skx_edac.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122
  1. /*
  2. * EDAC driver for Intel(R) Xeon(R) Skylake processors
  3. * Copyright (c) 2016, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/pci.h>
  17. #include <linux/pci_ids.h>
  18. #include <linux/slab.h>
  19. #include <linux/delay.h>
  20. #include <linux/edac.h>
  21. #include <linux/mmzone.h>
  22. #include <linux/smp.h>
  23. #include <linux/bitmap.h>
  24. #include <linux/math64.h>
  25. #include <linux/mod_devicetable.h>
  26. #include <asm/cpu_device_id.h>
  27. #include <asm/intel-family.h>
  28. #include <asm/processor.h>
  29. #include <asm/mce.h>
  30. #include "edac_module.h"
  31. #define SKX_REVISION " Ver: 1.0 "
  32. /*
  33. * Debug macros
  34. */
  35. #define skx_printk(level, fmt, arg...) \
  36. edac_printk(level, "skx", fmt, ##arg)
  37. #define skx_mc_printk(mci, level, fmt, arg...) \
  38. edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
  39. /*
  40. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  41. */
  42. #define GET_BITFIELD(v, lo, hi) \
  43. (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
  44. static LIST_HEAD(skx_edac_list);
  45. static u64 skx_tolm, skx_tohm;
  46. #define NUM_IMC 2 /* memory controllers per socket */
  47. #define NUM_CHANNELS 3 /* channels per memory controller */
  48. #define NUM_DIMMS 2 /* Max DIMMS per channel */
  49. #define MASK26 0x3FFFFFF /* Mask for 2^26 */
  50. #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
  51. /*
  52. * Each cpu socket contains some pci devices that provide global
  53. * information, and also some that are local to each of the two
  54. * memory controllers on the die.
  55. */
  56. struct skx_dev {
  57. struct list_head list;
  58. u8 bus[4];
  59. struct pci_dev *sad_all;
  60. struct pci_dev *util_all;
  61. u32 mcroute;
  62. struct skx_imc {
  63. struct mem_ctl_info *mci;
  64. u8 mc; /* system wide mc# */
  65. u8 lmc; /* socket relative mc# */
  66. u8 src_id, node_id;
  67. struct skx_channel {
  68. struct pci_dev *cdev;
  69. struct skx_dimm {
  70. u8 close_pg;
  71. u8 bank_xor_enable;
  72. u8 fine_grain_bank;
  73. u8 rowbits;
  74. u8 colbits;
  75. } dimms[NUM_DIMMS];
  76. } chan[NUM_CHANNELS];
  77. } imc[NUM_IMC];
  78. };
  79. static int skx_num_sockets;
  80. struct skx_pvt {
  81. struct skx_imc *imc;
  82. };
  83. struct decoded_addr {
  84. struct skx_dev *dev;
  85. u64 addr;
  86. int socket;
  87. int imc;
  88. int channel;
  89. u64 chan_addr;
  90. int sktways;
  91. int chanways;
  92. int dimm;
  93. int rank;
  94. int channel_rank;
  95. u64 rank_address;
  96. int row;
  97. int column;
  98. int bank_address;
  99. int bank_group;
  100. };
  101. static struct skx_dev *get_skx_dev(u8 bus, u8 idx)
  102. {
  103. struct skx_dev *d;
  104. list_for_each_entry(d, &skx_edac_list, list) {
  105. if (d->bus[idx] == bus)
  106. return d;
  107. }
  108. return NULL;
  109. }
  110. enum munittype {
  111. CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
  112. };
  113. struct munit {
  114. u16 did;
  115. u16 devfn[NUM_IMC];
  116. u8 busidx;
  117. u8 per_socket;
  118. enum munittype mtype;
  119. };
  120. /*
  121. * List of PCI device ids that we need together with some device
  122. * number and function numbers to tell which memory controller the
  123. * device belongs to.
  124. */
  125. static const struct munit skx_all_munits[] = {
  126. { 0x2054, { }, 1, 1, SAD_ALL },
  127. { 0x2055, { }, 1, 1, UTIL_ALL },
  128. { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
  129. { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
  130. { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
  131. { 0x208e, { }, 1, 0, SAD },
  132. { }
  133. };
  134. /*
  135. * We use the per-socket device 0x2016 to count how many sockets are present,
  136. * and to detemine which PCI buses are associated with each socket. Allocate
  137. * and build the full list of all the skx_dev structures that we need here.
  138. */
  139. static int get_all_bus_mappings(void)
  140. {
  141. struct pci_dev *pdev, *prev;
  142. struct skx_dev *d;
  143. u32 reg;
  144. int ndev = 0;
  145. prev = NULL;
  146. for (;;) {
  147. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
  148. if (!pdev)
  149. break;
  150. ndev++;
  151. d = kzalloc(sizeof(*d), GFP_KERNEL);
  152. if (!d) {
  153. pci_dev_put(pdev);
  154. return -ENOMEM;
  155. }
  156. pci_read_config_dword(pdev, 0xCC, &reg);
  157. d->bus[0] = GET_BITFIELD(reg, 0, 7);
  158. d->bus[1] = GET_BITFIELD(reg, 8, 15);
  159. d->bus[2] = GET_BITFIELD(reg, 16, 23);
  160. d->bus[3] = GET_BITFIELD(reg, 24, 31);
  161. edac_dbg(2, "busses: %x, %x, %x, %x\n",
  162. d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
  163. list_add_tail(&d->list, &skx_edac_list);
  164. skx_num_sockets++;
  165. prev = pdev;
  166. }
  167. return ndev;
  168. }
  169. static int get_all_munits(const struct munit *m)
  170. {
  171. struct pci_dev *pdev, *prev;
  172. struct skx_dev *d;
  173. u32 reg;
  174. int i = 0, ndev = 0;
  175. prev = NULL;
  176. for (;;) {
  177. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
  178. if (!pdev)
  179. break;
  180. ndev++;
  181. if (m->per_socket == NUM_IMC) {
  182. for (i = 0; i < NUM_IMC; i++)
  183. if (m->devfn[i] == pdev->devfn)
  184. break;
  185. if (i == NUM_IMC)
  186. goto fail;
  187. }
  188. d = get_skx_dev(pdev->bus->number, m->busidx);
  189. if (!d)
  190. goto fail;
  191. /* Be sure that the device is enabled */
  192. if (unlikely(pci_enable_device(pdev) < 0)) {
  193. skx_printk(KERN_ERR,
  194. "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
  195. goto fail;
  196. }
  197. switch (m->mtype) {
  198. case CHAN0: case CHAN1: case CHAN2:
  199. pci_dev_get(pdev);
  200. d->imc[i].chan[m->mtype].cdev = pdev;
  201. break;
  202. case SAD_ALL:
  203. pci_dev_get(pdev);
  204. d->sad_all = pdev;
  205. break;
  206. case UTIL_ALL:
  207. pci_dev_get(pdev);
  208. d->util_all = pdev;
  209. break;
  210. case SAD:
  211. /*
  212. * one of these devices per core, including cores
  213. * that don't exist on this SKU. Ignore any that
  214. * read a route table of zero, make sure all the
  215. * non-zero values match.
  216. */
  217. pci_read_config_dword(pdev, 0xB4, &reg);
  218. if (reg != 0) {
  219. if (d->mcroute == 0)
  220. d->mcroute = reg;
  221. else if (d->mcroute != reg) {
  222. skx_printk(KERN_ERR,
  223. "mcroute mismatch\n");
  224. goto fail;
  225. }
  226. }
  227. ndev--;
  228. break;
  229. }
  230. prev = pdev;
  231. }
  232. return ndev;
  233. fail:
  234. pci_dev_put(pdev);
  235. return -ENODEV;
  236. }
  237. static const struct x86_cpu_id skx_cpuids[] = {
  238. { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
  239. { }
  240. };
  241. MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
  242. static u8 get_src_id(struct skx_dev *d)
  243. {
  244. u32 reg;
  245. pci_read_config_dword(d->util_all, 0xF0, &reg);
  246. return GET_BITFIELD(reg, 12, 14);
  247. }
  248. static u8 skx_get_node_id(struct skx_dev *d)
  249. {
  250. u32 reg;
  251. pci_read_config_dword(d->util_all, 0xF4, &reg);
  252. return GET_BITFIELD(reg, 0, 2);
  253. }
  254. static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
  255. int maxval, char *name)
  256. {
  257. u32 val = GET_BITFIELD(reg, lobit, hibit);
  258. if (val < minval || val > maxval) {
  259. edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
  260. return -EINVAL;
  261. }
  262. return val + add;
  263. }
  264. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
  265. #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks")
  266. #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
  267. #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
  268. static int get_width(u32 mtr)
  269. {
  270. switch (GET_BITFIELD(mtr, 8, 9)) {
  271. case 0:
  272. return DEV_X4;
  273. case 1:
  274. return DEV_X8;
  275. case 2:
  276. return DEV_X16;
  277. }
  278. return DEV_UNKNOWN;
  279. }
  280. static int skx_get_hi_lo(void)
  281. {
  282. struct pci_dev *pdev;
  283. u32 reg;
  284. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
  285. if (!pdev) {
  286. edac_dbg(0, "Can't get tolm/tohm\n");
  287. return -ENODEV;
  288. }
  289. pci_read_config_dword(pdev, 0xD0, &reg);
  290. skx_tolm = reg;
  291. pci_read_config_dword(pdev, 0xD4, &reg);
  292. skx_tohm = reg;
  293. pci_read_config_dword(pdev, 0xD8, &reg);
  294. skx_tohm |= (u64)reg << 32;
  295. pci_dev_put(pdev);
  296. edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
  297. return 0;
  298. }
  299. static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
  300. struct skx_imc *imc, int chan, int dimmno)
  301. {
  302. int banks = 16, ranks, rows, cols, npages;
  303. u64 size;
  304. if (!IS_DIMM_PRESENT(mtr))
  305. return 0;
  306. ranks = numrank(mtr);
  307. rows = numrow(mtr);
  308. cols = numcol(mtr);
  309. /*
  310. * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
  311. */
  312. size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
  313. npages = MiB_TO_PAGES(size);
  314. edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  315. imc->mc, chan, dimmno, size, npages,
  316. banks, ranks, rows, cols);
  317. imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
  318. imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
  319. imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
  320. imc->chan[chan].dimms[dimmno].rowbits = rows;
  321. imc->chan[chan].dimms[dimmno].colbits = cols;
  322. dimm->nr_pages = npages;
  323. dimm->grain = 32;
  324. dimm->dtype = get_width(mtr);
  325. dimm->mtype = MEM_DDR4;
  326. dimm->edac_mode = EDAC_SECDED; /* likely better than this */
  327. snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
  328. imc->src_id, imc->lmc, chan, dimmno);
  329. return 1;
  330. }
  331. #define SKX_GET_MTMTR(dev, reg) \
  332. pci_read_config_dword((dev), 0x87c, &reg)
  333. static bool skx_check_ecc(struct pci_dev *pdev)
  334. {
  335. u32 mtmtr;
  336. SKX_GET_MTMTR(pdev, mtmtr);
  337. return !!GET_BITFIELD(mtmtr, 2, 2);
  338. }
  339. static int skx_get_dimm_config(struct mem_ctl_info *mci)
  340. {
  341. struct skx_pvt *pvt = mci->pvt_info;
  342. struct skx_imc *imc = pvt->imc;
  343. struct dimm_info *dimm;
  344. int i, j;
  345. u32 mtr, amap;
  346. int ndimms;
  347. for (i = 0; i < NUM_CHANNELS; i++) {
  348. ndimms = 0;
  349. pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
  350. for (j = 0; j < NUM_DIMMS; j++) {
  351. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
  352. mci->n_layers, i, j, 0);
  353. pci_read_config_dword(imc->chan[i].cdev,
  354. 0x80 + 4*j, &mtr);
  355. ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
  356. }
  357. if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
  358. skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
  359. return -ENODEV;
  360. }
  361. }
  362. return 0;
  363. }
  364. static void skx_unregister_mci(struct skx_imc *imc)
  365. {
  366. struct mem_ctl_info *mci = imc->mci;
  367. if (!mci)
  368. return;
  369. edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
  370. /* Remove MC sysfs nodes */
  371. edac_mc_del_mc(mci->pdev);
  372. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  373. kfree(mci->ctl_name);
  374. edac_mc_free(mci);
  375. }
  376. static int skx_register_mci(struct skx_imc *imc)
  377. {
  378. struct mem_ctl_info *mci;
  379. struct edac_mc_layer layers[2];
  380. struct pci_dev *pdev = imc->chan[0].cdev;
  381. struct skx_pvt *pvt;
  382. int rc;
  383. /* allocate a new MC control structure */
  384. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  385. layers[0].size = NUM_CHANNELS;
  386. layers[0].is_virt_csrow = false;
  387. layers[1].type = EDAC_MC_LAYER_SLOT;
  388. layers[1].size = NUM_DIMMS;
  389. layers[1].is_virt_csrow = true;
  390. mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
  391. sizeof(struct skx_pvt));
  392. if (unlikely(!mci))
  393. return -ENOMEM;
  394. edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
  395. /* Associate skx_dev and mci for future usage */
  396. imc->mci = mci;
  397. pvt = mci->pvt_info;
  398. pvt->imc = imc;
  399. mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
  400. imc->node_id, imc->lmc);
  401. mci->mtype_cap = MEM_FLAG_DDR4;
  402. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  403. mci->edac_cap = EDAC_FLAG_NONE;
  404. mci->mod_name = "skx_edac.c";
  405. mci->dev_name = pci_name(imc->chan[0].cdev);
  406. mci->mod_ver = SKX_REVISION;
  407. mci->ctl_page_to_phys = NULL;
  408. rc = skx_get_dimm_config(mci);
  409. if (rc < 0)
  410. goto fail;
  411. /* record ptr to the generic device */
  412. mci->pdev = &pdev->dev;
  413. /* add this new MC control structure to EDAC's list of MCs */
  414. if (unlikely(edac_mc_add_mc(mci))) {
  415. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  416. rc = -EINVAL;
  417. goto fail;
  418. }
  419. return 0;
  420. fail:
  421. kfree(mci->ctl_name);
  422. edac_mc_free(mci);
  423. imc->mci = NULL;
  424. return rc;
  425. }
  426. #define SKX_MAX_SAD 24
  427. #define SKX_GET_SAD(d, i, reg) \
  428. pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
  429. #define SKX_GET_ILV(d, i, reg) \
  430. pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
  431. #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
  432. #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
  433. #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
  434. #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
  435. #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
  436. #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
  437. #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
  438. #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
  439. #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
  440. static bool skx_sad_decode(struct decoded_addr *res)
  441. {
  442. struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
  443. u64 addr = res->addr;
  444. int i, idx, tgt, lchan, shift;
  445. u32 sad, ilv;
  446. u64 limit, prev_limit;
  447. int remote = 0;
  448. /* Simple sanity check for I/O space or out of range */
  449. if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
  450. edac_dbg(0, "Address %llx out of range\n", addr);
  451. return false;
  452. }
  453. restart:
  454. prev_limit = 0;
  455. for (i = 0; i < SKX_MAX_SAD; i++) {
  456. SKX_GET_SAD(d, i, sad);
  457. limit = SKX_SAD_LIMIT(sad);
  458. if (SKX_SAD_ENABLE(sad)) {
  459. if (addr >= prev_limit && addr <= limit)
  460. goto sad_found;
  461. }
  462. prev_limit = limit + 1;
  463. }
  464. edac_dbg(0, "No SAD entry for %llx\n", addr);
  465. return false;
  466. sad_found:
  467. SKX_GET_ILV(d, i, ilv);
  468. switch (SKX_SAD_INTERLEAVE(sad)) {
  469. case 0:
  470. idx = GET_BITFIELD(addr, 6, 8);
  471. break;
  472. case 1:
  473. idx = GET_BITFIELD(addr, 8, 10);
  474. break;
  475. case 2:
  476. idx = GET_BITFIELD(addr, 12, 14);
  477. break;
  478. case 3:
  479. idx = GET_BITFIELD(addr, 30, 32);
  480. break;
  481. }
  482. tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
  483. /* If point to another node, find it and start over */
  484. if (SKX_ILV_REMOTE(tgt)) {
  485. if (remote) {
  486. edac_dbg(0, "Double remote!\n");
  487. return false;
  488. }
  489. remote = 1;
  490. list_for_each_entry(d, &skx_edac_list, list) {
  491. if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
  492. goto restart;
  493. }
  494. edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
  495. return false;
  496. }
  497. if (SKX_SAD_MOD3(sad) == 0)
  498. lchan = SKX_ILV_TARGET(tgt);
  499. else {
  500. switch (SKX_SAD_MOD3MODE(sad)) {
  501. case 0:
  502. shift = 6;
  503. break;
  504. case 1:
  505. shift = 8;
  506. break;
  507. case 2:
  508. shift = 12;
  509. break;
  510. default:
  511. edac_dbg(0, "illegal mod3mode\n");
  512. return false;
  513. }
  514. switch (SKX_SAD_MOD3ASMOD2(sad)) {
  515. case 0:
  516. lchan = (addr >> shift) % 3;
  517. break;
  518. case 1:
  519. lchan = (addr >> shift) % 2;
  520. break;
  521. case 2:
  522. lchan = (addr >> shift) % 2;
  523. lchan = (lchan << 1) | ~lchan;
  524. break;
  525. case 3:
  526. lchan = ((addr >> shift) % 2) << 1;
  527. break;
  528. }
  529. lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
  530. }
  531. res->dev = d;
  532. res->socket = d->imc[0].src_id;
  533. res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
  534. res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
  535. edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
  536. res->addr, res->socket, res->imc, res->channel);
  537. return true;
  538. }
  539. #define SKX_MAX_TAD 8
  540. #define SKX_GET_TADBASE(d, mc, i, reg) \
  541. pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
  542. #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
  543. pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
  544. #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
  545. pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
  546. #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
  547. #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
  548. #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
  549. #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
  550. #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
  551. #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
  552. #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
  553. /* which bit used for both socket and channel interleave */
  554. static int skx_granularity[] = { 6, 8, 12, 30 };
  555. static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
  556. {
  557. addr >>= shift;
  558. addr /= ways;
  559. addr <<= shift;
  560. return addr | (lowbits & ((1ull << shift) - 1));
  561. }
  562. static bool skx_tad_decode(struct decoded_addr *res)
  563. {
  564. int i;
  565. u32 base, wayness, chnilvoffset;
  566. int skt_interleave_bit, chn_interleave_bit;
  567. u64 channel_addr;
  568. for (i = 0; i < SKX_MAX_TAD; i++) {
  569. SKX_GET_TADBASE(res->dev, res->imc, i, base);
  570. SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
  571. if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
  572. goto tad_found;
  573. }
  574. edac_dbg(0, "No TAD entry for %llx\n", res->addr);
  575. return false;
  576. tad_found:
  577. res->sktways = SKX_TAD_SKTWAYS(wayness);
  578. res->chanways = SKX_TAD_CHNWAYS(wayness);
  579. skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
  580. chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
  581. SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
  582. channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
  583. if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
  584. /* Must handle channel first, then socket */
  585. channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
  586. res->chanways, channel_addr);
  587. channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
  588. res->sktways, channel_addr);
  589. } else {
  590. /* Handle socket then channel. Preserve low bits from original address */
  591. channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
  592. res->sktways, res->addr);
  593. channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
  594. res->chanways, res->addr);
  595. }
  596. res->chan_addr = channel_addr;
  597. edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
  598. res->addr, res->chan_addr, res->sktways, res->chanways);
  599. return true;
  600. }
  601. #define SKX_MAX_RIR 4
  602. #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
  603. pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
  604. 0x108 + 4 * (i), &reg)
  605. #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
  606. pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
  607. 0x120 + 16 * idx + 4 * (i), &reg)
  608. #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
  609. #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
  610. #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
  611. #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
  612. #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
  613. static bool skx_rir_decode(struct decoded_addr *res)
  614. {
  615. int i, idx, chan_rank;
  616. int shift;
  617. u32 rirway, rirlv;
  618. u64 rank_addr, prev_limit = 0, limit;
  619. if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
  620. shift = 6;
  621. else
  622. shift = 13;
  623. for (i = 0; i < SKX_MAX_RIR; i++) {
  624. SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
  625. limit = SKX_RIR_LIMIT(rirway);
  626. if (SKX_RIR_VALID(rirway)) {
  627. if (prev_limit <= res->chan_addr &&
  628. res->chan_addr <= limit)
  629. goto rir_found;
  630. }
  631. prev_limit = limit;
  632. }
  633. edac_dbg(0, "No RIR entry for %llx\n", res->addr);
  634. return false;
  635. rir_found:
  636. rank_addr = res->chan_addr >> shift;
  637. rank_addr /= SKX_RIR_WAYS(rirway);
  638. rank_addr <<= shift;
  639. rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
  640. res->rank_address = rank_addr;
  641. idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
  642. SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
  643. res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
  644. chan_rank = SKX_RIR_CHAN_RANK(rirlv);
  645. res->channel_rank = chan_rank;
  646. res->dimm = chan_rank / 4;
  647. res->rank = chan_rank % 4;
  648. edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
  649. res->addr, res->dimm, res->rank,
  650. res->channel_rank, res->rank_address);
  651. return true;
  652. }
  653. static u8 skx_close_row[] = {
  654. 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
  655. };
  656. static u8 skx_close_column[] = {
  657. 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
  658. };
  659. static u8 skx_open_row[] = {
  660. 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
  661. };
  662. static u8 skx_open_column[] = {
  663. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
  664. };
  665. static u8 skx_open_fine_column[] = {
  666. 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
  667. };
  668. static int skx_bits(u64 addr, int nbits, u8 *bits)
  669. {
  670. int i, res = 0;
  671. for (i = 0; i < nbits; i++)
  672. res |= ((addr >> bits[i]) & 1) << i;
  673. return res;
  674. }
  675. static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
  676. {
  677. int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
  678. if (do_xor)
  679. ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
  680. return ret;
  681. }
  682. static bool skx_mad_decode(struct decoded_addr *r)
  683. {
  684. struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
  685. int bg0 = dimm->fine_grain_bank ? 6 : 13;
  686. if (dimm->close_pg) {
  687. r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
  688. r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
  689. r->column |= 0x400; /* C10 is autoprecharge, always set */
  690. r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
  691. r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
  692. } else {
  693. r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
  694. if (dimm->fine_grain_bank)
  695. r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
  696. else
  697. r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
  698. r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
  699. r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
  700. }
  701. r->row &= (1u << dimm->rowbits) - 1;
  702. edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
  703. r->addr, r->row, r->column, r->bank_address,
  704. r->bank_group);
  705. return true;
  706. }
  707. static bool skx_decode(struct decoded_addr *res)
  708. {
  709. return skx_sad_decode(res) && skx_tad_decode(res) &&
  710. skx_rir_decode(res) && skx_mad_decode(res);
  711. }
  712. #ifdef CONFIG_EDAC_DEBUG
  713. /*
  714. * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
  715. * Write an address to this file to exercise the address decode
  716. * logic in this driver.
  717. */
  718. static struct dentry *skx_test;
  719. static u64 skx_fake_addr;
  720. static int debugfs_u64_set(void *data, u64 val)
  721. {
  722. struct decoded_addr res;
  723. res.addr = val;
  724. skx_decode(&res);
  725. return 0;
  726. }
  727. DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
  728. static struct dentry *mydebugfs_create(const char *name, umode_t mode,
  729. struct dentry *parent, u64 *value)
  730. {
  731. return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
  732. }
  733. static void setup_skx_debug(void)
  734. {
  735. skx_test = debugfs_create_dir("skx_edac_test", NULL);
  736. mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
  737. }
  738. static void teardown_skx_debug(void)
  739. {
  740. debugfs_remove_recursive(skx_test);
  741. }
  742. #else
  743. static void setup_skx_debug(void)
  744. {
  745. }
  746. static void teardown_skx_debug(void)
  747. {
  748. }
  749. #endif /*CONFIG_EDAC_DEBUG*/
  750. static void skx_mce_output_error(struct mem_ctl_info *mci,
  751. const struct mce *m,
  752. struct decoded_addr *res)
  753. {
  754. enum hw_event_mc_err_type tp_event;
  755. char *type, *optype, msg[256];
  756. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  757. bool overflow = GET_BITFIELD(m->status, 62, 62);
  758. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  759. bool recoverable;
  760. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  761. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  762. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  763. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  764. recoverable = GET_BITFIELD(m->status, 56, 56);
  765. if (uncorrected_error) {
  766. if (ripv) {
  767. type = "FATAL";
  768. tp_event = HW_EVENT_ERR_FATAL;
  769. } else {
  770. type = "NON_FATAL";
  771. tp_event = HW_EVENT_ERR_UNCORRECTED;
  772. }
  773. } else {
  774. type = "CORRECTED";
  775. tp_event = HW_EVENT_ERR_CORRECTED;
  776. }
  777. /*
  778. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  779. * memory errors should fit in this mask:
  780. * 000f 0000 1mmm cccc (binary)
  781. * where:
  782. * f = Correction Report Filtering Bit. If 1, subsequent errors
  783. * won't be shown
  784. * mmm = error type
  785. * cccc = channel
  786. * If the mask doesn't match, report an error to the parsing logic
  787. */
  788. if (!((errcode & 0xef80) == 0x80)) {
  789. optype = "Can't parse: it is not a mem";
  790. } else {
  791. switch (optypenum) {
  792. case 0:
  793. optype = "generic undef request error";
  794. break;
  795. case 1:
  796. optype = "memory read error";
  797. break;
  798. case 2:
  799. optype = "memory write error";
  800. break;
  801. case 3:
  802. optype = "addr/cmd error";
  803. break;
  804. case 4:
  805. optype = "memory scrubbing error";
  806. break;
  807. default:
  808. optype = "reserved";
  809. break;
  810. }
  811. }
  812. snprintf(msg, sizeof(msg),
  813. "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
  814. overflow ? " OVERFLOW" : "",
  815. (uncorrected_error && recoverable) ? " recoverable" : "",
  816. mscod, errcode,
  817. res->socket, res->imc, res->rank,
  818. res->bank_group, res->bank_address, res->row, res->column);
  819. edac_dbg(0, "%s\n", msg);
  820. /* Call the helper to output message */
  821. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  822. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  823. res->channel, res->dimm, -1,
  824. optype, msg);
  825. }
  826. static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
  827. void *data)
  828. {
  829. struct mce *mce = (struct mce *)data;
  830. struct decoded_addr res;
  831. struct mem_ctl_info *mci;
  832. char *type;
  833. if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
  834. return NOTIFY_DONE;
  835. /* ignore unless this is memory related with an address */
  836. if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
  837. return NOTIFY_DONE;
  838. res.addr = mce->addr;
  839. if (!skx_decode(&res))
  840. return NOTIFY_DONE;
  841. mci = res.dev->imc[res.imc].mci;
  842. if (mce->mcgstatus & MCG_STATUS_MCIP)
  843. type = "Exception";
  844. else
  845. type = "Event";
  846. skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
  847. skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
  848. "Bank %d: %016Lx\n", mce->extcpu, type,
  849. mce->mcgstatus, mce->bank, mce->status);
  850. skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
  851. skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
  852. skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
  853. skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
  854. "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
  855. mce->time, mce->socketid, mce->apicid);
  856. skx_mce_output_error(mci, mce, &res);
  857. return NOTIFY_DONE;
  858. }
  859. static struct notifier_block skx_mce_dec = {
  860. .notifier_call = skx_mce_check_error,
  861. };
  862. static void skx_remove(void)
  863. {
  864. int i, j;
  865. struct skx_dev *d, *tmp;
  866. edac_dbg(0, "\n");
  867. list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
  868. list_del(&d->list);
  869. for (i = 0; i < NUM_IMC; i++) {
  870. skx_unregister_mci(&d->imc[i]);
  871. for (j = 0; j < NUM_CHANNELS; j++)
  872. pci_dev_put(d->imc[i].chan[j].cdev);
  873. }
  874. pci_dev_put(d->util_all);
  875. pci_dev_put(d->sad_all);
  876. kfree(d);
  877. }
  878. }
  879. /*
  880. * skx_init:
  881. * make sure we are running on the correct cpu model
  882. * search for all the devices we need
  883. * check which DIMMs are present.
  884. */
  885. static int __init skx_init(void)
  886. {
  887. const struct x86_cpu_id *id;
  888. const struct munit *m;
  889. int rc = 0, i;
  890. u8 mc = 0, src_id, node_id;
  891. struct skx_dev *d;
  892. edac_dbg(2, "\n");
  893. id = x86_match_cpu(skx_cpuids);
  894. if (!id)
  895. return -ENODEV;
  896. rc = skx_get_hi_lo();
  897. if (rc)
  898. return rc;
  899. rc = get_all_bus_mappings();
  900. if (rc < 0)
  901. goto fail;
  902. if (rc == 0) {
  903. edac_dbg(2, "No memory controllers found\n");
  904. return -ENODEV;
  905. }
  906. for (m = skx_all_munits; m->did; m++) {
  907. rc = get_all_munits(m);
  908. if (rc < 0)
  909. goto fail;
  910. if (rc != m->per_socket * skx_num_sockets) {
  911. edac_dbg(2, "Expected %d, got %d of %x\n",
  912. m->per_socket * skx_num_sockets, rc, m->did);
  913. rc = -ENODEV;
  914. goto fail;
  915. }
  916. }
  917. list_for_each_entry(d, &skx_edac_list, list) {
  918. src_id = get_src_id(d);
  919. node_id = skx_get_node_id(d);
  920. edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
  921. for (i = 0; i < NUM_IMC; i++) {
  922. d->imc[i].mc = mc++;
  923. d->imc[i].lmc = i;
  924. d->imc[i].src_id = src_id;
  925. d->imc[i].node_id = node_id;
  926. rc = skx_register_mci(&d->imc[i]);
  927. if (rc < 0)
  928. goto fail;
  929. }
  930. }
  931. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  932. opstate_init();
  933. setup_skx_debug();
  934. mce_register_decode_chain(&skx_mce_dec);
  935. return 0;
  936. fail:
  937. skx_remove();
  938. return rc;
  939. }
  940. static void __exit skx_exit(void)
  941. {
  942. edac_dbg(2, "\n");
  943. mce_unregister_decode_chain(&skx_mce_dec);
  944. skx_remove();
  945. teardown_skx_debug();
  946. }
  947. module_init(skx_init);
  948. module_exit(skx_exit);
  949. module_param(edac_op_state, int, 0444);
  950. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  951. MODULE_LICENSE("GPL v2");
  952. MODULE_AUTHOR("Tony Luck");
  953. MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");