[i].feature_version >= 20)
  285. adev->sdma.instance[i].burst_nop = true;
  286. if (adev->firmware.smu_load) {
  287. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  288. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  289. info->fw = adev->sdma.instance[i].fw;
  290. header = (const struct common_firmware_header *)info->fw->data;
  291. adev->firmware.fw_size +=
  292. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  293. }
  294. }
  295. out:
  296. if (err) {
  297. printk(KERN_ERR
  298. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  299. fw_name);
  300. for (i = 0; i < adev->sdma.num_instances; i++) {
  301. release_firmware(adev->sdma.instance[i].fw);
  302. adev->sdma.instance[i].fw = NULL;
  303. }
  304. }
  305. return err;
  306. }
  307. /**
  308. * sdma_v3_0_ring_get_rptr - get the current read pointer
  309. *
  310. * @ring: amdgpu ring pointer
  311. *
  312. * Get the current rptr from the hardware (VI+).
  313. */
  314. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  315. {
  316. /* XXX check if swapping is necessary on BE */
  317. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  318. }
  319. /**
  320. * sdma_v3_0_ring_get_wptr - get the current write pointer
  321. *
  322. * @ring: amdgpu ring pointer
  323. *
  324. * Get the current wptr from the hardware (VI+).
  325. */
  326. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  327. {
  328. struct amdgpu_device *adev = ring->adev;
  329. u32 wptr;
  330. if (ring->use_doorbell) {
  331. /* XXX check if swapping is necessary on BE */
  332. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  333. } else {
  334. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  335. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  336. }
  337. return wptr;
  338. }
  339. /**
  340. * sdma_v3_0_ring_set_wptr - commit the write pointer
  341. *
  342. * @ring: amdgpu ring pointer
  343. *
  344. * Write the wptr back to the hardware (VI+).
  345. */
  346. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  347. {
  348. struct amdgpu_device *adev = ring->adev;
  349. if (ring->use_doorbell) {
  350. /* XXX check if swapping is necessary on BE */
  351. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  352. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  353. } else {
  354. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  355. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  356. }
  357. }
  358. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  359. {
  360. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  361. int i;
  362. for (i = 0; i < count; i++)
  363. if (sdma && sdma->burst_nop && (i == 0))
  364. amdgpu_ring_write(ring, ring->funcs->nop |
  365. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  366. else
  367. amdgpu_ring_write(ring, ring->funcs->nop);
  368. }
  369. /**
  370. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  371. *
  372. * @ring: amdgpu ring pointer
  373. * @ib: IB object to schedule
  374. *
  375. * Schedule an IB in the DMA ring (VI).
  376. */
  377. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  378. struct amdgpu_ib *ib,
  379. unsigned vm_id, bool ctx_switch)
  380. {
  381. u32 vmid = vm_id & 0xf;
  382. /* IB packet must end on a 8 DW boundary */
  383. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  384. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  385. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  386. /* base must be 32 byte aligned */
  387. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  388. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  389. amdgpu_ring_write(ring, ib->length_dw);
  390. amdgpu_ring_write(ring, 0);
  391. amdgpu_ring_write(ring, 0);
  392. }
  393. /**
  394. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  395. *
  396. * @ring: amdgpu ring pointer
  397. *
  398. * Emit an hdp flush packet on the requested DMA ring.
  399. */
  400. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  401. {
  402. u32 ref_and_mask = 0;
  403. if (ring == &ring->adev->sdma.instance[0].ring)
  404. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  405. else
  406. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  407. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  408. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  409. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  410. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  411. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  412. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  413. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  414. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  415. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  416. }
  417. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  418. {
  419. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  420. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  421. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  422. amdgpu_ring_write(ring, 1);
  423. }
  424. /**
  425. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  426. *
  427. * @ring: amdgpu ring pointer
  428. * @fence: amdgpu fence object
  429. *
  430. * Add a DMA fence packet to the ring to write
  431. * the fence seq number and DMA trap packet to generate
  432. * an interrupt if needed (VI).
  433. */
  434. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  435. unsigned flags)
  436. {
  437. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  438. /* write the fence */
  439. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  440. amdgpu_ring_write(ring, lower_32_bits(addr));
  441. amdgpu_ring_write(ring, upper_32_bits(addr));
  442. amdgpu_ring_write(ring, lower_32_bits(seq));
  443. /* optionally write high bits as well */
  444. if (write64bit) {
  445. addr += 4;
  446. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  447. amdgpu_ring_write(ring, lower_32_bits(addr));
  448. amdgpu_ring_write(ring, upper_32_bits(addr));
  449. amdgpu_ring_write(ring, upper_32_bits(seq));
  450. }
  451. /* generate an interrupt */
  452. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  453. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  454. }
  455. /**
  456. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. *
  460. * Stop the gfx async dma ring buffers (VI).
  461. */
  462. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  463. {
  464. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  465. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  466. u32 rb_cntl, ib_cntl;
  467. int i;
  468. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  469. (adev->mman.buffer_funcs_ring == sdma1))
  470. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  471. for (i = 0; i < adev->sdma.num_instances; i++) {
  472. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  473. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  474. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  475. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  476. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  477. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  478. }
  479. sdma0->ready = false;
  480. sdma1->ready = false;
  481. }
  482. /**
  483. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  484. *
  485. * @adev: amdgpu_device pointer
  486. *
  487. * Stop the compute async dma queues (VI).
  488. */
  489. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  490. {
  491. /* XXX todo */
  492. }
  493. /**
  494. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  495. *
  496. * @adev: amdgpu_device pointer
  497. * @enable: enable/disable the DMA MEs context switch.
  498. *
  499. * Halt or unhalt the async dma engines context switch (VI).
  500. */
  501. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  502. {
  503. u32 f32_cntl;
  504. int i;
  505. for (i = 0; i < adev->sdma.num_instances; i++) {
  506. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  507. if (enable)
  508. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  509. AUTO_CTXSW_ENABLE, 1);
  510. else
  511. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  512. AUTO_CTXSW_ENABLE, 0);
  513. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  514. }
  515. }
  516. /**
  517. * sdma_v3_0_enable - stop the async dma engines
  518. *
  519. * @adev: amdgpu_device pointer
  520. * @enable: enable/disable the DMA MEs.
  521. *
  522. * Halt or unhalt the async dma engines (VI).
  523. */
  524. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  525. {
  526. u32 f32_cntl;
  527. int i;
  528. if (!enable) {
  529. sdma_v3_0_gfx_stop(adev);
  530. sdma_v3_0_rlc_stop(adev);
  531. }
  532. for (i = 0; i < adev->sdma.num_instances; i++) {
  533. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  534. if (enable)
  535. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  536. else
  537. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  538. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  539. }
  540. }
  541. /**
  542. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  543. *
  544. * @adev: amdgpu_device pointer
  545. *
  546. * Set up the gfx DMA ring buffers and enable them (VI).
  547. * Returns 0 for success, error for failure.
  548. */
  549. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  550. {
  551. struct amdgpu_ring *ring;
  552. u32 rb_cntl, ib_cntl;
  553. u32 rb_bufsz;
  554. u32 wb_offset;
  555. u32 doorbell;
  556. int i, j, r;
  557. for (i = 0; i < adev->sdma.num_instances; i++) {
  558. ring = &adev->sdma.instance[i].ring;
  559. wb_offset = (ring->rptr_offs * 4);
  560. mutex_lock(&adev->srbm_mutex);
  561. for (j = 0; j < 16; j++) {
  562. vi_srbm_select(adev, 0, 0, 0, j);
  563. /* SDMA GFX */
  564. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  565. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  566. }
  567. vi_srbm_select(adev, 0, 0, 0, 0);
  568. mutex_unlock(&adev->srbm_mutex);
  569. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  570. adev->gfx.config.gb_addr_config & 0x70);
  571. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  572. /* Set ring buffer size in dwords */
  573. rb_bufsz = order_base_2(ring->ring_size / 4);
  574. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  575. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  576. #ifdef __BIG_ENDIAN
  577. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  578. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  579. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  580. #endif
  581. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  582. /* Initialize the ring buffer's read and write pointers */
  583. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  584. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  585. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  586. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  587. /* set the wb address whether it's enabled or not */
  588. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  589. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  590. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  591. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  592. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  593. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  594. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  595. ring->wptr = 0;
  596. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  597. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  598. if (ring->use_doorbell) {
  599. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  600. OFFSET, ring->doorbell_index);
  601. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  602. } else {
  603. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  604. }
  605. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  606. /* enable DMA RB */
  607. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  608. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  609. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  610. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  611. #ifdef __BIG_ENDIAN
  612. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  613. #endif
  614. /* enable DMA IBs */
  615. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  616. ring->ready = true;
  617. }
  618. /* unhalt the MEs */
  619. sdma_v3_0_enable(adev, true);
  620. /* enable sdma ring preemption */
  621. sdma_v3_0_ctx_switch_enable(adev, true);
  622. for (i = 0; i < adev->sdma.num_instances; i++) {
  623. ring = &adev->sdma.instance[i].ring;
  624. r = amdgpu_ring_test_ring(ring);
  625. if (r) {
  626. ring->ready = false;
  627. return r;
  628. }
  629. if (adev->mman.buffer_funcs_ring == ring)
  630. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  631. }
  632. return 0;
  633. }
  634. /**
  635. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  636. *
  637. * @adev: amdgpu_device pointer
  638. *
  639. * Set up the compute DMA queues and enable them (VI).
  640. * Returns 0 for success, error for failure.
  641. */
  642. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  643. {
  644. /* XXX todo */
  645. return 0;
  646. }
  647. /**
  648. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  649. *
  650. * @adev: amdgpu_device pointer
  651. *
  652. * Loads the sDMA0/1 ucode.
  653. * Returns 0 for success, -EINVAL if the ucode is not available.
  654. */
  655. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  656. {
  657. const struct sdma_firmware_header_v1_0 *hdr;
  658. const __le32 *fw_data;
  659. u32 fw_size;
  660. int i, j;
  661. /* halt the MEs */
  662. sdma_v3_0_enable(adev, false);
  663. for (i = 0; i < adev->sdma.num_instances; i++) {
  664. if (!adev->sdma.instance[i].fw)
  665. return -EINVAL;
  666. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  667. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  668. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  669. fw_data = (const __le32 *)
  670. (adev->sdma.instance[i].fw->data +
  671. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  672. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  673. for (j = 0; j < fw_size; j++)
  674. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  675. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  676. }
  677. return 0;
  678. }
  679. /**
  680. * sdma_v3_0_start - setup and start the async dma engines
  681. *
  682. * @adev: amdgpu_device pointer
  683. *
  684. * Set up the DMA engines and enable them (VI).
  685. * Returns 0 for success, error for failure.
  686. */
  687. static int sdma_v3_0_start(struct amdgpu_device *adev)
  688. {
  689. int r, i;
  690. if (!adev->pp_enabled) {
  691. if (!adev->firmware.smu_load) {
  692. r = sdma_v3_0_load_microcode(adev);
  693. if (r)
  694. return r;
  695. } else {
  696. for (i = 0; i < adev->sdma.num_instances; i++) {
  697. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  698. (i == 0) ?
  699. AMDGPU_UCODE_ID_SDMA0 :
  700. AMDGPU_UCODE_ID_SDMA1);
  701. if (r)
  702. return -EINVAL;
  703. }
  704. }
  705. }
  706. /* disble sdma engine before programing it */
  707. sdma_v3_0_ctx_switch_enable(adev, false);
  708. sdma_v3_0_enable(adev, false);
  709. /* start the gfx rings and rlc compute queues */
  710. r = sdma_v3_0_gfx_resume(adev);
  711. if (r)
  712. return r;
  713. r = sdma_v3_0_rlc_resume(adev);
  714. if (r)
  715. return r;
  716. return 0;
  717. }
  718. /**
  719. * sdma_v3_0_ring_test_ring - simple async dma engine test
  720. *
  721. * @ring: amdgpu_ring structure holding ring information
  722. *
  723. * Test the DMA engine by writing using it to write an
  724. * value to memory. (VI).
  725. * Returns 0 for success, error for failure.
  726. */
  727. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  728. {
  729. struct amdgpu_device *adev = ring->adev;
  730. unsigned i;
  731. unsigned index;
  732. int r;
  733. u32 tmp;
  734. u64 gpu_addr;
  735. r = amdgpu_wb_get(adev, &index);
  736. if (r) {
  737. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  738. return r;
  739. }
  740. gpu_addr = adev->wb.gpu_addr + (index * 4);
  741. tmp = 0xCAFEDEAD;
  742. adev->wb.wb[index] = cpu_to_le32(tmp);
  743. r = amdgpu_ring_alloc(ring, 5);
  744. if (r) {
  745. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  746. amdgpu_wb_free(adev, index);
  747. return r;
  748. }
  749. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  750. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  751. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  752. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  753. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  754. amdgpu_ring_write(ring, 0xDEADBEEF);
  755. amdgpu_ring_commit(ring);
  756. for (i = 0; i < adev->usec_timeout; i++) {
  757. tmp = le32_to_cpu(adev->wb.wb[index]);
  758. if (tmp == 0xDEADBEEF)
  759. break;
  760. DRM_UDELAY(1);
  761. }
  762. if (i < adev->usec_timeout) {
  763. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  764. } else {
  765. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  766. ring->idx, tmp);
  767. r = -EINVAL;
  768. }
  769. amdgpu_wb_free(adev, index);
  770. return r;
  771. }
  772. /**
  773. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  774. *
  775. * @ring: amdgpu_ring structure holding ring information
  776. *
  777. * Test a simple IB in the DMA ring (VI).
  778. * Returns 0 on success, error on failure.
  779. */
  780. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  781. {
  782. struct amdgpu_device *adev = ring->adev;
  783. struct amdgpu_ib ib;
  784. struct dma_fence *f = NULL;
  785. unsigned index;
  786. u32 tmp = 0;
  787. u64 gpu_addr;
  788. long r;
  789. r = amdgpu_wb_get(adev, &index);
  790. if (r) {
  791. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  792. return r;
  793. }
  794. gpu_addr = adev->wb.gpu_addr + (index * 4);
  795. tmp = 0xCAFEDEAD;
  796. adev->wb.wb[index] = cpu_to_le32(tmp);
  797. memset(&ib, 0, sizeof(ib));
  798. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  799. if (r) {
  800. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  801. goto err0;
  802. }
  803. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  804. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  805. ib.ptr[1] = lower_32_bits(gpu_addr);
  806. ib.ptr[2] = upper_32_bits(gpu_addr);
  807. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  808. ib.ptr[4] = 0xDEADBEEF;
  809. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  810. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  811. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  812. ib.length_dw = 8;
  813. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  814. if (r)
  815. goto err1;
  816. r = dma_fence_wait_timeout(f, false, timeout);
  817. if (r == 0) {
  818. DRM_ERROR("amdgpu: IB test timed out\n");
  819. r = -ETIMEDOUT;
  820. goto err1;
  821. } else if (r < 0) {
  822. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  823. goto err1;
  824. }
  825. tmp = le32_to_cpu(adev->wb.wb[index]);
  826. if (tmp == 0xDEADBEEF) {
  827. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  828. r = 0;
  829. } else {
  830. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  831. r = -EINVAL;
  832. }
  833. err1:
  834. amdgpu_ib_free(adev, &ib, NULL);
  835. dma_fence_put(f);
  836. err0:
  837. amdgpu_wb_free(adev, index);
  838. return r;
  839. }
  840. /**
  841. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  842. *
  843. * @ib: indirect buffer to fill with commands
  844. * @pe: addr of the page entry
  845. * @src: src addr to copy from
  846. * @count: number of page entries to update
  847. *
  848. * Update PTEs by copying them from the GART using sDMA (CIK).
  849. */
  850. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  851. uint64_t pe, uint64_t src,
  852. unsigned count)
  853. {
  854. unsigned bytes = count * 8;
  855. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  856. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  857. ib->ptr[ib->length_dw++] = bytes;
  858. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  859. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  860. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  861. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  862. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  863. }
  864. /**
  865. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  866. *
  867. * @ib: indirect buffer to fill with commands
  868. * @pe: addr of the page entry
  869. * @value: dst addr to write into pe
  870. * @count: number of page entries to update
  871. * @incr: increase next addr by incr bytes
  872. *
  873. * Update PTEs by writing them manually using sDMA (CIK).
  874. */
  875. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  876. uint64_t value, unsigned count,
  877. uint32_t incr)
  878. {
  879. unsigned ndw = count * 2;
  880. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  881. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  882. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  883. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  884. ib->ptr[ib->length_dw++] = ndw;
  885. for (; ndw > 0; ndw -= 2) {
  886. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  887. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  888. value += incr;
  889. }
  890. }
  891. /**
  892. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  893. *
  894. * @ib: indirect buffer to fill with commands
  895. * @pe: addr of the page entry
  896. * @addr: dst addr to write into pe
  897. * @count: number of page entries to update
  898. * @incr: increase next addr by incr bytes
  899. * @flags: access flags
  900. *
  901. * Update the page tables using sDMA (CIK).
  902. */
  903. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  904. uint64_t addr, unsigned count,
  905. uint32_t incr, uint32_t flags)
  906. {
  907. /* for physically contiguous pages (vram) */
  908. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  909. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  910. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  911. ib->ptr[ib->length_dw++] = flags; /* mask */
  912. ib->ptr[ib->length_dw++] = 0;
  913. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  914. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  915. ib->ptr[ib->length_dw++] = incr; /* increment size */
  916. ib->ptr[ib->length_dw++] = 0;
  917. ib->ptr[ib->length_dw++] = count; /* number of entries */
  918. }
  919. /**
  920. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  921. *
  922. * @ib: indirect buffer to fill with padding
  923. *
  924. */
  925. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  926. {
  927. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  928. u32 pad_count;
  929. int i;
  930. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  931. for (i = 0; i < pad_count; i++)
  932. if (sdma && sdma->burst_nop && (i == 0))
  933. ib->ptr[ib->length_dw++] =
  934. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  935. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  936. else
  937. ib->ptr[ib->length_dw++] =
  938. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  939. }
  940. /**
  941. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  942. *
  943. * @ring: amdgpu_ring pointer
  944. *
  945. * Make sure all previous operations are completed (CIK).
  946. */
  947. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  948. {
  949. uint32_t seq = ring->fence_drv.sync_seq;
  950. uint64_t addr = ring->fence_drv.gpu_addr;
  951. /* wait for idle */
  952. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  953. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  954. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  955. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  956. amdgpu_ring_write(ring, addr & 0xfffffffc);
  957. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  958. amdgpu_ring_write(ring, seq); /* reference */
  959. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  960. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  961. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  962. }
  963. /**
  964. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  965. *
  966. * @ring: amdgpu_ring pointer
  967. * @vm: amdgpu_vm pointer
  968. *
  969. * Update the page table base and flush the VM TLB
  970. * using sDMA (VI).
  971. */
  972. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  973. unsigned vm_id, uint64_t pd_addr)
  974. {
  975. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  976. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  977. if (vm_id < 8) {
  978. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  979. } else {
  980. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  981. }
  982. amdgpu_ring_write(ring, pd_addr >> 12);
  983. /* flush TLB */
  984. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  985. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  986. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  987. amdgpu_ring_write(ring, 1 << vm_id);
  988. /* wait for flush */
  989. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  990. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  991. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  992. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  993. amdgpu_ring_write(ring, 0);
  994. amdgpu_ring_write(ring, 0); /* reference */
  995. amdgpu_ring_write(ring, 0); /* mask */
  996. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  997. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  998. }
  999. static int sdma_v3_0_early_init(void *handle)
  1000. {
  1001. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1002. switch (adev->asic_type) {
  1003. case CHIP_STONEY:
  1004. adev->sdma.num_instances = 1;
  1005. break;
  1006. default:
  1007. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1008. break;
  1009. }
  1010. sdma_v3_0_set_ring_funcs(adev);
  1011. sdma_v3_0_set_buffer_funcs(adev);
  1012. sdma_v3_0_set_vm_pte_funcs(adev);
  1013. sdma_v3_0_set_irq_funcs(adev);
  1014. return 0;
  1015. }
  1016. static int sdma_v3_0_sw_init(void *handle)
  1017. {
  1018. struct amdgpu_ring *ring;
  1019. int r, i;
  1020. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1021. /* SDMA trap event */
  1022. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1023. if (r)
  1024. return r;
  1025. /* SDMA Privileged inst */
  1026. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1027. if (r)
  1028. return r;
  1029. /* SDMA Privileged inst */
  1030. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1031. if (r)
  1032. return r;
  1033. r = sdma_v3_0_init_microcode(adev);
  1034. if (r) {
  1035. DRM_ERROR("Failed to load sdma firmware!\n");
  1036. return r;
  1037. }
  1038. for (i = 0; i < adev->sdma.num_instances; i++) {
  1039. ring = &adev->sdma.instance[i].ring;
  1040. ring->ring_obj = NULL;
  1041. ring->use_doorbell = true;
  1042. ring->doorbell_index = (i == 0) ?
  1043. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1044. sprintf(ring->name, "sdma%d", i);
  1045. r = amdgpu_ring_init(adev, ring, 1024,
  1046. &adev->sdma.trap_irq,
  1047. (i == 0) ?
  1048. AMDGPU_SDMA_IRQ_TRAP0 :
  1049. AMDGPU_SDMA_IRQ_TRAP1);
  1050. if (r)
  1051. return r;
  1052. }
  1053. return r;
  1054. }
  1055. static int sdma_v3_0_sw_fini(void *handle)
  1056. {
  1057. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1058. int i;
  1059. for (i = 0; i < adev->sdma.num_instances; i++)
  1060. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1061. sdma_v3_0_free_microcode(adev);
  1062. return 0;
  1063. }
  1064. static int sdma_v3_0_hw_init(void *handle)
  1065. {
  1066. int r;
  1067. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1068. sdma_v3_0_init_golden_registers(adev);
  1069. r = sdma_v3_0_start(adev);
  1070. if (r)
  1071. return r;
  1072. return r;
  1073. }
  1074. static int sdma_v3_0_hw_fini(void *handle)
  1075. {
  1076. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1077. sdma_v3_0_ctx_switch_enable(adev, false);
  1078. sdma_v3_0_enable(adev, false);
  1079. return 0;
  1080. }
  1081. static int sdma_v3_0_suspend(void *handle)
  1082. {
  1083. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1084. return sdma_v3_0_hw_fini(adev);
  1085. }
  1086. static int sdma_v3_0_resume(void *handle)
  1087. {
  1088. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1089. return sdma_v3_0_hw_init(adev);
  1090. }
  1091. static bool sdma_v3_0_is_idle(void *handle)
  1092. {
  1093. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1094. u32 tmp = RREG32(mmSRBM_STATUS2);
  1095. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1096. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1097. return false;
  1098. return true;
  1099. }
  1100. static int sdma_v3_0_wait_for_idle(void *handle)
  1101. {
  1102. unsigned i;
  1103. u32 tmp;
  1104. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1105. for (i = 0; i < adev->usec_timeout; i++) {
  1106. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1107. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1108. if (!tmp)
  1109. return 0;
  1110. udelay(1);
  1111. }
  1112. return -ETIMEDOUT;
  1113. }
  1114. static bool sdma_v3_0_check_soft_reset(void *handle)
  1115. {
  1116. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1117. u32 srbm_soft_reset = 0;
  1118. u32 tmp = RREG32(mmSRBM_STATUS2);
  1119. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1120. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1121. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1122. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1123. }
  1124. if (srbm_soft_reset) {
  1125. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1126. return true;
  1127. } else {
  1128. adev->sdma.srbm_soft_reset = 0;
  1129. return false;
  1130. }
  1131. }
  1132. static int sdma_v3_0_pre_soft_reset(void *handle)
  1133. {
  1134. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1135. u32 srbm_soft_reset = 0;
  1136. if (!adev->sdma.srbm_soft_reset)
  1137. return 0;
  1138. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1139. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1140. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1141. sdma_v3_0_ctx_switch_enable(adev, false);
  1142. sdma_v3_0_enable(adev, false);
  1143. }
  1144. return 0;
  1145. }
  1146. static int sdma_v3_0_post_soft_reset(void *handle)
  1147. {
  1148. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1149. u32 srbm_soft_reset = 0;
  1150. if (!adev->sdma.srbm_soft_reset)
  1151. return 0;
  1152. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1153. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1154. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1155. sdma_v3_0_gfx_resume(adev);
  1156. sdma_v3_0_rlc_resume(adev);
  1157. }
  1158. return 0;
  1159. }
  1160. static int sdma_v3_0_soft_reset(void *handle)
  1161. {
  1162. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1163. u32 srbm_soft_reset = 0;
  1164. u32 tmp;
  1165. if (!adev->sdma.srbm_soft_reset)
  1166. return 0;
  1167. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1168. if (srbm_soft_reset) {
  1169. tmp = RREG32(mmSRBM_SOFT_RESET);
  1170. tmp |= srbm_soft_reset;
  1171. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1172. WREG32(mmSRBM_SOFT_RESET, tmp);
  1173. tmp = RREG32(mmSRBM_SOFT_RESET);
  1174. udelay(50);
  1175. tmp &= ~srbm_soft_reset;
  1176. WREG32(mmSRBM_SOFT_RESET, tmp);
  1177. tmp = RREG32(mmSRBM_SOFT_RESET);
  1178. /* Wait a little for things to settle down */
  1179. udelay(50);
  1180. }
  1181. return 0;
  1182. }
  1183. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1184. struct amdgpu_irq_src *source,
  1185. unsigned type,
  1186. enum amdgpu_interrupt_state state)
  1187. {
  1188. u32 sdma_cntl;
  1189. switch (type) {
  1190. case AMDGPU_SDMA_IRQ_TRAP0:
  1191. switch (state) {
  1192. case AMDGPU_IRQ_STATE_DISABLE:
  1193. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1194. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1195. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1196. break;
  1197. case AMDGPU_IRQ_STATE_ENABLE:
  1198. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1199. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1200. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1201. break;
  1202. default:
  1203. break;
  1204. }
  1205. break;
  1206. case AMDGPU_SDMA_IRQ_TRAP1:
  1207. switch (state) {
  1208. case AMDGPU_IRQ_STATE_DISABLE:
  1209. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1210. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1211. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1212. break;
  1213. case AMDGPU_IRQ_STATE_ENABLE:
  1214. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1215. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1216. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1217. break;
  1218. default:
  1219. break;
  1220. }
  1221. break;
  1222. default:
  1223. break;
  1224. }
  1225. return 0;
  1226. }
  1227. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1228. struct amdgpu_irq_src *source,
  1229. struct amdgpu_iv_entry *entry)
  1230. {
  1231. u8 instance_id, queue_id;
  1232. instance_id = (entry->ring_id & 0x3) >> 0;
  1233. queue_id = (entry->ring_id & 0xc) >> 2;
  1234. DRM_DEBUG("IH: SDMA trap\n");
  1235. switch (instance_id) {
  1236. case 0:
  1237. switch (queue_id) {
  1238. case 0:
  1239. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1240. break;
  1241. case 1:
  1242. /* XXX compute */
  1243. break;
  1244. case 2:
  1245. /* XXX compute */
  1246. break;
  1247. }
  1248. break;
  1249. case 1:
  1250. switch (queue_id) {
  1251. case 0:
  1252. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1253. break;
  1254. case 1:
  1255. /* XXX compute */
  1256. break;
  1257. case 2:
  1258. /* XXX compute */
  1259. break;
  1260. }
  1261. break;
  1262. }
  1263. return 0;
  1264. }
  1265. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1266. struct amdgpu_irq_src *source,
  1267. struct amdgpu_iv_entry *entry)
  1268. {
  1269. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1270. schedule_work(&adev->reset_work);
  1271. return 0;
  1272. }
  1273. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1274. struct amdgpu_device *adev,
  1275. bool enable)
  1276. {
  1277. uint32_t temp, data;
  1278. int i;
  1279. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1280. for (i = 0; i < adev->sdma.num_instances; i++) {
  1281. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1282. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1283. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1284. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1285. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1286. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1287. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1288. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1289. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1290. if (data != temp)
  1291. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1292. }
  1293. } else {
  1294. for (i = 0; i < adev->sdma.num_instances; i++) {
  1295. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1296. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1299. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1303. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1304. if (data != temp)
  1305. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1306. }
  1307. }
  1308. }
  1309. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1310. struct amdgpu_device *adev,
  1311. bool enable)
  1312. {
  1313. uint32_t temp, data;
  1314. int i;
  1315. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1316. for (i = 0; i < adev->sdma.num_instances; i++) {
  1317. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1318. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1319. if (temp != data)
  1320. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1321. }
  1322. } else {
  1323. for (i = 0; i < adev->sdma.num_instances; i++) {
  1324. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1325. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1326. if (temp != data)
  1327. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1328. }
  1329. }
  1330. }
  1331. static int sdma_v3_0_set_clockgating_state(void *handle,
  1332. enum amd_clockgating_state state)
  1333. {
  1334. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1335. switch (adev->asic_type) {
  1336. case CHIP_FIJI:
  1337. case CHIP_CARRIZO:
  1338. case CHIP_STONEY:
  1339. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1340. state == AMD_CG_STATE_GATE ? true : false);
  1341. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1342. state == AMD_CG_STATE_GATE ? true : false);
  1343. break;
  1344. default:
  1345. break;
  1346. }
  1347. return 0;
  1348. }
  1349. static int sdma_v3_0_set_powergating_state(void *handle,
  1350. enum amd_powergating_state state)
  1351. {
  1352. return 0;
  1353. }
  1354. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1355. {
  1356. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1357. int data;
  1358. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1359. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1360. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1361. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1362. /* AMD_CG_SUPPORT_SDMA_LS */
  1363. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1364. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1365. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1366. }
  1367. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1368. .name = "sdma_v3_0",
  1369. .early_init = sdma_v3_0_early_init,
  1370. .late_init = NULL,
  1371. .sw_init = sdma_v3_0_sw_init,
  1372. .sw_fini = sdma_v3_0_sw_fini,
  1373. .hw_init = sdma_v3_0_hw_init,
  1374. .hw_fini = sdma_v3_0_hw_fini,
  1375. .suspend = sdma_v3_0_suspend,
  1376. .resume = sdma_v3_0_resume,
  1377. .is_idle = sdma_v3_0_is_idle,
  1378. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1379. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1380. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1381. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1382. .soft_reset = sdma_v3_0_soft_reset,
  1383. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1384. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1385. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1386. };
  1387. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1388. .type = AMDGPU_RING_TYPE_SDMA,
  1389. .align_mask = 0xf,
  1390. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1391. .get_rptr = sdma_v3_0_ring_get_rptr,
  1392. .get_wptr = sdma_v3_0_ring_get_wptr,
  1393. .set_wptr = sdma_v3_0_ring_set_wptr,
  1394. .emit_frame_size =
  1395. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1396. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1397. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1398. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1399. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1400. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1401. .emit_ib = sdma_v3_0_ring_emit_ib,
  1402. .emit_fence = sdma_v3_0_ring_emit_fence,
  1403. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1404. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1405. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1406. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1407. .test_ring = sdma_v3_0_ring_test_ring,
  1408. .test_ib = sdma_v3_0_ring_test_ib,
  1409. .insert_nop = sdma_v3_0_ring_insert_nop,
  1410. .pad_ib = sdma_v3_0_ring_pad_ib,
  1411. };
  1412. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1413. {
  1414. int i;
  1415. for (i = 0; i < adev->sdma.num_instances; i++)
  1416. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1417. }
  1418. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1419. .set = sdma_v3_0_set_trap_irq_state,
  1420. .process = sdma_v3_0_process_trap_irq,
  1421. };
  1422. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1423. .process = sdma_v3_0_process_illegal_inst_irq,
  1424. };
  1425. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1426. {
  1427. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1428. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1429. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1430. }
  1431. /**
  1432. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1433. *
  1434. * @ring: amdgpu_ring structure holding ring information
  1435. * @src_offset: src GPU address
  1436. * @dst_offset: dst GPU address
  1437. * @byte_count: number of bytes to xfer
  1438. *
  1439. * Copy GPU buffers using the DMA engine (VI).
  1440. * Used by the amdgpu ttm implementation to move pages if
  1441. * registered as the asic copy callback.
  1442. */
  1443. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1444. uint64_t src_offset,
  1445. uint64_t dst_offset,
  1446. uint32_t byte_count)
  1447. {
  1448. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1449. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1450. ib->ptr[ib->length_dw++] = byte_count;
  1451. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1452. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1453. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1454. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1455. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1456. }
  1457. /**
  1458. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1459. *
  1460. * @ring: amdgpu_ring structure holding ring information
  1461. * @src_data: value to write to buffer
  1462. * @dst_offset: dst GPU address
  1463. * @byte_count: number of bytes to xfer
  1464. *
  1465. * Fill GPU buffers using the DMA engine (VI).
  1466. */
  1467. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1468. uint32_t src_data,
  1469. uint64_t dst_offset,
  1470. uint32_t byte_count)
  1471. {
  1472. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1473. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1474. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1475. ib->ptr[ib->length_dw++] = src_data;
  1476. ib->ptr[ib->length_dw++] = byte_count;
  1477. }
  1478. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1479. .copy_max_bytes = 0x1fffff,
  1480. .copy_num_dw = 7,
  1481. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1482. .fill_max_bytes = 0x1fffff,
  1483. .fill_num_dw = 5,
  1484. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1485. };
  1486. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1487. {
  1488. if (adev->mman.buffer_funcs == NULL) {
  1489. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1490. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1491. }
  1492. }
  1493. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1494. .copy_pte = sdma_v3_0_vm_copy_pte,
  1495. .write_pte = sdma_v3_0_vm_write_pte,
  1496. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1497. };
  1498. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1499. {
  1500. unsigned i;
  1501. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1502. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1503. for (i = 0; i < adev->sdma.num_instances; i++)
  1504. adev->vm_manager.vm_pte_rings[i] =
  1505. &adev->sdma.instance[i].ring;
  1506. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1507. }
  1508. }
  1509. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1510. {
  1511. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1512. .major = 3,
  1513. .minor = 0,
  1514. .rev = 0,
  1515. .funcs = &sdma_v3_0_ip_funcs,
  1516. };
  1517. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1518. {
  1519. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1520. .major = 3,
  1521. .minor = 1,
  1522. .rev = 0,
  1523. .funcs = &sdma_v3_0_ip_funcs,
  1524. };