atmel-aes.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL AES HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-aes.c driver.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/algapi.h>
  35. #include <crypto/aes.h>
  36. #include <crypto/xts.h>
  37. #include <crypto/internal/aead.h>
  38. #include <linux/platform_data/crypto-atmel.h>
  39. #include <dt-bindings/dma/at91.h>
  40. #include "atmel-aes-regs.h"
  41. #define ATMEL_AES_PRIORITY 300
  42. #define ATMEL_AES_BUFFER_ORDER 2
  43. #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  44. #define CFB8_BLOCK_SIZE 1
  45. #define CFB16_BLOCK_SIZE 2
  46. #define CFB32_BLOCK_SIZE 4
  47. #define CFB64_BLOCK_SIZE 8
  48. #define SIZE_IN_WORDS(x) ((x) >> 2)
  49. /* AES flags */
  50. /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  51. #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
  52. #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
  53. #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  54. #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
  55. #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
  56. #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
  57. #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  58. #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  59. #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  60. #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  61. #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  62. #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
  63. #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
  64. #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
  65. #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
  66. AES_FLAGS_ENCRYPT | \
  67. AES_FLAGS_GTAGEN)
  68. #define AES_FLAGS_INIT BIT(2)
  69. #define AES_FLAGS_BUSY BIT(3)
  70. #define AES_FLAGS_DUMP_REG BIT(4)
  71. #define AES_FLAGS_PERSISTENT (AES_FLAGS_INIT | AES_FLAGS_BUSY)
  72. #define ATMEL_AES_QUEUE_LENGTH 50
  73. #define ATMEL_AES_DMA_THRESHOLD 256
  74. struct atmel_aes_caps {
  75. bool has_dualbuff;
  76. bool has_cfb64;
  77. bool has_ctr32;
  78. bool has_gcm;
  79. bool has_xts;
  80. u32 max_burst_size;
  81. };
  82. struct atmel_aes_dev;
  83. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  84. struct atmel_aes_base_ctx {
  85. struct atmel_aes_dev *dd;
  86. atmel_aes_fn_t start;
  87. int keylen;
  88. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  89. u16 block_size;
  90. };
  91. struct atmel_aes_ctx {
  92. struct atmel_aes_base_ctx base;
  93. };
  94. struct atmel_aes_ctr_ctx {
  95. struct atmel_aes_base_ctx base;
  96. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  97. size_t offset;
  98. struct scatterlist src[2];
  99. struct scatterlist dst[2];
  100. };
  101. struct atmel_aes_gcm_ctx {
  102. struct atmel_aes_base_ctx base;
  103. struct scatterlist src[2];
  104. struct scatterlist dst[2];
  105. u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
  106. u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
  107. u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
  108. size_t textlen;
  109. const u32 *ghash_in;
  110. u32 *ghash_out;
  111. atmel_aes_fn_t ghash_resume;
  112. };
  113. struct atmel_aes_xts_ctx {
  114. struct atmel_aes_base_ctx base;
  115. u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
  116. };
  117. struct atmel_aes_reqctx {
  118. unsigned long mode;
  119. };
  120. struct atmel_aes_dma {
  121. struct dma_chan *chan;
  122. struct scatterlist *sg;
  123. int nents;
  124. unsigned int remainder;
  125. unsigned int sg_len;
  126. };
  127. struct atmel_aes_dev {
  128. struct list_head list;
  129. unsigned long phys_base;
  130. void __iomem *io_base;
  131. struct crypto_async_request *areq;
  132. struct atmel_aes_base_ctx *ctx;
  133. bool is_async;
  134. atmel_aes_fn_t resume;
  135. atmel_aes_fn_t cpu_transfer_complete;
  136. struct device *dev;
  137. struct clk *iclk;
  138. int irq;
  139. unsigned long flags;
  140. spinlock_t lock;
  141. struct crypto_queue queue;
  142. struct tasklet_struct done_task;
  143. struct tasklet_struct queue_task;
  144. size_t total;
  145. size_t datalen;
  146. u32 *data;
  147. struct atmel_aes_dma src;
  148. struct atmel_aes_dma dst;
  149. size_t buflen;
  150. void *buf;
  151. struct scatterlist aligned_sg;
  152. struct scatterlist *real_dst;
  153. struct atmel_aes_caps caps;
  154. u32 hw_version;
  155. };
  156. struct atmel_aes_drv {
  157. struct list_head dev_list;
  158. spinlock_t lock;
  159. };
  160. static struct atmel_aes_drv atmel_aes = {
  161. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  162. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  163. };
  164. #ifdef VERBOSE_DEBUG
  165. static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
  166. {
  167. switch (offset) {
  168. case AES_CR:
  169. return "CR";
  170. case AES_MR:
  171. return "MR";
  172. case AES_ISR:
  173. return "ISR";
  174. case AES_IMR:
  175. return "IMR";
  176. case AES_IER:
  177. return "IER";
  178. case AES_IDR:
  179. return "IDR";
  180. case AES_KEYWR(0):
  181. case AES_KEYWR(1):
  182. case AES_KEYWR(2):
  183. case AES_KEYWR(3):
  184. case AES_KEYWR(4):
  185. case AES_KEYWR(5):
  186. case AES_KEYWR(6):
  187. case AES_KEYWR(7):
  188. snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
  189. break;
  190. case AES_IDATAR(0):
  191. case AES_IDATAR(1):
  192. case AES_IDATAR(2):
  193. case AES_IDATAR(3):
  194. snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
  195. break;
  196. case AES_ODATAR(0):
  197. case AES_ODATAR(1):
  198. case AES_ODATAR(2):
  199. case AES_ODATAR(3):
  200. snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
  201. break;
  202. case AES_IVR(0):
  203. case AES_IVR(1):
  204. case AES_IVR(2):
  205. case AES_IVR(3):
  206. snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
  207. break;
  208. case AES_AADLENR:
  209. return "AADLENR";
  210. case AES_CLENR:
  211. return "CLENR";
  212. case AES_GHASHR(0):
  213. case AES_GHASHR(1):
  214. case AES_GHASHR(2):
  215. case AES_GHASHR(3):
  216. snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
  217. break;
  218. case AES_TAGR(0):
  219. case AES_TAGR(1):
  220. case AES_TAGR(2):
  221. case AES_TAGR(3):
  222. snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
  223. break;
  224. case AES_CTRR:
  225. return "CTRR";
  226. case AES_GCMHR(0):
  227. case AES_GCMHR(1):
  228. case AES_GCMHR(2):
  229. case AES_GCMHR(3):
  230. snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
  231. break;
  232. case AES_TWR(0):
  233. case AES_TWR(1):
  234. case AES_TWR(2):
  235. case AES_TWR(3):
  236. snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
  237. break;
  238. case AES_ALPHAR(0):
  239. case AES_ALPHAR(1):
  240. case AES_ALPHAR(2):
  241. case AES_ALPHAR(3):
  242. snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
  243. break;
  244. default:
  245. snprintf(tmp, sz, "0x%02x", offset);
  246. break;
  247. }
  248. return tmp;
  249. }
  250. #endif /* VERBOSE_DEBUG */
  251. /* Shared functions */
  252. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  253. {
  254. u32 value = readl_relaxed(dd->io_base + offset);
  255. #ifdef VERBOSE_DEBUG
  256. if (dd->flags & AES_FLAGS_DUMP_REG) {
  257. char tmp[16];
  258. dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
  259. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  260. }
  261. #endif /* VERBOSE_DEBUG */
  262. return value;
  263. }
  264. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  265. u32 offset, u32 value)
  266. {
  267. #ifdef VERBOSE_DEBUG
  268. if (dd->flags & AES_FLAGS_DUMP_REG) {
  269. char tmp[16];
  270. dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
  271. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  272. }
  273. #endif /* VERBOSE_DEBUG */
  274. writel_relaxed(value, dd->io_base + offset);
  275. }
  276. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  277. u32 *value, int count)
  278. {
  279. for (; count--; value++, offset += 4)
  280. *value = atmel_aes_read(dd, offset);
  281. }
  282. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  283. const u32 *value, int count)
  284. {
  285. for (; count--; value++, offset += 4)
  286. atmel_aes_write(dd, offset, *value);
  287. }
  288. static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
  289. u32 *value)
  290. {
  291. atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  292. }
  293. static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
  294. const u32 *value)
  295. {
  296. atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  297. }
  298. static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
  299. atmel_aes_fn_t resume)
  300. {
  301. u32 isr = atmel_aes_read(dd, AES_ISR);
  302. if (unlikely(isr & AES_INT_DATARDY))
  303. return resume(dd);
  304. dd->resume = resume;
  305. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  306. return -EINPROGRESS;
  307. }
  308. static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
  309. {
  310. len &= block_size - 1;
  311. return len ? block_size - len : 0;
  312. }
  313. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  314. {
  315. struct atmel_aes_dev *aes_dd = NULL;
  316. struct atmel_aes_dev *tmp;
  317. spin_lock_bh(&atmel_aes.lock);
  318. if (!ctx->dd) {
  319. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  320. aes_dd = tmp;
  321. break;
  322. }
  323. ctx->dd = aes_dd;
  324. } else {
  325. aes_dd = ctx->dd;
  326. }
  327. spin_unlock_bh(&atmel_aes.lock);
  328. return aes_dd;
  329. }
  330. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  331. {
  332. int err;
  333. err = clk_enable(dd->iclk);
  334. if (err)
  335. return err;
  336. if (!(dd->flags & AES_FLAGS_INIT)) {
  337. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  338. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  339. dd->flags |= AES_FLAGS_INIT;
  340. }
  341. return 0;
  342. }
  343. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  344. {
  345. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  346. }
  347. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  348. {
  349. int err;
  350. err = atmel_aes_hw_init(dd);
  351. if (err)
  352. return err;
  353. dd->hw_version = atmel_aes_get_version(dd);
  354. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  355. clk_disable(dd->iclk);
  356. return 0;
  357. }
  358. static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
  359. const struct atmel_aes_reqctx *rctx)
  360. {
  361. /* Clear all but persistent flags and set request flags. */
  362. dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
  363. }
  364. static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
  365. {
  366. return (dd->flags & AES_FLAGS_ENCRYPT);
  367. }
  368. static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
  369. {
  370. clk_disable(dd->iclk);
  371. dd->flags &= ~AES_FLAGS_BUSY;
  372. if (dd->is_async)
  373. dd->areq->complete(dd->areq, err);
  374. tasklet_schedule(&dd->queue_task);
  375. return err;
  376. }
  377. static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
  378. const u32 *iv, const u32 *key, int keylen)
  379. {
  380. u32 valmr = 0;
  381. /* MR register must be set before IV registers */
  382. if (keylen == AES_KEYSIZE_128)
  383. valmr |= AES_MR_KEYSIZE_128;
  384. else if (keylen == AES_KEYSIZE_192)
  385. valmr |= AES_MR_KEYSIZE_192;
  386. else
  387. valmr |= AES_MR_KEYSIZE_256;
  388. valmr |= dd->flags & AES_FLAGS_MODE_MASK;
  389. if (use_dma) {
  390. valmr |= AES_MR_SMOD_IDATAR0;
  391. if (dd->caps.has_dualbuff)
  392. valmr |= AES_MR_DUALBUFF;
  393. } else {
  394. valmr |= AES_MR_SMOD_AUTO;
  395. }
  396. atmel_aes_write(dd, AES_MR, valmr);
  397. atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
  398. if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
  399. atmel_aes_write_block(dd, AES_IVR(0), iv);
  400. }
  401. static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  402. const u32 *iv)
  403. {
  404. atmel_aes_write_ctrl_key(dd, use_dma, iv,
  405. dd->ctx->key, dd->ctx->keylen);
  406. }
  407. /* CPU transfer */
  408. static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
  409. {
  410. int err = 0;
  411. u32 isr;
  412. for (;;) {
  413. atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
  414. dd->data += 4;
  415. dd->datalen -= AES_BLOCK_SIZE;
  416. if (dd->datalen < AES_BLOCK_SIZE)
  417. break;
  418. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  419. isr = atmel_aes_read(dd, AES_ISR);
  420. if (!(isr & AES_INT_DATARDY)) {
  421. dd->resume = atmel_aes_cpu_transfer;
  422. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  423. return -EINPROGRESS;
  424. }
  425. }
  426. if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  427. dd->buf, dd->total))
  428. err = -EINVAL;
  429. if (err)
  430. return atmel_aes_complete(dd, err);
  431. return dd->cpu_transfer_complete(dd);
  432. }
  433. static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
  434. struct scatterlist *src,
  435. struct scatterlist *dst,
  436. size_t len,
  437. atmel_aes_fn_t resume)
  438. {
  439. size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
  440. if (unlikely(len == 0))
  441. return -EINVAL;
  442. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  443. dd->total = len;
  444. dd->real_dst = dst;
  445. dd->cpu_transfer_complete = resume;
  446. dd->datalen = len + padlen;
  447. dd->data = (u32 *)dd->buf;
  448. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  449. return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
  450. }
  451. /* DMA transfer */
  452. static void atmel_aes_dma_callback(void *data);
  453. static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
  454. struct scatterlist *sg,
  455. size_t len,
  456. struct atmel_aes_dma *dma)
  457. {
  458. int nents;
  459. if (!IS_ALIGNED(len, dd->ctx->block_size))
  460. return false;
  461. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  462. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  463. return false;
  464. if (len <= sg->length) {
  465. if (!IS_ALIGNED(len, dd->ctx->block_size))
  466. return false;
  467. dma->nents = nents+1;
  468. dma->remainder = sg->length - len;
  469. sg->length = len;
  470. return true;
  471. }
  472. if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
  473. return false;
  474. len -= sg->length;
  475. }
  476. return false;
  477. }
  478. static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
  479. {
  480. struct scatterlist *sg = dma->sg;
  481. int nents = dma->nents;
  482. if (!dma->remainder)
  483. return;
  484. while (--nents > 0 && sg)
  485. sg = sg_next(sg);
  486. if (!sg)
  487. return;
  488. sg->length += dma->remainder;
  489. }
  490. static int atmel_aes_map(struct atmel_aes_dev *dd,
  491. struct scatterlist *src,
  492. struct scatterlist *dst,
  493. size_t len)
  494. {
  495. bool src_aligned, dst_aligned;
  496. size_t padlen;
  497. dd->total = len;
  498. dd->src.sg = src;
  499. dd->dst.sg = dst;
  500. dd->real_dst = dst;
  501. src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
  502. if (src == dst)
  503. dst_aligned = src_aligned;
  504. else
  505. dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
  506. if (!src_aligned || !dst_aligned) {
  507. padlen = atmel_aes_padlen(len, dd->ctx->block_size);
  508. if (dd->buflen < len + padlen)
  509. return -ENOMEM;
  510. if (!src_aligned) {
  511. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  512. dd->src.sg = &dd->aligned_sg;
  513. dd->src.nents = 1;
  514. dd->src.remainder = 0;
  515. }
  516. if (!dst_aligned) {
  517. dd->dst.sg = &dd->aligned_sg;
  518. dd->dst.nents = 1;
  519. dd->dst.remainder = 0;
  520. }
  521. sg_init_table(&dd->aligned_sg, 1);
  522. sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
  523. }
  524. if (dd->src.sg == dd->dst.sg) {
  525. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  526. DMA_BIDIRECTIONAL);
  527. dd->dst.sg_len = dd->src.sg_len;
  528. if (!dd->src.sg_len)
  529. return -EFAULT;
  530. } else {
  531. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  532. DMA_TO_DEVICE);
  533. if (!dd->src.sg_len)
  534. return -EFAULT;
  535. dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  536. DMA_FROM_DEVICE);
  537. if (!dd->dst.sg_len) {
  538. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  539. DMA_TO_DEVICE);
  540. return -EFAULT;
  541. }
  542. }
  543. return 0;
  544. }
  545. static void atmel_aes_unmap(struct atmel_aes_dev *dd)
  546. {
  547. if (dd->src.sg == dd->dst.sg) {
  548. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  549. DMA_BIDIRECTIONAL);
  550. if (dd->src.sg != &dd->aligned_sg)
  551. atmel_aes_restore_sg(&dd->src);
  552. } else {
  553. dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  554. DMA_FROM_DEVICE);
  555. if (dd->dst.sg != &dd->aligned_sg)
  556. atmel_aes_restore_sg(&dd->dst);
  557. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  558. DMA_TO_DEVICE);
  559. if (dd->src.sg != &dd->aligned_sg)
  560. atmel_aes_restore_sg(&dd->src);
  561. }
  562. if (dd->dst.sg == &dd->aligned_sg)
  563. sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  564. dd->buf, dd->total);
  565. }
  566. static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
  567. enum dma_slave_buswidth addr_width,
  568. enum dma_transfer_direction dir,
  569. u32 maxburst)
  570. {
  571. struct dma_async_tx_descriptor *desc;
  572. struct dma_slave_config config;
  573. dma_async_tx_callback callback;
  574. struct atmel_aes_dma *dma;
  575. int err;
  576. memset(&config, 0, sizeof(config));
  577. config.direction = dir;
  578. config.src_addr_width = addr_width;
  579. config.dst_addr_width = addr_width;
  580. config.src_maxburst = maxburst;
  581. config.dst_maxburst = maxburst;
  582. switch (dir) {
  583. case DMA_MEM_TO_DEV:
  584. dma = &dd->src;
  585. callback = NULL;
  586. config.dst_addr = dd->phys_base + AES_IDATAR(0);
  587. break;
  588. case DMA_DEV_TO_MEM:
  589. dma = &dd->dst;
  590. callback = atmel_aes_dma_callback;
  591. config.src_addr = dd->phys_base + AES_ODATAR(0);
  592. break;
  593. default:
  594. return -EINVAL;
  595. }
  596. err = dmaengine_slave_config(dma->chan, &config);
  597. if (err)
  598. return err;
  599. desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
  600. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  601. if (!desc)
  602. return -ENOMEM;
  603. desc->callback = callback;
  604. desc->callback_param = dd;
  605. dmaengine_submit(desc);
  606. dma_async_issue_pending(dma->chan);
  607. return 0;
  608. }
  609. static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
  610. enum dma_transfer_direction dir)
  611. {
  612. struct atmel_aes_dma *dma;
  613. switch (dir) {
  614. case DMA_MEM_TO_DEV:
  615. dma = &dd->src;
  616. break;
  617. case DMA_DEV_TO_MEM:
  618. dma = &dd->dst;
  619. break;
  620. default:
  621. return;
  622. }
  623. dmaengine_terminate_all(dma->chan);
  624. }
  625. static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
  626. struct scatterlist *src,
  627. struct scatterlist *dst,
  628. size_t len,
  629. atmel_aes_fn_t resume)
  630. {
  631. enum dma_slave_buswidth addr_width;
  632. u32 maxburst;
  633. int err;
  634. switch (dd->ctx->block_size) {
  635. case CFB8_BLOCK_SIZE:
  636. addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  637. maxburst = 1;
  638. break;
  639. case CFB16_BLOCK_SIZE:
  640. addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  641. maxburst = 1;
  642. break;
  643. case CFB32_BLOCK_SIZE:
  644. case CFB64_BLOCK_SIZE:
  645. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  646. maxburst = 1;
  647. break;
  648. case AES_BLOCK_SIZE:
  649. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  650. maxburst = dd->caps.max_burst_size;
  651. break;
  652. default:
  653. err = -EINVAL;
  654. goto exit;
  655. }
  656. err = atmel_aes_map(dd, src, dst, len);
  657. if (err)
  658. goto exit;
  659. dd->resume = resume;
  660. /* Set output DMA transfer first */
  661. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
  662. maxburst);
  663. if (err)
  664. goto unmap;
  665. /* Then set input DMA transfer */
  666. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
  667. maxburst);
  668. if (err)
  669. goto output_transfer_stop;
  670. return -EINPROGRESS;
  671. output_transfer_stop:
  672. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  673. unmap:
  674. atmel_aes_unmap(dd);
  675. exit:
  676. return atmel_aes_complete(dd, err);
  677. }
  678. static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
  679. {
  680. atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
  681. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  682. atmel_aes_unmap(dd);
  683. }
  684. static void atmel_aes_dma_callback(void *data)
  685. {
  686. struct atmel_aes_dev *dd = data;
  687. atmel_aes_dma_stop(dd);
  688. dd->is_async = true;
  689. (void)dd->resume(dd);
  690. }
  691. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  692. struct crypto_async_request *new_areq)
  693. {
  694. struct crypto_async_request *areq, *backlog;
  695. struct atmel_aes_base_ctx *ctx;
  696. unsigned long flags;
  697. int err, ret = 0;
  698. spin_lock_irqsave(&dd->lock, flags);
  699. if (new_areq)
  700. ret = crypto_enqueue_request(&dd->queue, new_areq);
  701. if (dd->flags & AES_FLAGS_BUSY) {
  702. spin_unlock_irqrestore(&dd->lock, flags);
  703. return ret;
  704. }
  705. backlog = crypto_get_backlog(&dd->queue);
  706. areq = crypto_dequeue_request(&dd->queue);
  707. if (areq)
  708. dd->flags |= AES_FLAGS_BUSY;
  709. spin_unlock_irqrestore(&dd->lock, flags);
  710. if (!areq)
  711. return ret;
  712. if (backlog)
  713. backlog->complete(backlog, -EINPROGRESS);
  714. ctx = crypto_tfm_ctx(areq->tfm);
  715. dd->areq = areq;
  716. dd->ctx = ctx;
  717. dd->is_async = (areq != new_areq);
  718. err = ctx->start(dd);
  719. return (dd->is_async) ? ret : err;
  720. }
  721. /* AES async block ciphers */
  722. static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
  723. {
  724. return atmel_aes_complete(dd, 0);
  725. }
  726. static int atmel_aes_start(struct atmel_aes_dev *dd)
  727. {
  728. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  729. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  730. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
  731. dd->ctx->block_size != AES_BLOCK_SIZE);
  732. int err;
  733. atmel_aes_set_mode(dd, rctx);
  734. err = atmel_aes_hw_init(dd);
  735. if (err)
  736. return atmel_aes_complete(dd, err);
  737. atmel_aes_write_ctrl(dd, use_dma, req->info);
  738. if (use_dma)
  739. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  740. atmel_aes_transfer_complete);
  741. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  742. atmel_aes_transfer_complete);
  743. }
  744. static inline struct atmel_aes_ctr_ctx *
  745. atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
  746. {
  747. return container_of(ctx, struct atmel_aes_ctr_ctx, base);
  748. }
  749. static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
  750. {
  751. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  752. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  753. struct scatterlist *src, *dst;
  754. u32 ctr, blocks;
  755. size_t datalen;
  756. bool use_dma, fragmented = false;
  757. /* Check for transfer completion. */
  758. ctx->offset += dd->total;
  759. if (ctx->offset >= req->nbytes)
  760. return atmel_aes_transfer_complete(dd);
  761. /* Compute data length. */
  762. datalen = req->nbytes - ctx->offset;
  763. blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
  764. ctr = be32_to_cpu(ctx->iv[3]);
  765. if (dd->caps.has_ctr32) {
  766. /* Check 32bit counter overflow. */
  767. u32 start = ctr;
  768. u32 end = start + blocks - 1;
  769. if (end < start) {
  770. ctr |= 0xffffffff;
  771. datalen = AES_BLOCK_SIZE * -start;
  772. fragmented = true;
  773. }
  774. } else {
  775. /* Check 16bit counter overflow. */
  776. u16 start = ctr & 0xffff;
  777. u16 end = start + (u16)blocks - 1;
  778. if (blocks >> 16 || end < start) {
  779. ctr |= 0xffff;
  780. datalen = AES_BLOCK_SIZE * (0x10000-start);
  781. fragmented = true;
  782. }
  783. }
  784. use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
  785. /* Jump to offset. */
  786. src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
  787. dst = ((req->src == req->dst) ? src :
  788. scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
  789. /* Configure hardware. */
  790. atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
  791. if (unlikely(fragmented)) {
  792. /*
  793. * Increment the counter manually to cope with the hardware
  794. * counter overflow.
  795. */
  796. ctx->iv[3] = cpu_to_be32(ctr);
  797. crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
  798. }
  799. if (use_dma)
  800. return atmel_aes_dma_start(dd, src, dst, datalen,
  801. atmel_aes_ctr_transfer);
  802. return atmel_aes_cpu_start(dd, src, dst, datalen,
  803. atmel_aes_ctr_transfer);
  804. }
  805. static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
  806. {
  807. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  808. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  809. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  810. int err;
  811. atmel_aes_set_mode(dd, rctx);
  812. err = atmel_aes_hw_init(dd);
  813. if (err)
  814. return atmel_aes_complete(dd, err);
  815. memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
  816. ctx->offset = 0;
  817. dd->total = 0;
  818. return atmel_aes_ctr_transfer(dd);
  819. }
  820. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  821. {
  822. struct atmel_aes_base_ctx *ctx;
  823. struct atmel_aes_reqctx *rctx;
  824. struct atmel_aes_dev *dd;
  825. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  826. switch (mode & AES_FLAGS_OPMODE_MASK) {
  827. case AES_FLAGS_CFB8:
  828. ctx->block_size = CFB8_BLOCK_SIZE;
  829. break;
  830. case AES_FLAGS_CFB16:
  831. ctx->block_size = CFB16_BLOCK_SIZE;
  832. break;
  833. case AES_FLAGS_CFB32:
  834. ctx->block_size = CFB32_BLOCK_SIZE;
  835. break;
  836. case AES_FLAGS_CFB64:
  837. ctx->block_size = CFB64_BLOCK_SIZE;
  838. break;
  839. default:
  840. ctx->block_size = AES_BLOCK_SIZE;
  841. break;
  842. }
  843. dd = atmel_aes_find_dev(ctx);
  844. if (!dd)
  845. return -ENODEV;
  846. rctx = ablkcipher_request_ctx(req);
  847. rctx->mode = mode;
  848. return atmel_aes_handle_queue(dd, &req->base);
  849. }
  850. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  851. unsigned int keylen)
  852. {
  853. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  854. if (keylen != AES_KEYSIZE_128 &&
  855. keylen != AES_KEYSIZE_192 &&
  856. keylen != AES_KEYSIZE_256) {
  857. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  858. return -EINVAL;
  859. }
  860. memcpy(ctx->key, key, keylen);
  861. ctx->keylen = keylen;
  862. return 0;
  863. }
  864. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  865. {
  866. return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  867. }
  868. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  869. {
  870. return atmel_aes_crypt(req, AES_FLAGS_ECB);
  871. }
  872. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  873. {
  874. return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  875. }
  876. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  877. {
  878. return atmel_aes_crypt(req, AES_FLAGS_CBC);
  879. }
  880. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  881. {
  882. return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
  883. }
  884. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  885. {
  886. return atmel_aes_crypt(req, AES_FLAGS_OFB);
  887. }
  888. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  889. {
  890. return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
  891. }
  892. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  893. {
  894. return atmel_aes_crypt(req, AES_FLAGS_CFB128);
  895. }
  896. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  897. {
  898. return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
  899. }
  900. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  901. {
  902. return atmel_aes_crypt(req, AES_FLAGS_CFB64);
  903. }
  904. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  905. {
  906. return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
  907. }
  908. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  909. {
  910. return atmel_aes_crypt(req, AES_FLAGS_CFB32);
  911. }
  912. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  913. {
  914. return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
  915. }
  916. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  917. {
  918. return atmel_aes_crypt(req, AES_FLAGS_CFB16);
  919. }
  920. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  921. {
  922. return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
  923. }
  924. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  925. {
  926. return atmel_aes_crypt(req, AES_FLAGS_CFB8);
  927. }
  928. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  929. {
  930. return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
  931. }
  932. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  933. {
  934. return atmel_aes_crypt(req, AES_FLAGS_CTR);
  935. }
  936. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  937. {
  938. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  939. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  940. ctx->base.start = atmel_aes_start;
  941. return 0;
  942. }
  943. static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
  944. {
  945. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  946. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  947. ctx->base.start = atmel_aes_ctr_start;
  948. return 0;
  949. }
  950. static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
  951. {
  952. }
  953. static struct crypto_alg aes_algs[] = {
  954. {
  955. .cra_name = "ecb(aes)",
  956. .cra_driver_name = "atmel-ecb-aes",
  957. .cra_priority = ATMEL_AES_PRIORITY,
  958. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  959. .cra_blocksize = AES_BLOCK_SIZE,
  960. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  961. .cra_alignmask = 0xf,
  962. .cra_type = &crypto_ablkcipher_type,
  963. .cra_module = THIS_MODULE,
  964. .cra_init = atmel_aes_cra_init,
  965. .cra_exit = atmel_aes_cra_exit,
  966. .cra_u.ablkcipher = {
  967. .min_keysize = AES_MIN_KEY_SIZE,
  968. .max_keysize = AES_MAX_KEY_SIZE,
  969. .setkey = atmel_aes_setkey,
  970. .encrypt = atmel_aes_ecb_encrypt,
  971. .decrypt = atmel_aes_ecb_decrypt,
  972. }
  973. },
  974. {
  975. .cra_name = "cbc(aes)",
  976. .cra_driver_name = "atmel-cbc-aes",
  977. .cra_priority = ATMEL_AES_PRIORITY,
  978. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  979. .cra_blocksize = AES_BLOCK_SIZE,
  980. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  981. .cra_alignmask = 0xf,
  982. .cra_type = &crypto_ablkcipher_type,
  983. .cra_module = THIS_MODULE,
  984. .cra_init = atmel_aes_cra_init,
  985. .cra_exit = atmel_aes_cra_exit,
  986. .cra_u.ablkcipher = {
  987. .min_keysize = AES_MIN_KEY_SIZE,
  988. .max_keysize = AES_MAX_KEY_SIZE,
  989. .ivsize = AES_BLOCK_SIZE,
  990. .setkey = atmel_aes_setkey,
  991. .encrypt = atmel_aes_cbc_encrypt,
  992. .decrypt = atmel_aes_cbc_decrypt,
  993. }
  994. },
  995. {
  996. .cra_name = "ofb(aes)",
  997. .cra_driver_name = "atmel-ofb-aes",
  998. .cra_priority = ATMEL_AES_PRIORITY,
  999. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1000. .cra_blocksize = AES_BLOCK_SIZE,
  1001. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1002. .cra_alignmask = 0xf,
  1003. .cra_type = &crypto_ablkcipher_type,
  1004. .cra_module = THIS_MODULE,
  1005. .cra_init = atmel_aes_cra_init,
  1006. .cra_exit = atmel_aes_cra_exit,
  1007. .cra_u.ablkcipher = {
  1008. .min_keysize = AES_MIN_KEY_SIZE,
  1009. .max_keysize = AES_MAX_KEY_SIZE,
  1010. .ivsize = AES_BLOCK_SIZE,
  1011. .setkey = atmel_aes_setkey,
  1012. .encrypt = atmel_aes_ofb_encrypt,
  1013. .decrypt = atmel_aes_ofb_decrypt,
  1014. }
  1015. },
  1016. {
  1017. .cra_name = "cfb(aes)",
  1018. .cra_driver_name = "atmel-cfb-aes",
  1019. .cra_priority = ATMEL_AES_PRIORITY,
  1020. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1021. .cra_blocksize = AES_BLOCK_SIZE,
  1022. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1023. .cra_alignmask = 0xf,
  1024. .cra_type = &crypto_ablkcipher_type,
  1025. .cra_module = THIS_MODULE,
  1026. .cra_init = atmel_aes_cra_init,
  1027. .cra_exit = atmel_aes_cra_exit,
  1028. .cra_u.ablkcipher = {
  1029. .min_keysize = AES_MIN_KEY_SIZE,
  1030. .max_keysize = AES_MAX_KEY_SIZE,
  1031. .ivsize = AES_BLOCK_SIZE,
  1032. .setkey = atmel_aes_setkey,
  1033. .encrypt = atmel_aes_cfb_encrypt,
  1034. .decrypt = atmel_aes_cfb_decrypt,
  1035. }
  1036. },
  1037. {
  1038. .cra_name = "cfb32(aes)",
  1039. .cra_driver_name = "atmel-cfb32-aes",
  1040. .cra_priority = ATMEL_AES_PRIORITY,
  1041. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1042. .cra_blocksize = CFB32_BLOCK_SIZE,
  1043. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1044. .cra_alignmask = 0x3,
  1045. .cra_type = &crypto_ablkcipher_type,
  1046. .cra_module = THIS_MODULE,
  1047. .cra_init = atmel_aes_cra_init,
  1048. .cra_exit = atmel_aes_cra_exit,
  1049. .cra_u.ablkcipher = {
  1050. .min_keysize = AES_MIN_KEY_SIZE,
  1051. .max_keysize = AES_MAX_KEY_SIZE,
  1052. .ivsize = AES_BLOCK_SIZE,
  1053. .setkey = atmel_aes_setkey,
  1054. .encrypt = atmel_aes_cfb32_encrypt,
  1055. .decrypt = atmel_aes_cfb32_decrypt,
  1056. }
  1057. },
  1058. {
  1059. .cra_name = "cfb16(aes)",
  1060. .cra_driver_name = "atmel-cfb16-aes",
  1061. .cra_priority = ATMEL_AES_PRIORITY,
  1062. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1063. .cra_blocksize = CFB16_BLOCK_SIZE,
  1064. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1065. .cra_alignmask = 0x1,
  1066. .cra_type = &crypto_ablkcipher_type,
  1067. .cra_module = THIS_MODULE,
  1068. .cra_init = atmel_aes_cra_init,
  1069. .cra_exit = atmel_aes_cra_exit,
  1070. .cra_u.ablkcipher = {
  1071. .min_keysize = AES_MIN_KEY_SIZE,
  1072. .max_keysize = AES_MAX_KEY_SIZE,
  1073. .ivsize = AES_BLOCK_SIZE,
  1074. .setkey = atmel_aes_setkey,
  1075. .encrypt = atmel_aes_cfb16_encrypt,
  1076. .decrypt = atmel_aes_cfb16_decrypt,
  1077. }
  1078. },
  1079. {
  1080. .cra_name = "cfb8(aes)",
  1081. .cra_driver_name = "atmel-cfb8-aes",
  1082. .cra_priority = ATMEL_AES_PRIORITY,
  1083. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1084. .cra_blocksize = CFB8_BLOCK_SIZE,
  1085. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1086. .cra_alignmask = 0x0,
  1087. .cra_type = &crypto_ablkcipher_type,
  1088. .cra_module = THIS_MODULE,
  1089. .cra_init = atmel_aes_cra_init,
  1090. .cra_exit = atmel_aes_cra_exit,
  1091. .cra_u.ablkcipher = {
  1092. .min_keysize = AES_MIN_KEY_SIZE,
  1093. .max_keysize = AES_MAX_KEY_SIZE,
  1094. .ivsize = AES_BLOCK_SIZE,
  1095. .setkey = atmel_aes_setkey,
  1096. .encrypt = atmel_aes_cfb8_encrypt,
  1097. .decrypt = atmel_aes_cfb8_decrypt,
  1098. }
  1099. },
  1100. {
  1101. .cra_name = "ctr(aes)",
  1102. .cra_driver_name = "atmel-ctr-aes",
  1103. .cra_priority = ATMEL_AES_PRIORITY,
  1104. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1105. .cra_blocksize = 1,
  1106. .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
  1107. .cra_alignmask = 0xf,
  1108. .cra_type = &crypto_ablkcipher_type,
  1109. .cra_module = THIS_MODULE,
  1110. .cra_init = atmel_aes_ctr_cra_init,
  1111. .cra_exit = atmel_aes_cra_exit,
  1112. .cra_u.ablkcipher = {
  1113. .min_keysize = AES_MIN_KEY_SIZE,
  1114. .max_keysize = AES_MAX_KEY_SIZE,
  1115. .ivsize = AES_BLOCK_SIZE,
  1116. .setkey = atmel_aes_setkey,
  1117. .encrypt = atmel_aes_ctr_encrypt,
  1118. .decrypt = atmel_aes_ctr_decrypt,
  1119. }
  1120. },
  1121. };
  1122. static struct crypto_alg aes_cfb64_alg = {
  1123. .cra_name = "cfb64(aes)",
  1124. .cra_driver_name = "atmel-cfb64-aes",
  1125. .cra_priority = ATMEL_AES_PRIORITY,
  1126. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1127. .cra_blocksize = CFB64_BLOCK_SIZE,
  1128. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1129. .cra_alignmask = 0x7,
  1130. .cra_type = &crypto_ablkcipher_type,
  1131. .cra_module = THIS_MODULE,
  1132. .cra_init = atmel_aes_cra_init,
  1133. .cra_exit = atmel_aes_cra_exit,
  1134. .cra_u.ablkcipher = {
  1135. .min_keysize = AES_MIN_KEY_SIZE,
  1136. .max_keysize = AES_MAX_KEY_SIZE,
  1137. .ivsize = AES_BLOCK_SIZE,
  1138. .setkey = atmel_aes_setkey,
  1139. .encrypt = atmel_aes_cfb64_encrypt,
  1140. .decrypt = atmel_aes_cfb64_decrypt,
  1141. }
  1142. };
  1143. /* gcm aead functions */
  1144. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1145. const u32 *data, size_t datalen,
  1146. const u32 *ghash_in, u32 *ghash_out,
  1147. atmel_aes_fn_t resume);
  1148. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
  1149. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
  1150. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
  1151. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
  1152. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
  1153. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
  1154. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
  1155. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
  1156. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
  1157. static inline struct atmel_aes_gcm_ctx *
  1158. atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1159. {
  1160. return container_of(ctx, struct atmel_aes_gcm_ctx, base);
  1161. }
  1162. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1163. const u32 *data, size_t datalen,
  1164. const u32 *ghash_in, u32 *ghash_out,
  1165. atmel_aes_fn_t resume)
  1166. {
  1167. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1168. dd->data = (u32 *)data;
  1169. dd->datalen = datalen;
  1170. ctx->ghash_in = ghash_in;
  1171. ctx->ghash_out = ghash_out;
  1172. ctx->ghash_resume = resume;
  1173. atmel_aes_write_ctrl(dd, false, NULL);
  1174. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
  1175. }
  1176. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
  1177. {
  1178. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1179. /* Set the data length. */
  1180. atmel_aes_write(dd, AES_AADLENR, dd->total);
  1181. atmel_aes_write(dd, AES_CLENR, 0);
  1182. /* If needed, overwrite the GCM Intermediate Hash Word Registers */
  1183. if (ctx->ghash_in)
  1184. atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
  1185. return atmel_aes_gcm_ghash_finalize(dd);
  1186. }
  1187. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
  1188. {
  1189. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1190. u32 isr;
  1191. /* Write data into the Input Data Registers. */
  1192. while (dd->datalen > 0) {
  1193. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1194. dd->data += 4;
  1195. dd->datalen -= AES_BLOCK_SIZE;
  1196. isr = atmel_aes_read(dd, AES_ISR);
  1197. if (!(isr & AES_INT_DATARDY)) {
  1198. dd->resume = atmel_aes_gcm_ghash_finalize;
  1199. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1200. return -EINPROGRESS;
  1201. }
  1202. }
  1203. /* Read the computed hash from GHASHRx. */
  1204. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
  1205. return ctx->ghash_resume(dd);
  1206. }
  1207. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
  1208. {
  1209. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1210. struct aead_request *req = aead_request_cast(dd->areq);
  1211. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1212. struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
  1213. size_t ivsize = crypto_aead_ivsize(tfm);
  1214. size_t datalen, padlen;
  1215. const void *iv = req->iv;
  1216. u8 *data = dd->buf;
  1217. int err;
  1218. atmel_aes_set_mode(dd, rctx);
  1219. err = atmel_aes_hw_init(dd);
  1220. if (err)
  1221. return atmel_aes_complete(dd, err);
  1222. if (likely(ivsize == 12)) {
  1223. memcpy(ctx->j0, iv, ivsize);
  1224. ctx->j0[3] = cpu_to_be32(1);
  1225. return atmel_aes_gcm_process(dd);
  1226. }
  1227. padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
  1228. datalen = ivsize + padlen + AES_BLOCK_SIZE;
  1229. if (datalen > dd->buflen)
  1230. return atmel_aes_complete(dd, -EINVAL);
  1231. memcpy(data, iv, ivsize);
  1232. memset(data + ivsize, 0, padlen + sizeof(u64));
  1233. ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
  1234. return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
  1235. NULL, ctx->j0, atmel_aes_gcm_process);
  1236. }
  1237. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
  1238. {
  1239. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1240. struct aead_request *req = aead_request_cast(dd->areq);
  1241. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1242. bool enc = atmel_aes_is_encrypt(dd);
  1243. u32 authsize;
  1244. /* Compute text length. */
  1245. authsize = crypto_aead_authsize(tfm);
  1246. ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1247. /*
  1248. * According to tcrypt test suite, the GCM Automatic Tag Generation
  1249. * fails when both the message and its associated data are empty.
  1250. */
  1251. if (likely(req->assoclen != 0 || ctx->textlen != 0))
  1252. dd->flags |= AES_FLAGS_GTAGEN;
  1253. atmel_aes_write_ctrl(dd, false, NULL);
  1254. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
  1255. }
  1256. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
  1257. {
  1258. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1259. struct aead_request *req = aead_request_cast(dd->areq);
  1260. u32 j0_lsw, *j0 = ctx->j0;
  1261. size_t padlen;
  1262. /* Write incr32(J0) into IV. */
  1263. j0_lsw = j0[3];
  1264. j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
  1265. atmel_aes_write_block(dd, AES_IVR(0), j0);
  1266. j0[3] = j0_lsw;
  1267. /* Set aad and text lengths. */
  1268. atmel_aes_write(dd, AES_AADLENR, req->assoclen);
  1269. atmel_aes_write(dd, AES_CLENR, ctx->textlen);
  1270. /* Check whether AAD are present. */
  1271. if (unlikely(req->assoclen == 0)) {
  1272. dd->datalen = 0;
  1273. return atmel_aes_gcm_data(dd);
  1274. }
  1275. /* Copy assoc data and add padding. */
  1276. padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
  1277. if (unlikely(req->assoclen + padlen > dd->buflen))
  1278. return atmel_aes_complete(dd, -EINVAL);
  1279. sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
  1280. /* Write assoc data into the Input Data register. */
  1281. dd->data = (u32 *)dd->buf;
  1282. dd->datalen = req->assoclen + padlen;
  1283. return atmel_aes_gcm_data(dd);
  1284. }
  1285. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
  1286. {
  1287. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1288. struct aead_request *req = aead_request_cast(dd->areq);
  1289. bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
  1290. struct scatterlist *src, *dst;
  1291. u32 isr, mr;
  1292. /* Write AAD first. */
  1293. while (dd->datalen > 0) {
  1294. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1295. dd->data += 4;
  1296. dd->datalen -= AES_BLOCK_SIZE;
  1297. isr = atmel_aes_read(dd, AES_ISR);
  1298. if (!(isr & AES_INT_DATARDY)) {
  1299. dd->resume = atmel_aes_gcm_data;
  1300. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1301. return -EINPROGRESS;
  1302. }
  1303. }
  1304. /* GMAC only. */
  1305. if (unlikely(ctx->textlen == 0))
  1306. return atmel_aes_gcm_tag_init(dd);
  1307. /* Prepare src and dst scatter lists to transfer cipher/plain texts */
  1308. src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
  1309. dst = ((req->src == req->dst) ? src :
  1310. scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
  1311. if (use_dma) {
  1312. /* Update the Mode Register for DMA transfers. */
  1313. mr = atmel_aes_read(dd, AES_MR);
  1314. mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
  1315. mr |= AES_MR_SMOD_IDATAR0;
  1316. if (dd->caps.has_dualbuff)
  1317. mr |= AES_MR_DUALBUFF;
  1318. atmel_aes_write(dd, AES_MR, mr);
  1319. return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
  1320. atmel_aes_gcm_tag_init);
  1321. }
  1322. return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
  1323. atmel_aes_gcm_tag_init);
  1324. }
  1325. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
  1326. {
  1327. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1328. struct aead_request *req = aead_request_cast(dd->areq);
  1329. u64 *data = dd->buf;
  1330. if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
  1331. if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
  1332. dd->resume = atmel_aes_gcm_tag_init;
  1333. atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
  1334. return -EINPROGRESS;
  1335. }
  1336. return atmel_aes_gcm_finalize(dd);
  1337. }
  1338. /* Read the GCM Intermediate Hash Word Registers. */
  1339. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
  1340. data[0] = cpu_to_be64(req->assoclen * 8);
  1341. data[1] = cpu_to_be64(ctx->textlen * 8);
  1342. return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
  1343. ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
  1344. }
  1345. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
  1346. {
  1347. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1348. unsigned long flags;
  1349. /*
  1350. * Change mode to CTR to complete the tag generation.
  1351. * Use J0 as Initialization Vector.
  1352. */
  1353. flags = dd->flags;
  1354. dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
  1355. dd->flags |= AES_FLAGS_CTR;
  1356. atmel_aes_write_ctrl(dd, false, ctx->j0);
  1357. dd->flags = flags;
  1358. atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
  1359. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
  1360. }
  1361. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
  1362. {
  1363. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1364. struct aead_request *req = aead_request_cast(dd->areq);
  1365. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1366. bool enc = atmel_aes_is_encrypt(dd);
  1367. u32 offset, authsize, itag[4], *otag = ctx->tag;
  1368. int err;
  1369. /* Read the computed tag. */
  1370. if (likely(dd->flags & AES_FLAGS_GTAGEN))
  1371. atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
  1372. else
  1373. atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
  1374. offset = req->assoclen + ctx->textlen;
  1375. authsize = crypto_aead_authsize(tfm);
  1376. if (enc) {
  1377. scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
  1378. err = 0;
  1379. } else {
  1380. scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
  1381. err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
  1382. }
  1383. return atmel_aes_complete(dd, err);
  1384. }
  1385. static int atmel_aes_gcm_crypt(struct aead_request *req,
  1386. unsigned long mode)
  1387. {
  1388. struct atmel_aes_base_ctx *ctx;
  1389. struct atmel_aes_reqctx *rctx;
  1390. struct atmel_aes_dev *dd;
  1391. ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  1392. ctx->block_size = AES_BLOCK_SIZE;
  1393. dd = atmel_aes_find_dev(ctx);
  1394. if (!dd)
  1395. return -ENODEV;
  1396. rctx = aead_request_ctx(req);
  1397. rctx->mode = AES_FLAGS_GCM | mode;
  1398. return atmel_aes_handle_queue(dd, &req->base);
  1399. }
  1400. static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1401. unsigned int keylen)
  1402. {
  1403. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1404. if (keylen != AES_KEYSIZE_256 &&
  1405. keylen != AES_KEYSIZE_192 &&
  1406. keylen != AES_KEYSIZE_128) {
  1407. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1408. return -EINVAL;
  1409. }
  1410. memcpy(ctx->key, key, keylen);
  1411. ctx->keylen = keylen;
  1412. return 0;
  1413. }
  1414. static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
  1415. unsigned int authsize)
  1416. {
  1417. /* Same as crypto_gcm_authsize() from crypto/gcm.c */
  1418. switch (authsize) {
  1419. case 4:
  1420. case 8:
  1421. case 12:
  1422. case 13:
  1423. case 14:
  1424. case 15:
  1425. case 16:
  1426. break;
  1427. default:
  1428. return -EINVAL;
  1429. }
  1430. return 0;
  1431. }
  1432. static int atmel_aes_gcm_encrypt(struct aead_request *req)
  1433. {
  1434. return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
  1435. }
  1436. static int atmel_aes_gcm_decrypt(struct aead_request *req)
  1437. {
  1438. return atmel_aes_gcm_crypt(req, 0);
  1439. }
  1440. static int atmel_aes_gcm_init(struct crypto_aead *tfm)
  1441. {
  1442. struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  1443. crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
  1444. ctx->base.start = atmel_aes_gcm_start;
  1445. return 0;
  1446. }
  1447. static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
  1448. {
  1449. }
  1450. static struct aead_alg aes_gcm_alg = {
  1451. .setkey = atmel_aes_gcm_setkey,
  1452. .setauthsize = atmel_aes_gcm_setauthsize,
  1453. .encrypt = atmel_aes_gcm_encrypt,
  1454. .decrypt = atmel_aes_gcm_decrypt,
  1455. .init = atmel_aes_gcm_init,
  1456. .exit = atmel_aes_gcm_exit,
  1457. .ivsize = 12,
  1458. .maxauthsize = AES_BLOCK_SIZE,
  1459. .base = {
  1460. .cra_name = "gcm(aes)",
  1461. .cra_driver_name = "atmel-gcm-aes",
  1462. .cra_priority = ATMEL_AES_PRIORITY,
  1463. .cra_flags = CRYPTO_ALG_ASYNC,
  1464. .cra_blocksize = 1,
  1465. .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
  1466. .cra_alignmask = 0xf,
  1467. .cra_module = THIS_MODULE,
  1468. },
  1469. };
  1470. /* xts functions */
  1471. static inline struct atmel_aes_xts_ctx *
  1472. atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1473. {
  1474. return container_of(ctx, struct atmel_aes_xts_ctx, base);
  1475. }
  1476. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
  1477. static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
  1478. {
  1479. struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
  1480. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1481. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  1482. unsigned long flags;
  1483. int err;
  1484. atmel_aes_set_mode(dd, rctx);
  1485. err = atmel_aes_hw_init(dd);
  1486. if (err)
  1487. return atmel_aes_complete(dd, err);
  1488. /* Compute the tweak value from req->info with ecb(aes). */
  1489. flags = dd->flags;
  1490. dd->flags &= ~AES_FLAGS_MODE_MASK;
  1491. dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  1492. atmel_aes_write_ctrl_key(dd, false, NULL,
  1493. ctx->key2, ctx->base.keylen);
  1494. dd->flags = flags;
  1495. atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
  1496. return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
  1497. }
  1498. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
  1499. {
  1500. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1501. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
  1502. u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
  1503. static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
  1504. u8 *tweak_bytes = (u8 *)tweak;
  1505. int i;
  1506. /* Read the computed ciphered tweak value. */
  1507. atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
  1508. /*
  1509. * Hardware quirk:
  1510. * the order of the ciphered tweak bytes need to be reversed before
  1511. * writing them into the ODATARx registers.
  1512. */
  1513. for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
  1514. u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
  1515. tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
  1516. tweak_bytes[i] = tmp;
  1517. }
  1518. /* Process the data. */
  1519. atmel_aes_write_ctrl(dd, use_dma, NULL);
  1520. atmel_aes_write_block(dd, AES_TWR(0), tweak);
  1521. atmel_aes_write_block(dd, AES_ALPHAR(0), one);
  1522. if (use_dma)
  1523. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  1524. atmel_aes_transfer_complete);
  1525. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  1526. atmel_aes_transfer_complete);
  1527. }
  1528. static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  1529. unsigned int keylen)
  1530. {
  1531. struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  1532. int err;
  1533. err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
  1534. if (err)
  1535. return err;
  1536. memcpy(ctx->base.key, key, keylen/2);
  1537. memcpy(ctx->key2, key + keylen/2, keylen/2);
  1538. ctx->base.keylen = keylen/2;
  1539. return 0;
  1540. }
  1541. static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
  1542. {
  1543. return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
  1544. }
  1545. static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
  1546. {
  1547. return atmel_aes_crypt(req, AES_FLAGS_XTS);
  1548. }
  1549. static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
  1550. {
  1551. struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  1552. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1553. ctx->base.start = atmel_aes_xts_start;
  1554. return 0;
  1555. }
  1556. static struct crypto_alg aes_xts_alg = {
  1557. .cra_name = "xts(aes)",
  1558. .cra_driver_name = "atmel-xts-aes",
  1559. .cra_priority = ATMEL_AES_PRIORITY,
  1560. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1561. .cra_blocksize = AES_BLOCK_SIZE,
  1562. .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
  1563. .cra_alignmask = 0xf,
  1564. .cra_type = &crypto_ablkcipher_type,
  1565. .cra_module = THIS_MODULE,
  1566. .cra_init = atmel_aes_xts_cra_init,
  1567. .cra_exit = atmel_aes_cra_exit,
  1568. .cra_u.ablkcipher = {
  1569. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1570. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1571. .ivsize = AES_BLOCK_SIZE,
  1572. .setkey = atmel_aes_xts_setkey,
  1573. .encrypt = atmel_aes_xts_encrypt,
  1574. .decrypt = atmel_aes_xts_decrypt,
  1575. }
  1576. };
  1577. /* Probe functions */
  1578. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  1579. {
  1580. dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
  1581. dd->buflen = ATMEL_AES_BUFFER_SIZE;
  1582. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  1583. if (!dd->buf) {
  1584. dev_err(dd->dev, "unable to alloc pages.\n");
  1585. return -ENOMEM;
  1586. }
  1587. return 0;
  1588. }
  1589. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  1590. {
  1591. free_page((unsigned long)dd->buf);
  1592. }
  1593. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  1594. {
  1595. struct at_dma_slave *sl = slave;
  1596. if (sl && sl->dma_dev == chan->device->dev) {
  1597. chan->private = sl;
  1598. return true;
  1599. } else {
  1600. return false;
  1601. }
  1602. }
  1603. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  1604. struct crypto_platform_data *pdata)
  1605. {
  1606. struct at_dma_slave *slave;
  1607. int err = -ENOMEM;
  1608. dma_cap_mask_t mask;
  1609. dma_cap_zero(mask);
  1610. dma_cap_set(DMA_SLAVE, mask);
  1611. /* Try to grab 2 DMA channels */
  1612. slave = &pdata->dma_slave->rxdata;
  1613. dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1614. slave, dd->dev, "tx");
  1615. if (!dd->src.chan)
  1616. goto err_dma_in;
  1617. slave = &pdata->dma_slave->txdata;
  1618. dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1619. slave, dd->dev, "rx");
  1620. if (!dd->dst.chan)
  1621. goto err_dma_out;
  1622. return 0;
  1623. err_dma_out:
  1624. dma_release_channel(dd->src.chan);
  1625. err_dma_in:
  1626. dev_warn(dd->dev, "no DMA channel available\n");
  1627. return err;
  1628. }
  1629. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  1630. {
  1631. dma_release_channel(dd->dst.chan);
  1632. dma_release_channel(dd->src.chan);
  1633. }
  1634. static void atmel_aes_queue_task(unsigned long data)
  1635. {
  1636. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1637. atmel_aes_handle_queue(dd, NULL);
  1638. }
  1639. static void atmel_aes_done_task(unsigned long data)
  1640. {
  1641. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1642. dd->is_async = true;
  1643. (void)dd->resume(dd);
  1644. }
  1645. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  1646. {
  1647. struct atmel_aes_dev *aes_dd = dev_id;
  1648. u32 reg;
  1649. reg = atmel_aes_read(aes_dd, AES_ISR);
  1650. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  1651. atmel_aes_write(aes_dd, AES_IDR, reg);
  1652. if (AES_FLAGS_BUSY & aes_dd->flags)
  1653. tasklet_schedule(&aes_dd->done_task);
  1654. else
  1655. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  1656. return IRQ_HANDLED;
  1657. }
  1658. return IRQ_NONE;
  1659. }
  1660. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  1661. {
  1662. int i;
  1663. if (dd->caps.has_xts)
  1664. crypto_unregister_alg(&aes_xts_alg);
  1665. if (dd->caps.has_gcm)
  1666. crypto_unregister_aead(&aes_gcm_alg);
  1667. if (dd->caps.has_cfb64)
  1668. crypto_unregister_alg(&aes_cfb64_alg);
  1669. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  1670. crypto_unregister_alg(&aes_algs[i]);
  1671. }
  1672. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  1673. {
  1674. int err, i, j;
  1675. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  1676. err = crypto_register_alg(&aes_algs[i]);
  1677. if (err)
  1678. goto err_aes_algs;
  1679. }
  1680. if (dd->caps.has_cfb64) {
  1681. err = crypto_register_alg(&aes_cfb64_alg);
  1682. if (err)
  1683. goto err_aes_cfb64_alg;
  1684. }
  1685. if (dd->caps.has_gcm) {
  1686. err = crypto_register_aead(&aes_gcm_alg);
  1687. if (err)
  1688. goto err_aes_gcm_alg;
  1689. }
  1690. if (dd->caps.has_xts) {
  1691. err = crypto_register_alg(&aes_xts_alg);
  1692. if (err)
  1693. goto err_aes_xts_alg;
  1694. }
  1695. return 0;
  1696. err_aes_xts_alg:
  1697. crypto_unregister_aead(&aes_gcm_alg);
  1698. err_aes_gcm_alg:
  1699. crypto_unregister_alg(&aes_cfb64_alg);
  1700. err_aes_cfb64_alg:
  1701. i = ARRAY_SIZE(aes_algs);
  1702. err_aes_algs:
  1703. for (j = 0; j < i; j++)
  1704. crypto_unregister_alg(&aes_algs[j]);
  1705. return err;
  1706. }
  1707. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  1708. {
  1709. dd->caps.has_dualbuff = 0;
  1710. dd->caps.has_cfb64 = 0;
  1711. dd->caps.has_ctr32 = 0;
  1712. dd->caps.has_gcm = 0;
  1713. dd->caps.has_xts = 0;
  1714. dd->caps.max_burst_size = 1;
  1715. /* keep only major version number */
  1716. switch (dd->hw_version & 0xff0) {
  1717. case 0x500:
  1718. dd->caps.has_dualbuff = 1;
  1719. dd->caps.has_cfb64 = 1;
  1720. dd->caps.has_ctr32 = 1;
  1721. dd->caps.has_gcm = 1;
  1722. dd->caps.has_xts = 1;
  1723. dd->caps.max_burst_size = 4;
  1724. break;
  1725. case 0x200:
  1726. dd->caps.has_dualbuff = 1;
  1727. dd->caps.has_cfb64 = 1;
  1728. dd->caps.has_ctr32 = 1;
  1729. dd->caps.has_gcm = 1;
  1730. dd->caps.max_burst_size = 4;
  1731. break;
  1732. case 0x130:
  1733. dd->caps.has_dualbuff = 1;
  1734. dd->caps.has_cfb64 = 1;
  1735. dd->caps.max_burst_size = 4;
  1736. break;
  1737. case 0x120:
  1738. break;
  1739. default:
  1740. dev_warn(dd->dev,
  1741. "Unmanaged aes version, set minimum capabilities\n");
  1742. break;
  1743. }
  1744. }
  1745. #if defined(CONFIG_OF)
  1746. static const struct of_device_id atmel_aes_dt_ids[] = {
  1747. { .compatible = "atmel,at91sam9g46-aes" },
  1748. { /* sentinel */ }
  1749. };
  1750. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  1751. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1752. {
  1753. struct device_node *np = pdev->dev.of_node;
  1754. struct crypto_platform_data *pdata;
  1755. if (!np) {
  1756. dev_err(&pdev->dev, "device node not found\n");
  1757. return ERR_PTR(-EINVAL);
  1758. }
  1759. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1760. if (!pdata) {
  1761. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1762. return ERR_PTR(-ENOMEM);
  1763. }
  1764. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1765. sizeof(*(pdata->dma_slave)),
  1766. GFP_KERNEL);
  1767. if (!pdata->dma_slave) {
  1768. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1769. devm_kfree(&pdev->dev, pdata);
  1770. return ERR_PTR(-ENOMEM);
  1771. }
  1772. return pdata;
  1773. }
  1774. #else
  1775. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1776. {
  1777. return ERR_PTR(-EINVAL);
  1778. }
  1779. #endif
  1780. static int atmel_aes_probe(struct platform_device *pdev)
  1781. {
  1782. struct atmel_aes_dev *aes_dd;
  1783. struct crypto_platform_data *pdata;
  1784. struct device *dev = &pdev->dev;
  1785. struct resource *aes_res;
  1786. int err;
  1787. pdata = pdev->dev.platform_data;
  1788. if (!pdata) {
  1789. pdata = atmel_aes_of_init(pdev);
  1790. if (IS_ERR(pdata)) {
  1791. err = PTR_ERR(pdata);
  1792. goto aes_dd_err;
  1793. }
  1794. }
  1795. if (!pdata->dma_slave) {
  1796. err = -ENXIO;
  1797. goto aes_dd_err;
  1798. }
  1799. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  1800. if (aes_dd == NULL) {
  1801. dev_err(dev, "unable to alloc data struct.\n");
  1802. err = -ENOMEM;
  1803. goto aes_dd_err;
  1804. }
  1805. aes_dd->dev = dev;
  1806. platform_set_drvdata(pdev, aes_dd);
  1807. INIT_LIST_HEAD(&aes_dd->list);
  1808. spin_lock_init(&aes_dd->lock);
  1809. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  1810. (unsigned long)aes_dd);
  1811. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  1812. (unsigned long)aes_dd);
  1813. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  1814. aes_dd->irq = -1;
  1815. /* Get the base address */
  1816. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1817. if (!aes_res) {
  1818. dev_err(dev, "no MEM resource info\n");
  1819. err = -ENODEV;
  1820. goto res_err;
  1821. }
  1822. aes_dd->phys_base = aes_res->start;
  1823. /* Get the IRQ */
  1824. aes_dd->irq = platform_get_irq(pdev, 0);
  1825. if (aes_dd->irq < 0) {
  1826. dev_err(dev, "no IRQ resource info\n");
  1827. err = aes_dd->irq;
  1828. goto res_err;
  1829. }
  1830. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  1831. IRQF_SHARED, "atmel-aes", aes_dd);
  1832. if (err) {
  1833. dev_err(dev, "unable to request aes irq.\n");
  1834. goto res_err;
  1835. }
  1836. /* Initializing the clock */
  1837. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  1838. if (IS_ERR(aes_dd->iclk)) {
  1839. dev_err(dev, "clock initialization failed.\n");
  1840. err = PTR_ERR(aes_dd->iclk);
  1841. goto res_err;
  1842. }
  1843. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  1844. if (IS_ERR(aes_dd->io_base)) {
  1845. dev_err(dev, "can't ioremap\n");
  1846. err = PTR_ERR(aes_dd->io_base);
  1847. goto res_err;
  1848. }
  1849. err = clk_prepare(aes_dd->iclk);
  1850. if (err)
  1851. goto res_err;
  1852. err = atmel_aes_hw_version_init(aes_dd);
  1853. if (err)
  1854. goto iclk_unprepare;
  1855. atmel_aes_get_cap(aes_dd);
  1856. err = atmel_aes_buff_init(aes_dd);
  1857. if (err)
  1858. goto err_aes_buff;
  1859. err = atmel_aes_dma_init(aes_dd, pdata);
  1860. if (err)
  1861. goto err_aes_dma;
  1862. spin_lock(&atmel_aes.lock);
  1863. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  1864. spin_unlock(&atmel_aes.lock);
  1865. err = atmel_aes_register_algs(aes_dd);
  1866. if (err)
  1867. goto err_algs;
  1868. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  1869. dma_chan_name(aes_dd->src.chan),
  1870. dma_chan_name(aes_dd->dst.chan));
  1871. return 0;
  1872. err_algs:
  1873. spin_lock(&atmel_aes.lock);
  1874. list_del(&aes_dd->list);
  1875. spin_unlock(&atmel_aes.lock);
  1876. atmel_aes_dma_cleanup(aes_dd);
  1877. err_aes_dma:
  1878. atmel_aes_buff_cleanup(aes_dd);
  1879. err_aes_buff:
  1880. iclk_unprepare:
  1881. clk_unprepare(aes_dd->iclk);
  1882. res_err:
  1883. tasklet_kill(&aes_dd->done_task);
  1884. tasklet_kill(&aes_dd->queue_task);
  1885. aes_dd_err:
  1886. dev_err(dev, "initialization failed.\n");
  1887. return err;
  1888. }
  1889. static int atmel_aes_remove(struct platform_device *pdev)
  1890. {
  1891. struct atmel_aes_dev *aes_dd;
  1892. aes_dd = platform_get_drvdata(pdev);
  1893. if (!aes_dd)
  1894. return -ENODEV;
  1895. spin_lock(&atmel_aes.lock);
  1896. list_del(&aes_dd->list);
  1897. spin_unlock(&atmel_aes.lock);
  1898. atmel_aes_unregister_algs(aes_dd);
  1899. tasklet_kill(&aes_dd->done_task);
  1900. tasklet_kill(&aes_dd->queue_task);
  1901. atmel_aes_dma_cleanup(aes_dd);
  1902. atmel_aes_buff_cleanup(aes_dd);
  1903. clk_unprepare(aes_dd->iclk);
  1904. return 0;
  1905. }
  1906. static struct platform_driver atmel_aes_driver = {
  1907. .probe = atmel_aes_probe,
  1908. .remove = atmel_aes_remove,
  1909. .driver = {
  1910. .name = "atmel_aes",
  1911. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  1912. },
  1913. };
  1914. module_platform_driver(atmel_aes_driver);
  1915. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  1916. MODULE_LICENSE("GPL v2");
  1917. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");