rk3288_crypto_ahash.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /*
  2. * Crypto acceleration support for Rockchip RK3288
  3. *
  4. * Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
  5. *
  6. * Author: Zain Wang <zain.wang@rock-chips.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * Some ideas are from marvell/cesa.c and s5p-sss.c driver.
  13. */
  14. #include "rk3288_crypto.h"
  15. /*
  16. * IC can not process zero message hash,
  17. * so we put the fixed hash out when met zero message.
  18. */
  19. static int zero_message_process(struct ahash_request *req)
  20. {
  21. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  22. int rk_digest_size = crypto_ahash_digestsize(tfm);
  23. switch (rk_digest_size) {
  24. case SHA1_DIGEST_SIZE:
  25. memcpy(req->result, sha1_zero_message_hash, rk_digest_size);
  26. break;
  27. case SHA256_DIGEST_SIZE:
  28. memcpy(req->result, sha256_zero_message_hash, rk_digest_size);
  29. break;
  30. case MD5_DIGEST_SIZE:
  31. memcpy(req->result, md5_zero_message_hash, rk_digest_size);
  32. break;
  33. default:
  34. return -EINVAL;
  35. }
  36. return 0;
  37. }
  38. static void rk_ahash_crypto_complete(struct rk_crypto_info *dev, int err)
  39. {
  40. if (dev->ahash_req->base.complete)
  41. dev->ahash_req->base.complete(&dev->ahash_req->base, err);
  42. }
  43. static void rk_ahash_reg_init(struct rk_crypto_info *dev)
  44. {
  45. int reg_status = 0;
  46. reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) |
  47. RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
  48. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
  49. reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL);
  50. reg_status &= (~RK_CRYPTO_HASH_FLUSH);
  51. reg_status |= _SBF(0xffff, 16);
  52. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
  53. memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
  54. CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
  55. RK_CRYPTO_HRDMA_DONE_ENA);
  56. CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
  57. RK_CRYPTO_HRDMA_DONE_INT);
  58. CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, dev->mode |
  59. RK_CRYPTO_HASH_SWAP_DO);
  60. CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
  61. RK_CRYPTO_BYTESWAP_BRFIFO |
  62. RK_CRYPTO_BYTESWAP_BTFIFO);
  63. CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, dev->total);
  64. }
  65. static int rk_ahash_init(struct ahash_request *req)
  66. {
  67. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  68. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  69. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  70. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  71. rctx->fallback_req.base.flags = req->base.flags &
  72. CRYPTO_TFM_REQ_MAY_SLEEP;
  73. return crypto_ahash_init(&rctx->fallback_req);
  74. }
  75. static int rk_ahash_update(struct ahash_request *req)
  76. {
  77. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  78. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  79. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  80. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  81. rctx->fallback_req.base.flags = req->base.flags &
  82. CRYPTO_TFM_REQ_MAY_SLEEP;
  83. rctx->fallback_req.nbytes = req->nbytes;
  84. rctx->fallback_req.src = req->src;
  85. return crypto_ahash_update(&rctx->fallback_req);
  86. }
  87. static int rk_ahash_final(struct ahash_request *req)
  88. {
  89. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  90. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  91. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  92. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  93. rctx->fallback_req.base.flags = req->base.flags &
  94. CRYPTO_TFM_REQ_MAY_SLEEP;
  95. rctx->fallback_req.result = req->result;
  96. return crypto_ahash_final(&rctx->fallback_req);
  97. }
  98. static int rk_ahash_finup(struct ahash_request *req)
  99. {
  100. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  101. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  102. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  103. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  104. rctx->fallback_req.base.flags = req->base.flags &
  105. CRYPTO_TFM_REQ_MAY_SLEEP;
  106. rctx->fallback_req.nbytes = req->nbytes;
  107. rctx->fallback_req.src = req->src;
  108. rctx->fallback_req.result = req->result;
  109. return crypto_ahash_finup(&rctx->fallback_req);
  110. }
  111. static int rk_ahash_import(struct ahash_request *req, const void *in)
  112. {
  113. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  114. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  115. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  116. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  117. rctx->fallback_req.base.flags = req->base.flags &
  118. CRYPTO_TFM_REQ_MAY_SLEEP;
  119. return crypto_ahash_import(&rctx->fallback_req, in);
  120. }
  121. static int rk_ahash_export(struct ahash_request *req, void *out)
  122. {
  123. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  124. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  125. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  126. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  127. rctx->fallback_req.base.flags = req->base.flags &
  128. CRYPTO_TFM_REQ_MAY_SLEEP;
  129. return crypto_ahash_export(&rctx->fallback_req, out);
  130. }
  131. static int rk_ahash_digest(struct ahash_request *req)
  132. {
  133. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  134. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  135. struct rk_crypto_info *dev = NULL;
  136. unsigned long flags;
  137. int ret;
  138. if (!req->nbytes)
  139. return zero_message_process(req);
  140. dev = tctx->dev;
  141. dev->total = req->nbytes;
  142. dev->left_bytes = req->nbytes;
  143. dev->aligned = 0;
  144. dev->mode = 0;
  145. dev->align_size = 4;
  146. dev->sg_dst = NULL;
  147. dev->sg_src = req->src;
  148. dev->first = req->src;
  149. dev->nents = sg_nents(req->src);
  150. switch (crypto_ahash_digestsize(tfm)) {
  151. case SHA1_DIGEST_SIZE:
  152. dev->mode = RK_CRYPTO_HASH_SHA1;
  153. break;
  154. case SHA256_DIGEST_SIZE:
  155. dev->mode = RK_CRYPTO_HASH_SHA256;
  156. break;
  157. case MD5_DIGEST_SIZE:
  158. dev->mode = RK_CRYPTO_HASH_MD5;
  159. break;
  160. default:
  161. return -EINVAL;
  162. }
  163. rk_ahash_reg_init(dev);
  164. spin_lock_irqsave(&dev->lock, flags);
  165. ret = crypto_enqueue_request(&dev->queue, &req->base);
  166. spin_unlock_irqrestore(&dev->lock, flags);
  167. tasklet_schedule(&dev->crypto_tasklet);
  168. /*
  169. * it will take some time to process date after last dma transmission.
  170. *
  171. * waiting time is relative with the last date len,
  172. * so cannot set a fixed time here.
  173. * 10-50 makes system not call here frequently wasting
  174. * efficiency, and make it response quickly when dma
  175. * complete.
  176. */
  177. while (!CRYPTO_READ(dev, RK_CRYPTO_HASH_STS))
  178. usleep_range(10, 50);
  179. memcpy_fromio(req->result, dev->reg + RK_CRYPTO_HASH_DOUT_0,
  180. crypto_ahash_digestsize(tfm));
  181. return 0;
  182. }
  183. static void crypto_ahash_dma_start(struct rk_crypto_info *dev)
  184. {
  185. CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, dev->addr_in);
  186. CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, (dev->count + 3) / 4);
  187. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
  188. (RK_CRYPTO_HASH_START << 16));
  189. }
  190. static int rk_ahash_set_data_start(struct rk_crypto_info *dev)
  191. {
  192. int err;
  193. err = dev->load_data(dev, dev->sg_src, NULL);
  194. if (!err)
  195. crypto_ahash_dma_start(dev);
  196. return err;
  197. }
  198. static int rk_ahash_start(struct rk_crypto_info *dev)
  199. {
  200. return rk_ahash_set_data_start(dev);
  201. }
  202. static int rk_ahash_crypto_rx(struct rk_crypto_info *dev)
  203. {
  204. int err = 0;
  205. dev->unload_data(dev);
  206. if (dev->left_bytes) {
  207. if (dev->aligned) {
  208. if (sg_is_last(dev->sg_src)) {
  209. dev_warn(dev->dev, "[%s:%d], Lack of data\n",
  210. __func__, __LINE__);
  211. err = -ENOMEM;
  212. goto out_rx;
  213. }
  214. dev->sg_src = sg_next(dev->sg_src);
  215. }
  216. err = rk_ahash_set_data_start(dev);
  217. } else {
  218. dev->complete(dev, 0);
  219. }
  220. out_rx:
  221. return err;
  222. }
  223. static int rk_cra_hash_init(struct crypto_tfm *tfm)
  224. {
  225. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
  226. struct rk_crypto_tmp *algt;
  227. struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
  228. const char *alg_name = crypto_tfm_alg_name(tfm);
  229. algt = container_of(alg, struct rk_crypto_tmp, alg.hash);
  230. tctx->dev = algt->dev;
  231. tctx->dev->addr_vir = (void *)__get_free_page(GFP_KERNEL);
  232. if (!tctx->dev->addr_vir) {
  233. dev_err(tctx->dev->dev, "failed to kmalloc for addr_vir\n");
  234. return -ENOMEM;
  235. }
  236. tctx->dev->start = rk_ahash_start;
  237. tctx->dev->update = rk_ahash_crypto_rx;
  238. tctx->dev->complete = rk_ahash_crypto_complete;
  239. /* for fallback */
  240. tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
  241. CRYPTO_ALG_NEED_FALLBACK);
  242. if (IS_ERR(tctx->fallback_tfm)) {
  243. dev_err(tctx->dev->dev, "Could not load fallback driver.\n");
  244. return PTR_ERR(tctx->fallback_tfm);
  245. }
  246. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  247. sizeof(struct rk_ahash_rctx) +
  248. crypto_ahash_reqsize(tctx->fallback_tfm));
  249. return tctx->dev->enable_clk(tctx->dev);
  250. }
  251. static void rk_cra_hash_exit(struct crypto_tfm *tfm)
  252. {
  253. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
  254. free_page((unsigned long)tctx->dev->addr_vir);
  255. return tctx->dev->disable_clk(tctx->dev);
  256. }
  257. struct rk_crypto_tmp rk_ahash_sha1 = {
  258. .type = ALG_TYPE_HASH,
  259. .alg.hash = {
  260. .init = rk_ahash_init,
  261. .update = rk_ahash_update,
  262. .final = rk_ahash_final,
  263. .finup = rk_ahash_finup,
  264. .export = rk_ahash_export,
  265. .import = rk_ahash_import,
  266. .digest = rk_ahash_digest,
  267. .halg = {
  268. .digestsize = SHA1_DIGEST_SIZE,
  269. .statesize = sizeof(struct sha1_state),
  270. .base = {
  271. .cra_name = "sha1",
  272. .cra_driver_name = "rk-sha1",
  273. .cra_priority = 300,
  274. .cra_flags = CRYPTO_ALG_ASYNC |
  275. CRYPTO_ALG_NEED_FALLBACK,
  276. .cra_blocksize = SHA1_BLOCK_SIZE,
  277. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  278. .cra_alignmask = 3,
  279. .cra_init = rk_cra_hash_init,
  280. .cra_exit = rk_cra_hash_exit,
  281. .cra_module = THIS_MODULE,
  282. }
  283. }
  284. }
  285. };
  286. struct rk_crypto_tmp rk_ahash_sha256 = {
  287. .type = ALG_TYPE_HASH,
  288. .alg.hash = {
  289. .init = rk_ahash_init,
  290. .update = rk_ahash_update,
  291. .final = rk_ahash_final,
  292. .finup = rk_ahash_finup,
  293. .export = rk_ahash_export,
  294. .import = rk_ahash_import,
  295. .digest = rk_ahash_digest,
  296. .halg = {
  297. .digestsize = SHA256_DIGEST_SIZE,
  298. .statesize = sizeof(struct sha256_state),
  299. .base = {
  300. .cra_name = "sha256",
  301. .cra_driver_name = "rk-sha256",
  302. .cra_priority = 300,
  303. .cra_flags = CRYPTO_ALG_ASYNC |
  304. CRYPTO_ALG_NEED_FALLBACK,
  305. .cra_blocksize = SHA256_BLOCK_SIZE,
  306. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  307. .cra_alignmask = 3,
  308. .cra_init = rk_cra_hash_init,
  309. .cra_exit = rk_cra_hash_exit,
  310. .cra_module = THIS_MODULE,
  311. }
  312. }
  313. }
  314. };
  315. struct rk_crypto_tmp rk_ahash_md5 = {
  316. .type = ALG_TYPE_HASH,
  317. .alg.hash = {
  318. .init = rk_ahash_init,
  319. .update = rk_ahash_update,
  320. .final = rk_ahash_final,
  321. .finup = rk_ahash_finup,
  322. .export = rk_ahash_export,
  323. .import = rk_ahash_import,
  324. .digest = rk_ahash_digest,
  325. .halg = {
  326. .digestsize = MD5_DIGEST_SIZE,
  327. .statesize = sizeof(struct md5_state),
  328. .base = {
  329. .cra_name = "md5",
  330. .cra_driver_name = "rk-md5",
  331. .cra_priority = 300,
  332. .cra_flags = CRYPTO_ALG_ASYNC |
  333. CRYPTO_ALG_NEED_FALLBACK,
  334. .cra_blocksize = SHA1_BLOCK_SIZE,
  335. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  336. .cra_alignmask = 3,
  337. .cra_init = rk_cra_hash_init,
  338. .cra_exit = rk_cra_hash_exit,
  339. .cra_module = THIS_MODULE,
  340. }
  341. }
  342. }
  343. };