ccp-dev-v5.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) driver
  3. *
  4. * Copyright (C) 2016 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Gary R Hook <gary.hook@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/pci.h>
  15. #include <linux/kthread.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/compiler.h>
  19. #include <linux/ccp.h>
  20. #include "ccp-dev.h"
  21. /* Allocate the requested number of contiguous LSB slots
  22. * from the LSB bitmap. Look in the private range for this
  23. * queue first; failing that, check the public area.
  24. * If no space is available, wait around.
  25. * Return: first slot number
  26. */
  27. static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
  28. {
  29. struct ccp_device *ccp;
  30. int start;
  31. /* First look at the map for the queue */
  32. if (cmd_q->lsb >= 0) {
  33. start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
  34. LSB_SIZE,
  35. 0, count, 0);
  36. if (start < LSB_SIZE) {
  37. bitmap_set(cmd_q->lsbmap, start, count);
  38. return start + cmd_q->lsb * LSB_SIZE;
  39. }
  40. }
  41. /* No joy; try to get an entry from the shared blocks */
  42. ccp = cmd_q->ccp;
  43. for (;;) {
  44. mutex_lock(&ccp->sb_mutex);
  45. start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
  46. MAX_LSB_CNT * LSB_SIZE,
  47. 0,
  48. count, 0);
  49. if (start <= MAX_LSB_CNT * LSB_SIZE) {
  50. bitmap_set(ccp->lsbmap, start, count);
  51. mutex_unlock(&ccp->sb_mutex);
  52. return start;
  53. }
  54. ccp->sb_avail = 0;
  55. mutex_unlock(&ccp->sb_mutex);
  56. /* Wait for KSB entries to become available */
  57. if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
  58. return 0;
  59. }
  60. }
  61. /* Free a number of LSB slots from the bitmap, starting at
  62. * the indicated starting slot number.
  63. */
  64. static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
  65. unsigned int count)
  66. {
  67. if (!start)
  68. return;
  69. if (cmd_q->lsb == start) {
  70. /* An entry from the private LSB */
  71. bitmap_clear(cmd_q->lsbmap, start, count);
  72. } else {
  73. /* From the shared LSBs */
  74. struct ccp_device *ccp = cmd_q->ccp;
  75. mutex_lock(&ccp->sb_mutex);
  76. bitmap_clear(ccp->lsbmap, start, count);
  77. ccp->sb_avail = 1;
  78. mutex_unlock(&ccp->sb_mutex);
  79. wake_up_interruptible_all(&ccp->sb_queue);
  80. }
  81. }
  82. /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
  83. union ccp_function {
  84. struct {
  85. u16 size:7;
  86. u16 encrypt:1;
  87. u16 mode:5;
  88. u16 type:2;
  89. } aes;
  90. struct {
  91. u16 size:7;
  92. u16 encrypt:1;
  93. u16 rsvd:5;
  94. u16 type:2;
  95. } aes_xts;
  96. struct {
  97. u16 rsvd1:10;
  98. u16 type:4;
  99. u16 rsvd2:1;
  100. } sha;
  101. struct {
  102. u16 mode:3;
  103. u16 size:12;
  104. } rsa;
  105. struct {
  106. u16 byteswap:2;
  107. u16 bitwise:3;
  108. u16 reflect:2;
  109. u16 rsvd:8;
  110. } pt;
  111. struct {
  112. u16 rsvd:13;
  113. } zlib;
  114. struct {
  115. u16 size:10;
  116. u16 type:2;
  117. u16 mode:3;
  118. } ecc;
  119. u16 raw;
  120. };
  121. #define CCP_AES_SIZE(p) ((p)->aes.size)
  122. #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
  123. #define CCP_AES_MODE(p) ((p)->aes.mode)
  124. #define CCP_AES_TYPE(p) ((p)->aes.type)
  125. #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
  126. #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
  127. #define CCP_SHA_TYPE(p) ((p)->sha.type)
  128. #define CCP_RSA_SIZE(p) ((p)->rsa.size)
  129. #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
  130. #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
  131. #define CCP_ECC_MODE(p) ((p)->ecc.mode)
  132. #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
  133. /* Word 0 */
  134. #define CCP5_CMD_DW0(p) ((p)->dw0)
  135. #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
  136. #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
  137. #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
  138. #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
  139. #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
  140. #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
  141. #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
  142. /* Word 1 */
  143. #define CCP5_CMD_DW1(p) ((p)->length)
  144. #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
  145. /* Word 2 */
  146. #define CCP5_CMD_DW2(p) ((p)->src_lo)
  147. #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
  148. /* Word 3 */
  149. #define CCP5_CMD_DW3(p) ((p)->dw3)
  150. #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
  151. #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
  152. #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
  153. #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
  154. /* Words 4/5 */
  155. #define CCP5_CMD_DW4(p) ((p)->dw4)
  156. #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
  157. #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
  158. #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
  159. #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
  160. #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
  161. #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
  162. #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
  163. /* Word 6/7 */
  164. #define CCP5_CMD_DW6(p) ((p)->key_lo)
  165. #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
  166. #define CCP5_CMD_DW7(p) ((p)->dw7)
  167. #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
  168. #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
  169. static inline u32 low_address(unsigned long addr)
  170. {
  171. return (u64)addr & 0x0ffffffff;
  172. }
  173. static inline u32 high_address(unsigned long addr)
  174. {
  175. return ((u64)addr >> 32) & 0x00000ffff;
  176. }
  177. static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
  178. {
  179. unsigned int head_idx, n;
  180. u32 head_lo, queue_start;
  181. queue_start = low_address(cmd_q->qdma_tail);
  182. head_lo = ioread32(cmd_q->reg_head_lo);
  183. head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
  184. n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
  185. return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
  186. }
  187. static int ccp5_do_cmd(struct ccp5_desc *desc,
  188. struct ccp_cmd_queue *cmd_q)
  189. {
  190. u32 *mP;
  191. __le32 *dP;
  192. u32 tail;
  193. int i;
  194. int ret = 0;
  195. if (CCP5_CMD_SOC(desc)) {
  196. CCP5_CMD_IOC(desc) = 1;
  197. CCP5_CMD_SOC(desc) = 0;
  198. }
  199. mutex_lock(&cmd_q->q_mutex);
  200. mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
  201. dP = (__le32 *) desc;
  202. for (i = 0; i < 8; i++)
  203. mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
  204. cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
  205. /* The data used by this command must be flushed to memory */
  206. wmb();
  207. /* Write the new tail address back to the queue register */
  208. tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
  209. iowrite32(tail, cmd_q->reg_tail_lo);
  210. /* Turn the queue back on using our cached control register */
  211. iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
  212. mutex_unlock(&cmd_q->q_mutex);
  213. if (CCP5_CMD_IOC(desc)) {
  214. /* Wait for the job to complete */
  215. ret = wait_event_interruptible(cmd_q->int_queue,
  216. cmd_q->int_rcvd);
  217. if (ret || cmd_q->cmd_error) {
  218. if (cmd_q->cmd_error)
  219. ccp_log_error(cmd_q->ccp,
  220. cmd_q->cmd_error);
  221. /* A version 5 device doesn't use Job IDs... */
  222. if (!ret)
  223. ret = -EIO;
  224. }
  225. cmd_q->int_rcvd = 0;
  226. }
  227. return 0;
  228. }
  229. static int ccp5_perform_aes(struct ccp_op *op)
  230. {
  231. struct ccp5_desc desc;
  232. union ccp_function function;
  233. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  234. /* Zero out all the fields of the command desc */
  235. memset(&desc, 0, Q_DESC_SIZE);
  236. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
  237. CCP5_CMD_SOC(&desc) = op->soc;
  238. CCP5_CMD_IOC(&desc) = 1;
  239. CCP5_CMD_INIT(&desc) = op->init;
  240. CCP5_CMD_EOM(&desc) = op->eom;
  241. CCP5_CMD_PROT(&desc) = 0;
  242. function.raw = 0;
  243. CCP_AES_ENCRYPT(&function) = op->u.aes.action;
  244. CCP_AES_MODE(&function) = op->u.aes.mode;
  245. CCP_AES_TYPE(&function) = op->u.aes.type;
  246. if (op->u.aes.mode == CCP_AES_MODE_CFB)
  247. CCP_AES_SIZE(&function) = 0x7f;
  248. CCP5_CMD_FUNCTION(&desc) = function.raw;
  249. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  250. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  251. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  252. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  253. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  254. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  255. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  256. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  257. CCP5_CMD_KEY_HI(&desc) = 0;
  258. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  259. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  260. return ccp5_do_cmd(&desc, op->cmd_q);
  261. }
  262. static int ccp5_perform_xts_aes(struct ccp_op *op)
  263. {
  264. struct ccp5_desc desc;
  265. union ccp_function function;
  266. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  267. /* Zero out all the fields of the command desc */
  268. memset(&desc, 0, Q_DESC_SIZE);
  269. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
  270. CCP5_CMD_SOC(&desc) = op->soc;
  271. CCP5_CMD_IOC(&desc) = 1;
  272. CCP5_CMD_INIT(&desc) = op->init;
  273. CCP5_CMD_EOM(&desc) = op->eom;
  274. CCP5_CMD_PROT(&desc) = 0;
  275. function.raw = 0;
  276. CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
  277. CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
  278. CCP5_CMD_FUNCTION(&desc) = function.raw;
  279. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  280. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  281. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  282. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  283. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  284. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  285. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  286. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  287. CCP5_CMD_KEY_HI(&desc) = 0;
  288. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  289. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  290. return ccp5_do_cmd(&desc, op->cmd_q);
  291. }
  292. static int ccp5_perform_sha(struct ccp_op *op)
  293. {
  294. struct ccp5_desc desc;
  295. union ccp_function function;
  296. /* Zero out all the fields of the command desc */
  297. memset(&desc, 0, Q_DESC_SIZE);
  298. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
  299. CCP5_CMD_SOC(&desc) = op->soc;
  300. CCP5_CMD_IOC(&desc) = 1;
  301. CCP5_CMD_INIT(&desc) = 1;
  302. CCP5_CMD_EOM(&desc) = op->eom;
  303. CCP5_CMD_PROT(&desc) = 0;
  304. function.raw = 0;
  305. CCP_SHA_TYPE(&function) = op->u.sha.type;
  306. CCP5_CMD_FUNCTION(&desc) = function.raw;
  307. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  308. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  309. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  310. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  311. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  312. if (op->eom) {
  313. CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
  314. CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
  315. } else {
  316. CCP5_CMD_SHA_LO(&desc) = 0;
  317. CCP5_CMD_SHA_HI(&desc) = 0;
  318. }
  319. return ccp5_do_cmd(&desc, op->cmd_q);
  320. }
  321. static int ccp5_perform_rsa(struct ccp_op *op)
  322. {
  323. struct ccp5_desc desc;
  324. union ccp_function function;
  325. /* Zero out all the fields of the command desc */
  326. memset(&desc, 0, Q_DESC_SIZE);
  327. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
  328. CCP5_CMD_SOC(&desc) = op->soc;
  329. CCP5_CMD_IOC(&desc) = 1;
  330. CCP5_CMD_INIT(&desc) = 0;
  331. CCP5_CMD_EOM(&desc) = 1;
  332. CCP5_CMD_PROT(&desc) = 0;
  333. function.raw = 0;
  334. CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
  335. CCP5_CMD_FUNCTION(&desc) = function.raw;
  336. CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
  337. /* Source is from external memory */
  338. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  339. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  340. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  341. /* Destination is in external memory */
  342. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  343. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  344. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  345. /* Exponent is in LSB memory */
  346. CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
  347. CCP5_CMD_KEY_HI(&desc) = 0;
  348. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  349. return ccp5_do_cmd(&desc, op->cmd_q);
  350. }
  351. static int ccp5_perform_passthru(struct ccp_op *op)
  352. {
  353. struct ccp5_desc desc;
  354. union ccp_function function;
  355. struct ccp_dma_info *saddr = &op->src.u.dma;
  356. struct ccp_dma_info *daddr = &op->dst.u.dma;
  357. memset(&desc, 0, Q_DESC_SIZE);
  358. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
  359. CCP5_CMD_SOC(&desc) = 0;
  360. CCP5_CMD_IOC(&desc) = 1;
  361. CCP5_CMD_INIT(&desc) = 0;
  362. CCP5_CMD_EOM(&desc) = op->eom;
  363. CCP5_CMD_PROT(&desc) = 0;
  364. function.raw = 0;
  365. CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
  366. CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
  367. CCP5_CMD_FUNCTION(&desc) = function.raw;
  368. /* Length of source data is always 256 bytes */
  369. if (op->src.type == CCP_MEMTYPE_SYSTEM)
  370. CCP5_CMD_LEN(&desc) = saddr->length;
  371. else
  372. CCP5_CMD_LEN(&desc) = daddr->length;
  373. if (op->src.type == CCP_MEMTYPE_SYSTEM) {
  374. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  375. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  376. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  377. if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
  378. CCP5_CMD_LSB_ID(&desc) = op->sb_key;
  379. } else {
  380. u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
  381. CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
  382. CCP5_CMD_SRC_HI(&desc) = 0;
  383. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
  384. }
  385. if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
  386. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  387. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  388. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  389. } else {
  390. u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
  391. CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
  392. CCP5_CMD_DST_HI(&desc) = 0;
  393. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
  394. }
  395. return ccp5_do_cmd(&desc, op->cmd_q);
  396. }
  397. static int ccp5_perform_ecc(struct ccp_op *op)
  398. {
  399. struct ccp5_desc desc;
  400. union ccp_function function;
  401. /* Zero out all the fields of the command desc */
  402. memset(&desc, 0, Q_DESC_SIZE);
  403. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
  404. CCP5_CMD_SOC(&desc) = 0;
  405. CCP5_CMD_IOC(&desc) = 1;
  406. CCP5_CMD_INIT(&desc) = 0;
  407. CCP5_CMD_EOM(&desc) = 1;
  408. CCP5_CMD_PROT(&desc) = 0;
  409. function.raw = 0;
  410. function.ecc.mode = op->u.ecc.function;
  411. CCP5_CMD_FUNCTION(&desc) = function.raw;
  412. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  413. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  414. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  415. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  416. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  417. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  418. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  419. return ccp5_do_cmd(&desc, op->cmd_q);
  420. }
  421. static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
  422. {
  423. int q_mask = 1 << cmd_q->id;
  424. int queues = 0;
  425. int j;
  426. /* Build a bit mask to know which LSBs this queue has access to.
  427. * Don't bother with segment 0 as it has special privileges.
  428. */
  429. for (j = 1; j < MAX_LSB_CNT; j++) {
  430. if (status & q_mask)
  431. bitmap_set(cmd_q->lsbmask, j, 1);
  432. status >>= LSB_REGION_WIDTH;
  433. }
  434. queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  435. dev_info(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
  436. cmd_q->id, queues);
  437. return queues ? 0 : -EINVAL;
  438. }
  439. static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
  440. int lsb_cnt, int n_lsbs,
  441. unsigned long *lsb_pub)
  442. {
  443. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  444. int bitno;
  445. int qlsb_wgt;
  446. int i;
  447. /* For each queue:
  448. * If the count of potential LSBs available to a queue matches the
  449. * ordinal given to us in lsb_cnt:
  450. * Copy the mask of possible LSBs for this queue into "qlsb";
  451. * For each bit in qlsb, see if the corresponding bit in the
  452. * aggregation mask is set; if so, we have a match.
  453. * If we have a match, clear the bit in the aggregation to
  454. * mark it as no longer available.
  455. * If there is no match, clear the bit in qlsb and keep looking.
  456. */
  457. for (i = 0; i < ccp->cmd_q_count; i++) {
  458. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  459. qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  460. if (qlsb_wgt == lsb_cnt) {
  461. bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
  462. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  463. while (bitno < MAX_LSB_CNT) {
  464. if (test_bit(bitno, lsb_pub)) {
  465. /* We found an available LSB
  466. * that this queue can access
  467. */
  468. cmd_q->lsb = bitno;
  469. bitmap_clear(lsb_pub, bitno, 1);
  470. dev_info(ccp->dev,
  471. "Queue %d gets LSB %d\n",
  472. i, bitno);
  473. break;
  474. }
  475. bitmap_clear(qlsb, bitno, 1);
  476. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  477. }
  478. if (bitno >= MAX_LSB_CNT)
  479. return -EINVAL;
  480. n_lsbs--;
  481. }
  482. }
  483. return n_lsbs;
  484. }
  485. /* For each queue, from the most- to least-constrained:
  486. * find an LSB that can be assigned to the queue. If there are N queues that
  487. * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
  488. * dedicated LSB. Remaining LSB regions become a shared resource.
  489. * If we have fewer LSBs than queues, all LSB regions become shared resources.
  490. */
  491. static int ccp_assign_lsbs(struct ccp_device *ccp)
  492. {
  493. DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
  494. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  495. int n_lsbs = 0;
  496. int bitno;
  497. int i, lsb_cnt;
  498. int rc = 0;
  499. bitmap_zero(lsb_pub, MAX_LSB_CNT);
  500. /* Create an aggregate bitmap to get a total count of available LSBs */
  501. for (i = 0; i < ccp->cmd_q_count; i++)
  502. bitmap_or(lsb_pub,
  503. lsb_pub, ccp->cmd_q[i].lsbmask,
  504. MAX_LSB_CNT);
  505. n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
  506. if (n_lsbs >= ccp->cmd_q_count) {
  507. /* We have enough LSBS to give every queue a private LSB.
  508. * Brute force search to start with the queues that are more
  509. * constrained in LSB choice. When an LSB is privately
  510. * assigned, it is removed from the public mask.
  511. * This is an ugly N squared algorithm with some optimization.
  512. */
  513. for (lsb_cnt = 1;
  514. n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
  515. lsb_cnt++) {
  516. rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
  517. lsb_pub);
  518. if (rc < 0)
  519. return -EINVAL;
  520. n_lsbs = rc;
  521. }
  522. }
  523. rc = 0;
  524. /* What's left of the LSBs, according to the public mask, now become
  525. * shared. Any zero bits in the lsb_pub mask represent an LSB region
  526. * that can't be used as a shared resource, so mark the LSB slots for
  527. * them as "in use".
  528. */
  529. bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
  530. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  531. while (bitno < MAX_LSB_CNT) {
  532. bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
  533. bitmap_set(qlsb, bitno, 1);
  534. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  535. }
  536. return rc;
  537. }
  538. static int ccp5_init(struct ccp_device *ccp)
  539. {
  540. struct device *dev = ccp->dev;
  541. struct ccp_cmd_queue *cmd_q;
  542. struct dma_pool *dma_pool;
  543. char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
  544. unsigned int qmr, qim, i;
  545. u64 status;
  546. u32 status_lo, status_hi;
  547. int ret;
  548. /* Find available queues */
  549. qim = 0;
  550. qmr = ioread32(ccp->io_regs + Q_MASK_REG);
  551. for (i = 0; i < MAX_HW_QUEUES; i++) {
  552. if (!(qmr & (1 << i)))
  553. continue;
  554. /* Allocate a dma pool for this queue */
  555. snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
  556. ccp->name, i);
  557. dma_pool = dma_pool_create(dma_pool_name, dev,
  558. CCP_DMAPOOL_MAX_SIZE,
  559. CCP_DMAPOOL_ALIGN, 0);
  560. if (!dma_pool) {
  561. dev_err(dev, "unable to allocate dma pool\n");
  562. ret = -ENOMEM;
  563. }
  564. cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
  565. ccp->cmd_q_count++;
  566. cmd_q->ccp = ccp;
  567. cmd_q->id = i;
  568. cmd_q->dma_pool = dma_pool;
  569. mutex_init(&cmd_q->q_mutex);
  570. /* Page alignment satisfies our needs for N <= 128 */
  571. BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
  572. cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
  573. cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
  574. &cmd_q->qbase_dma,
  575. GFP_KERNEL);
  576. if (!cmd_q->qbase) {
  577. dev_err(dev, "unable to allocate command queue\n");
  578. ret = -ENOMEM;
  579. goto e_pool;
  580. }
  581. cmd_q->qidx = 0;
  582. /* Preset some register values and masks that are queue
  583. * number dependent
  584. */
  585. cmd_q->reg_control = ccp->io_regs +
  586. CMD5_Q_STATUS_INCR * (i + 1);
  587. cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
  588. cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
  589. cmd_q->reg_int_enable = cmd_q->reg_control +
  590. CMD5_Q_INT_ENABLE_BASE;
  591. cmd_q->reg_interrupt_status = cmd_q->reg_control +
  592. CMD5_Q_INTERRUPT_STATUS_BASE;
  593. cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
  594. cmd_q->reg_int_status = cmd_q->reg_control +
  595. CMD5_Q_INT_STATUS_BASE;
  596. cmd_q->reg_dma_status = cmd_q->reg_control +
  597. CMD5_Q_DMA_STATUS_BASE;
  598. cmd_q->reg_dma_read_status = cmd_q->reg_control +
  599. CMD5_Q_DMA_READ_STATUS_BASE;
  600. cmd_q->reg_dma_write_status = cmd_q->reg_control +
  601. CMD5_Q_DMA_WRITE_STATUS_BASE;
  602. init_waitqueue_head(&cmd_q->int_queue);
  603. dev_dbg(dev, "queue #%u available\n", i);
  604. }
  605. if (ccp->cmd_q_count == 0) {
  606. dev_notice(dev, "no command queues available\n");
  607. ret = -EIO;
  608. goto e_pool;
  609. }
  610. dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
  611. /* Turn off the queues and disable interrupts until ready */
  612. for (i = 0; i < ccp->cmd_q_count; i++) {
  613. cmd_q = &ccp->cmd_q[i];
  614. cmd_q->qcontrol = 0; /* Start with nothing */
  615. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  616. /* Disable the interrupts */
  617. iowrite32(0x00, cmd_q->reg_int_enable);
  618. ioread32(cmd_q->reg_int_status);
  619. ioread32(cmd_q->reg_status);
  620. /* Clear the interrupts */
  621. iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
  622. }
  623. dev_dbg(dev, "Requesting an IRQ...\n");
  624. /* Request an irq */
  625. ret = ccp->get_irq(ccp);
  626. if (ret) {
  627. dev_err(dev, "unable to allocate an IRQ\n");
  628. goto e_pool;
  629. }
  630. dev_dbg(dev, "Loading LSB map...\n");
  631. /* Copy the private LSB mask to the public registers */
  632. status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  633. status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  634. iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
  635. iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
  636. status = ((u64)status_hi<<30) | (u64)status_lo;
  637. dev_dbg(dev, "Configuring virtual queues...\n");
  638. /* Configure size of each virtual queue accessible to host */
  639. for (i = 0; i < ccp->cmd_q_count; i++) {
  640. u32 dma_addr_lo;
  641. u32 dma_addr_hi;
  642. cmd_q = &ccp->cmd_q[i];
  643. cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
  644. cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
  645. cmd_q->qdma_tail = cmd_q->qbase_dma;
  646. dma_addr_lo = low_address(cmd_q->qdma_tail);
  647. iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
  648. iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
  649. dma_addr_hi = high_address(cmd_q->qdma_tail);
  650. cmd_q->qcontrol |= (dma_addr_hi << 16);
  651. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  652. /* Find the LSB regions accessible to the queue */
  653. ccp_find_lsb_regions(cmd_q, status);
  654. cmd_q->lsb = -1; /* Unassigned value */
  655. }
  656. dev_dbg(dev, "Assigning LSBs...\n");
  657. ret = ccp_assign_lsbs(ccp);
  658. if (ret) {
  659. dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
  660. goto e_irq;
  661. }
  662. /* Optimization: pre-allocate LSB slots for each queue */
  663. for (i = 0; i < ccp->cmd_q_count; i++) {
  664. ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  665. ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  666. }
  667. dev_dbg(dev, "Starting threads...\n");
  668. /* Create a kthread for each queue */
  669. for (i = 0; i < ccp->cmd_q_count; i++) {
  670. struct task_struct *kthread;
  671. cmd_q = &ccp->cmd_q[i];
  672. kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
  673. "%s-q%u", ccp->name, cmd_q->id);
  674. if (IS_ERR(kthread)) {
  675. dev_err(dev, "error creating queue thread (%ld)\n",
  676. PTR_ERR(kthread));
  677. ret = PTR_ERR(kthread);
  678. goto e_kthread;
  679. }
  680. cmd_q->kthread = kthread;
  681. wake_up_process(kthread);
  682. }
  683. dev_dbg(dev, "Enabling interrupts...\n");
  684. /* Enable interrupts */
  685. for (i = 0; i < ccp->cmd_q_count; i++) {
  686. cmd_q = &ccp->cmd_q[i];
  687. iowrite32(ALL_INTERRUPTS, cmd_q->reg_int_enable);
  688. }
  689. dev_dbg(dev, "Registering device...\n");
  690. /* Put this on the unit list to make it available */
  691. ccp_add_device(ccp);
  692. ret = ccp_register_rng(ccp);
  693. if (ret)
  694. goto e_kthread;
  695. /* Register the DMA engine support */
  696. ret = ccp_dmaengine_register(ccp);
  697. if (ret)
  698. goto e_hwrng;
  699. return 0;
  700. e_hwrng:
  701. ccp_unregister_rng(ccp);
  702. e_kthread:
  703. for (i = 0; i < ccp->cmd_q_count; i++)
  704. if (ccp->cmd_q[i].kthread)
  705. kthread_stop(ccp->cmd_q[i].kthread);
  706. e_irq:
  707. ccp->free_irq(ccp);
  708. e_pool:
  709. for (i = 0; i < ccp->cmd_q_count; i++)
  710. dma_pool_destroy(ccp->cmd_q[i].dma_pool);
  711. return ret;
  712. }
  713. static void ccp5_destroy(struct ccp_device *ccp)
  714. {
  715. struct device *dev = ccp->dev;
  716. struct ccp_cmd_queue *cmd_q;
  717. struct ccp_cmd *cmd;
  718. unsigned int i;
  719. /* Unregister the DMA engine */
  720. ccp_dmaengine_unregister(ccp);
  721. /* Unregister the RNG */
  722. ccp_unregister_rng(ccp);
  723. /* Remove this device from the list of available units first */
  724. ccp_del_device(ccp);
  725. /* Disable and clear interrupts */
  726. for (i = 0; i < ccp->cmd_q_count; i++) {
  727. cmd_q = &ccp->cmd_q[i];
  728. /* Turn off the run bit */
  729. iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
  730. /* Disable the interrupts */
  731. iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
  732. /* Clear the interrupt status */
  733. iowrite32(0x00, cmd_q->reg_int_enable);
  734. ioread32(cmd_q->reg_int_status);
  735. ioread32(cmd_q->reg_status);
  736. }
  737. /* Stop the queue kthreads */
  738. for (i = 0; i < ccp->cmd_q_count; i++)
  739. if (ccp->cmd_q[i].kthread)
  740. kthread_stop(ccp->cmd_q[i].kthread);
  741. ccp->free_irq(ccp);
  742. for (i = 0; i < ccp->cmd_q_count; i++) {
  743. cmd_q = &ccp->cmd_q[i];
  744. dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
  745. cmd_q->qbase_dma);
  746. }
  747. /* Flush the cmd and backlog queue */
  748. while (!list_empty(&ccp->cmd)) {
  749. /* Invoke the callback directly with an error code */
  750. cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
  751. list_del(&cmd->entry);
  752. cmd->callback(cmd->data, -ENODEV);
  753. }
  754. while (!list_empty(&ccp->backlog)) {
  755. /* Invoke the callback directly with an error code */
  756. cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
  757. list_del(&cmd->entry);
  758. cmd->callback(cmd->data, -ENODEV);
  759. }
  760. }
  761. static irqreturn_t ccp5_irq_handler(int irq, void *data)
  762. {
  763. struct device *dev = data;
  764. struct ccp_device *ccp = dev_get_drvdata(dev);
  765. u32 status;
  766. unsigned int i;
  767. for (i = 0; i < ccp->cmd_q_count; i++) {
  768. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  769. status = ioread32(cmd_q->reg_interrupt_status);
  770. if (status) {
  771. cmd_q->int_status = status;
  772. cmd_q->q_status = ioread32(cmd_q->reg_status);
  773. cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
  774. /* On error, only save the first error value */
  775. if ((status & INT_ERROR) && !cmd_q->cmd_error)
  776. cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
  777. cmd_q->int_rcvd = 1;
  778. /* Acknowledge the interrupt and wake the kthread */
  779. iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
  780. wake_up_interruptible(&cmd_q->int_queue);
  781. }
  782. }
  783. return IRQ_HANDLED;
  784. }
  785. static void ccp5_config(struct ccp_device *ccp)
  786. {
  787. /* Public side */
  788. iowrite32(0x00001249, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
  789. }
  790. static void ccp5other_config(struct ccp_device *ccp)
  791. {
  792. int i;
  793. u32 rnd;
  794. /* We own all of the queues on the NTB CCP */
  795. iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
  796. iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
  797. for (i = 0; i < 12; i++) {
  798. rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
  799. iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
  800. }
  801. iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
  802. iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
  803. iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
  804. iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  805. iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  806. iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
  807. ccp5_config(ccp);
  808. }
  809. /* Version 5 adds some function, but is essentially the same as v5 */
  810. static const struct ccp_actions ccp5_actions = {
  811. .aes = ccp5_perform_aes,
  812. .xts_aes = ccp5_perform_xts_aes,
  813. .sha = ccp5_perform_sha,
  814. .rsa = ccp5_perform_rsa,
  815. .passthru = ccp5_perform_passthru,
  816. .ecc = ccp5_perform_ecc,
  817. .sballoc = ccp_lsb_alloc,
  818. .sbfree = ccp_lsb_free,
  819. .init = ccp5_init,
  820. .destroy = ccp5_destroy,
  821. .get_free_slots = ccp5_get_free_slots,
  822. .irqhandler = ccp5_irq_handler,
  823. };
  824. const struct ccp_vdata ccpv5a = {
  825. .version = CCP_VERSION(5, 0),
  826. .setup = ccp5_config,
  827. .perform = &ccp5_actions,
  828. .bar = 2,
  829. .offset = 0x0,
  830. };
  831. const struct ccp_vdata ccpv5b = {
  832. .version = CCP_VERSION(5, 0),
  833. .setup = ccp5other_config,
  834. .perform = &ccp5_actions,
  835. .bar = 2,
  836. .offset = 0x0,
  837. };