hash.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
  3. *
  4. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  5. * Author: Arnaud Ebalard <arno@natisbad.org>
  6. *
  7. * This work is based on an initial version written by
  8. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. */
  14. #include <crypto/md5.h>
  15. #include <crypto/sha.h>
  16. #include "cesa.h"
  17. struct mv_cesa_ahash_dma_iter {
  18. struct mv_cesa_dma_iter base;
  19. struct mv_cesa_sg_dma_iter src;
  20. };
  21. static inline void
  22. mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
  23. struct ahash_request *req)
  24. {
  25. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  26. unsigned int len = req->nbytes + creq->cache_ptr;
  27. if (!creq->last_req)
  28. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  29. mv_cesa_req_dma_iter_init(&iter->base, len);
  30. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  31. iter->src.op_offset = creq->cache_ptr;
  32. }
  33. static inline bool
  34. mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
  35. {
  36. iter->src.op_offset = 0;
  37. return mv_cesa_req_dma_iter_next_op(&iter->base);
  38. }
  39. static inline int
  40. mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
  41. {
  42. req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
  43. &req->cache_dma);
  44. if (!req->cache)
  45. return -ENOMEM;
  46. return 0;
  47. }
  48. static inline void
  49. mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
  50. {
  51. if (!req->cache)
  52. return;
  53. dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
  54. req->cache_dma);
  55. }
  56. static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
  57. gfp_t flags)
  58. {
  59. if (req->padding)
  60. return 0;
  61. req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
  62. &req->padding_dma);
  63. if (!req->padding)
  64. return -ENOMEM;
  65. return 0;
  66. }
  67. static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
  68. {
  69. if (!req->padding)
  70. return;
  71. dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
  72. req->padding_dma);
  73. req->padding = NULL;
  74. }
  75. static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
  76. {
  77. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  78. mv_cesa_ahash_dma_free_padding(&creq->req.dma);
  79. }
  80. static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
  81. {
  82. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  83. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  84. mv_cesa_ahash_dma_free_cache(&creq->req.dma);
  85. mv_cesa_dma_cleanup(&creq->base);
  86. }
  87. static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
  88. {
  89. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  90. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  91. mv_cesa_ahash_dma_cleanup(req);
  92. }
  93. static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
  94. {
  95. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  96. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  97. mv_cesa_ahash_dma_last_cleanup(req);
  98. }
  99. static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
  100. {
  101. unsigned int index, padlen;
  102. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  103. padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
  104. return padlen;
  105. }
  106. static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
  107. {
  108. unsigned int index, padlen;
  109. buf[0] = 0x80;
  110. /* Pad out to 56 mod 64 */
  111. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  112. padlen = mv_cesa_ahash_pad_len(creq);
  113. memset(buf + 1, 0, padlen - 1);
  114. if (creq->algo_le) {
  115. __le64 bits = cpu_to_le64(creq->len << 3);
  116. memcpy(buf + padlen, &bits, sizeof(bits));
  117. } else {
  118. __be64 bits = cpu_to_be64(creq->len << 3);
  119. memcpy(buf + padlen, &bits, sizeof(bits));
  120. }
  121. return padlen + 8;
  122. }
  123. static void mv_cesa_ahash_std_step(struct ahash_request *req)
  124. {
  125. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  126. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  127. struct mv_cesa_engine *engine = creq->base.engine;
  128. struct mv_cesa_op_ctx *op;
  129. unsigned int new_cache_ptr = 0;
  130. u32 frag_mode;
  131. size_t len;
  132. unsigned int digsize;
  133. int i;
  134. mv_cesa_adjust_op(engine, &creq->op_tmpl);
  135. memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
  136. if (!sreq->offset) {
  137. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
  138. for (i = 0; i < digsize / 4; i++)
  139. writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
  140. }
  141. if (creq->cache_ptr)
  142. memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  143. creq->cache, creq->cache_ptr);
  144. len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
  145. CESA_SA_SRAM_PAYLOAD_SIZE);
  146. if (!creq->last_req) {
  147. new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
  148. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  149. }
  150. if (len - creq->cache_ptr)
  151. sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
  152. engine->sram +
  153. CESA_SA_DATA_SRAM_OFFSET +
  154. creq->cache_ptr,
  155. len - creq->cache_ptr,
  156. sreq->offset);
  157. op = &creq->op_tmpl;
  158. frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
  159. if (creq->last_req && sreq->offset == req->nbytes &&
  160. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  161. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  162. frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
  163. else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
  164. frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
  165. }
  166. if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
  167. frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
  168. if (len &&
  169. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  170. mv_cesa_set_mac_op_total_len(op, creq->len);
  171. } else {
  172. int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
  173. if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
  174. len &= CESA_HASH_BLOCK_SIZE_MSK;
  175. new_cache_ptr = 64 - trailerlen;
  176. memcpy_fromio(creq->cache,
  177. engine->sram +
  178. CESA_SA_DATA_SRAM_OFFSET + len,
  179. new_cache_ptr);
  180. } else {
  181. len += mv_cesa_ahash_pad_req(creq,
  182. engine->sram + len +
  183. CESA_SA_DATA_SRAM_OFFSET);
  184. }
  185. if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
  186. frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
  187. else
  188. frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
  189. }
  190. }
  191. mv_cesa_set_mac_op_frag_len(op, len);
  192. mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
  193. /* FIXME: only update enc_len field */
  194. memcpy_toio(engine->sram, op, sizeof(*op));
  195. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  196. mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
  197. CESA_SA_DESC_CFG_FRAG_MSK);
  198. creq->cache_ptr = new_cache_ptr;
  199. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  200. writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  201. BUG_ON(readl(engine->regs + CESA_SA_CMD) &
  202. CESA_SA_CMD_EN_CESA_SA_ACCL0);
  203. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  204. }
  205. static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
  206. {
  207. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  208. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  209. if (sreq->offset < (req->nbytes - creq->cache_ptr))
  210. return -EINPROGRESS;
  211. return 0;
  212. }
  213. static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
  214. {
  215. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  216. struct mv_cesa_req *basereq = &creq->base;
  217. mv_cesa_dma_prepare(basereq, basereq->engine);
  218. }
  219. static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
  220. {
  221. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  222. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  223. sreq->offset = 0;
  224. }
  225. static void mv_cesa_ahash_dma_step(struct ahash_request *req)
  226. {
  227. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  228. struct mv_cesa_req *base = &creq->base;
  229. /* We must explicitly set the digest state. */
  230. if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
  231. struct mv_cesa_engine *engine = base->engine;
  232. int i;
  233. /* Set the hash state in the IVDIG regs. */
  234. for (i = 0; i < ARRAY_SIZE(creq->state); i++)
  235. writel_relaxed(creq->state[i], engine->regs +
  236. CESA_IVDIG(i));
  237. }
  238. mv_cesa_dma_step(base);
  239. }
  240. static void mv_cesa_ahash_step(struct crypto_async_request *req)
  241. {
  242. struct ahash_request *ahashreq = ahash_request_cast(req);
  243. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  244. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  245. mv_cesa_ahash_dma_step(ahashreq);
  246. else
  247. mv_cesa_ahash_std_step(ahashreq);
  248. }
  249. static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
  250. {
  251. struct ahash_request *ahashreq = ahash_request_cast(req);
  252. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  253. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  254. return mv_cesa_dma_process(&creq->base, status);
  255. return mv_cesa_ahash_std_process(ahashreq, status);
  256. }
  257. static void mv_cesa_ahash_complete(struct crypto_async_request *req)
  258. {
  259. struct ahash_request *ahashreq = ahash_request_cast(req);
  260. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  261. struct mv_cesa_engine *engine = creq->base.engine;
  262. unsigned int digsize;
  263. int i;
  264. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
  265. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
  266. (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_RESULT) {
  267. __le32 *data = NULL;
  268. /*
  269. * Result is already in the correct endianess when the SA is
  270. * used
  271. */
  272. data = creq->base.chain.last->op->ctx.hash.hash;
  273. for (i = 0; i < digsize / 4; i++)
  274. creq->state[i] = cpu_to_le32(data[i]);
  275. memcpy(ahashreq->result, data, digsize);
  276. } else {
  277. for (i = 0; i < digsize / 4; i++)
  278. creq->state[i] = readl_relaxed(engine->regs +
  279. CESA_IVDIG(i));
  280. if (creq->last_req) {
  281. /*
  282. * Hardware's MD5 digest is in little endian format, but
  283. * SHA in big endian format
  284. */
  285. if (creq->algo_le) {
  286. __le32 *result = (void *)ahashreq->result;
  287. for (i = 0; i < digsize / 4; i++)
  288. result[i] = cpu_to_le32(creq->state[i]);
  289. } else {
  290. __be32 *result = (void *)ahashreq->result;
  291. for (i = 0; i < digsize / 4; i++)
  292. result[i] = cpu_to_be32(creq->state[i]);
  293. }
  294. }
  295. }
  296. atomic_sub(ahashreq->nbytes, &engine->load);
  297. }
  298. static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
  299. struct mv_cesa_engine *engine)
  300. {
  301. struct ahash_request *ahashreq = ahash_request_cast(req);
  302. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  303. creq->base.engine = engine;
  304. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  305. mv_cesa_ahash_dma_prepare(ahashreq);
  306. else
  307. mv_cesa_ahash_std_prepare(ahashreq);
  308. }
  309. static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
  310. {
  311. struct ahash_request *ahashreq = ahash_request_cast(req);
  312. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  313. if (creq->last_req)
  314. mv_cesa_ahash_last_cleanup(ahashreq);
  315. mv_cesa_ahash_cleanup(ahashreq);
  316. if (creq->cache_ptr)
  317. sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
  318. creq->cache,
  319. creq->cache_ptr,
  320. ahashreq->nbytes - creq->cache_ptr);
  321. }
  322. static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
  323. .step = mv_cesa_ahash_step,
  324. .process = mv_cesa_ahash_process,
  325. .cleanup = mv_cesa_ahash_req_cleanup,
  326. .complete = mv_cesa_ahash_complete,
  327. };
  328. static void mv_cesa_ahash_init(struct ahash_request *req,
  329. struct mv_cesa_op_ctx *tmpl, bool algo_le)
  330. {
  331. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  332. memset(creq, 0, sizeof(*creq));
  333. mv_cesa_update_op_cfg(tmpl,
  334. CESA_SA_DESC_CFG_OP_MAC_ONLY |
  335. CESA_SA_DESC_CFG_FIRST_FRAG,
  336. CESA_SA_DESC_CFG_OP_MSK |
  337. CESA_SA_DESC_CFG_FRAG_MSK);
  338. mv_cesa_set_mac_op_total_len(tmpl, 0);
  339. mv_cesa_set_mac_op_frag_len(tmpl, 0);
  340. creq->op_tmpl = *tmpl;
  341. creq->len = 0;
  342. creq->algo_le = algo_le;
  343. }
  344. static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
  345. {
  346. struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  347. ctx->base.ops = &mv_cesa_ahash_req_ops;
  348. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  349. sizeof(struct mv_cesa_ahash_req));
  350. return 0;
  351. }
  352. static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
  353. {
  354. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  355. bool cached = false;
  356. if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE && !creq->last_req) {
  357. cached = true;
  358. if (!req->nbytes)
  359. return cached;
  360. sg_pcopy_to_buffer(req->src, creq->src_nents,
  361. creq->cache + creq->cache_ptr,
  362. req->nbytes, 0);
  363. creq->cache_ptr += req->nbytes;
  364. }
  365. return cached;
  366. }
  367. static struct mv_cesa_op_ctx *
  368. mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
  369. struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
  370. gfp_t flags)
  371. {
  372. struct mv_cesa_op_ctx *op;
  373. int ret;
  374. op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
  375. if (IS_ERR(op))
  376. return op;
  377. /* Set the operation block fragment length. */
  378. mv_cesa_set_mac_op_frag_len(op, frag_len);
  379. /* Append dummy desc to launch operation */
  380. ret = mv_cesa_dma_add_dummy_launch(chain, flags);
  381. if (ret)
  382. return ERR_PTR(ret);
  383. if (mv_cesa_mac_op_is_first_frag(tmpl))
  384. mv_cesa_update_op_cfg(tmpl,
  385. CESA_SA_DESC_CFG_MID_FRAG,
  386. CESA_SA_DESC_CFG_FRAG_MSK);
  387. return op;
  388. }
  389. static int
  390. mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
  391. struct mv_cesa_ahash_req *creq,
  392. gfp_t flags)
  393. {
  394. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  395. int ret;
  396. if (!creq->cache_ptr)
  397. return 0;
  398. ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
  399. if (ret)
  400. return ret;
  401. memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
  402. return mv_cesa_dma_add_data_transfer(chain,
  403. CESA_SA_DATA_SRAM_OFFSET,
  404. ahashdreq->cache_dma,
  405. creq->cache_ptr,
  406. CESA_TDMA_DST_IN_SRAM,
  407. flags);
  408. }
  409. static struct mv_cesa_op_ctx *
  410. mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
  411. struct mv_cesa_ahash_dma_iter *dma_iter,
  412. struct mv_cesa_ahash_req *creq,
  413. unsigned int frag_len, gfp_t flags)
  414. {
  415. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  416. unsigned int len, trailerlen, padoff = 0;
  417. struct mv_cesa_op_ctx *op;
  418. int ret;
  419. /*
  420. * If the transfer is smaller than our maximum length, and we have
  421. * some data outstanding, we can ask the engine to finish the hash.
  422. */
  423. if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
  424. op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
  425. flags);
  426. if (IS_ERR(op))
  427. return op;
  428. mv_cesa_set_mac_op_total_len(op, creq->len);
  429. mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
  430. CESA_SA_DESC_CFG_NOT_FRAG :
  431. CESA_SA_DESC_CFG_LAST_FRAG,
  432. CESA_SA_DESC_CFG_FRAG_MSK);
  433. ret = mv_cesa_dma_add_result_op(chain,
  434. CESA_SA_CFG_SRAM_OFFSET,
  435. CESA_SA_DATA_SRAM_OFFSET,
  436. CESA_TDMA_SRC_IN_SRAM, flags);
  437. if (ret)
  438. return ERR_PTR(-ENOMEM);
  439. return op;
  440. }
  441. /*
  442. * The request is longer than the engine can handle, or we have
  443. * no data outstanding. Manually generate the padding, adding it
  444. * as a "mid" fragment.
  445. */
  446. ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
  447. if (ret)
  448. return ERR_PTR(ret);
  449. trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
  450. len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
  451. if (len) {
  452. ret = mv_cesa_dma_add_data_transfer(chain,
  453. CESA_SA_DATA_SRAM_OFFSET +
  454. frag_len,
  455. ahashdreq->padding_dma,
  456. len, CESA_TDMA_DST_IN_SRAM,
  457. flags);
  458. if (ret)
  459. return ERR_PTR(ret);
  460. op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
  461. flags);
  462. if (IS_ERR(op))
  463. return op;
  464. if (len == trailerlen)
  465. return op;
  466. padoff += len;
  467. }
  468. ret = mv_cesa_dma_add_data_transfer(chain,
  469. CESA_SA_DATA_SRAM_OFFSET,
  470. ahashdreq->padding_dma +
  471. padoff,
  472. trailerlen - padoff,
  473. CESA_TDMA_DST_IN_SRAM,
  474. flags);
  475. if (ret)
  476. return ERR_PTR(ret);
  477. return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
  478. flags);
  479. }
  480. static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
  481. {
  482. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  483. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  484. GFP_KERNEL : GFP_ATOMIC;
  485. struct mv_cesa_req *basereq = &creq->base;
  486. struct mv_cesa_ahash_dma_iter iter;
  487. struct mv_cesa_op_ctx *op = NULL;
  488. unsigned int frag_len;
  489. bool set_state = false;
  490. int ret;
  491. u32 type;
  492. basereq->chain.first = NULL;
  493. basereq->chain.last = NULL;
  494. if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
  495. set_state = true;
  496. if (creq->src_nents) {
  497. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  498. DMA_TO_DEVICE);
  499. if (!ret) {
  500. ret = -ENOMEM;
  501. goto err;
  502. }
  503. }
  504. mv_cesa_tdma_desc_iter_init(&basereq->chain);
  505. mv_cesa_ahash_req_iter_init(&iter, req);
  506. /*
  507. * Add the cache (left-over data from a previous block) first.
  508. * This will never overflow the SRAM size.
  509. */
  510. ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
  511. if (ret)
  512. goto err_free_tdma;
  513. if (iter.src.sg) {
  514. /*
  515. * Add all the new data, inserting an operation block and
  516. * launch command between each full SRAM block-worth of
  517. * data. We intentionally do not add the final op block.
  518. */
  519. while (true) {
  520. ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
  521. &iter.base,
  522. &iter.src, flags);
  523. if (ret)
  524. goto err_free_tdma;
  525. frag_len = iter.base.op_len;
  526. if (!mv_cesa_ahash_req_iter_next_op(&iter))
  527. break;
  528. op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
  529. frag_len, flags);
  530. if (IS_ERR(op)) {
  531. ret = PTR_ERR(op);
  532. goto err_free_tdma;
  533. }
  534. }
  535. } else {
  536. /* Account for the data that was in the cache. */
  537. frag_len = iter.base.op_len;
  538. }
  539. /*
  540. * At this point, frag_len indicates whether we have any data
  541. * outstanding which needs an operation. Queue up the final
  542. * operation, which depends whether this is the final request.
  543. */
  544. if (creq->last_req)
  545. op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
  546. frag_len, flags);
  547. else if (frag_len)
  548. op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
  549. frag_len, flags);
  550. if (IS_ERR(op)) {
  551. ret = PTR_ERR(op);
  552. goto err_free_tdma;
  553. }
  554. /*
  555. * If results are copied via DMA, this means that this
  556. * request can be directly processed by the engine,
  557. * without partial updates. So we can chain it at the
  558. * DMA level with other requests.
  559. */
  560. type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
  561. if (op && type != CESA_TDMA_RESULT) {
  562. /* Add dummy desc to wait for crypto operation end */
  563. ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
  564. if (ret)
  565. goto err_free_tdma;
  566. }
  567. if (!creq->last_req)
  568. creq->cache_ptr = req->nbytes + creq->cache_ptr -
  569. iter.base.len;
  570. else
  571. creq->cache_ptr = 0;
  572. basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
  573. if (type != CESA_TDMA_RESULT)
  574. basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
  575. if (set_state) {
  576. /*
  577. * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
  578. * let the step logic know that the IVDIG registers should be
  579. * explicitly set before launching a TDMA chain.
  580. */
  581. basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
  582. }
  583. return 0;
  584. err_free_tdma:
  585. mv_cesa_dma_cleanup(basereq);
  586. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  587. err:
  588. mv_cesa_ahash_last_cleanup(req);
  589. return ret;
  590. }
  591. static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
  592. {
  593. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  594. creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
  595. if (creq->src_nents < 0) {
  596. dev_err(cesa_dev->dev, "Invalid number of src SG");
  597. return creq->src_nents;
  598. }
  599. *cached = mv_cesa_ahash_cache_req(req);
  600. if (*cached)
  601. return 0;
  602. if (cesa_dev->caps->has_tdma)
  603. return mv_cesa_ahash_dma_req_init(req);
  604. else
  605. return 0;
  606. }
  607. static int mv_cesa_ahash_queue_req(struct ahash_request *req)
  608. {
  609. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  610. struct mv_cesa_engine *engine;
  611. bool cached = false;
  612. int ret;
  613. ret = mv_cesa_ahash_req_init(req, &cached);
  614. if (ret)
  615. return ret;
  616. if (cached)
  617. return 0;
  618. engine = mv_cesa_select_engine(req->nbytes);
  619. mv_cesa_ahash_prepare(&req->base, engine);
  620. ret = mv_cesa_queue_req(&req->base, &creq->base);
  621. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  622. mv_cesa_ahash_cleanup(req);
  623. return ret;
  624. }
  625. static int mv_cesa_ahash_update(struct ahash_request *req)
  626. {
  627. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  628. creq->len += req->nbytes;
  629. return mv_cesa_ahash_queue_req(req);
  630. }
  631. static int mv_cesa_ahash_final(struct ahash_request *req)
  632. {
  633. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  634. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  635. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  636. creq->last_req = true;
  637. req->nbytes = 0;
  638. return mv_cesa_ahash_queue_req(req);
  639. }
  640. static int mv_cesa_ahash_finup(struct ahash_request *req)
  641. {
  642. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  643. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  644. creq->len += req->nbytes;
  645. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  646. creq->last_req = true;
  647. return mv_cesa_ahash_queue_req(req);
  648. }
  649. static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
  650. u64 *len, void *cache)
  651. {
  652. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  653. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  654. unsigned int digsize = crypto_ahash_digestsize(ahash);
  655. unsigned int blocksize;
  656. blocksize = crypto_ahash_blocksize(ahash);
  657. *len = creq->len;
  658. memcpy(hash, creq->state, digsize);
  659. memset(cache, 0, blocksize);
  660. memcpy(cache, creq->cache, creq->cache_ptr);
  661. return 0;
  662. }
  663. static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
  664. u64 len, const void *cache)
  665. {
  666. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  667. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  668. unsigned int digsize = crypto_ahash_digestsize(ahash);
  669. unsigned int blocksize;
  670. unsigned int cache_ptr;
  671. int ret;
  672. ret = crypto_ahash_init(req);
  673. if (ret)
  674. return ret;
  675. blocksize = crypto_ahash_blocksize(ahash);
  676. if (len >= blocksize)
  677. mv_cesa_update_op_cfg(&creq->op_tmpl,
  678. CESA_SA_DESC_CFG_MID_FRAG,
  679. CESA_SA_DESC_CFG_FRAG_MSK);
  680. creq->len = len;
  681. memcpy(creq->state, hash, digsize);
  682. creq->cache_ptr = 0;
  683. cache_ptr = do_div(len, blocksize);
  684. if (!cache_ptr)
  685. return 0;
  686. memcpy(creq->cache, cache, cache_ptr);
  687. creq->cache_ptr = cache_ptr;
  688. return 0;
  689. }
  690. static int mv_cesa_md5_init(struct ahash_request *req)
  691. {
  692. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  693. struct mv_cesa_op_ctx tmpl = { };
  694. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
  695. mv_cesa_ahash_init(req, &tmpl, true);
  696. creq->state[0] = MD5_H0;
  697. creq->state[1] = MD5_H1;
  698. creq->state[2] = MD5_H2;
  699. creq->state[3] = MD5_H3;
  700. return 0;
  701. }
  702. static int mv_cesa_md5_export(struct ahash_request *req, void *out)
  703. {
  704. struct md5_state *out_state = out;
  705. return mv_cesa_ahash_export(req, out_state->hash,
  706. &out_state->byte_count, out_state->block);
  707. }
  708. static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
  709. {
  710. const struct md5_state *in_state = in;
  711. return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
  712. in_state->block);
  713. }
  714. static int mv_cesa_md5_digest(struct ahash_request *req)
  715. {
  716. int ret;
  717. ret = mv_cesa_md5_init(req);
  718. if (ret)
  719. return ret;
  720. return mv_cesa_ahash_finup(req);
  721. }
  722. struct ahash_alg mv_md5_alg = {
  723. .init = mv_cesa_md5_init,
  724. .update = mv_cesa_ahash_update,
  725. .final = mv_cesa_ahash_final,
  726. .finup = mv_cesa_ahash_finup,
  727. .digest = mv_cesa_md5_digest,
  728. .export = mv_cesa_md5_export,
  729. .import = mv_cesa_md5_import,
  730. .halg = {
  731. .digestsize = MD5_DIGEST_SIZE,
  732. .statesize = sizeof(struct md5_state),
  733. .base = {
  734. .cra_name = "md5",
  735. .cra_driver_name = "mv-md5",
  736. .cra_priority = 300,
  737. .cra_flags = CRYPTO_ALG_ASYNC |
  738. CRYPTO_ALG_KERN_DRIVER_ONLY,
  739. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  740. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  741. .cra_init = mv_cesa_ahash_cra_init,
  742. .cra_module = THIS_MODULE,
  743. }
  744. }
  745. };
  746. static int mv_cesa_sha1_init(struct ahash_request *req)
  747. {
  748. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  749. struct mv_cesa_op_ctx tmpl = { };
  750. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
  751. mv_cesa_ahash_init(req, &tmpl, false);
  752. creq->state[0] = SHA1_H0;
  753. creq->state[1] = SHA1_H1;
  754. creq->state[2] = SHA1_H2;
  755. creq->state[3] = SHA1_H3;
  756. creq->state[4] = SHA1_H4;
  757. return 0;
  758. }
  759. static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
  760. {
  761. struct sha1_state *out_state = out;
  762. return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
  763. out_state->buffer);
  764. }
  765. static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
  766. {
  767. const struct sha1_state *in_state = in;
  768. return mv_cesa_ahash_import(req, in_state->state, in_state->count,
  769. in_state->buffer);
  770. }
  771. static int mv_cesa_sha1_digest(struct ahash_request *req)
  772. {
  773. int ret;
  774. ret = mv_cesa_sha1_init(req);
  775. if (ret)
  776. return ret;
  777. return mv_cesa_ahash_finup(req);
  778. }
  779. struct ahash_alg mv_sha1_alg = {
  780. .init = mv_cesa_sha1_init,
  781. .update = mv_cesa_ahash_update,
  782. .final = mv_cesa_ahash_final,
  783. .finup = mv_cesa_ahash_finup,
  784. .digest = mv_cesa_sha1_digest,
  785. .export = mv_cesa_sha1_export,
  786. .import = mv_cesa_sha1_import,
  787. .halg = {
  788. .digestsize = SHA1_DIGEST_SIZE,
  789. .statesize = sizeof(struct sha1_state),
  790. .base = {
  791. .cra_name = "sha1",
  792. .cra_driver_name = "mv-sha1",
  793. .cra_priority = 300,
  794. .cra_flags = CRYPTO_ALG_ASYNC |
  795. CRYPTO_ALG_KERN_DRIVER_ONLY,
  796. .cra_blocksize = SHA1_BLOCK_SIZE,
  797. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  798. .cra_init = mv_cesa_ahash_cra_init,
  799. .cra_module = THIS_MODULE,
  800. }
  801. }
  802. };
  803. static int mv_cesa_sha256_init(struct ahash_request *req)
  804. {
  805. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  806. struct mv_cesa_op_ctx tmpl = { };
  807. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
  808. mv_cesa_ahash_init(req, &tmpl, false);
  809. creq->state[0] = SHA256_H0;
  810. creq->state[1] = SHA256_H1;
  811. creq->state[2] = SHA256_H2;
  812. creq->state[3] = SHA256_H3;
  813. creq->state[4] = SHA256_H4;
  814. creq->state[5] = SHA256_H5;
  815. creq->state[6] = SHA256_H6;
  816. creq->state[7] = SHA256_H7;
  817. return 0;
  818. }
  819. static int mv_cesa_sha256_digest(struct ahash_request *req)
  820. {
  821. int ret;
  822. ret = mv_cesa_sha256_init(req);
  823. if (ret)
  824. return ret;
  825. return mv_cesa_ahash_finup(req);
  826. }
  827. static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
  828. {
  829. struct sha256_state *out_state = out;
  830. return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
  831. out_state->buf);
  832. }
  833. static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
  834. {
  835. const struct sha256_state *in_state = in;
  836. return mv_cesa_ahash_import(req, in_state->state, in_state->count,
  837. in_state->buf);
  838. }
  839. struct ahash_alg mv_sha256_alg = {
  840. .init = mv_cesa_sha256_init,
  841. .update = mv_cesa_ahash_update,
  842. .final = mv_cesa_ahash_final,
  843. .finup = mv_cesa_ahash_finup,
  844. .digest = mv_cesa_sha256_digest,
  845. .export = mv_cesa_sha256_export,
  846. .import = mv_cesa_sha256_import,
  847. .halg = {
  848. .digestsize = SHA256_DIGEST_SIZE,
  849. .statesize = sizeof(struct sha256_state),
  850. .base = {
  851. .cra_name = "sha256",
  852. .cra_driver_name = "mv-sha256",
  853. .cra_priority = 300,
  854. .cra_flags = CRYPTO_ALG_ASYNC |
  855. CRYPTO_ALG_KERN_DRIVER_ONLY,
  856. .cra_blocksize = SHA256_BLOCK_SIZE,
  857. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  858. .cra_init = mv_cesa_ahash_cra_init,
  859. .cra_module = THIS_MODULE,
  860. }
  861. }
  862. };
  863. struct mv_cesa_ahash_result {
  864. struct completion completion;
  865. int error;
  866. };
  867. static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
  868. int error)
  869. {
  870. struct mv_cesa_ahash_result *result = req->data;
  871. if (error == -EINPROGRESS)
  872. return;
  873. result->error = error;
  874. complete(&result->completion);
  875. }
  876. static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
  877. void *state, unsigned int blocksize)
  878. {
  879. struct mv_cesa_ahash_result result;
  880. struct scatterlist sg;
  881. int ret;
  882. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  883. mv_cesa_hmac_ahash_complete, &result);
  884. sg_init_one(&sg, pad, blocksize);
  885. ahash_request_set_crypt(req, &sg, pad, blocksize);
  886. init_completion(&result.completion);
  887. ret = crypto_ahash_init(req);
  888. if (ret)
  889. return ret;
  890. ret = crypto_ahash_update(req);
  891. if (ret && ret != -EINPROGRESS)
  892. return ret;
  893. wait_for_completion_interruptible(&result.completion);
  894. if (result.error)
  895. return result.error;
  896. ret = crypto_ahash_export(req, state);
  897. if (ret)
  898. return ret;
  899. return 0;
  900. }
  901. static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
  902. const u8 *key, unsigned int keylen,
  903. u8 *ipad, u8 *opad,
  904. unsigned int blocksize)
  905. {
  906. struct mv_cesa_ahash_result result;
  907. struct scatterlist sg;
  908. int ret;
  909. int i;
  910. if (keylen <= blocksize) {
  911. memcpy(ipad, key, keylen);
  912. } else {
  913. u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
  914. if (!keydup)
  915. return -ENOMEM;
  916. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  917. mv_cesa_hmac_ahash_complete,
  918. &result);
  919. sg_init_one(&sg, keydup, keylen);
  920. ahash_request_set_crypt(req, &sg, ipad, keylen);
  921. init_completion(&result.completion);
  922. ret = crypto_ahash_digest(req);
  923. if (ret == -EINPROGRESS) {
  924. wait_for_completion_interruptible(&result.completion);
  925. ret = result.error;
  926. }
  927. /* Set the memory region to 0 to avoid any leak. */
  928. memset(keydup, 0, keylen);
  929. kfree(keydup);
  930. if (ret)
  931. return ret;
  932. keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
  933. }
  934. memset(ipad + keylen, 0, blocksize - keylen);
  935. memcpy(opad, ipad, blocksize);
  936. for (i = 0; i < blocksize; i++) {
  937. ipad[i] ^= 0x36;
  938. opad[i] ^= 0x5c;
  939. }
  940. return 0;
  941. }
  942. static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
  943. const u8 *key, unsigned int keylen,
  944. void *istate, void *ostate)
  945. {
  946. struct ahash_request *req;
  947. struct crypto_ahash *tfm;
  948. unsigned int blocksize;
  949. u8 *ipad = NULL;
  950. u8 *opad;
  951. int ret;
  952. tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
  953. CRYPTO_ALG_TYPE_AHASH_MASK);
  954. if (IS_ERR(tfm))
  955. return PTR_ERR(tfm);
  956. req = ahash_request_alloc(tfm, GFP_KERNEL);
  957. if (!req) {
  958. ret = -ENOMEM;
  959. goto free_ahash;
  960. }
  961. crypto_ahash_clear_flags(tfm, ~0);
  962. blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  963. ipad = kzalloc(2 * blocksize, GFP_KERNEL);
  964. if (!ipad) {
  965. ret = -ENOMEM;
  966. goto free_req;
  967. }
  968. opad = ipad + blocksize;
  969. ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
  970. if (ret)
  971. goto free_ipad;
  972. ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
  973. if (ret)
  974. goto free_ipad;
  975. ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
  976. free_ipad:
  977. kfree(ipad);
  978. free_req:
  979. ahash_request_free(req);
  980. free_ahash:
  981. crypto_free_ahash(tfm);
  982. return ret;
  983. }
  984. static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
  985. {
  986. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
  987. ctx->base.ops = &mv_cesa_ahash_req_ops;
  988. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  989. sizeof(struct mv_cesa_ahash_req));
  990. return 0;
  991. }
  992. static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
  993. {
  994. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  995. struct mv_cesa_op_ctx tmpl = { };
  996. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
  997. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  998. mv_cesa_ahash_init(req, &tmpl, true);
  999. return 0;
  1000. }
  1001. static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
  1002. unsigned int keylen)
  1003. {
  1004. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1005. struct md5_state istate, ostate;
  1006. int ret, i;
  1007. ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
  1008. if (ret)
  1009. return ret;
  1010. for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
  1011. ctx->iv[i] = be32_to_cpu(istate.hash[i]);
  1012. for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
  1013. ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
  1014. return 0;
  1015. }
  1016. static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
  1017. {
  1018. int ret;
  1019. ret = mv_cesa_ahmac_md5_init(req);
  1020. if (ret)
  1021. return ret;
  1022. return mv_cesa_ahash_finup(req);
  1023. }
  1024. struct ahash_alg mv_ahmac_md5_alg = {
  1025. .init = mv_cesa_ahmac_md5_init,
  1026. .update = mv_cesa_ahash_update,
  1027. .final = mv_cesa_ahash_final,
  1028. .finup = mv_cesa_ahash_finup,
  1029. .digest = mv_cesa_ahmac_md5_digest,
  1030. .setkey = mv_cesa_ahmac_md5_setkey,
  1031. .export = mv_cesa_md5_export,
  1032. .import = mv_cesa_md5_import,
  1033. .halg = {
  1034. .digestsize = MD5_DIGEST_SIZE,
  1035. .statesize = sizeof(struct md5_state),
  1036. .base = {
  1037. .cra_name = "hmac(md5)",
  1038. .cra_driver_name = "mv-hmac-md5",
  1039. .cra_priority = 300,
  1040. .cra_flags = CRYPTO_ALG_ASYNC |
  1041. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1042. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  1043. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1044. .cra_init = mv_cesa_ahmac_cra_init,
  1045. .cra_module = THIS_MODULE,
  1046. }
  1047. }
  1048. };
  1049. static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
  1050. {
  1051. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1052. struct mv_cesa_op_ctx tmpl = { };
  1053. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
  1054. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1055. mv_cesa_ahash_init(req, &tmpl, false);
  1056. return 0;
  1057. }
  1058. static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
  1059. unsigned int keylen)
  1060. {
  1061. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1062. struct sha1_state istate, ostate;
  1063. int ret, i;
  1064. ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
  1065. if (ret)
  1066. return ret;
  1067. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1068. ctx->iv[i] = be32_to_cpu(istate.state[i]);
  1069. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1070. ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
  1071. return 0;
  1072. }
  1073. static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
  1074. {
  1075. int ret;
  1076. ret = mv_cesa_ahmac_sha1_init(req);
  1077. if (ret)
  1078. return ret;
  1079. return mv_cesa_ahash_finup(req);
  1080. }
  1081. struct ahash_alg mv_ahmac_sha1_alg = {
  1082. .init = mv_cesa_ahmac_sha1_init,
  1083. .update = mv_cesa_ahash_update,
  1084. .final = mv_cesa_ahash_final,
  1085. .finup = mv_cesa_ahash_finup,
  1086. .digest = mv_cesa_ahmac_sha1_digest,
  1087. .setkey = mv_cesa_ahmac_sha1_setkey,
  1088. .export = mv_cesa_sha1_export,
  1089. .import = mv_cesa_sha1_import,
  1090. .halg = {
  1091. .digestsize = SHA1_DIGEST_SIZE,
  1092. .statesize = sizeof(struct sha1_state),
  1093. .base = {
  1094. .cra_name = "hmac(sha1)",
  1095. .cra_driver_name = "mv-hmac-sha1",
  1096. .cra_priority = 300,
  1097. .cra_flags = CRYPTO_ALG_ASYNC |
  1098. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1099. .cra_blocksize = SHA1_BLOCK_SIZE,
  1100. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1101. .cra_init = mv_cesa_ahmac_cra_init,
  1102. .cra_module = THIS_MODULE,
  1103. }
  1104. }
  1105. };
  1106. static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
  1107. unsigned int keylen)
  1108. {
  1109. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1110. struct sha256_state istate, ostate;
  1111. int ret, i;
  1112. ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
  1113. if (ret)
  1114. return ret;
  1115. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1116. ctx->iv[i] = be32_to_cpu(istate.state[i]);
  1117. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1118. ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
  1119. return 0;
  1120. }
  1121. static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
  1122. {
  1123. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1124. struct mv_cesa_op_ctx tmpl = { };
  1125. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
  1126. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1127. mv_cesa_ahash_init(req, &tmpl, false);
  1128. return 0;
  1129. }
  1130. static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
  1131. {
  1132. int ret;
  1133. ret = mv_cesa_ahmac_sha256_init(req);
  1134. if (ret)
  1135. return ret;
  1136. return mv_cesa_ahash_finup(req);
  1137. }
  1138. struct ahash_alg mv_ahmac_sha256_alg = {
  1139. .init = mv_cesa_ahmac_sha256_init,
  1140. .update = mv_cesa_ahash_update,
  1141. .final = mv_cesa_ahash_final,
  1142. .finup = mv_cesa_ahash_finup,
  1143. .digest = mv_cesa_ahmac_sha256_digest,
  1144. .setkey = mv_cesa_ahmac_sha256_setkey,
  1145. .export = mv_cesa_sha256_export,
  1146. .import = mv_cesa_sha256_import,
  1147. .halg = {
  1148. .digestsize = SHA256_DIGEST_SIZE,
  1149. .statesize = sizeof(struct sha256_state),
  1150. .base = {
  1151. .cra_name = "hmac(sha256)",
  1152. .cra_driver_name = "mv-hmac-sha256",
  1153. .cra_priority = 300,
  1154. .cra_flags = CRYPTO_ALG_ASYNC |
  1155. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1156. .cra_blocksize = SHA256_BLOCK_SIZE,
  1157. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1158. .cra_init = mv_cesa_ahmac_cra_init,
  1159. .cra_module = THIS_MODULE,
  1160. }
  1161. }
  1162. };