caamhash.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (3 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  94. dma_addr_t sh_desc_update_dma ____cacheline_aligned;
  95. dma_addr_t sh_desc_update_first_dma;
  96. dma_addr_t sh_desc_fin_dma;
  97. dma_addr_t sh_desc_digest_dma;
  98. struct device *jrdev;
  99. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  100. dma_addr_t key_dma;
  101. int ctx_len;
  102. struct alginfo adata;
  103. };
  104. /* ahash state */
  105. struct caam_hash_state {
  106. dma_addr_t buf_dma;
  107. dma_addr_t ctx_dma;
  108. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  109. int buflen_0;
  110. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  111. int buflen_1;
  112. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  113. int (*update)(struct ahash_request *req);
  114. int (*final)(struct ahash_request *req);
  115. int (*finup)(struct ahash_request *req);
  116. int current_buf;
  117. };
  118. struct caam_export_state {
  119. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  120. u8 caam_ctx[MAX_CTX_LEN];
  121. int buflen;
  122. int (*update)(struct ahash_request *req);
  123. int (*final)(struct ahash_request *req);
  124. int (*finup)(struct ahash_request *req);
  125. };
  126. /* Common job descriptor seq in/out ptr routines */
  127. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  128. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  129. struct caam_hash_state *state,
  130. int ctx_len)
  131. {
  132. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  133. ctx_len, DMA_FROM_DEVICE);
  134. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  135. dev_err(jrdev, "unable to map ctx\n");
  136. return -ENOMEM;
  137. }
  138. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  139. return 0;
  140. }
  141. /* Map req->result, and append seq_out_ptr command that points to it */
  142. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  143. u8 *result, int digestsize)
  144. {
  145. dma_addr_t dst_dma;
  146. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  147. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  148. return dst_dma;
  149. }
  150. /* Map current buffer in state and put it in link table */
  151. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  152. struct sec4_sg_entry *sec4_sg,
  153. u8 *buf, int buflen)
  154. {
  155. dma_addr_t buf_dma;
  156. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  157. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  158. return buf_dma;
  159. }
  160. /*
  161. * Only put buffer in link table if it contains data, which is possible,
  162. * since a buffer has previously been used, and needs to be unmapped,
  163. */
  164. static inline dma_addr_t
  165. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  166. u8 *buf, dma_addr_t buf_dma, int buflen,
  167. int last_buflen)
  168. {
  169. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  170. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  171. if (buflen)
  172. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  173. else
  174. buf_dma = 0;
  175. return buf_dma;
  176. }
  177. /* Map state->caam_ctx, and add it to link table */
  178. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  179. struct caam_hash_state *state, int ctx_len,
  180. struct sec4_sg_entry *sec4_sg, u32 flag)
  181. {
  182. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  183. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  184. dev_err(jrdev, "unable to map ctx\n");
  185. return -ENOMEM;
  186. }
  187. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  188. return 0;
  189. }
  190. /*
  191. * For ahash update, final and finup (import_ctx = true)
  192. * import context, read and write to seqout
  193. * For ahash firsts and digest (import_ctx = false)
  194. * read and write to seqout
  195. */
  196. static inline void ahash_gen_sh_desc(u32 *desc, u32 state, int digestsize,
  197. struct caam_hash_ctx *ctx, bool import_ctx)
  198. {
  199. u32 op = ctx->adata.algtype;
  200. u32 *skip_key_load;
  201. init_sh_desc(desc, HDR_SHARE_SERIAL);
  202. /* Append key if it has been set; ahash update excluded */
  203. if ((state != OP_ALG_AS_UPDATE) && (ctx->adata.keylen)) {
  204. /* Skip key loading if already shared */
  205. skip_key_load = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  206. JUMP_COND_SHRD);
  207. append_key_as_imm(desc, ctx->key, ctx->adata.keylen_pad,
  208. ctx->adata.keylen, CLASS_2 |
  209. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  210. set_jump_tgt_here(desc, skip_key_load);
  211. op |= OP_ALG_AAI_HMAC_PRECOMP;
  212. }
  213. /* If needed, import context from software */
  214. if (import_ctx)
  215. append_seq_load(desc, ctx->ctx_len, LDST_CLASS_2_CCB |
  216. LDST_SRCDST_BYTE_CONTEXT);
  217. /* Class 2 operation */
  218. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  219. /*
  220. * Load from buf and/or src and write to req->result or state->context
  221. * Calculate remaining bytes to read
  222. */
  223. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  224. /* Read remaining bytes */
  225. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  226. FIFOLD_TYPE_MSG | KEY_VLF);
  227. /* Store class2 context bytes */
  228. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  229. LDST_SRCDST_BYTE_CONTEXT);
  230. }
  231. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  232. {
  233. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  234. int digestsize = crypto_ahash_digestsize(ahash);
  235. struct device *jrdev = ctx->jrdev;
  236. u32 *desc;
  237. /* ahash_update shared descriptor */
  238. desc = ctx->sh_desc_update;
  239. ahash_gen_sh_desc(desc, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx, true);
  240. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  241. DMA_TO_DEVICE);
  242. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  243. dev_err(jrdev, "unable to map shared descriptor\n");
  244. return -ENOMEM;
  245. }
  246. #ifdef DEBUG
  247. print_hex_dump(KERN_ERR,
  248. "ahash update shdesc@"__stringify(__LINE__)": ",
  249. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  250. #endif
  251. /* ahash_update_first shared descriptor */
  252. desc = ctx->sh_desc_update_first;
  253. ahash_gen_sh_desc(desc, OP_ALG_AS_INIT, ctx->ctx_len, ctx, false);
  254. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  255. desc_bytes(desc),
  256. DMA_TO_DEVICE);
  257. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  258. dev_err(jrdev, "unable to map shared descriptor\n");
  259. return -ENOMEM;
  260. }
  261. #ifdef DEBUG
  262. print_hex_dump(KERN_ERR,
  263. "ahash update first shdesc@"__stringify(__LINE__)": ",
  264. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  265. #endif
  266. /* ahash_final shared descriptor */
  267. desc = ctx->sh_desc_fin;
  268. ahash_gen_sh_desc(desc, OP_ALG_AS_FINALIZE, digestsize, ctx, true);
  269. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  270. DMA_TO_DEVICE);
  271. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  272. dev_err(jrdev, "unable to map shared descriptor\n");
  273. return -ENOMEM;
  274. }
  275. #ifdef DEBUG
  276. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  277. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  278. desc_bytes(desc), 1);
  279. #endif
  280. /* ahash_digest shared descriptor */
  281. desc = ctx->sh_desc_digest;
  282. ahash_gen_sh_desc(desc, OP_ALG_AS_INITFINAL, digestsize, ctx, false);
  283. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  284. desc_bytes(desc),
  285. DMA_TO_DEVICE);
  286. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  287. dev_err(jrdev, "unable to map shared descriptor\n");
  288. return -ENOMEM;
  289. }
  290. #ifdef DEBUG
  291. print_hex_dump(KERN_ERR,
  292. "ahash digest shdesc@"__stringify(__LINE__)": ",
  293. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  294. desc_bytes(desc), 1);
  295. #endif
  296. return 0;
  297. }
  298. /* Digest hash size if it is too large */
  299. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  300. u32 *keylen, u8 *key_out, u32 digestsize)
  301. {
  302. struct device *jrdev = ctx->jrdev;
  303. u32 *desc;
  304. struct split_key_result result;
  305. dma_addr_t src_dma, dst_dma;
  306. int ret;
  307. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  308. if (!desc) {
  309. dev_err(jrdev, "unable to allocate key input memory\n");
  310. return -ENOMEM;
  311. }
  312. init_job_desc(desc, 0);
  313. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  314. DMA_TO_DEVICE);
  315. if (dma_mapping_error(jrdev, src_dma)) {
  316. dev_err(jrdev, "unable to map key input memory\n");
  317. kfree(desc);
  318. return -ENOMEM;
  319. }
  320. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  321. DMA_FROM_DEVICE);
  322. if (dma_mapping_error(jrdev, dst_dma)) {
  323. dev_err(jrdev, "unable to map key output memory\n");
  324. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  325. kfree(desc);
  326. return -ENOMEM;
  327. }
  328. /* Job descriptor to perform unkeyed hash on key_in */
  329. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  330. OP_ALG_AS_INITFINAL);
  331. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  332. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  333. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  334. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  335. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  336. LDST_SRCDST_BYTE_CONTEXT);
  337. #ifdef DEBUG
  338. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  339. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  340. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  341. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  342. #endif
  343. result.err = 0;
  344. init_completion(&result.completion);
  345. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  346. if (!ret) {
  347. /* in progress */
  348. wait_for_completion_interruptible(&result.completion);
  349. ret = result.err;
  350. #ifdef DEBUG
  351. print_hex_dump(KERN_ERR,
  352. "digested key@"__stringify(__LINE__)": ",
  353. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  354. digestsize, 1);
  355. #endif
  356. }
  357. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  358. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  359. *keylen = digestsize;
  360. kfree(desc);
  361. return ret;
  362. }
  363. static int ahash_setkey(struct crypto_ahash *ahash,
  364. const u8 *key, unsigned int keylen)
  365. {
  366. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  367. struct device *jrdev = ctx->jrdev;
  368. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  369. int digestsize = crypto_ahash_digestsize(ahash);
  370. int ret;
  371. u8 *hashed_key = NULL;
  372. #ifdef DEBUG
  373. printk(KERN_ERR "keylen %d\n", keylen);
  374. #endif
  375. if (keylen > blocksize) {
  376. hashed_key = kmalloc_array(digestsize,
  377. sizeof(*hashed_key),
  378. GFP_KERNEL | GFP_DMA);
  379. if (!hashed_key)
  380. return -ENOMEM;
  381. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  382. digestsize);
  383. if (ret)
  384. goto bad_free_key;
  385. key = hashed_key;
  386. }
  387. ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, keylen,
  388. CAAM_MAX_HASH_KEY_SIZE);
  389. if (ret)
  390. goto bad_free_key;
  391. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->adata.keylen_pad,
  392. DMA_TO_DEVICE);
  393. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  394. dev_err(jrdev, "unable to map key i/o memory\n");
  395. ret = -ENOMEM;
  396. goto error_free_key;
  397. }
  398. #ifdef DEBUG
  399. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  400. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  401. ctx->adata.keylen_pad, 1);
  402. #endif
  403. ret = ahash_set_sh_desc(ahash);
  404. if (ret) {
  405. dma_unmap_single(jrdev, ctx->key_dma, ctx->adata.keylen_pad,
  406. DMA_TO_DEVICE);
  407. }
  408. error_free_key:
  409. kfree(hashed_key);
  410. return ret;
  411. bad_free_key:
  412. kfree(hashed_key);
  413. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  414. return -EINVAL;
  415. }
  416. /*
  417. * ahash_edesc - s/w-extended ahash descriptor
  418. * @dst_dma: physical mapped address of req->result
  419. * @sec4_sg_dma: physical mapped address of h/w link table
  420. * @src_nents: number of segments in input scatterlist
  421. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  422. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  423. * @sec4_sg: h/w link table
  424. */
  425. struct ahash_edesc {
  426. dma_addr_t dst_dma;
  427. dma_addr_t sec4_sg_dma;
  428. int src_nents;
  429. int sec4_sg_bytes;
  430. u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
  431. struct sec4_sg_entry sec4_sg[0];
  432. };
  433. static inline void ahash_unmap(struct device *dev,
  434. struct ahash_edesc *edesc,
  435. struct ahash_request *req, int dst_len)
  436. {
  437. if (edesc->src_nents)
  438. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  439. if (edesc->dst_dma)
  440. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  441. if (edesc->sec4_sg_bytes)
  442. dma_unmap_single(dev, edesc->sec4_sg_dma,
  443. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  444. }
  445. static inline void ahash_unmap_ctx(struct device *dev,
  446. struct ahash_edesc *edesc,
  447. struct ahash_request *req, int dst_len, u32 flag)
  448. {
  449. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  450. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  451. struct caam_hash_state *state = ahash_request_ctx(req);
  452. if (state->ctx_dma)
  453. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  454. ahash_unmap(dev, edesc, req, dst_len);
  455. }
  456. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  457. void *context)
  458. {
  459. struct ahash_request *req = context;
  460. struct ahash_edesc *edesc;
  461. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  462. int digestsize = crypto_ahash_digestsize(ahash);
  463. #ifdef DEBUG
  464. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  465. struct caam_hash_state *state = ahash_request_ctx(req);
  466. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  467. #endif
  468. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  469. if (err)
  470. caam_jr_strstatus(jrdev, err);
  471. ahash_unmap(jrdev, edesc, req, digestsize);
  472. kfree(edesc);
  473. #ifdef DEBUG
  474. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  475. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  476. ctx->ctx_len, 1);
  477. if (req->result)
  478. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  479. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  480. digestsize, 1);
  481. #endif
  482. req->base.complete(&req->base, err);
  483. }
  484. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  485. void *context)
  486. {
  487. struct ahash_request *req = context;
  488. struct ahash_edesc *edesc;
  489. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  490. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  491. #ifdef DEBUG
  492. struct caam_hash_state *state = ahash_request_ctx(req);
  493. int digestsize = crypto_ahash_digestsize(ahash);
  494. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  495. #endif
  496. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  497. if (err)
  498. caam_jr_strstatus(jrdev, err);
  499. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  500. kfree(edesc);
  501. #ifdef DEBUG
  502. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  503. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  504. ctx->ctx_len, 1);
  505. if (req->result)
  506. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  507. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  508. digestsize, 1);
  509. #endif
  510. req->base.complete(&req->base, err);
  511. }
  512. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  513. void *context)
  514. {
  515. struct ahash_request *req = context;
  516. struct ahash_edesc *edesc;
  517. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  518. int digestsize = crypto_ahash_digestsize(ahash);
  519. #ifdef DEBUG
  520. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  521. struct caam_hash_state *state = ahash_request_ctx(req);
  522. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  523. #endif
  524. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  525. if (err)
  526. caam_jr_strstatus(jrdev, err);
  527. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  528. kfree(edesc);
  529. #ifdef DEBUG
  530. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  531. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  532. ctx->ctx_len, 1);
  533. if (req->result)
  534. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  535. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  536. digestsize, 1);
  537. #endif
  538. req->base.complete(&req->base, err);
  539. }
  540. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  541. void *context)
  542. {
  543. struct ahash_request *req = context;
  544. struct ahash_edesc *edesc;
  545. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  546. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  547. #ifdef DEBUG
  548. struct caam_hash_state *state = ahash_request_ctx(req);
  549. int digestsize = crypto_ahash_digestsize(ahash);
  550. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  551. #endif
  552. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  553. if (err)
  554. caam_jr_strstatus(jrdev, err);
  555. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  556. kfree(edesc);
  557. #ifdef DEBUG
  558. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  559. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  560. ctx->ctx_len, 1);
  561. if (req->result)
  562. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  563. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  564. digestsize, 1);
  565. #endif
  566. req->base.complete(&req->base, err);
  567. }
  568. /*
  569. * Allocate an enhanced descriptor, which contains the hardware descriptor
  570. * and space for hardware scatter table containing sg_num entries.
  571. */
  572. static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
  573. int sg_num, u32 *sh_desc,
  574. dma_addr_t sh_desc_dma,
  575. gfp_t flags)
  576. {
  577. struct ahash_edesc *edesc;
  578. unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
  579. edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
  580. if (!edesc) {
  581. dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
  582. return NULL;
  583. }
  584. init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
  585. HDR_SHARE_DEFER | HDR_REVERSE);
  586. return edesc;
  587. }
  588. static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
  589. struct ahash_edesc *edesc,
  590. struct ahash_request *req, int nents,
  591. unsigned int first_sg,
  592. unsigned int first_bytes, size_t to_hash)
  593. {
  594. dma_addr_t src_dma;
  595. u32 options;
  596. if (nents > 1 || first_sg) {
  597. struct sec4_sg_entry *sg = edesc->sec4_sg;
  598. unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
  599. sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
  600. src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
  601. if (dma_mapping_error(ctx->jrdev, src_dma)) {
  602. dev_err(ctx->jrdev, "unable to map S/G table\n");
  603. return -ENOMEM;
  604. }
  605. edesc->sec4_sg_bytes = sgsize;
  606. edesc->sec4_sg_dma = src_dma;
  607. options = LDST_SGF;
  608. } else {
  609. src_dma = sg_dma_address(req->src);
  610. options = 0;
  611. }
  612. append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
  613. options);
  614. return 0;
  615. }
  616. /* submit update job descriptor */
  617. static int ahash_update_ctx(struct ahash_request *req)
  618. {
  619. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  620. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  621. struct caam_hash_state *state = ahash_request_ctx(req);
  622. struct device *jrdev = ctx->jrdev;
  623. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  624. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  625. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  626. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  627. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  628. int *next_buflen = state->current_buf ? &state->buflen_0 :
  629. &state->buflen_1, last_buflen;
  630. int in_len = *buflen + req->nbytes, to_hash;
  631. u32 *desc;
  632. int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
  633. struct ahash_edesc *edesc;
  634. int ret = 0;
  635. last_buflen = *next_buflen;
  636. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  637. to_hash = in_len - *next_buflen;
  638. if (to_hash) {
  639. src_nents = sg_nents_for_len(req->src,
  640. req->nbytes - (*next_buflen));
  641. if (src_nents < 0) {
  642. dev_err(jrdev, "Invalid number of src SG.\n");
  643. return src_nents;
  644. }
  645. if (src_nents) {
  646. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  647. DMA_TO_DEVICE);
  648. if (!mapped_nents) {
  649. dev_err(jrdev, "unable to DMA map source\n");
  650. return -ENOMEM;
  651. }
  652. } else {
  653. mapped_nents = 0;
  654. }
  655. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  656. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  657. sizeof(struct sec4_sg_entry);
  658. /*
  659. * allocate space for base edesc and hw desc commands,
  660. * link tables
  661. */
  662. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  663. ctx->sh_desc_update,
  664. ctx->sh_desc_update_dma, flags);
  665. if (!edesc) {
  666. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  667. return -ENOMEM;
  668. }
  669. edesc->src_nents = src_nents;
  670. edesc->sec4_sg_bytes = sec4_sg_bytes;
  671. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  672. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  673. if (ret)
  674. goto unmap_ctx;
  675. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  676. edesc->sec4_sg + 1,
  677. buf, state->buf_dma,
  678. *buflen, last_buflen);
  679. if (mapped_nents) {
  680. sg_to_sec4_sg_last(req->src, mapped_nents,
  681. edesc->sec4_sg + sec4_sg_src_index,
  682. 0);
  683. if (*next_buflen)
  684. scatterwalk_map_and_copy(next_buf, req->src,
  685. to_hash - *buflen,
  686. *next_buflen, 0);
  687. } else {
  688. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  689. cpu_to_caam32(SEC4_SG_LEN_FIN);
  690. }
  691. state->current_buf = !state->current_buf;
  692. desc = edesc->hw_desc;
  693. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  694. sec4_sg_bytes,
  695. DMA_TO_DEVICE);
  696. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  697. dev_err(jrdev, "unable to map S/G table\n");
  698. ret = -ENOMEM;
  699. goto unmap_ctx;
  700. }
  701. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  702. to_hash, LDST_SGF);
  703. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  704. #ifdef DEBUG
  705. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  706. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  707. desc_bytes(desc), 1);
  708. #endif
  709. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  710. if (ret)
  711. goto unmap_ctx;
  712. ret = -EINPROGRESS;
  713. } else if (*next_buflen) {
  714. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  715. req->nbytes, 0);
  716. *buflen = *next_buflen;
  717. *next_buflen = last_buflen;
  718. }
  719. #ifdef DEBUG
  720. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  721. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  722. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  723. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  724. *next_buflen, 1);
  725. #endif
  726. return ret;
  727. unmap_ctx:
  728. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  729. kfree(edesc);
  730. return ret;
  731. }
  732. static int ahash_final_ctx(struct ahash_request *req)
  733. {
  734. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  735. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  736. struct caam_hash_state *state = ahash_request_ctx(req);
  737. struct device *jrdev = ctx->jrdev;
  738. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  739. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  740. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  741. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  742. int last_buflen = state->current_buf ? state->buflen_0 :
  743. state->buflen_1;
  744. u32 *desc;
  745. int sec4_sg_bytes, sec4_sg_src_index;
  746. int digestsize = crypto_ahash_digestsize(ahash);
  747. struct ahash_edesc *edesc;
  748. int ret;
  749. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  750. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  751. /* allocate space for base edesc and hw desc commands, link tables */
  752. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
  753. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  754. flags);
  755. if (!edesc)
  756. return -ENOMEM;
  757. desc = edesc->hw_desc;
  758. edesc->sec4_sg_bytes = sec4_sg_bytes;
  759. edesc->src_nents = 0;
  760. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  761. edesc->sec4_sg, DMA_TO_DEVICE);
  762. if (ret)
  763. goto unmap_ctx;
  764. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  765. buf, state->buf_dma, buflen,
  766. last_buflen);
  767. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  768. cpu_to_caam32(SEC4_SG_LEN_FIN);
  769. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  770. sec4_sg_bytes, DMA_TO_DEVICE);
  771. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  772. dev_err(jrdev, "unable to map S/G table\n");
  773. ret = -ENOMEM;
  774. goto unmap_ctx;
  775. }
  776. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  777. LDST_SGF);
  778. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  779. digestsize);
  780. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  781. dev_err(jrdev, "unable to map dst\n");
  782. ret = -ENOMEM;
  783. goto unmap_ctx;
  784. }
  785. #ifdef DEBUG
  786. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  787. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  788. #endif
  789. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  790. if (ret)
  791. goto unmap_ctx;
  792. return -EINPROGRESS;
  793. unmap_ctx:
  794. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  795. kfree(edesc);
  796. return ret;
  797. }
  798. static int ahash_finup_ctx(struct ahash_request *req)
  799. {
  800. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  801. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  802. struct caam_hash_state *state = ahash_request_ctx(req);
  803. struct device *jrdev = ctx->jrdev;
  804. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  805. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  806. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  807. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  808. int last_buflen = state->current_buf ? state->buflen_0 :
  809. state->buflen_1;
  810. u32 *desc;
  811. int sec4_sg_src_index;
  812. int src_nents, mapped_nents;
  813. int digestsize = crypto_ahash_digestsize(ahash);
  814. struct ahash_edesc *edesc;
  815. int ret;
  816. src_nents = sg_nents_for_len(req->src, req->nbytes);
  817. if (src_nents < 0) {
  818. dev_err(jrdev, "Invalid number of src SG.\n");
  819. return src_nents;
  820. }
  821. if (src_nents) {
  822. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  823. DMA_TO_DEVICE);
  824. if (!mapped_nents) {
  825. dev_err(jrdev, "unable to DMA map source\n");
  826. return -ENOMEM;
  827. }
  828. } else {
  829. mapped_nents = 0;
  830. }
  831. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  832. /* allocate space for base edesc and hw desc commands, link tables */
  833. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  834. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  835. flags);
  836. if (!edesc) {
  837. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  838. return -ENOMEM;
  839. }
  840. desc = edesc->hw_desc;
  841. edesc->src_nents = src_nents;
  842. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  843. edesc->sec4_sg, DMA_TO_DEVICE);
  844. if (ret)
  845. goto unmap_ctx;
  846. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  847. buf, state->buf_dma, buflen,
  848. last_buflen);
  849. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
  850. sec4_sg_src_index, ctx->ctx_len + buflen,
  851. req->nbytes);
  852. if (ret)
  853. goto unmap_ctx;
  854. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  855. digestsize);
  856. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  857. dev_err(jrdev, "unable to map dst\n");
  858. ret = -ENOMEM;
  859. goto unmap_ctx;
  860. }
  861. #ifdef DEBUG
  862. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  863. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  864. #endif
  865. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  866. if (ret)
  867. goto unmap_ctx;
  868. return -EINPROGRESS;
  869. unmap_ctx:
  870. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  871. kfree(edesc);
  872. return ret;
  873. }
  874. static int ahash_digest(struct ahash_request *req)
  875. {
  876. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  877. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  878. struct device *jrdev = ctx->jrdev;
  879. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  880. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  881. u32 *desc;
  882. int digestsize = crypto_ahash_digestsize(ahash);
  883. int src_nents, mapped_nents;
  884. struct ahash_edesc *edesc;
  885. int ret;
  886. src_nents = sg_nents_for_len(req->src, req->nbytes);
  887. if (src_nents < 0) {
  888. dev_err(jrdev, "Invalid number of src SG.\n");
  889. return src_nents;
  890. }
  891. if (src_nents) {
  892. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  893. DMA_TO_DEVICE);
  894. if (!mapped_nents) {
  895. dev_err(jrdev, "unable to map source for DMA\n");
  896. return -ENOMEM;
  897. }
  898. } else {
  899. mapped_nents = 0;
  900. }
  901. /* allocate space for base edesc and hw desc commands, link tables */
  902. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
  903. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  904. flags);
  905. if (!edesc) {
  906. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  907. return -ENOMEM;
  908. }
  909. edesc->src_nents = src_nents;
  910. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  911. req->nbytes);
  912. if (ret) {
  913. ahash_unmap(jrdev, edesc, req, digestsize);
  914. kfree(edesc);
  915. return ret;
  916. }
  917. desc = edesc->hw_desc;
  918. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  919. digestsize);
  920. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  921. dev_err(jrdev, "unable to map dst\n");
  922. ahash_unmap(jrdev, edesc, req, digestsize);
  923. kfree(edesc);
  924. return -ENOMEM;
  925. }
  926. #ifdef DEBUG
  927. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  928. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  929. #endif
  930. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  931. if (!ret) {
  932. ret = -EINPROGRESS;
  933. } else {
  934. ahash_unmap(jrdev, edesc, req, digestsize);
  935. kfree(edesc);
  936. }
  937. return ret;
  938. }
  939. /* submit ahash final if it the first job descriptor */
  940. static int ahash_final_no_ctx(struct ahash_request *req)
  941. {
  942. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  943. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  944. struct caam_hash_state *state = ahash_request_ctx(req);
  945. struct device *jrdev = ctx->jrdev;
  946. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  947. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  948. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  949. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  950. u32 *desc;
  951. int digestsize = crypto_ahash_digestsize(ahash);
  952. struct ahash_edesc *edesc;
  953. int ret;
  954. /* allocate space for base edesc and hw desc commands, link tables */
  955. edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
  956. ctx->sh_desc_digest_dma, flags);
  957. if (!edesc)
  958. return -ENOMEM;
  959. desc = edesc->hw_desc;
  960. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  961. if (dma_mapping_error(jrdev, state->buf_dma)) {
  962. dev_err(jrdev, "unable to map src\n");
  963. goto unmap;
  964. }
  965. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  966. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  967. digestsize);
  968. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  969. dev_err(jrdev, "unable to map dst\n");
  970. goto unmap;
  971. }
  972. edesc->src_nents = 0;
  973. #ifdef DEBUG
  974. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  975. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  976. #endif
  977. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  978. if (!ret) {
  979. ret = -EINPROGRESS;
  980. } else {
  981. ahash_unmap(jrdev, edesc, req, digestsize);
  982. kfree(edesc);
  983. }
  984. return ret;
  985. unmap:
  986. ahash_unmap(jrdev, edesc, req, digestsize);
  987. kfree(edesc);
  988. return -ENOMEM;
  989. }
  990. /* submit ahash update if it the first job descriptor after update */
  991. static int ahash_update_no_ctx(struct ahash_request *req)
  992. {
  993. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  994. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  995. struct caam_hash_state *state = ahash_request_ctx(req);
  996. struct device *jrdev = ctx->jrdev;
  997. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  998. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  999. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1000. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  1001. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  1002. int *next_buflen = state->current_buf ? &state->buflen_0 :
  1003. &state->buflen_1;
  1004. int in_len = *buflen + req->nbytes, to_hash;
  1005. int sec4_sg_bytes, src_nents, mapped_nents;
  1006. struct ahash_edesc *edesc;
  1007. u32 *desc;
  1008. int ret = 0;
  1009. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1010. to_hash = in_len - *next_buflen;
  1011. if (to_hash) {
  1012. src_nents = sg_nents_for_len(req->src,
  1013. req->nbytes - *next_buflen);
  1014. if (src_nents < 0) {
  1015. dev_err(jrdev, "Invalid number of src SG.\n");
  1016. return src_nents;
  1017. }
  1018. if (src_nents) {
  1019. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1020. DMA_TO_DEVICE);
  1021. if (!mapped_nents) {
  1022. dev_err(jrdev, "unable to DMA map source\n");
  1023. return -ENOMEM;
  1024. }
  1025. } else {
  1026. mapped_nents = 0;
  1027. }
  1028. sec4_sg_bytes = (1 + mapped_nents) *
  1029. sizeof(struct sec4_sg_entry);
  1030. /*
  1031. * allocate space for base edesc and hw desc commands,
  1032. * link tables
  1033. */
  1034. edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
  1035. ctx->sh_desc_update_first,
  1036. ctx->sh_desc_update_first_dma,
  1037. flags);
  1038. if (!edesc) {
  1039. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1040. return -ENOMEM;
  1041. }
  1042. edesc->src_nents = src_nents;
  1043. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1044. edesc->dst_dma = 0;
  1045. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1046. buf, *buflen);
  1047. sg_to_sec4_sg_last(req->src, mapped_nents,
  1048. edesc->sec4_sg + 1, 0);
  1049. if (*next_buflen) {
  1050. scatterwalk_map_and_copy(next_buf, req->src,
  1051. to_hash - *buflen,
  1052. *next_buflen, 0);
  1053. }
  1054. state->current_buf = !state->current_buf;
  1055. desc = edesc->hw_desc;
  1056. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1057. sec4_sg_bytes,
  1058. DMA_TO_DEVICE);
  1059. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1060. dev_err(jrdev, "unable to map S/G table\n");
  1061. ret = -ENOMEM;
  1062. goto unmap_ctx;
  1063. }
  1064. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1065. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1066. if (ret)
  1067. goto unmap_ctx;
  1068. #ifdef DEBUG
  1069. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1070. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1071. desc_bytes(desc), 1);
  1072. #endif
  1073. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1074. if (ret)
  1075. goto unmap_ctx;
  1076. ret = -EINPROGRESS;
  1077. state->update = ahash_update_ctx;
  1078. state->finup = ahash_finup_ctx;
  1079. state->final = ahash_final_ctx;
  1080. } else if (*next_buflen) {
  1081. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1082. req->nbytes, 0);
  1083. *buflen = *next_buflen;
  1084. *next_buflen = 0;
  1085. }
  1086. #ifdef DEBUG
  1087. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1088. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1089. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1090. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1091. *next_buflen, 1);
  1092. #endif
  1093. return ret;
  1094. unmap_ctx:
  1095. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1096. kfree(edesc);
  1097. return ret;
  1098. }
  1099. /* submit ahash finup if it the first job descriptor after update */
  1100. static int ahash_finup_no_ctx(struct ahash_request *req)
  1101. {
  1102. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1103. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1104. struct caam_hash_state *state = ahash_request_ctx(req);
  1105. struct device *jrdev = ctx->jrdev;
  1106. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1107. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1108. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1109. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1110. int last_buflen = state->current_buf ? state->buflen_0 :
  1111. state->buflen_1;
  1112. u32 *desc;
  1113. int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
  1114. int digestsize = crypto_ahash_digestsize(ahash);
  1115. struct ahash_edesc *edesc;
  1116. int ret;
  1117. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1118. if (src_nents < 0) {
  1119. dev_err(jrdev, "Invalid number of src SG.\n");
  1120. return src_nents;
  1121. }
  1122. if (src_nents) {
  1123. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1124. DMA_TO_DEVICE);
  1125. if (!mapped_nents) {
  1126. dev_err(jrdev, "unable to DMA map source\n");
  1127. return -ENOMEM;
  1128. }
  1129. } else {
  1130. mapped_nents = 0;
  1131. }
  1132. sec4_sg_src_index = 2;
  1133. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  1134. sizeof(struct sec4_sg_entry);
  1135. /* allocate space for base edesc and hw desc commands, link tables */
  1136. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  1137. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  1138. flags);
  1139. if (!edesc) {
  1140. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1141. return -ENOMEM;
  1142. }
  1143. desc = edesc->hw_desc;
  1144. edesc->src_nents = src_nents;
  1145. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1146. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1147. state->buf_dma, buflen,
  1148. last_buflen);
  1149. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
  1150. req->nbytes);
  1151. if (ret) {
  1152. dev_err(jrdev, "unable to map S/G table\n");
  1153. goto unmap;
  1154. }
  1155. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1156. digestsize);
  1157. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1158. dev_err(jrdev, "unable to map dst\n");
  1159. goto unmap;
  1160. }
  1161. #ifdef DEBUG
  1162. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1163. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1164. #endif
  1165. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1166. if (!ret) {
  1167. ret = -EINPROGRESS;
  1168. } else {
  1169. ahash_unmap(jrdev, edesc, req, digestsize);
  1170. kfree(edesc);
  1171. }
  1172. return ret;
  1173. unmap:
  1174. ahash_unmap(jrdev, edesc, req, digestsize);
  1175. kfree(edesc);
  1176. return -ENOMEM;
  1177. }
  1178. /* submit first update job descriptor after init */
  1179. static int ahash_update_first(struct ahash_request *req)
  1180. {
  1181. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1182. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1183. struct caam_hash_state *state = ahash_request_ctx(req);
  1184. struct device *jrdev = ctx->jrdev;
  1185. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1186. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1187. u8 *next_buf = state->current_buf ? state->buf_1 : state->buf_0;
  1188. int *next_buflen = state->current_buf ?
  1189. &state->buflen_1 : &state->buflen_0;
  1190. int to_hash;
  1191. u32 *desc;
  1192. int src_nents, mapped_nents;
  1193. struct ahash_edesc *edesc;
  1194. int ret = 0;
  1195. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1196. 1);
  1197. to_hash = req->nbytes - *next_buflen;
  1198. if (to_hash) {
  1199. src_nents = sg_nents_for_len(req->src,
  1200. req->nbytes - *next_buflen);
  1201. if (src_nents < 0) {
  1202. dev_err(jrdev, "Invalid number of src SG.\n");
  1203. return src_nents;
  1204. }
  1205. if (src_nents) {
  1206. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1207. DMA_TO_DEVICE);
  1208. if (!mapped_nents) {
  1209. dev_err(jrdev, "unable to map source for DMA\n");
  1210. return -ENOMEM;
  1211. }
  1212. } else {
  1213. mapped_nents = 0;
  1214. }
  1215. /*
  1216. * allocate space for base edesc and hw desc commands,
  1217. * link tables
  1218. */
  1219. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
  1220. mapped_nents : 0,
  1221. ctx->sh_desc_update_first,
  1222. ctx->sh_desc_update_first_dma,
  1223. flags);
  1224. if (!edesc) {
  1225. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1226. return -ENOMEM;
  1227. }
  1228. edesc->src_nents = src_nents;
  1229. edesc->dst_dma = 0;
  1230. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  1231. to_hash);
  1232. if (ret)
  1233. goto unmap_ctx;
  1234. if (*next_buflen)
  1235. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1236. *next_buflen, 0);
  1237. desc = edesc->hw_desc;
  1238. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1239. if (ret)
  1240. goto unmap_ctx;
  1241. #ifdef DEBUG
  1242. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1243. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1244. desc_bytes(desc), 1);
  1245. #endif
  1246. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1247. if (ret)
  1248. goto unmap_ctx;
  1249. ret = -EINPROGRESS;
  1250. state->update = ahash_update_ctx;
  1251. state->finup = ahash_finup_ctx;
  1252. state->final = ahash_final_ctx;
  1253. } else if (*next_buflen) {
  1254. state->update = ahash_update_no_ctx;
  1255. state->finup = ahash_finup_no_ctx;
  1256. state->final = ahash_final_no_ctx;
  1257. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1258. req->nbytes, 0);
  1259. }
  1260. #ifdef DEBUG
  1261. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1262. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1263. *next_buflen, 1);
  1264. #endif
  1265. return ret;
  1266. unmap_ctx:
  1267. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1268. kfree(edesc);
  1269. return ret;
  1270. }
  1271. static int ahash_finup_first(struct ahash_request *req)
  1272. {
  1273. return ahash_digest(req);
  1274. }
  1275. static int ahash_init(struct ahash_request *req)
  1276. {
  1277. struct caam_hash_state *state = ahash_request_ctx(req);
  1278. state->update = ahash_update_first;
  1279. state->finup = ahash_finup_first;
  1280. state->final = ahash_final_no_ctx;
  1281. state->current_buf = 0;
  1282. state->buf_dma = 0;
  1283. state->buflen_0 = 0;
  1284. state->buflen_1 = 0;
  1285. return 0;
  1286. }
  1287. static int ahash_update(struct ahash_request *req)
  1288. {
  1289. struct caam_hash_state *state = ahash_request_ctx(req);
  1290. return state->update(req);
  1291. }
  1292. static int ahash_finup(struct ahash_request *req)
  1293. {
  1294. struct caam_hash_state *state = ahash_request_ctx(req);
  1295. return state->finup(req);
  1296. }
  1297. static int ahash_final(struct ahash_request *req)
  1298. {
  1299. struct caam_hash_state *state = ahash_request_ctx(req);
  1300. return state->final(req);
  1301. }
  1302. static int ahash_export(struct ahash_request *req, void *out)
  1303. {
  1304. struct caam_hash_state *state = ahash_request_ctx(req);
  1305. struct caam_export_state *export = out;
  1306. int len;
  1307. u8 *buf;
  1308. if (state->current_buf) {
  1309. buf = state->buf_1;
  1310. len = state->buflen_1;
  1311. } else {
  1312. buf = state->buf_0;
  1313. len = state->buflen_0;
  1314. }
  1315. memcpy(export->buf, buf, len);
  1316. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1317. export->buflen = len;
  1318. export->update = state->update;
  1319. export->final = state->final;
  1320. export->finup = state->finup;
  1321. return 0;
  1322. }
  1323. static int ahash_import(struct ahash_request *req, const void *in)
  1324. {
  1325. struct caam_hash_state *state = ahash_request_ctx(req);
  1326. const struct caam_export_state *export = in;
  1327. memset(state, 0, sizeof(*state));
  1328. memcpy(state->buf_0, export->buf, export->buflen);
  1329. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1330. state->buflen_0 = export->buflen;
  1331. state->update = export->update;
  1332. state->final = export->final;
  1333. state->finup = export->finup;
  1334. return 0;
  1335. }
  1336. struct caam_hash_template {
  1337. char name[CRYPTO_MAX_ALG_NAME];
  1338. char driver_name[CRYPTO_MAX_ALG_NAME];
  1339. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1340. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1341. unsigned int blocksize;
  1342. struct ahash_alg template_ahash;
  1343. u32 alg_type;
  1344. };
  1345. /* ahash descriptors */
  1346. static struct caam_hash_template driver_hash[] = {
  1347. {
  1348. .name = "sha1",
  1349. .driver_name = "sha1-caam",
  1350. .hmac_name = "hmac(sha1)",
  1351. .hmac_driver_name = "hmac-sha1-caam",
  1352. .blocksize = SHA1_BLOCK_SIZE,
  1353. .template_ahash = {
  1354. .init = ahash_init,
  1355. .update = ahash_update,
  1356. .final = ahash_final,
  1357. .finup = ahash_finup,
  1358. .digest = ahash_digest,
  1359. .export = ahash_export,
  1360. .import = ahash_import,
  1361. .setkey = ahash_setkey,
  1362. .halg = {
  1363. .digestsize = SHA1_DIGEST_SIZE,
  1364. .statesize = sizeof(struct caam_export_state),
  1365. },
  1366. },
  1367. .alg_type = OP_ALG_ALGSEL_SHA1,
  1368. }, {
  1369. .name = "sha224",
  1370. .driver_name = "sha224-caam",
  1371. .hmac_name = "hmac(sha224)",
  1372. .hmac_driver_name = "hmac-sha224-caam",
  1373. .blocksize = SHA224_BLOCK_SIZE,
  1374. .template_ahash = {
  1375. .init = ahash_init,
  1376. .update = ahash_update,
  1377. .final = ahash_final,
  1378. .finup = ahash_finup,
  1379. .digest = ahash_digest,
  1380. .export = ahash_export,
  1381. .import = ahash_import,
  1382. .setkey = ahash_setkey,
  1383. .halg = {
  1384. .digestsize = SHA224_DIGEST_SIZE,
  1385. .statesize = sizeof(struct caam_export_state),
  1386. },
  1387. },
  1388. .alg_type = OP_ALG_ALGSEL_SHA224,
  1389. }, {
  1390. .name = "sha256",
  1391. .driver_name = "sha256-caam",
  1392. .hmac_name = "hmac(sha256)",
  1393. .hmac_driver_name = "hmac-sha256-caam",
  1394. .blocksize = SHA256_BLOCK_SIZE,
  1395. .template_ahash = {
  1396. .init = ahash_init,
  1397. .update = ahash_update,
  1398. .final = ahash_final,
  1399. .finup = ahash_finup,
  1400. .digest = ahash_digest,
  1401. .export = ahash_export,
  1402. .import = ahash_import,
  1403. .setkey = ahash_setkey,
  1404. .halg = {
  1405. .digestsize = SHA256_DIGEST_SIZE,
  1406. .statesize = sizeof(struct caam_export_state),
  1407. },
  1408. },
  1409. .alg_type = OP_ALG_ALGSEL_SHA256,
  1410. }, {
  1411. .name = "sha384",
  1412. .driver_name = "sha384-caam",
  1413. .hmac_name = "hmac(sha384)",
  1414. .hmac_driver_name = "hmac-sha384-caam",
  1415. .blocksize = SHA384_BLOCK_SIZE,
  1416. .template_ahash = {
  1417. .init = ahash_init,
  1418. .update = ahash_update,
  1419. .final = ahash_final,
  1420. .finup = ahash_finup,
  1421. .digest = ahash_digest,
  1422. .export = ahash_export,
  1423. .import = ahash_import,
  1424. .setkey = ahash_setkey,
  1425. .halg = {
  1426. .digestsize = SHA384_DIGEST_SIZE,
  1427. .statesize = sizeof(struct caam_export_state),
  1428. },
  1429. },
  1430. .alg_type = OP_ALG_ALGSEL_SHA384,
  1431. }, {
  1432. .name = "sha512",
  1433. .driver_name = "sha512-caam",
  1434. .hmac_name = "hmac(sha512)",
  1435. .hmac_driver_name = "hmac-sha512-caam",
  1436. .blocksize = SHA512_BLOCK_SIZE,
  1437. .template_ahash = {
  1438. .init = ahash_init,
  1439. .update = ahash_update,
  1440. .final = ahash_final,
  1441. .finup = ahash_finup,
  1442. .digest = ahash_digest,
  1443. .export = ahash_export,
  1444. .import = ahash_import,
  1445. .setkey = ahash_setkey,
  1446. .halg = {
  1447. .digestsize = SHA512_DIGEST_SIZE,
  1448. .statesize = sizeof(struct caam_export_state),
  1449. },
  1450. },
  1451. .alg_type = OP_ALG_ALGSEL_SHA512,
  1452. }, {
  1453. .name = "md5",
  1454. .driver_name = "md5-caam",
  1455. .hmac_name = "hmac(md5)",
  1456. .hmac_driver_name = "hmac-md5-caam",
  1457. .blocksize = MD5_BLOCK_WORDS * 4,
  1458. .template_ahash = {
  1459. .init = ahash_init,
  1460. .update = ahash_update,
  1461. .final = ahash_final,
  1462. .finup = ahash_finup,
  1463. .digest = ahash_digest,
  1464. .export = ahash_export,
  1465. .import = ahash_import,
  1466. .setkey = ahash_setkey,
  1467. .halg = {
  1468. .digestsize = MD5_DIGEST_SIZE,
  1469. .statesize = sizeof(struct caam_export_state),
  1470. },
  1471. },
  1472. .alg_type = OP_ALG_ALGSEL_MD5,
  1473. },
  1474. };
  1475. struct caam_hash_alg {
  1476. struct list_head entry;
  1477. int alg_type;
  1478. struct ahash_alg ahash_alg;
  1479. };
  1480. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1481. {
  1482. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1483. struct crypto_alg *base = tfm->__crt_alg;
  1484. struct hash_alg_common *halg =
  1485. container_of(base, struct hash_alg_common, base);
  1486. struct ahash_alg *alg =
  1487. container_of(halg, struct ahash_alg, halg);
  1488. struct caam_hash_alg *caam_hash =
  1489. container_of(alg, struct caam_hash_alg, ahash_alg);
  1490. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1491. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1492. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1493. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1494. HASH_MSG_LEN + 32,
  1495. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1496. HASH_MSG_LEN + 64,
  1497. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1498. /*
  1499. * Get a Job ring from Job Ring driver to ensure in-order
  1500. * crypto request processing per tfm
  1501. */
  1502. ctx->jrdev = caam_jr_alloc();
  1503. if (IS_ERR(ctx->jrdev)) {
  1504. pr_err("Job Ring Device allocation for transform failed\n");
  1505. return PTR_ERR(ctx->jrdev);
  1506. }
  1507. /* copy descriptor header template value */
  1508. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1509. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  1510. OP_ALG_ALGSEL_SUBMASK) >>
  1511. OP_ALG_ALGSEL_SHIFT];
  1512. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1513. sizeof(struct caam_hash_state));
  1514. return ahash_set_sh_desc(ahash);
  1515. }
  1516. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1517. {
  1518. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1519. if (ctx->sh_desc_update_dma &&
  1520. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1521. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1522. desc_bytes(ctx->sh_desc_update),
  1523. DMA_TO_DEVICE);
  1524. if (ctx->sh_desc_update_first_dma &&
  1525. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1526. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1527. desc_bytes(ctx->sh_desc_update_first),
  1528. DMA_TO_DEVICE);
  1529. if (ctx->sh_desc_fin_dma &&
  1530. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1531. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1532. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1533. if (ctx->sh_desc_digest_dma &&
  1534. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1535. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1536. desc_bytes(ctx->sh_desc_digest),
  1537. DMA_TO_DEVICE);
  1538. caam_jr_free(ctx->jrdev);
  1539. }
  1540. static void __exit caam_algapi_hash_exit(void)
  1541. {
  1542. struct caam_hash_alg *t_alg, *n;
  1543. if (!hash_list.next)
  1544. return;
  1545. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1546. crypto_unregister_ahash(&t_alg->ahash_alg);
  1547. list_del(&t_alg->entry);
  1548. kfree(t_alg);
  1549. }
  1550. }
  1551. static struct caam_hash_alg *
  1552. caam_hash_alloc(struct caam_hash_template *template,
  1553. bool keyed)
  1554. {
  1555. struct caam_hash_alg *t_alg;
  1556. struct ahash_alg *halg;
  1557. struct crypto_alg *alg;
  1558. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1559. if (!t_alg) {
  1560. pr_err("failed to allocate t_alg\n");
  1561. return ERR_PTR(-ENOMEM);
  1562. }
  1563. t_alg->ahash_alg = template->template_ahash;
  1564. halg = &t_alg->ahash_alg;
  1565. alg = &halg->halg.base;
  1566. if (keyed) {
  1567. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1568. template->hmac_name);
  1569. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1570. template->hmac_driver_name);
  1571. } else {
  1572. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1573. template->name);
  1574. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1575. template->driver_name);
  1576. t_alg->ahash_alg.setkey = NULL;
  1577. }
  1578. alg->cra_module = THIS_MODULE;
  1579. alg->cra_init = caam_hash_cra_init;
  1580. alg->cra_exit = caam_hash_cra_exit;
  1581. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1582. alg->cra_priority = CAAM_CRA_PRIORITY;
  1583. alg->cra_blocksize = template->blocksize;
  1584. alg->cra_alignmask = 0;
  1585. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1586. alg->cra_type = &crypto_ahash_type;
  1587. t_alg->alg_type = template->alg_type;
  1588. return t_alg;
  1589. }
  1590. static int __init caam_algapi_hash_init(void)
  1591. {
  1592. struct device_node *dev_node;
  1593. struct platform_device *pdev;
  1594. struct device *ctrldev;
  1595. int i = 0, err = 0;
  1596. struct caam_drv_private *priv;
  1597. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1598. u32 cha_inst, cha_vid;
  1599. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1600. if (!dev_node) {
  1601. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1602. if (!dev_node)
  1603. return -ENODEV;
  1604. }
  1605. pdev = of_find_device_by_node(dev_node);
  1606. if (!pdev) {
  1607. of_node_put(dev_node);
  1608. return -ENODEV;
  1609. }
  1610. ctrldev = &pdev->dev;
  1611. priv = dev_get_drvdata(ctrldev);
  1612. of_node_put(dev_node);
  1613. /*
  1614. * If priv is NULL, it's probably because the caam driver wasn't
  1615. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1616. */
  1617. if (!priv)
  1618. return -ENODEV;
  1619. /*
  1620. * Register crypto algorithms the device supports. First, identify
  1621. * presence and attributes of MD block.
  1622. */
  1623. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1624. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1625. /*
  1626. * Skip registration of any hashing algorithms if MD block
  1627. * is not present.
  1628. */
  1629. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1630. return -ENODEV;
  1631. /* Limit digest size based on LP256 */
  1632. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1633. md_limit = SHA256_DIGEST_SIZE;
  1634. INIT_LIST_HEAD(&hash_list);
  1635. /* register crypto algorithms the device supports */
  1636. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1637. struct caam_hash_alg *t_alg;
  1638. struct caam_hash_template *alg = driver_hash + i;
  1639. /* If MD size is not supported by device, skip registration */
  1640. if (alg->template_ahash.halg.digestsize > md_limit)
  1641. continue;
  1642. /* register hmac version */
  1643. t_alg = caam_hash_alloc(alg, true);
  1644. if (IS_ERR(t_alg)) {
  1645. err = PTR_ERR(t_alg);
  1646. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1647. continue;
  1648. }
  1649. err = crypto_register_ahash(&t_alg->ahash_alg);
  1650. if (err) {
  1651. pr_warn("%s alg registration failed: %d\n",
  1652. t_alg->ahash_alg.halg.base.cra_driver_name,
  1653. err);
  1654. kfree(t_alg);
  1655. } else
  1656. list_add_tail(&t_alg->entry, &hash_list);
  1657. /* register unkeyed version */
  1658. t_alg = caam_hash_alloc(alg, false);
  1659. if (IS_ERR(t_alg)) {
  1660. err = PTR_ERR(t_alg);
  1661. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1662. continue;
  1663. }
  1664. err = crypto_register_ahash(&t_alg->ahash_alg);
  1665. if (err) {
  1666. pr_warn("%s alg registration failed: %d\n",
  1667. t_alg->ahash_alg.halg.base.cra_driver_name,
  1668. err);
  1669. kfree(t_alg);
  1670. } else
  1671. list_add_tail(&t_alg->entry, &hash_list);
  1672. }
  1673. return err;
  1674. }
  1675. module_init(caam_algapi_hash_init);
  1676. module_exit(caam_algapi_hash_exit);
  1677. MODULE_LICENSE("GPL");
  1678. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1679. MODULE_AUTHOR("Freescale Semiconductor - NMG");