skd_main.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264
  1. /* Copyright 2012 STEC, Inc.
  2. *
  3. * This file is licensed under the terms of the 3-clause
  4. * BSD License (http://opensource.org/licenses/BSD-3-Clause)
  5. * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
  6. * at your option. Both licenses are also available in the LICENSE file
  7. * distributed with this project. This file may not be copied, modified,
  8. * or distributed except in accordance with those terms.
  9. * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
  10. * Initial Driver Design!
  11. * Thomas Swann <tswann@stec-inc.com>
  12. * Interrupt handling.
  13. * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
  14. * biomode implementation.
  15. * Akhil Bhansali <abhansali@stec-inc.com>
  16. * Added support for DISCARD / FLUSH and FUA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/pci.h>
  22. #include <linux/slab.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/sched.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/compiler.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/bitops.h>
  30. #include <linux/delay.h>
  31. #include <linux/time.h>
  32. #include <linux/hdreg.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/completion.h>
  35. #include <linux/scatterlist.h>
  36. #include <linux/version.h>
  37. #include <linux/err.h>
  38. #include <linux/aer.h>
  39. #include <linux/ctype.h>
  40. #include <linux/wait.h>
  41. #include <linux/uio.h>
  42. #include <scsi/scsi.h>
  43. #include <scsi/sg.h>
  44. #include <linux/io.h>
  45. #include <linux/uaccess.h>
  46. #include <asm/unaligned.h>
  47. #include "skd_s1120.h"
  48. static int skd_dbg_level;
  49. static int skd_isr_comp_limit = 4;
  50. enum {
  51. STEC_LINK_2_5GTS = 0,
  52. STEC_LINK_5GTS = 1,
  53. STEC_LINK_8GTS = 2,
  54. STEC_LINK_UNKNOWN = 0xFF
  55. };
  56. enum {
  57. SKD_FLUSH_INITIALIZER,
  58. SKD_FLUSH_ZERO_SIZE_FIRST,
  59. SKD_FLUSH_DATA_SECOND,
  60. };
  61. #define SKD_ASSERT(expr) \
  62. do { \
  63. if (unlikely(!(expr))) { \
  64. pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
  65. # expr, __FILE__, __func__, __LINE__); \
  66. } \
  67. } while (0)
  68. #define DRV_NAME "skd"
  69. #define DRV_VERSION "2.2.1"
  70. #define DRV_BUILD_ID "0260"
  71. #define PFX DRV_NAME ": "
  72. #define DRV_BIN_VERSION 0x100
  73. #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
  74. MODULE_AUTHOR("bug-reports: support@stec-inc.com");
  75. MODULE_LICENSE("Dual BSD/GPL");
  76. MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
  77. MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
  78. #define PCI_VENDOR_ID_STEC 0x1B39
  79. #define PCI_DEVICE_ID_S1120 0x0001
  80. #define SKD_FUA_NV (1 << 1)
  81. #define SKD_MINORS_PER_DEVICE 16
  82. #define SKD_MAX_QUEUE_DEPTH 200u
  83. #define SKD_PAUSE_TIMEOUT (5 * 1000)
  84. #define SKD_N_FITMSG_BYTES (512u)
  85. #define SKD_N_SPECIAL_CONTEXT 32u
  86. #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
  87. /* SG elements are 32 bytes, so we can make this 4096 and still be under the
  88. * 128KB limit. That allows 4096*4K = 16M xfer size
  89. */
  90. #define SKD_N_SG_PER_REQ_DEFAULT 256u
  91. #define SKD_N_SG_PER_SPECIAL 256u
  92. #define SKD_N_COMPLETION_ENTRY 256u
  93. #define SKD_N_READ_CAP_BYTES (8u)
  94. #define SKD_N_INTERNAL_BYTES (512u)
  95. /* 5 bits of uniqifier, 0xF800 */
  96. #define SKD_ID_INCR (0x400)
  97. #define SKD_ID_TABLE_MASK (3u << 8u)
  98. #define SKD_ID_RW_REQUEST (0u << 8u)
  99. #define SKD_ID_INTERNAL (1u << 8u)
  100. #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
  101. #define SKD_ID_FIT_MSG (3u << 8u)
  102. #define SKD_ID_SLOT_MASK 0x00FFu
  103. #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
  104. #define SKD_N_TIMEOUT_SLOT 4u
  105. #define SKD_TIMEOUT_SLOT_MASK 3u
  106. #define SKD_N_MAX_SECTORS 2048u
  107. #define SKD_MAX_RETRIES 2u
  108. #define SKD_TIMER_SECONDS(seconds) (seconds)
  109. #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
  110. #define INQ_STD_NBYTES 36
  111. enum skd_drvr_state {
  112. SKD_DRVR_STATE_LOAD,
  113. SKD_DRVR_STATE_IDLE,
  114. SKD_DRVR_STATE_BUSY,
  115. SKD_DRVR_STATE_STARTING,
  116. SKD_DRVR_STATE_ONLINE,
  117. SKD_DRVR_STATE_PAUSING,
  118. SKD_DRVR_STATE_PAUSED,
  119. SKD_DRVR_STATE_DRAINING_TIMEOUT,
  120. SKD_DRVR_STATE_RESTARTING,
  121. SKD_DRVR_STATE_RESUMING,
  122. SKD_DRVR_STATE_STOPPING,
  123. SKD_DRVR_STATE_FAULT,
  124. SKD_DRVR_STATE_DISAPPEARED,
  125. SKD_DRVR_STATE_PROTOCOL_MISMATCH,
  126. SKD_DRVR_STATE_BUSY_ERASE,
  127. SKD_DRVR_STATE_BUSY_SANITIZE,
  128. SKD_DRVR_STATE_BUSY_IMMINENT,
  129. SKD_DRVR_STATE_WAIT_BOOT,
  130. SKD_DRVR_STATE_SYNCING,
  131. };
  132. #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
  133. #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
  134. #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
  135. #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
  136. #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
  137. #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
  138. #define SKD_START_WAIT_SECONDS 90u
  139. enum skd_req_state {
  140. SKD_REQ_STATE_IDLE,
  141. SKD_REQ_STATE_SETUP,
  142. SKD_REQ_STATE_BUSY,
  143. SKD_REQ_STATE_COMPLETED,
  144. SKD_REQ_STATE_TIMEOUT,
  145. SKD_REQ_STATE_ABORTED,
  146. };
  147. enum skd_fit_msg_state {
  148. SKD_MSG_STATE_IDLE,
  149. SKD_MSG_STATE_BUSY,
  150. };
  151. enum skd_check_status_action {
  152. SKD_CHECK_STATUS_REPORT_GOOD,
  153. SKD_CHECK_STATUS_REPORT_SMART_ALERT,
  154. SKD_CHECK_STATUS_REQUEUE_REQUEST,
  155. SKD_CHECK_STATUS_REPORT_ERROR,
  156. SKD_CHECK_STATUS_BUSY_IMMINENT,
  157. };
  158. struct skd_fitmsg_context {
  159. enum skd_fit_msg_state state;
  160. struct skd_fitmsg_context *next;
  161. u32 id;
  162. u16 outstanding;
  163. u32 length;
  164. u32 offset;
  165. u8 *msg_buf;
  166. dma_addr_t mb_dma_address;
  167. };
  168. struct skd_request_context {
  169. enum skd_req_state state;
  170. struct skd_request_context *next;
  171. u16 id;
  172. u32 fitmsg_id;
  173. struct request *req;
  174. u8 flush_cmd;
  175. u32 timeout_stamp;
  176. u8 sg_data_dir;
  177. struct scatterlist *sg;
  178. u32 n_sg;
  179. u32 sg_byte_count;
  180. struct fit_sg_descriptor *sksg_list;
  181. dma_addr_t sksg_dma_address;
  182. struct fit_completion_entry_v1 completion;
  183. struct fit_comp_error_info err_info;
  184. };
  185. #define SKD_DATA_DIR_HOST_TO_CARD 1
  186. #define SKD_DATA_DIR_CARD_TO_HOST 2
  187. struct skd_special_context {
  188. struct skd_request_context req;
  189. u8 orphaned;
  190. void *data_buf;
  191. dma_addr_t db_dma_address;
  192. u8 *msg_buf;
  193. dma_addr_t mb_dma_address;
  194. };
  195. struct skd_sg_io {
  196. fmode_t mode;
  197. void __user *argp;
  198. struct sg_io_hdr sg;
  199. u8 cdb[16];
  200. u32 dxfer_len;
  201. u32 iovcnt;
  202. struct sg_iovec *iov;
  203. struct sg_iovec no_iov_iov;
  204. struct skd_special_context *skspcl;
  205. };
  206. typedef enum skd_irq_type {
  207. SKD_IRQ_LEGACY,
  208. SKD_IRQ_MSI,
  209. SKD_IRQ_MSIX
  210. } skd_irq_type_t;
  211. #define SKD_MAX_BARS 2
  212. struct skd_device {
  213. volatile void __iomem *mem_map[SKD_MAX_BARS];
  214. resource_size_t mem_phys[SKD_MAX_BARS];
  215. u32 mem_size[SKD_MAX_BARS];
  216. struct skd_msix_entry *msix_entries;
  217. struct pci_dev *pdev;
  218. int pcie_error_reporting_is_enabled;
  219. spinlock_t lock;
  220. struct gendisk *disk;
  221. struct request_queue *queue;
  222. struct device *class_dev;
  223. int gendisk_on;
  224. int sync_done;
  225. atomic_t device_count;
  226. u32 devno;
  227. u32 major;
  228. char name[32];
  229. char isr_name[30];
  230. enum skd_drvr_state state;
  231. u32 drive_state;
  232. u32 in_flight;
  233. u32 cur_max_queue_depth;
  234. u32 queue_low_water_mark;
  235. u32 dev_max_queue_depth;
  236. u32 num_fitmsg_context;
  237. u32 num_req_context;
  238. u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
  239. u32 timeout_stamp;
  240. struct skd_fitmsg_context *skmsg_free_list;
  241. struct skd_fitmsg_context *skmsg_table;
  242. struct skd_request_context *skreq_free_list;
  243. struct skd_request_context *skreq_table;
  244. struct skd_special_context *skspcl_free_list;
  245. struct skd_special_context *skspcl_table;
  246. struct skd_special_context internal_skspcl;
  247. u32 read_cap_blocksize;
  248. u32 read_cap_last_lba;
  249. int read_cap_is_valid;
  250. int inquiry_is_valid;
  251. u8 inq_serial_num[13]; /*12 chars plus null term */
  252. u8 id_str[80]; /* holds a composite name (pci + sernum) */
  253. u8 skcomp_cycle;
  254. u32 skcomp_ix;
  255. struct fit_completion_entry_v1 *skcomp_table;
  256. struct fit_comp_error_info *skerr_table;
  257. dma_addr_t cq_dma_address;
  258. wait_queue_head_t waitq;
  259. struct timer_list timer;
  260. u32 timer_countdown;
  261. u32 timer_substate;
  262. int n_special;
  263. int sgs_per_request;
  264. u32 last_mtd;
  265. u32 proto_ver;
  266. int dbg_level;
  267. u32 connect_time_stamp;
  268. int connect_retries;
  269. #define SKD_MAX_CONNECT_RETRIES 16
  270. u32 drive_jiffies;
  271. u32 timo_slot;
  272. struct work_struct completion_worker;
  273. };
  274. #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
  275. #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
  276. #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
  277. static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
  278. {
  279. u32 val;
  280. if (likely(skdev->dbg_level < 2))
  281. return readl(skdev->mem_map[1] + offset);
  282. else {
  283. barrier();
  284. val = readl(skdev->mem_map[1] + offset);
  285. barrier();
  286. pr_debug("%s:%s:%d offset %x = %x\n",
  287. skdev->name, __func__, __LINE__, offset, val);
  288. return val;
  289. }
  290. }
  291. static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
  292. u32 offset)
  293. {
  294. if (likely(skdev->dbg_level < 2)) {
  295. writel(val, skdev->mem_map[1] + offset);
  296. barrier();
  297. } else {
  298. barrier();
  299. writel(val, skdev->mem_map[1] + offset);
  300. barrier();
  301. pr_debug("%s:%s:%d offset %x = %x\n",
  302. skdev->name, __func__, __LINE__, offset, val);
  303. }
  304. }
  305. static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
  306. u32 offset)
  307. {
  308. if (likely(skdev->dbg_level < 2)) {
  309. writeq(val, skdev->mem_map[1] + offset);
  310. barrier();
  311. } else {
  312. barrier();
  313. writeq(val, skdev->mem_map[1] + offset);
  314. barrier();
  315. pr_debug("%s:%s:%d offset %x = %016llx\n",
  316. skdev->name, __func__, __LINE__, offset, val);
  317. }
  318. }
  319. #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
  320. static int skd_isr_type = SKD_IRQ_DEFAULT;
  321. module_param(skd_isr_type, int, 0444);
  322. MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
  323. " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
  324. #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
  325. static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  326. module_param(skd_max_req_per_msg, int, 0444);
  327. MODULE_PARM_DESC(skd_max_req_per_msg,
  328. "Maximum SCSI requests packed in a single message."
  329. " (1-14, default==1)");
  330. #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
  331. #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
  332. static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  333. module_param(skd_max_queue_depth, int, 0444);
  334. MODULE_PARM_DESC(skd_max_queue_depth,
  335. "Maximum SCSI requests issued to s1120."
  336. " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
  337. static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  338. module_param(skd_sgs_per_request, int, 0444);
  339. MODULE_PARM_DESC(skd_sgs_per_request,
  340. "Maximum SG elements per block request."
  341. " (1-4096, default==256)");
  342. static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  343. module_param(skd_max_pass_thru, int, 0444);
  344. MODULE_PARM_DESC(skd_max_pass_thru,
  345. "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
  346. module_param(skd_dbg_level, int, 0444);
  347. MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
  348. module_param(skd_isr_comp_limit, int, 0444);
  349. MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
  350. /* Major device number dynamically assigned. */
  351. static u32 skd_major;
  352. static void skd_destruct(struct skd_device *skdev);
  353. static const struct block_device_operations skd_blockdev_ops;
  354. static void skd_send_fitmsg(struct skd_device *skdev,
  355. struct skd_fitmsg_context *skmsg);
  356. static void skd_send_special_fitmsg(struct skd_device *skdev,
  357. struct skd_special_context *skspcl);
  358. static void skd_request_fn(struct request_queue *rq);
  359. static void skd_end_request(struct skd_device *skdev,
  360. struct skd_request_context *skreq, int error);
  361. static int skd_preop_sg_list(struct skd_device *skdev,
  362. struct skd_request_context *skreq);
  363. static void skd_postop_sg_list(struct skd_device *skdev,
  364. struct skd_request_context *skreq);
  365. static void skd_restart_device(struct skd_device *skdev);
  366. static int skd_quiesce_dev(struct skd_device *skdev);
  367. static int skd_unquiesce_dev(struct skd_device *skdev);
  368. static void skd_release_special(struct skd_device *skdev,
  369. struct skd_special_context *skspcl);
  370. static void skd_disable_interrupts(struct skd_device *skdev);
  371. static void skd_isr_fwstate(struct skd_device *skdev);
  372. static void skd_recover_requests(struct skd_device *skdev, int requeue);
  373. static void skd_soft_reset(struct skd_device *skdev);
  374. static const char *skd_name(struct skd_device *skdev);
  375. const char *skd_drive_state_to_str(int state);
  376. const char *skd_skdev_state_to_str(enum skd_drvr_state state);
  377. static void skd_log_skdev(struct skd_device *skdev, const char *event);
  378. static void skd_log_skmsg(struct skd_device *skdev,
  379. struct skd_fitmsg_context *skmsg, const char *event);
  380. static void skd_log_skreq(struct skd_device *skdev,
  381. struct skd_request_context *skreq, const char *event);
  382. /*
  383. *****************************************************************************
  384. * READ/WRITE REQUESTS
  385. *****************************************************************************
  386. */
  387. static void skd_fail_all_pending(struct skd_device *skdev)
  388. {
  389. struct request_queue *q = skdev->queue;
  390. struct request *req;
  391. for (;; ) {
  392. req = blk_peek_request(q);
  393. if (req == NULL)
  394. break;
  395. blk_start_request(req);
  396. __blk_end_request_all(req, -EIO);
  397. }
  398. }
  399. static void
  400. skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
  401. int data_dir, unsigned lba,
  402. unsigned count)
  403. {
  404. if (data_dir == READ)
  405. scsi_req->cdb[0] = 0x28;
  406. else
  407. scsi_req->cdb[0] = 0x2a;
  408. scsi_req->cdb[1] = 0;
  409. scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
  410. scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
  411. scsi_req->cdb[4] = (lba & 0xff00) >> 8;
  412. scsi_req->cdb[5] = (lba & 0xff);
  413. scsi_req->cdb[6] = 0;
  414. scsi_req->cdb[7] = (count & 0xff00) >> 8;
  415. scsi_req->cdb[8] = count & 0xff;
  416. scsi_req->cdb[9] = 0;
  417. }
  418. static void
  419. skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
  420. struct skd_request_context *skreq)
  421. {
  422. skreq->flush_cmd = 1;
  423. scsi_req->cdb[0] = 0x35;
  424. scsi_req->cdb[1] = 0;
  425. scsi_req->cdb[2] = 0;
  426. scsi_req->cdb[3] = 0;
  427. scsi_req->cdb[4] = 0;
  428. scsi_req->cdb[5] = 0;
  429. scsi_req->cdb[6] = 0;
  430. scsi_req->cdb[7] = 0;
  431. scsi_req->cdb[8] = 0;
  432. scsi_req->cdb[9] = 0;
  433. }
  434. static void skd_request_fn_not_online(struct request_queue *q);
  435. static void skd_request_fn(struct request_queue *q)
  436. {
  437. struct skd_device *skdev = q->queuedata;
  438. struct skd_fitmsg_context *skmsg = NULL;
  439. struct fit_msg_hdr *fmh = NULL;
  440. struct skd_request_context *skreq;
  441. struct request *req = NULL;
  442. struct skd_scsi_request *scsi_req;
  443. unsigned long io_flags;
  444. int error;
  445. u32 lba;
  446. u32 count;
  447. int data_dir;
  448. u32 be_lba;
  449. u32 be_count;
  450. u64 be_dmaa;
  451. u64 cmdctxt;
  452. u32 timo_slot;
  453. void *cmd_ptr;
  454. int flush, fua;
  455. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  456. skd_request_fn_not_online(q);
  457. return;
  458. }
  459. if (blk_queue_stopped(skdev->queue)) {
  460. if (skdev->skmsg_free_list == NULL ||
  461. skdev->skreq_free_list == NULL ||
  462. skdev->in_flight >= skdev->queue_low_water_mark)
  463. /* There is still some kind of shortage */
  464. return;
  465. queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
  466. }
  467. /*
  468. * Stop conditions:
  469. * - There are no more native requests
  470. * - There are already the maximum number of requests in progress
  471. * - There are no more skd_request_context entries
  472. * - There are no more FIT msg buffers
  473. */
  474. for (;; ) {
  475. flush = fua = 0;
  476. req = blk_peek_request(q);
  477. /* Are there any native requests to start? */
  478. if (req == NULL)
  479. break;
  480. lba = (u32)blk_rq_pos(req);
  481. count = blk_rq_sectors(req);
  482. data_dir = rq_data_dir(req);
  483. io_flags = req->cmd_flags;
  484. if (req_op(req) == REQ_OP_FLUSH)
  485. flush++;
  486. if (io_flags & REQ_FUA)
  487. fua++;
  488. pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
  489. "count=%u(0x%x) dir=%d\n",
  490. skdev->name, __func__, __LINE__,
  491. req, lba, lba, count, count, data_dir);
  492. /* At this point we know there is a request */
  493. /* Are too many requets already in progress? */
  494. if (skdev->in_flight >= skdev->cur_max_queue_depth) {
  495. pr_debug("%s:%s:%d qdepth %d, limit %d\n",
  496. skdev->name, __func__, __LINE__,
  497. skdev->in_flight, skdev->cur_max_queue_depth);
  498. break;
  499. }
  500. /* Is a skd_request_context available? */
  501. skreq = skdev->skreq_free_list;
  502. if (skreq == NULL) {
  503. pr_debug("%s:%s:%d Out of req=%p\n",
  504. skdev->name, __func__, __LINE__, q);
  505. break;
  506. }
  507. SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
  508. SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
  509. /* Now we check to see if we can get a fit msg */
  510. if (skmsg == NULL) {
  511. if (skdev->skmsg_free_list == NULL) {
  512. pr_debug("%s:%s:%d Out of msg\n",
  513. skdev->name, __func__, __LINE__);
  514. break;
  515. }
  516. }
  517. skreq->flush_cmd = 0;
  518. skreq->n_sg = 0;
  519. skreq->sg_byte_count = 0;
  520. /*
  521. * OK to now dequeue request from q.
  522. *
  523. * At this point we are comitted to either start or reject
  524. * the native request. Note that skd_request_context is
  525. * available but is still at the head of the free list.
  526. */
  527. blk_start_request(req);
  528. skreq->req = req;
  529. skreq->fitmsg_id = 0;
  530. /* Either a FIT msg is in progress or we have to start one. */
  531. if (skmsg == NULL) {
  532. /* Are there any FIT msg buffers available? */
  533. skmsg = skdev->skmsg_free_list;
  534. if (skmsg == NULL) {
  535. pr_debug("%s:%s:%d Out of msg skdev=%p\n",
  536. skdev->name, __func__, __LINE__,
  537. skdev);
  538. break;
  539. }
  540. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
  541. SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
  542. skdev->skmsg_free_list = skmsg->next;
  543. skmsg->state = SKD_MSG_STATE_BUSY;
  544. skmsg->id += SKD_ID_INCR;
  545. /* Initialize the FIT msg header */
  546. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  547. memset(fmh, 0, sizeof(*fmh));
  548. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  549. skmsg->length = sizeof(*fmh);
  550. }
  551. skreq->fitmsg_id = skmsg->id;
  552. /*
  553. * Note that a FIT msg may have just been started
  554. * but contains no SoFIT requests yet.
  555. */
  556. /*
  557. * Transcode the request, checking as we go. The outcome of
  558. * the transcoding is represented by the error variable.
  559. */
  560. cmd_ptr = &skmsg->msg_buf[skmsg->length];
  561. memset(cmd_ptr, 0, 32);
  562. be_lba = cpu_to_be32(lba);
  563. be_count = cpu_to_be32(count);
  564. be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
  565. cmdctxt = skreq->id + SKD_ID_INCR;
  566. scsi_req = cmd_ptr;
  567. scsi_req->hdr.tag = cmdctxt;
  568. scsi_req->hdr.sg_list_dma_address = be_dmaa;
  569. if (data_dir == READ)
  570. skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
  571. else
  572. skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
  573. if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
  574. skd_prep_zerosize_flush_cdb(scsi_req, skreq);
  575. SKD_ASSERT(skreq->flush_cmd == 1);
  576. } else {
  577. skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
  578. }
  579. if (fua)
  580. scsi_req->cdb[1] |= SKD_FUA_NV;
  581. if (!req->bio)
  582. goto skip_sg;
  583. error = skd_preop_sg_list(skdev, skreq);
  584. if (error != 0) {
  585. /*
  586. * Complete the native request with error.
  587. * Note that the request context is still at the
  588. * head of the free list, and that the SoFIT request
  589. * was encoded into the FIT msg buffer but the FIT
  590. * msg length has not been updated. In short, the
  591. * only resource that has been allocated but might
  592. * not be used is that the FIT msg could be empty.
  593. */
  594. pr_debug("%s:%s:%d error Out\n",
  595. skdev->name, __func__, __LINE__);
  596. skd_end_request(skdev, skreq, error);
  597. continue;
  598. }
  599. skip_sg:
  600. scsi_req->hdr.sg_list_len_bytes =
  601. cpu_to_be32(skreq->sg_byte_count);
  602. /* Complete resource allocations. */
  603. skdev->skreq_free_list = skreq->next;
  604. skreq->state = SKD_REQ_STATE_BUSY;
  605. skreq->id += SKD_ID_INCR;
  606. skmsg->length += sizeof(struct skd_scsi_request);
  607. fmh->num_protocol_cmds_coalesced++;
  608. /*
  609. * Update the active request counts.
  610. * Capture the timeout timestamp.
  611. */
  612. skreq->timeout_stamp = skdev->timeout_stamp;
  613. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  614. skdev->timeout_slot[timo_slot]++;
  615. skdev->in_flight++;
  616. pr_debug("%s:%s:%d req=0x%x busy=%d\n",
  617. skdev->name, __func__, __LINE__,
  618. skreq->id, skdev->in_flight);
  619. /*
  620. * If the FIT msg buffer is full send it.
  621. */
  622. if (skmsg->length >= SKD_N_FITMSG_BYTES ||
  623. fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
  624. skd_send_fitmsg(skdev, skmsg);
  625. skmsg = NULL;
  626. fmh = NULL;
  627. }
  628. }
  629. /*
  630. * Is a FIT msg in progress? If it is empty put the buffer back
  631. * on the free list. If it is non-empty send what we got.
  632. * This minimizes latency when there are fewer requests than
  633. * what fits in a FIT msg.
  634. */
  635. if (skmsg != NULL) {
  636. /* Bigger than just a FIT msg header? */
  637. if (skmsg->length > sizeof(struct fit_msg_hdr)) {
  638. pr_debug("%s:%s:%d sending msg=%p, len %d\n",
  639. skdev->name, __func__, __LINE__,
  640. skmsg, skmsg->length);
  641. skd_send_fitmsg(skdev, skmsg);
  642. } else {
  643. /*
  644. * The FIT msg is empty. It means we got started
  645. * on the msg, but the requests were rejected.
  646. */
  647. skmsg->state = SKD_MSG_STATE_IDLE;
  648. skmsg->id += SKD_ID_INCR;
  649. skmsg->next = skdev->skmsg_free_list;
  650. skdev->skmsg_free_list = skmsg;
  651. }
  652. skmsg = NULL;
  653. fmh = NULL;
  654. }
  655. /*
  656. * If req is non-NULL it means there is something to do but
  657. * we are out of a resource.
  658. */
  659. if (req)
  660. blk_stop_queue(skdev->queue);
  661. }
  662. static void skd_end_request(struct skd_device *skdev,
  663. struct skd_request_context *skreq, int error)
  664. {
  665. if (unlikely(error)) {
  666. struct request *req = skreq->req;
  667. char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
  668. u32 lba = (u32)blk_rq_pos(req);
  669. u32 count = blk_rq_sectors(req);
  670. pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
  671. skd_name(skdev), cmd, lba, count, skreq->id);
  672. } else
  673. pr_debug("%s:%s:%d id=0x%x error=%d\n",
  674. skdev->name, __func__, __LINE__, skreq->id, error);
  675. __blk_end_request_all(skreq->req, error);
  676. }
  677. static int skd_preop_sg_list(struct skd_device *skdev,
  678. struct skd_request_context *skreq)
  679. {
  680. struct request *req = skreq->req;
  681. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  682. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  683. struct scatterlist *sg = &skreq->sg[0];
  684. int n_sg;
  685. int i;
  686. skreq->sg_byte_count = 0;
  687. /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
  688. skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
  689. n_sg = blk_rq_map_sg(skdev->queue, req, sg);
  690. if (n_sg <= 0)
  691. return -EINVAL;
  692. /*
  693. * Map scatterlist to PCI bus addresses.
  694. * Note PCI might change the number of entries.
  695. */
  696. n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
  697. if (n_sg <= 0)
  698. return -EINVAL;
  699. SKD_ASSERT(n_sg <= skdev->sgs_per_request);
  700. skreq->n_sg = n_sg;
  701. for (i = 0; i < n_sg; i++) {
  702. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  703. u32 cnt = sg_dma_len(&sg[i]);
  704. uint64_t dma_addr = sg_dma_address(&sg[i]);
  705. sgd->control = FIT_SGD_CONTROL_NOT_LAST;
  706. sgd->byte_count = cnt;
  707. skreq->sg_byte_count += cnt;
  708. sgd->host_side_addr = dma_addr;
  709. sgd->dev_side_addr = 0;
  710. }
  711. skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
  712. skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
  713. if (unlikely(skdev->dbg_level > 1)) {
  714. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  715. skdev->name, __func__, __LINE__,
  716. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  717. for (i = 0; i < n_sg; i++) {
  718. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  719. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  720. "addr=0x%llx next=0x%llx\n",
  721. skdev->name, __func__, __LINE__,
  722. i, sgd->byte_count, sgd->control,
  723. sgd->host_side_addr, sgd->next_desc_ptr);
  724. }
  725. }
  726. return 0;
  727. }
  728. static void skd_postop_sg_list(struct skd_device *skdev,
  729. struct skd_request_context *skreq)
  730. {
  731. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  732. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  733. /*
  734. * restore the next ptr for next IO request so we
  735. * don't have to set it every time.
  736. */
  737. skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
  738. skreq->sksg_dma_address +
  739. ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
  740. pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
  741. }
  742. static void skd_request_fn_not_online(struct request_queue *q)
  743. {
  744. struct skd_device *skdev = q->queuedata;
  745. int error;
  746. SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
  747. skd_log_skdev(skdev, "req_not_online");
  748. switch (skdev->state) {
  749. case SKD_DRVR_STATE_PAUSING:
  750. case SKD_DRVR_STATE_PAUSED:
  751. case SKD_DRVR_STATE_STARTING:
  752. case SKD_DRVR_STATE_RESTARTING:
  753. case SKD_DRVR_STATE_WAIT_BOOT:
  754. /* In case of starting, we haven't started the queue,
  755. * so we can't get here... but requests are
  756. * possibly hanging out waiting for us because we
  757. * reported the dev/skd0 already. They'll wait
  758. * forever if connect doesn't complete.
  759. * What to do??? delay dev/skd0 ??
  760. */
  761. case SKD_DRVR_STATE_BUSY:
  762. case SKD_DRVR_STATE_BUSY_IMMINENT:
  763. case SKD_DRVR_STATE_BUSY_ERASE:
  764. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  765. return;
  766. case SKD_DRVR_STATE_BUSY_SANITIZE:
  767. case SKD_DRVR_STATE_STOPPING:
  768. case SKD_DRVR_STATE_SYNCING:
  769. case SKD_DRVR_STATE_FAULT:
  770. case SKD_DRVR_STATE_DISAPPEARED:
  771. default:
  772. error = -EIO;
  773. break;
  774. }
  775. /* If we get here, terminate all pending block requeusts
  776. * with EIO and any scsi pass thru with appropriate sense
  777. */
  778. skd_fail_all_pending(skdev);
  779. }
  780. /*
  781. *****************************************************************************
  782. * TIMER
  783. *****************************************************************************
  784. */
  785. static void skd_timer_tick_not_online(struct skd_device *skdev);
  786. static void skd_timer_tick(ulong arg)
  787. {
  788. struct skd_device *skdev = (struct skd_device *)arg;
  789. u32 timo_slot;
  790. u32 overdue_timestamp;
  791. unsigned long reqflags;
  792. u32 state;
  793. if (skdev->state == SKD_DRVR_STATE_FAULT)
  794. /* The driver has declared fault, and we want it to
  795. * stay that way until driver is reloaded.
  796. */
  797. return;
  798. spin_lock_irqsave(&skdev->lock, reqflags);
  799. state = SKD_READL(skdev, FIT_STATUS);
  800. state &= FIT_SR_DRIVE_STATE_MASK;
  801. if (state != skdev->drive_state)
  802. skd_isr_fwstate(skdev);
  803. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  804. skd_timer_tick_not_online(skdev);
  805. goto timer_func_out;
  806. }
  807. skdev->timeout_stamp++;
  808. timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  809. /*
  810. * All requests that happened during the previous use of
  811. * this slot should be done by now. The previous use was
  812. * over 7 seconds ago.
  813. */
  814. if (skdev->timeout_slot[timo_slot] == 0)
  815. goto timer_func_out;
  816. /* Something is overdue */
  817. overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
  818. pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
  819. skdev->name, __func__, __LINE__,
  820. skdev->timeout_slot[timo_slot], skdev->in_flight);
  821. pr_err("(%s): Overdue IOs (%d), busy %d\n",
  822. skd_name(skdev), skdev->timeout_slot[timo_slot],
  823. skdev->in_flight);
  824. skdev->timer_countdown = SKD_DRAINING_TIMO;
  825. skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
  826. skdev->timo_slot = timo_slot;
  827. blk_stop_queue(skdev->queue);
  828. timer_func_out:
  829. mod_timer(&skdev->timer, (jiffies + HZ));
  830. spin_unlock_irqrestore(&skdev->lock, reqflags);
  831. }
  832. static void skd_timer_tick_not_online(struct skd_device *skdev)
  833. {
  834. switch (skdev->state) {
  835. case SKD_DRVR_STATE_IDLE:
  836. case SKD_DRVR_STATE_LOAD:
  837. break;
  838. case SKD_DRVR_STATE_BUSY_SANITIZE:
  839. pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
  840. skdev->name, __func__, __LINE__,
  841. skdev->drive_state, skdev->state);
  842. /* If we've been in sanitize for 3 seconds, we figure we're not
  843. * going to get anymore completions, so recover requests now
  844. */
  845. if (skdev->timer_countdown > 0) {
  846. skdev->timer_countdown--;
  847. return;
  848. }
  849. skd_recover_requests(skdev, 0);
  850. break;
  851. case SKD_DRVR_STATE_BUSY:
  852. case SKD_DRVR_STATE_BUSY_IMMINENT:
  853. case SKD_DRVR_STATE_BUSY_ERASE:
  854. pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
  855. skdev->name, __func__, __LINE__,
  856. skdev->state, skdev->timer_countdown);
  857. if (skdev->timer_countdown > 0) {
  858. skdev->timer_countdown--;
  859. return;
  860. }
  861. pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
  862. skdev->name, __func__, __LINE__,
  863. skdev->state, skdev->timer_countdown);
  864. skd_restart_device(skdev);
  865. break;
  866. case SKD_DRVR_STATE_WAIT_BOOT:
  867. case SKD_DRVR_STATE_STARTING:
  868. if (skdev->timer_countdown > 0) {
  869. skdev->timer_countdown--;
  870. return;
  871. }
  872. /* For now, we fault the drive. Could attempt resets to
  873. * revcover at some point. */
  874. skdev->state = SKD_DRVR_STATE_FAULT;
  875. pr_err("(%s): DriveFault Connect Timeout (%x)\n",
  876. skd_name(skdev), skdev->drive_state);
  877. /*start the queue so we can respond with error to requests */
  878. /* wakeup anyone waiting for startup complete */
  879. blk_start_queue(skdev->queue);
  880. skdev->gendisk_on = -1;
  881. wake_up_interruptible(&skdev->waitq);
  882. break;
  883. case SKD_DRVR_STATE_ONLINE:
  884. /* shouldn't get here. */
  885. break;
  886. case SKD_DRVR_STATE_PAUSING:
  887. case SKD_DRVR_STATE_PAUSED:
  888. break;
  889. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  890. pr_debug("%s:%s:%d "
  891. "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
  892. skdev->name, __func__, __LINE__,
  893. skdev->timo_slot,
  894. skdev->timer_countdown,
  895. skdev->in_flight,
  896. skdev->timeout_slot[skdev->timo_slot]);
  897. /* if the slot has cleared we can let the I/O continue */
  898. if (skdev->timeout_slot[skdev->timo_slot] == 0) {
  899. pr_debug("%s:%s:%d Slot drained, starting queue.\n",
  900. skdev->name, __func__, __LINE__);
  901. skdev->state = SKD_DRVR_STATE_ONLINE;
  902. blk_start_queue(skdev->queue);
  903. return;
  904. }
  905. if (skdev->timer_countdown > 0) {
  906. skdev->timer_countdown--;
  907. return;
  908. }
  909. skd_restart_device(skdev);
  910. break;
  911. case SKD_DRVR_STATE_RESTARTING:
  912. if (skdev->timer_countdown > 0) {
  913. skdev->timer_countdown--;
  914. return;
  915. }
  916. /* For now, we fault the drive. Could attempt resets to
  917. * revcover at some point. */
  918. skdev->state = SKD_DRVR_STATE_FAULT;
  919. pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
  920. skd_name(skdev), skdev->drive_state);
  921. /*
  922. * Recovering does two things:
  923. * 1. completes IO with error
  924. * 2. reclaims dma resources
  925. * When is it safe to recover requests?
  926. * - if the drive state is faulted
  927. * - if the state is still soft reset after out timeout
  928. * - if the drive registers are dead (state = FF)
  929. * If it is "unsafe", we still need to recover, so we will
  930. * disable pci bus mastering and disable our interrupts.
  931. */
  932. if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
  933. (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
  934. (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
  935. /* It never came out of soft reset. Try to
  936. * recover the requests and then let them
  937. * fail. This is to mitigate hung processes. */
  938. skd_recover_requests(skdev, 0);
  939. else {
  940. pr_err("(%s): Disable BusMaster (%x)\n",
  941. skd_name(skdev), skdev->drive_state);
  942. pci_disable_device(skdev->pdev);
  943. skd_disable_interrupts(skdev);
  944. skd_recover_requests(skdev, 0);
  945. }
  946. /*start the queue so we can respond with error to requests */
  947. /* wakeup anyone waiting for startup complete */
  948. blk_start_queue(skdev->queue);
  949. skdev->gendisk_on = -1;
  950. wake_up_interruptible(&skdev->waitq);
  951. break;
  952. case SKD_DRVR_STATE_RESUMING:
  953. case SKD_DRVR_STATE_STOPPING:
  954. case SKD_DRVR_STATE_SYNCING:
  955. case SKD_DRVR_STATE_FAULT:
  956. case SKD_DRVR_STATE_DISAPPEARED:
  957. default:
  958. break;
  959. }
  960. }
  961. static int skd_start_timer(struct skd_device *skdev)
  962. {
  963. int rc;
  964. init_timer(&skdev->timer);
  965. setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
  966. rc = mod_timer(&skdev->timer, (jiffies + HZ));
  967. if (rc)
  968. pr_err("%s: failed to start timer %d\n",
  969. __func__, rc);
  970. return rc;
  971. }
  972. static void skd_kill_timer(struct skd_device *skdev)
  973. {
  974. del_timer_sync(&skdev->timer);
  975. }
  976. /*
  977. *****************************************************************************
  978. * IOCTL
  979. *****************************************************************************
  980. */
  981. static int skd_ioctl_sg_io(struct skd_device *skdev,
  982. fmode_t mode, void __user *argp);
  983. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  984. struct skd_sg_io *sksgio);
  985. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  986. struct skd_sg_io *sksgio);
  987. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  988. struct skd_sg_io *sksgio);
  989. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  990. struct skd_sg_io *sksgio, int dxfer_dir);
  991. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  992. struct skd_sg_io *sksgio);
  993. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
  994. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  995. struct skd_sg_io *sksgio);
  996. static int skd_sg_io_put_status(struct skd_device *skdev,
  997. struct skd_sg_io *sksgio);
  998. static void skd_complete_special(struct skd_device *skdev,
  999. volatile struct fit_completion_entry_v1
  1000. *skcomp,
  1001. volatile struct fit_comp_error_info *skerr,
  1002. struct skd_special_context *skspcl);
  1003. static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
  1004. uint cmd_in, ulong arg)
  1005. {
  1006. int rc = 0;
  1007. struct gendisk *disk = bdev->bd_disk;
  1008. struct skd_device *skdev = disk->private_data;
  1009. void __user *p = (void *)arg;
  1010. pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
  1011. skdev->name, __func__, __LINE__,
  1012. disk->disk_name, current->comm, mode, cmd_in, arg);
  1013. if (!capable(CAP_SYS_ADMIN))
  1014. return -EPERM;
  1015. switch (cmd_in) {
  1016. case SG_SET_TIMEOUT:
  1017. case SG_GET_TIMEOUT:
  1018. case SG_GET_VERSION_NUM:
  1019. rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
  1020. break;
  1021. case SG_IO:
  1022. rc = skd_ioctl_sg_io(skdev, mode, p);
  1023. break;
  1024. default:
  1025. rc = -ENOTTY;
  1026. break;
  1027. }
  1028. pr_debug("%s:%s:%d %s: completion rc %d\n",
  1029. skdev->name, __func__, __LINE__, disk->disk_name, rc);
  1030. return rc;
  1031. }
  1032. static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
  1033. void __user *argp)
  1034. {
  1035. int rc;
  1036. struct skd_sg_io sksgio;
  1037. memset(&sksgio, 0, sizeof(sksgio));
  1038. sksgio.mode = mode;
  1039. sksgio.argp = argp;
  1040. sksgio.iov = &sksgio.no_iov_iov;
  1041. switch (skdev->state) {
  1042. case SKD_DRVR_STATE_ONLINE:
  1043. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1044. break;
  1045. default:
  1046. pr_debug("%s:%s:%d drive not online\n",
  1047. skdev->name, __func__, __LINE__);
  1048. rc = -ENXIO;
  1049. goto out;
  1050. }
  1051. rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
  1052. if (rc)
  1053. goto out;
  1054. rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
  1055. if (rc)
  1056. goto out;
  1057. rc = skd_sg_io_prep_buffering(skdev, &sksgio);
  1058. if (rc)
  1059. goto out;
  1060. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
  1061. if (rc)
  1062. goto out;
  1063. rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
  1064. if (rc)
  1065. goto out;
  1066. rc = skd_sg_io_await(skdev, &sksgio);
  1067. if (rc)
  1068. goto out;
  1069. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
  1070. if (rc)
  1071. goto out;
  1072. rc = skd_sg_io_put_status(skdev, &sksgio);
  1073. if (rc)
  1074. goto out;
  1075. rc = 0;
  1076. out:
  1077. skd_sg_io_release_skspcl(skdev, &sksgio);
  1078. if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
  1079. kfree(sksgio.iov);
  1080. return rc;
  1081. }
  1082. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1083. struct skd_sg_io *sksgio)
  1084. {
  1085. struct sg_io_hdr *sgp = &sksgio->sg;
  1086. int i, acc;
  1087. if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1088. pr_debug("%s:%s:%d access sg failed %p\n",
  1089. skdev->name, __func__, __LINE__, sksgio->argp);
  1090. return -EFAULT;
  1091. }
  1092. if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1093. pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
  1094. skdev->name, __func__, __LINE__, sksgio->argp);
  1095. return -EFAULT;
  1096. }
  1097. if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
  1098. pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
  1099. skdev->name, __func__, __LINE__, sgp->interface_id);
  1100. return -EINVAL;
  1101. }
  1102. if (sgp->cmd_len > sizeof(sksgio->cdb)) {
  1103. pr_debug("%s:%s:%d cmd_len invalid %d\n",
  1104. skdev->name, __func__, __LINE__, sgp->cmd_len);
  1105. return -EINVAL;
  1106. }
  1107. if (sgp->iovec_count > 256) {
  1108. pr_debug("%s:%s:%d iovec_count invalid %d\n",
  1109. skdev->name, __func__, __LINE__, sgp->iovec_count);
  1110. return -EINVAL;
  1111. }
  1112. if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
  1113. pr_debug("%s:%s:%d dxfer_len invalid %d\n",
  1114. skdev->name, __func__, __LINE__, sgp->dxfer_len);
  1115. return -EINVAL;
  1116. }
  1117. switch (sgp->dxfer_direction) {
  1118. case SG_DXFER_NONE:
  1119. acc = -1;
  1120. break;
  1121. case SG_DXFER_TO_DEV:
  1122. acc = VERIFY_READ;
  1123. break;
  1124. case SG_DXFER_FROM_DEV:
  1125. case SG_DXFER_TO_FROM_DEV:
  1126. acc = VERIFY_WRITE;
  1127. break;
  1128. default:
  1129. pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
  1130. skdev->name, __func__, __LINE__, sgp->dxfer_direction);
  1131. return -EINVAL;
  1132. }
  1133. if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
  1134. pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
  1135. skdev->name, __func__, __LINE__, sgp->cmdp);
  1136. return -EFAULT;
  1137. }
  1138. if (sgp->mx_sb_len != 0) {
  1139. if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
  1140. pr_debug("%s:%s:%d access sbp failed %p\n",
  1141. skdev->name, __func__, __LINE__, sgp->sbp);
  1142. return -EFAULT;
  1143. }
  1144. }
  1145. if (sgp->iovec_count == 0) {
  1146. sksgio->iov[0].iov_base = sgp->dxferp;
  1147. sksgio->iov[0].iov_len = sgp->dxfer_len;
  1148. sksgio->iovcnt = 1;
  1149. sksgio->dxfer_len = sgp->dxfer_len;
  1150. } else {
  1151. struct sg_iovec *iov;
  1152. uint nbytes = sizeof(*iov) * sgp->iovec_count;
  1153. size_t iov_data_len;
  1154. iov = kmalloc(nbytes, GFP_KERNEL);
  1155. if (iov == NULL) {
  1156. pr_debug("%s:%s:%d alloc iovec failed %d\n",
  1157. skdev->name, __func__, __LINE__,
  1158. sgp->iovec_count);
  1159. return -ENOMEM;
  1160. }
  1161. sksgio->iov = iov;
  1162. sksgio->iovcnt = sgp->iovec_count;
  1163. if (copy_from_user(iov, sgp->dxferp, nbytes)) {
  1164. pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
  1165. skdev->name, __func__, __LINE__, sgp->dxferp);
  1166. return -EFAULT;
  1167. }
  1168. /*
  1169. * Sum up the vecs, making sure they don't overflow
  1170. */
  1171. iov_data_len = 0;
  1172. for (i = 0; i < sgp->iovec_count; i++) {
  1173. if (iov_data_len + iov[i].iov_len < iov_data_len)
  1174. return -EINVAL;
  1175. iov_data_len += iov[i].iov_len;
  1176. }
  1177. /* SG_IO howto says that the shorter of the two wins */
  1178. if (sgp->dxfer_len < iov_data_len) {
  1179. sksgio->iovcnt = iov_shorten((struct iovec *)iov,
  1180. sgp->iovec_count,
  1181. sgp->dxfer_len);
  1182. sksgio->dxfer_len = sgp->dxfer_len;
  1183. } else
  1184. sksgio->dxfer_len = iov_data_len;
  1185. }
  1186. if (sgp->dxfer_direction != SG_DXFER_NONE) {
  1187. struct sg_iovec *iov = sksgio->iov;
  1188. for (i = 0; i < sksgio->iovcnt; i++, iov++) {
  1189. if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
  1190. pr_debug("%s:%s:%d access data failed %p/%d\n",
  1191. skdev->name, __func__, __LINE__,
  1192. iov->iov_base, (int)iov->iov_len);
  1193. return -EFAULT;
  1194. }
  1195. }
  1196. }
  1197. return 0;
  1198. }
  1199. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1200. struct skd_sg_io *sksgio)
  1201. {
  1202. struct skd_special_context *skspcl = NULL;
  1203. int rc;
  1204. for (;;) {
  1205. ulong flags;
  1206. spin_lock_irqsave(&skdev->lock, flags);
  1207. skspcl = skdev->skspcl_free_list;
  1208. if (skspcl != NULL) {
  1209. skdev->skspcl_free_list =
  1210. (struct skd_special_context *)skspcl->req.next;
  1211. skspcl->req.id += SKD_ID_INCR;
  1212. skspcl->req.state = SKD_REQ_STATE_SETUP;
  1213. skspcl->orphaned = 0;
  1214. skspcl->req.n_sg = 0;
  1215. }
  1216. spin_unlock_irqrestore(&skdev->lock, flags);
  1217. if (skspcl != NULL) {
  1218. rc = 0;
  1219. break;
  1220. }
  1221. pr_debug("%s:%s:%d blocking\n",
  1222. skdev->name, __func__, __LINE__);
  1223. rc = wait_event_interruptible_timeout(
  1224. skdev->waitq,
  1225. (skdev->skspcl_free_list != NULL),
  1226. msecs_to_jiffies(sksgio->sg.timeout));
  1227. pr_debug("%s:%s:%d unblocking, rc=%d\n",
  1228. skdev->name, __func__, __LINE__, rc);
  1229. if (rc <= 0) {
  1230. if (rc == 0)
  1231. rc = -ETIMEDOUT;
  1232. else
  1233. rc = -EINTR;
  1234. break;
  1235. }
  1236. /*
  1237. * If we get here rc > 0 meaning the timeout to
  1238. * wait_event_interruptible_timeout() had time left, hence the
  1239. * sought event -- non-empty free list -- happened.
  1240. * Retry the allocation.
  1241. */
  1242. }
  1243. sksgio->skspcl = skspcl;
  1244. return rc;
  1245. }
  1246. static int skd_skreq_prep_buffering(struct skd_device *skdev,
  1247. struct skd_request_context *skreq,
  1248. u32 dxfer_len)
  1249. {
  1250. u32 resid = dxfer_len;
  1251. /*
  1252. * The DMA engine must have aligned addresses and byte counts.
  1253. */
  1254. resid += (-resid) & 3;
  1255. skreq->sg_byte_count = resid;
  1256. skreq->n_sg = 0;
  1257. while (resid > 0) {
  1258. u32 nbytes = PAGE_SIZE;
  1259. u32 ix = skreq->n_sg;
  1260. struct scatterlist *sg = &skreq->sg[ix];
  1261. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1262. struct page *page;
  1263. if (nbytes > resid)
  1264. nbytes = resid;
  1265. page = alloc_page(GFP_KERNEL);
  1266. if (page == NULL)
  1267. return -ENOMEM;
  1268. sg_set_page(sg, page, nbytes, 0);
  1269. /* TODO: This should be going through a pci_???()
  1270. * routine to do proper mapping. */
  1271. sksg->control = FIT_SGD_CONTROL_NOT_LAST;
  1272. sksg->byte_count = nbytes;
  1273. sksg->host_side_addr = sg_phys(sg);
  1274. sksg->dev_side_addr = 0;
  1275. sksg->next_desc_ptr = skreq->sksg_dma_address +
  1276. (ix + 1) * sizeof(*sksg);
  1277. skreq->n_sg++;
  1278. resid -= nbytes;
  1279. }
  1280. if (skreq->n_sg > 0) {
  1281. u32 ix = skreq->n_sg - 1;
  1282. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1283. sksg->control = FIT_SGD_CONTROL_LAST;
  1284. sksg->next_desc_ptr = 0;
  1285. }
  1286. if (unlikely(skdev->dbg_level > 1)) {
  1287. u32 i;
  1288. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  1289. skdev->name, __func__, __LINE__,
  1290. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  1291. for (i = 0; i < skreq->n_sg; i++) {
  1292. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  1293. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1294. "addr=0x%llx next=0x%llx\n",
  1295. skdev->name, __func__, __LINE__,
  1296. i, sgd->byte_count, sgd->control,
  1297. sgd->host_side_addr, sgd->next_desc_ptr);
  1298. }
  1299. }
  1300. return 0;
  1301. }
  1302. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1303. struct skd_sg_io *sksgio)
  1304. {
  1305. struct skd_special_context *skspcl = sksgio->skspcl;
  1306. struct skd_request_context *skreq = &skspcl->req;
  1307. u32 dxfer_len = sksgio->dxfer_len;
  1308. int rc;
  1309. rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
  1310. /*
  1311. * Eventually, errors or not, skd_release_special() is called
  1312. * to recover allocations including partial allocations.
  1313. */
  1314. return rc;
  1315. }
  1316. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1317. struct skd_sg_io *sksgio, int dxfer_dir)
  1318. {
  1319. struct skd_special_context *skspcl = sksgio->skspcl;
  1320. u32 iov_ix = 0;
  1321. struct sg_iovec curiov;
  1322. u32 sksg_ix = 0;
  1323. u8 *bufp = NULL;
  1324. u32 buf_len = 0;
  1325. u32 resid = sksgio->dxfer_len;
  1326. int rc;
  1327. curiov.iov_len = 0;
  1328. curiov.iov_base = NULL;
  1329. if (dxfer_dir != sksgio->sg.dxfer_direction) {
  1330. if (dxfer_dir != SG_DXFER_TO_DEV ||
  1331. sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
  1332. return 0;
  1333. }
  1334. while (resid > 0) {
  1335. u32 nbytes = PAGE_SIZE;
  1336. if (curiov.iov_len == 0) {
  1337. curiov = sksgio->iov[iov_ix++];
  1338. continue;
  1339. }
  1340. if (buf_len == 0) {
  1341. struct page *page;
  1342. page = sg_page(&skspcl->req.sg[sksg_ix++]);
  1343. bufp = page_address(page);
  1344. buf_len = PAGE_SIZE;
  1345. }
  1346. nbytes = min_t(u32, nbytes, resid);
  1347. nbytes = min_t(u32, nbytes, curiov.iov_len);
  1348. nbytes = min_t(u32, nbytes, buf_len);
  1349. if (dxfer_dir == SG_DXFER_TO_DEV)
  1350. rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
  1351. else
  1352. rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
  1353. if (rc)
  1354. return -EFAULT;
  1355. resid -= nbytes;
  1356. curiov.iov_len -= nbytes;
  1357. curiov.iov_base += nbytes;
  1358. buf_len -= nbytes;
  1359. }
  1360. return 0;
  1361. }
  1362. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1363. struct skd_sg_io *sksgio)
  1364. {
  1365. struct skd_special_context *skspcl = sksgio->skspcl;
  1366. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  1367. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  1368. memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
  1369. /* Initialize the FIT msg header */
  1370. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1371. fmh->num_protocol_cmds_coalesced = 1;
  1372. /* Initialize the SCSI request */
  1373. if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
  1374. scsi_req->hdr.sg_list_dma_address =
  1375. cpu_to_be64(skspcl->req.sksg_dma_address);
  1376. scsi_req->hdr.tag = skspcl->req.id;
  1377. scsi_req->hdr.sg_list_len_bytes =
  1378. cpu_to_be32(skspcl->req.sg_byte_count);
  1379. memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
  1380. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1381. skd_send_special_fitmsg(skdev, skspcl);
  1382. return 0;
  1383. }
  1384. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
  1385. {
  1386. unsigned long flags;
  1387. int rc;
  1388. rc = wait_event_interruptible_timeout(skdev->waitq,
  1389. (sksgio->skspcl->req.state !=
  1390. SKD_REQ_STATE_BUSY),
  1391. msecs_to_jiffies(sksgio->sg.
  1392. timeout));
  1393. spin_lock_irqsave(&skdev->lock, flags);
  1394. if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
  1395. pr_debug("%s:%s:%d skspcl %p aborted\n",
  1396. skdev->name, __func__, __LINE__, sksgio->skspcl);
  1397. /* Build check cond, sense and let command finish. */
  1398. /* For a timeout, we must fabricate completion and sense
  1399. * data to complete the command */
  1400. sksgio->skspcl->req.completion.status =
  1401. SAM_STAT_CHECK_CONDITION;
  1402. memset(&sksgio->skspcl->req.err_info, 0,
  1403. sizeof(sksgio->skspcl->req.err_info));
  1404. sksgio->skspcl->req.err_info.type = 0x70;
  1405. sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
  1406. sksgio->skspcl->req.err_info.code = 0x44;
  1407. sksgio->skspcl->req.err_info.qual = 0;
  1408. rc = 0;
  1409. } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
  1410. /* No longer on the adapter. We finish. */
  1411. rc = 0;
  1412. else {
  1413. /* Something's gone wrong. Still busy. Timeout or
  1414. * user interrupted (control-C). Mark as an orphan
  1415. * so it will be disposed when completed. */
  1416. sksgio->skspcl->orphaned = 1;
  1417. sksgio->skspcl = NULL;
  1418. if (rc == 0) {
  1419. pr_debug("%s:%s:%d timed out %p (%u ms)\n",
  1420. skdev->name, __func__, __LINE__,
  1421. sksgio, sksgio->sg.timeout);
  1422. rc = -ETIMEDOUT;
  1423. } else {
  1424. pr_debug("%s:%s:%d cntlc %p\n",
  1425. skdev->name, __func__, __LINE__, sksgio);
  1426. rc = -EINTR;
  1427. }
  1428. }
  1429. spin_unlock_irqrestore(&skdev->lock, flags);
  1430. return rc;
  1431. }
  1432. static int skd_sg_io_put_status(struct skd_device *skdev,
  1433. struct skd_sg_io *sksgio)
  1434. {
  1435. struct sg_io_hdr *sgp = &sksgio->sg;
  1436. struct skd_special_context *skspcl = sksgio->skspcl;
  1437. int resid = 0;
  1438. u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
  1439. sgp->status = skspcl->req.completion.status;
  1440. resid = sksgio->dxfer_len - nb;
  1441. sgp->masked_status = sgp->status & STATUS_MASK;
  1442. sgp->msg_status = 0;
  1443. sgp->host_status = 0;
  1444. sgp->driver_status = 0;
  1445. sgp->resid = resid;
  1446. if (sgp->masked_status || sgp->host_status || sgp->driver_status)
  1447. sgp->info |= SG_INFO_CHECK;
  1448. pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
  1449. skdev->name, __func__, __LINE__,
  1450. sgp->status, sgp->masked_status, sgp->resid);
  1451. if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
  1452. if (sgp->mx_sb_len > 0) {
  1453. struct fit_comp_error_info *ei = &skspcl->req.err_info;
  1454. u32 nbytes = sizeof(*ei);
  1455. nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
  1456. sgp->sb_len_wr = nbytes;
  1457. if (__copy_to_user(sgp->sbp, ei, nbytes)) {
  1458. pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
  1459. skdev->name, __func__, __LINE__,
  1460. sgp->sbp);
  1461. return -EFAULT;
  1462. }
  1463. }
  1464. }
  1465. if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
  1466. pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
  1467. skdev->name, __func__, __LINE__, sksgio->argp);
  1468. return -EFAULT;
  1469. }
  1470. return 0;
  1471. }
  1472. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1473. struct skd_sg_io *sksgio)
  1474. {
  1475. struct skd_special_context *skspcl = sksgio->skspcl;
  1476. if (skspcl != NULL) {
  1477. ulong flags;
  1478. sksgio->skspcl = NULL;
  1479. spin_lock_irqsave(&skdev->lock, flags);
  1480. skd_release_special(skdev, skspcl);
  1481. spin_unlock_irqrestore(&skdev->lock, flags);
  1482. }
  1483. return 0;
  1484. }
  1485. /*
  1486. *****************************************************************************
  1487. * INTERNAL REQUESTS -- generated by driver itself
  1488. *****************************************************************************
  1489. */
  1490. static int skd_format_internal_skspcl(struct skd_device *skdev)
  1491. {
  1492. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1493. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1494. struct fit_msg_hdr *fmh;
  1495. uint64_t dma_address;
  1496. struct skd_scsi_request *scsi;
  1497. fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
  1498. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1499. fmh->num_protocol_cmds_coalesced = 1;
  1500. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1501. memset(scsi, 0, sizeof(*scsi));
  1502. dma_address = skspcl->req.sksg_dma_address;
  1503. scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
  1504. sgd->control = FIT_SGD_CONTROL_LAST;
  1505. sgd->byte_count = 0;
  1506. sgd->host_side_addr = skspcl->db_dma_address;
  1507. sgd->dev_side_addr = 0;
  1508. sgd->next_desc_ptr = 0LL;
  1509. return 1;
  1510. }
  1511. #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
  1512. static void skd_send_internal_skspcl(struct skd_device *skdev,
  1513. struct skd_special_context *skspcl,
  1514. u8 opcode)
  1515. {
  1516. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1517. struct skd_scsi_request *scsi;
  1518. unsigned char *buf = skspcl->data_buf;
  1519. int i;
  1520. if (skspcl->req.state != SKD_REQ_STATE_IDLE)
  1521. /*
  1522. * A refresh is already in progress.
  1523. * Just wait for it to finish.
  1524. */
  1525. return;
  1526. SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
  1527. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1528. skspcl->req.id += SKD_ID_INCR;
  1529. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1530. scsi->hdr.tag = skspcl->req.id;
  1531. memset(scsi->cdb, 0, sizeof(scsi->cdb));
  1532. switch (opcode) {
  1533. case TEST_UNIT_READY:
  1534. scsi->cdb[0] = TEST_UNIT_READY;
  1535. sgd->byte_count = 0;
  1536. scsi->hdr.sg_list_len_bytes = 0;
  1537. break;
  1538. case READ_CAPACITY:
  1539. scsi->cdb[0] = READ_CAPACITY;
  1540. sgd->byte_count = SKD_N_READ_CAP_BYTES;
  1541. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1542. break;
  1543. case INQUIRY:
  1544. scsi->cdb[0] = INQUIRY;
  1545. scsi->cdb[1] = 0x01; /* evpd */
  1546. scsi->cdb[2] = 0x80; /* serial number page */
  1547. scsi->cdb[4] = 0x10;
  1548. sgd->byte_count = 16;
  1549. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1550. break;
  1551. case SYNCHRONIZE_CACHE:
  1552. scsi->cdb[0] = SYNCHRONIZE_CACHE;
  1553. sgd->byte_count = 0;
  1554. scsi->hdr.sg_list_len_bytes = 0;
  1555. break;
  1556. case WRITE_BUFFER:
  1557. scsi->cdb[0] = WRITE_BUFFER;
  1558. scsi->cdb[1] = 0x02;
  1559. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1560. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1561. sgd->byte_count = WR_BUF_SIZE;
  1562. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1563. /* fill incrementing byte pattern */
  1564. for (i = 0; i < sgd->byte_count; i++)
  1565. buf[i] = i & 0xFF;
  1566. break;
  1567. case READ_BUFFER:
  1568. scsi->cdb[0] = READ_BUFFER;
  1569. scsi->cdb[1] = 0x02;
  1570. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1571. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1572. sgd->byte_count = WR_BUF_SIZE;
  1573. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1574. memset(skspcl->data_buf, 0, sgd->byte_count);
  1575. break;
  1576. default:
  1577. SKD_ASSERT("Don't know what to send");
  1578. return;
  1579. }
  1580. skd_send_special_fitmsg(skdev, skspcl);
  1581. }
  1582. static void skd_refresh_device_data(struct skd_device *skdev)
  1583. {
  1584. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1585. skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
  1586. }
  1587. static int skd_chk_read_buf(struct skd_device *skdev,
  1588. struct skd_special_context *skspcl)
  1589. {
  1590. unsigned char *buf = skspcl->data_buf;
  1591. int i;
  1592. /* check for incrementing byte pattern */
  1593. for (i = 0; i < WR_BUF_SIZE; i++)
  1594. if (buf[i] != (i & 0xFF))
  1595. return 1;
  1596. return 0;
  1597. }
  1598. static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
  1599. u8 code, u8 qual, u8 fruc)
  1600. {
  1601. /* If the check condition is of special interest, log a message */
  1602. if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
  1603. && (code == 0x04) && (qual == 0x06)) {
  1604. pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
  1605. "ascq/fruc %02x/%02x/%02x/%02x\n",
  1606. skd_name(skdev), key, code, qual, fruc);
  1607. }
  1608. }
  1609. static void skd_complete_internal(struct skd_device *skdev,
  1610. volatile struct fit_completion_entry_v1
  1611. *skcomp,
  1612. volatile struct fit_comp_error_info *skerr,
  1613. struct skd_special_context *skspcl)
  1614. {
  1615. u8 *buf = skspcl->data_buf;
  1616. u8 status;
  1617. int i;
  1618. struct skd_scsi_request *scsi =
  1619. (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1620. SKD_ASSERT(skspcl == &skdev->internal_skspcl);
  1621. pr_debug("%s:%s:%d complete internal %x\n",
  1622. skdev->name, __func__, __LINE__, scsi->cdb[0]);
  1623. skspcl->req.completion = *skcomp;
  1624. skspcl->req.state = SKD_REQ_STATE_IDLE;
  1625. skspcl->req.id += SKD_ID_INCR;
  1626. status = skspcl->req.completion.status;
  1627. skd_log_check_status(skdev, status, skerr->key, skerr->code,
  1628. skerr->qual, skerr->fruc);
  1629. switch (scsi->cdb[0]) {
  1630. case TEST_UNIT_READY:
  1631. if (status == SAM_STAT_GOOD)
  1632. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1633. else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1634. (skerr->key == MEDIUM_ERROR))
  1635. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1636. else {
  1637. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1638. pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
  1639. skdev->name, __func__, __LINE__,
  1640. skdev->state);
  1641. return;
  1642. }
  1643. pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
  1644. skdev->name, __func__, __LINE__);
  1645. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1646. }
  1647. break;
  1648. case WRITE_BUFFER:
  1649. if (status == SAM_STAT_GOOD)
  1650. skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
  1651. else {
  1652. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1653. pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
  1654. skdev->name, __func__, __LINE__,
  1655. skdev->state);
  1656. return;
  1657. }
  1658. pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
  1659. skdev->name, __func__, __LINE__);
  1660. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1661. }
  1662. break;
  1663. case READ_BUFFER:
  1664. if (status == SAM_STAT_GOOD) {
  1665. if (skd_chk_read_buf(skdev, skspcl) == 0)
  1666. skd_send_internal_skspcl(skdev, skspcl,
  1667. READ_CAPACITY);
  1668. else {
  1669. pr_err(
  1670. "(%s):*** W/R Buffer mismatch %d ***\n",
  1671. skd_name(skdev), skdev->connect_retries);
  1672. if (skdev->connect_retries <
  1673. SKD_MAX_CONNECT_RETRIES) {
  1674. skdev->connect_retries++;
  1675. skd_soft_reset(skdev);
  1676. } else {
  1677. pr_err(
  1678. "(%s): W/R Buffer Connect Error\n",
  1679. skd_name(skdev));
  1680. return;
  1681. }
  1682. }
  1683. } else {
  1684. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1685. pr_debug("%s:%s:%d "
  1686. "read buffer failed, don't send anymore state 0x%x\n",
  1687. skdev->name, __func__, __LINE__,
  1688. skdev->state);
  1689. return;
  1690. }
  1691. pr_debug("%s:%s:%d "
  1692. "**** read buffer failed, retry skerr\n",
  1693. skdev->name, __func__, __LINE__);
  1694. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1695. }
  1696. break;
  1697. case READ_CAPACITY:
  1698. skdev->read_cap_is_valid = 0;
  1699. if (status == SAM_STAT_GOOD) {
  1700. skdev->read_cap_last_lba =
  1701. (buf[0] << 24) | (buf[1] << 16) |
  1702. (buf[2] << 8) | buf[3];
  1703. skdev->read_cap_blocksize =
  1704. (buf[4] << 24) | (buf[5] << 16) |
  1705. (buf[6] << 8) | buf[7];
  1706. pr_debug("%s:%s:%d last lba %d, bs %d\n",
  1707. skdev->name, __func__, __LINE__,
  1708. skdev->read_cap_last_lba,
  1709. skdev->read_cap_blocksize);
  1710. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  1711. skdev->read_cap_is_valid = 1;
  1712. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  1713. } else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1714. (skerr->key == MEDIUM_ERROR)) {
  1715. skdev->read_cap_last_lba = ~0;
  1716. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  1717. pr_debug("%s:%s:%d "
  1718. "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
  1719. skdev->name, __func__, __LINE__);
  1720. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  1721. } else {
  1722. pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
  1723. skdev->name, __func__, __LINE__);
  1724. skd_send_internal_skspcl(skdev, skspcl,
  1725. TEST_UNIT_READY);
  1726. }
  1727. break;
  1728. case INQUIRY:
  1729. skdev->inquiry_is_valid = 0;
  1730. if (status == SAM_STAT_GOOD) {
  1731. skdev->inquiry_is_valid = 1;
  1732. for (i = 0; i < 12; i++)
  1733. skdev->inq_serial_num[i] = buf[i + 4];
  1734. skdev->inq_serial_num[12] = 0;
  1735. }
  1736. if (skd_unquiesce_dev(skdev) < 0)
  1737. pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
  1738. skdev->name, __func__, __LINE__);
  1739. /* connection is complete */
  1740. skdev->connect_retries = 0;
  1741. break;
  1742. case SYNCHRONIZE_CACHE:
  1743. if (status == SAM_STAT_GOOD)
  1744. skdev->sync_done = 1;
  1745. else
  1746. skdev->sync_done = -1;
  1747. wake_up_interruptible(&skdev->waitq);
  1748. break;
  1749. default:
  1750. SKD_ASSERT("we didn't send this");
  1751. }
  1752. }
  1753. /*
  1754. *****************************************************************************
  1755. * FIT MESSAGES
  1756. *****************************************************************************
  1757. */
  1758. static void skd_send_fitmsg(struct skd_device *skdev,
  1759. struct skd_fitmsg_context *skmsg)
  1760. {
  1761. u64 qcmd;
  1762. struct fit_msg_hdr *fmh;
  1763. pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
  1764. skdev->name, __func__, __LINE__,
  1765. skmsg->mb_dma_address, skdev->in_flight);
  1766. pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
  1767. skdev->name, __func__, __LINE__,
  1768. skmsg->msg_buf, skmsg->offset);
  1769. qcmd = skmsg->mb_dma_address;
  1770. qcmd |= FIT_QCMD_QID_NORMAL;
  1771. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  1772. skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
  1773. if (unlikely(skdev->dbg_level > 1)) {
  1774. u8 *bp = (u8 *)skmsg->msg_buf;
  1775. int i;
  1776. for (i = 0; i < skmsg->length; i += 8) {
  1777. pr_debug("%s:%s:%d msg[%2d] %8ph\n",
  1778. skdev->name, __func__, __LINE__, i, &bp[i]);
  1779. if (i == 0)
  1780. i = 64 - 8;
  1781. }
  1782. }
  1783. if (skmsg->length > 256)
  1784. qcmd |= FIT_QCMD_MSGSIZE_512;
  1785. else if (skmsg->length > 128)
  1786. qcmd |= FIT_QCMD_MSGSIZE_256;
  1787. else if (skmsg->length > 64)
  1788. qcmd |= FIT_QCMD_MSGSIZE_128;
  1789. else
  1790. /*
  1791. * This makes no sense because the FIT msg header is
  1792. * 64 bytes. If the msg is only 64 bytes long it has
  1793. * no payload.
  1794. */
  1795. qcmd |= FIT_QCMD_MSGSIZE_64;
  1796. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1797. }
  1798. static void skd_send_special_fitmsg(struct skd_device *skdev,
  1799. struct skd_special_context *skspcl)
  1800. {
  1801. u64 qcmd;
  1802. if (unlikely(skdev->dbg_level > 1)) {
  1803. u8 *bp = (u8 *)skspcl->msg_buf;
  1804. int i;
  1805. for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
  1806. pr_debug("%s:%s:%d spcl[%2d] %8ph\n",
  1807. skdev->name, __func__, __LINE__, i, &bp[i]);
  1808. if (i == 0)
  1809. i = 64 - 8;
  1810. }
  1811. pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
  1812. skdev->name, __func__, __LINE__,
  1813. skspcl, skspcl->req.id, skspcl->req.sksg_list,
  1814. skspcl->req.sksg_dma_address);
  1815. for (i = 0; i < skspcl->req.n_sg; i++) {
  1816. struct fit_sg_descriptor *sgd =
  1817. &skspcl->req.sksg_list[i];
  1818. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1819. "addr=0x%llx next=0x%llx\n",
  1820. skdev->name, __func__, __LINE__,
  1821. i, sgd->byte_count, sgd->control,
  1822. sgd->host_side_addr, sgd->next_desc_ptr);
  1823. }
  1824. }
  1825. /*
  1826. * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
  1827. * and one 64-byte SSDI command.
  1828. */
  1829. qcmd = skspcl->mb_dma_address;
  1830. qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
  1831. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1832. }
  1833. /*
  1834. *****************************************************************************
  1835. * COMPLETION QUEUE
  1836. *****************************************************************************
  1837. */
  1838. static void skd_complete_other(struct skd_device *skdev,
  1839. volatile struct fit_completion_entry_v1 *skcomp,
  1840. volatile struct fit_comp_error_info *skerr);
  1841. struct sns_info {
  1842. u8 type;
  1843. u8 stat;
  1844. u8 key;
  1845. u8 asc;
  1846. u8 ascq;
  1847. u8 mask;
  1848. enum skd_check_status_action action;
  1849. };
  1850. static struct sns_info skd_chkstat_table[] = {
  1851. /* Good */
  1852. { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
  1853. SKD_CHECK_STATUS_REPORT_GOOD },
  1854. /* Smart alerts */
  1855. { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
  1856. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1857. { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
  1858. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1859. { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
  1860. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1861. /* Retry (with limits) */
  1862. { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
  1863. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1864. { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
  1865. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1866. { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
  1867. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1868. { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
  1869. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1870. /* Busy (or about to be) */
  1871. { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
  1872. SKD_CHECK_STATUS_BUSY_IMMINENT },
  1873. };
  1874. /*
  1875. * Look up status and sense data to decide how to handle the error
  1876. * from the device.
  1877. * mask says which fields must match e.g., mask=0x18 means check
  1878. * type and stat, ignore key, asc, ascq.
  1879. */
  1880. static enum skd_check_status_action
  1881. skd_check_status(struct skd_device *skdev,
  1882. u8 cmp_status, volatile struct fit_comp_error_info *skerr)
  1883. {
  1884. int i, n;
  1885. pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
  1886. skd_name(skdev), skerr->key, skerr->code, skerr->qual,
  1887. skerr->fruc);
  1888. pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
  1889. skdev->name, __func__, __LINE__, skerr->type, cmp_status,
  1890. skerr->key, skerr->code, skerr->qual, skerr->fruc);
  1891. /* Does the info match an entry in the good category? */
  1892. n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
  1893. for (i = 0; i < n; i++) {
  1894. struct sns_info *sns = &skd_chkstat_table[i];
  1895. if (sns->mask & 0x10)
  1896. if (skerr->type != sns->type)
  1897. continue;
  1898. if (sns->mask & 0x08)
  1899. if (cmp_status != sns->stat)
  1900. continue;
  1901. if (sns->mask & 0x04)
  1902. if (skerr->key != sns->key)
  1903. continue;
  1904. if (sns->mask & 0x02)
  1905. if (skerr->code != sns->asc)
  1906. continue;
  1907. if (sns->mask & 0x01)
  1908. if (skerr->qual != sns->ascq)
  1909. continue;
  1910. if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
  1911. pr_err("(%s): SMART Alert: sense key/asc/ascq "
  1912. "%02x/%02x/%02x\n",
  1913. skd_name(skdev), skerr->key,
  1914. skerr->code, skerr->qual);
  1915. }
  1916. return sns->action;
  1917. }
  1918. /* No other match, so nonzero status means error,
  1919. * zero status means good
  1920. */
  1921. if (cmp_status) {
  1922. pr_debug("%s:%s:%d status check: error\n",
  1923. skdev->name, __func__, __LINE__);
  1924. return SKD_CHECK_STATUS_REPORT_ERROR;
  1925. }
  1926. pr_debug("%s:%s:%d status check good default\n",
  1927. skdev->name, __func__, __LINE__);
  1928. return SKD_CHECK_STATUS_REPORT_GOOD;
  1929. }
  1930. static void skd_resolve_req_exception(struct skd_device *skdev,
  1931. struct skd_request_context *skreq)
  1932. {
  1933. u8 cmp_status = skreq->completion.status;
  1934. switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
  1935. case SKD_CHECK_STATUS_REPORT_GOOD:
  1936. case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
  1937. skd_end_request(skdev, skreq, 0);
  1938. break;
  1939. case SKD_CHECK_STATUS_BUSY_IMMINENT:
  1940. skd_log_skreq(skdev, skreq, "retry(busy)");
  1941. blk_requeue_request(skdev->queue, skreq->req);
  1942. pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
  1943. skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
  1944. skdev->timer_countdown = SKD_TIMER_MINUTES(20);
  1945. skd_quiesce_dev(skdev);
  1946. break;
  1947. case SKD_CHECK_STATUS_REQUEUE_REQUEST:
  1948. if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
  1949. skd_log_skreq(skdev, skreq, "retry");
  1950. blk_requeue_request(skdev->queue, skreq->req);
  1951. break;
  1952. }
  1953. /* fall through to report error */
  1954. case SKD_CHECK_STATUS_REPORT_ERROR:
  1955. default:
  1956. skd_end_request(skdev, skreq, -EIO);
  1957. break;
  1958. }
  1959. }
  1960. /* assume spinlock is already held */
  1961. static void skd_release_skreq(struct skd_device *skdev,
  1962. struct skd_request_context *skreq)
  1963. {
  1964. u32 msg_slot;
  1965. struct skd_fitmsg_context *skmsg;
  1966. u32 timo_slot;
  1967. /*
  1968. * Reclaim the FIT msg buffer if this is
  1969. * the first of the requests it carried to
  1970. * be completed. The FIT msg buffer used to
  1971. * send this request cannot be reused until
  1972. * we are sure the s1120 card has copied
  1973. * it to its memory. The FIT msg might have
  1974. * contained several requests. As soon as
  1975. * any of them are completed we know that
  1976. * the entire FIT msg was transferred.
  1977. * Only the first completed request will
  1978. * match the FIT msg buffer id. The FIT
  1979. * msg buffer id is immediately updated.
  1980. * When subsequent requests complete the FIT
  1981. * msg buffer id won't match, so we know
  1982. * quite cheaply that it is already done.
  1983. */
  1984. msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
  1985. SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
  1986. skmsg = &skdev->skmsg_table[msg_slot];
  1987. if (skmsg->id == skreq->fitmsg_id) {
  1988. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
  1989. SKD_ASSERT(skmsg->outstanding > 0);
  1990. skmsg->outstanding--;
  1991. if (skmsg->outstanding == 0) {
  1992. skmsg->state = SKD_MSG_STATE_IDLE;
  1993. skmsg->id += SKD_ID_INCR;
  1994. skmsg->next = skdev->skmsg_free_list;
  1995. skdev->skmsg_free_list = skmsg;
  1996. }
  1997. }
  1998. /*
  1999. * Decrease the number of active requests.
  2000. * Also decrements the count in the timeout slot.
  2001. */
  2002. SKD_ASSERT(skdev->in_flight > 0);
  2003. skdev->in_flight -= 1;
  2004. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  2005. SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
  2006. skdev->timeout_slot[timo_slot] -= 1;
  2007. /*
  2008. * Reset backpointer
  2009. */
  2010. skreq->req = NULL;
  2011. /*
  2012. * Reclaim the skd_request_context
  2013. */
  2014. skreq->state = SKD_REQ_STATE_IDLE;
  2015. skreq->id += SKD_ID_INCR;
  2016. skreq->next = skdev->skreq_free_list;
  2017. skdev->skreq_free_list = skreq;
  2018. }
  2019. #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
  2020. static void skd_do_inq_page_00(struct skd_device *skdev,
  2021. volatile struct fit_completion_entry_v1 *skcomp,
  2022. volatile struct fit_comp_error_info *skerr,
  2023. uint8_t *cdb, uint8_t *buf)
  2024. {
  2025. uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
  2026. /* Caller requested "supported pages". The driver needs to insert
  2027. * its page.
  2028. */
  2029. pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
  2030. skdev->name, __func__, __LINE__);
  2031. /* If the device rejected the request because the CDB was
  2032. * improperly formed, then just leave.
  2033. */
  2034. if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
  2035. skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
  2036. return;
  2037. /* Get the amount of space the caller allocated */
  2038. max_bytes = (cdb[3] << 8) | cdb[4];
  2039. /* Get the number of pages actually returned by the device */
  2040. drive_pages = (buf[2] << 8) | buf[3];
  2041. drive_bytes = drive_pages + 4;
  2042. new_size = drive_pages + 1;
  2043. /* Supported pages must be in numerical order, so find where
  2044. * the driver page needs to be inserted into the list of
  2045. * pages returned by the device.
  2046. */
  2047. for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
  2048. if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
  2049. return; /* Device using this page code. abort */
  2050. else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
  2051. break;
  2052. }
  2053. if (insert_pt < max_bytes) {
  2054. uint16_t u;
  2055. /* Shift everything up one byte to make room. */
  2056. for (u = new_size + 3; u > insert_pt; u--)
  2057. buf[u] = buf[u - 1];
  2058. buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
  2059. /* SCSI byte order increment of num_returned_bytes by 1 */
  2060. skcomp->num_returned_bytes =
  2061. be32_to_cpu(skcomp->num_returned_bytes) + 1;
  2062. skcomp->num_returned_bytes =
  2063. be32_to_cpu(skcomp->num_returned_bytes);
  2064. }
  2065. /* update page length field to reflect the driver's page too */
  2066. buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
  2067. buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
  2068. }
  2069. static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
  2070. {
  2071. int pcie_reg;
  2072. u16 pci_bus_speed;
  2073. u8 pci_lanes;
  2074. pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  2075. if (pcie_reg) {
  2076. u16 linksta;
  2077. pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
  2078. pci_bus_speed = linksta & 0xF;
  2079. pci_lanes = (linksta & 0x3F0) >> 4;
  2080. } else {
  2081. *speed = STEC_LINK_UNKNOWN;
  2082. *width = 0xFF;
  2083. return;
  2084. }
  2085. switch (pci_bus_speed) {
  2086. case 1:
  2087. *speed = STEC_LINK_2_5GTS;
  2088. break;
  2089. case 2:
  2090. *speed = STEC_LINK_5GTS;
  2091. break;
  2092. case 3:
  2093. *speed = STEC_LINK_8GTS;
  2094. break;
  2095. default:
  2096. *speed = STEC_LINK_UNKNOWN;
  2097. break;
  2098. }
  2099. if (pci_lanes <= 0x20)
  2100. *width = pci_lanes;
  2101. else
  2102. *width = 0xFF;
  2103. }
  2104. static void skd_do_inq_page_da(struct skd_device *skdev,
  2105. volatile struct fit_completion_entry_v1 *skcomp,
  2106. volatile struct fit_comp_error_info *skerr,
  2107. uint8_t *cdb, uint8_t *buf)
  2108. {
  2109. struct pci_dev *pdev = skdev->pdev;
  2110. unsigned max_bytes;
  2111. struct driver_inquiry_data inq;
  2112. u16 val;
  2113. pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
  2114. skdev->name, __func__, __LINE__);
  2115. memset(&inq, 0, sizeof(inq));
  2116. inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
  2117. skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
  2118. inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
  2119. inq.pcie_device_number = PCI_SLOT(pdev->devfn);
  2120. inq.pcie_function_number = PCI_FUNC(pdev->devfn);
  2121. pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
  2122. inq.pcie_vendor_id = cpu_to_be16(val);
  2123. pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
  2124. inq.pcie_device_id = cpu_to_be16(val);
  2125. pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
  2126. inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
  2127. pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
  2128. inq.pcie_subsystem_device_id = cpu_to_be16(val);
  2129. /* Driver version, fixed lenth, padded with spaces on the right */
  2130. inq.driver_version_length = sizeof(inq.driver_version);
  2131. memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
  2132. memcpy(inq.driver_version, DRV_VER_COMPL,
  2133. min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
  2134. inq.page_length = cpu_to_be16((sizeof(inq) - 4));
  2135. /* Clear the error set by the device */
  2136. skcomp->status = SAM_STAT_GOOD;
  2137. memset((void *)skerr, 0, sizeof(*skerr));
  2138. /* copy response into output buffer */
  2139. max_bytes = (cdb[3] << 8) | cdb[4];
  2140. memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
  2141. skcomp->num_returned_bytes =
  2142. be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
  2143. }
  2144. static void skd_do_driver_inq(struct skd_device *skdev,
  2145. volatile struct fit_completion_entry_v1 *skcomp,
  2146. volatile struct fit_comp_error_info *skerr,
  2147. uint8_t *cdb, uint8_t *buf)
  2148. {
  2149. if (!buf)
  2150. return;
  2151. else if (cdb[0] != INQUIRY)
  2152. return; /* Not an INQUIRY */
  2153. else if ((cdb[1] & 1) == 0)
  2154. return; /* EVPD not set */
  2155. else if (cdb[2] == 0)
  2156. /* Need to add driver's page to supported pages list */
  2157. skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
  2158. else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
  2159. /* Caller requested driver's page */
  2160. skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
  2161. }
  2162. static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
  2163. {
  2164. if (!sg)
  2165. return NULL;
  2166. if (!sg_page(sg))
  2167. return NULL;
  2168. return sg_virt(sg);
  2169. }
  2170. static void skd_process_scsi_inq(struct skd_device *skdev,
  2171. volatile struct fit_completion_entry_v1
  2172. *skcomp,
  2173. volatile struct fit_comp_error_info *skerr,
  2174. struct skd_special_context *skspcl)
  2175. {
  2176. uint8_t *buf;
  2177. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  2178. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  2179. dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
  2180. skspcl->req.sg_data_dir);
  2181. buf = skd_sg_1st_page_ptr(skspcl->req.sg);
  2182. if (buf)
  2183. skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
  2184. }
  2185. static int skd_isr_completion_posted(struct skd_device *skdev,
  2186. int limit, int *enqueued)
  2187. {
  2188. volatile struct fit_completion_entry_v1 *skcmp = NULL;
  2189. volatile struct fit_comp_error_info *skerr;
  2190. u16 req_id;
  2191. u32 req_slot;
  2192. struct skd_request_context *skreq;
  2193. u16 cmp_cntxt = 0;
  2194. u8 cmp_status = 0;
  2195. u8 cmp_cycle = 0;
  2196. u32 cmp_bytes = 0;
  2197. int rc = 0;
  2198. int processed = 0;
  2199. for (;; ) {
  2200. SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
  2201. skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
  2202. cmp_cycle = skcmp->cycle;
  2203. cmp_cntxt = skcmp->tag;
  2204. cmp_status = skcmp->status;
  2205. cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
  2206. skerr = &skdev->skerr_table[skdev->skcomp_ix];
  2207. pr_debug("%s:%s:%d "
  2208. "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
  2209. "busy=%d rbytes=0x%x proto=%d\n",
  2210. skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
  2211. skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
  2212. skdev->in_flight, cmp_bytes, skdev->proto_ver);
  2213. if (cmp_cycle != skdev->skcomp_cycle) {
  2214. pr_debug("%s:%s:%d end of completions\n",
  2215. skdev->name, __func__, __LINE__);
  2216. break;
  2217. }
  2218. /*
  2219. * Update the completion queue head index and possibly
  2220. * the completion cycle count. 8-bit wrap-around.
  2221. */
  2222. skdev->skcomp_ix++;
  2223. if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
  2224. skdev->skcomp_ix = 0;
  2225. skdev->skcomp_cycle++;
  2226. }
  2227. /*
  2228. * The command context is a unique 32-bit ID. The low order
  2229. * bits help locate the request. The request is usually a
  2230. * r/w request (see skd_start() above) or a special request.
  2231. */
  2232. req_id = cmp_cntxt;
  2233. req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
  2234. /* Is this other than a r/w request? */
  2235. if (req_slot >= skdev->num_req_context) {
  2236. /*
  2237. * This is not a completion for a r/w request.
  2238. */
  2239. skd_complete_other(skdev, skcmp, skerr);
  2240. continue;
  2241. }
  2242. skreq = &skdev->skreq_table[req_slot];
  2243. /*
  2244. * Make sure the request ID for the slot matches.
  2245. */
  2246. if (skreq->id != req_id) {
  2247. pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
  2248. skdev->name, __func__, __LINE__,
  2249. req_id, skreq->id);
  2250. {
  2251. u16 new_id = cmp_cntxt;
  2252. pr_err("(%s): Completion mismatch "
  2253. "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
  2254. skd_name(skdev), req_id,
  2255. skreq->id, new_id);
  2256. continue;
  2257. }
  2258. }
  2259. SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
  2260. if (skreq->state == SKD_REQ_STATE_ABORTED) {
  2261. pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
  2262. skdev->name, __func__, __LINE__,
  2263. skreq, skreq->id);
  2264. /* a previously timed out command can
  2265. * now be cleaned up */
  2266. skd_release_skreq(skdev, skreq);
  2267. continue;
  2268. }
  2269. skreq->completion = *skcmp;
  2270. if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
  2271. skreq->err_info = *skerr;
  2272. skd_log_check_status(skdev, cmp_status, skerr->key,
  2273. skerr->code, skerr->qual,
  2274. skerr->fruc);
  2275. }
  2276. /* Release DMA resources for the request. */
  2277. if (skreq->n_sg > 0)
  2278. skd_postop_sg_list(skdev, skreq);
  2279. if (!skreq->req) {
  2280. pr_debug("%s:%s:%d NULL backptr skdreq %p, "
  2281. "req=0x%x req_id=0x%x\n",
  2282. skdev->name, __func__, __LINE__,
  2283. skreq, skreq->id, req_id);
  2284. } else {
  2285. /*
  2286. * Capture the outcome and post it back to the
  2287. * native request.
  2288. */
  2289. if (likely(cmp_status == SAM_STAT_GOOD))
  2290. skd_end_request(skdev, skreq, 0);
  2291. else
  2292. skd_resolve_req_exception(skdev, skreq);
  2293. }
  2294. /*
  2295. * Release the skreq, its FIT msg (if one), timeout slot,
  2296. * and queue depth.
  2297. */
  2298. skd_release_skreq(skdev, skreq);
  2299. /* skd_isr_comp_limit equal zero means no limit */
  2300. if (limit) {
  2301. if (++processed >= limit) {
  2302. rc = 1;
  2303. break;
  2304. }
  2305. }
  2306. }
  2307. if ((skdev->state == SKD_DRVR_STATE_PAUSING)
  2308. && (skdev->in_flight) == 0) {
  2309. skdev->state = SKD_DRVR_STATE_PAUSED;
  2310. wake_up_interruptible(&skdev->waitq);
  2311. }
  2312. return rc;
  2313. }
  2314. static void skd_complete_other(struct skd_device *skdev,
  2315. volatile struct fit_completion_entry_v1 *skcomp,
  2316. volatile struct fit_comp_error_info *skerr)
  2317. {
  2318. u32 req_id = 0;
  2319. u32 req_table;
  2320. u32 req_slot;
  2321. struct skd_special_context *skspcl;
  2322. req_id = skcomp->tag;
  2323. req_table = req_id & SKD_ID_TABLE_MASK;
  2324. req_slot = req_id & SKD_ID_SLOT_MASK;
  2325. pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
  2326. skdev->name, __func__, __LINE__,
  2327. req_table, req_id, req_slot);
  2328. /*
  2329. * Based on the request id, determine how to dispatch this completion.
  2330. * This swich/case is finding the good cases and forwarding the
  2331. * completion entry. Errors are reported below the switch.
  2332. */
  2333. switch (req_table) {
  2334. case SKD_ID_RW_REQUEST:
  2335. /*
  2336. * The caller, skd_completion_posted_isr() above,
  2337. * handles r/w requests. The only way we get here
  2338. * is if the req_slot is out of bounds.
  2339. */
  2340. break;
  2341. case SKD_ID_SPECIAL_REQUEST:
  2342. /*
  2343. * Make sure the req_slot is in bounds and that the id
  2344. * matches.
  2345. */
  2346. if (req_slot < skdev->n_special) {
  2347. skspcl = &skdev->skspcl_table[req_slot];
  2348. if (skspcl->req.id == req_id &&
  2349. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2350. skd_complete_special(skdev,
  2351. skcomp, skerr, skspcl);
  2352. return;
  2353. }
  2354. }
  2355. break;
  2356. case SKD_ID_INTERNAL:
  2357. if (req_slot == 0) {
  2358. skspcl = &skdev->internal_skspcl;
  2359. if (skspcl->req.id == req_id &&
  2360. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2361. skd_complete_internal(skdev,
  2362. skcomp, skerr, skspcl);
  2363. return;
  2364. }
  2365. }
  2366. break;
  2367. case SKD_ID_FIT_MSG:
  2368. /*
  2369. * These id's should never appear in a completion record.
  2370. */
  2371. break;
  2372. default:
  2373. /*
  2374. * These id's should never appear anywhere;
  2375. */
  2376. break;
  2377. }
  2378. /*
  2379. * If we get here it is a bad or stale id.
  2380. */
  2381. }
  2382. static void skd_complete_special(struct skd_device *skdev,
  2383. volatile struct fit_completion_entry_v1
  2384. *skcomp,
  2385. volatile struct fit_comp_error_info *skerr,
  2386. struct skd_special_context *skspcl)
  2387. {
  2388. pr_debug("%s:%s:%d completing special request %p\n",
  2389. skdev->name, __func__, __LINE__, skspcl);
  2390. if (skspcl->orphaned) {
  2391. /* Discard orphaned request */
  2392. /* ?: Can this release directly or does it need
  2393. * to use a worker? */
  2394. pr_debug("%s:%s:%d release orphaned %p\n",
  2395. skdev->name, __func__, __LINE__, skspcl);
  2396. skd_release_special(skdev, skspcl);
  2397. return;
  2398. }
  2399. skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
  2400. skspcl->req.state = SKD_REQ_STATE_COMPLETED;
  2401. skspcl->req.completion = *skcomp;
  2402. skspcl->req.err_info = *skerr;
  2403. skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
  2404. skerr->code, skerr->qual, skerr->fruc);
  2405. wake_up_interruptible(&skdev->waitq);
  2406. }
  2407. /* assume spinlock is already held */
  2408. static void skd_release_special(struct skd_device *skdev,
  2409. struct skd_special_context *skspcl)
  2410. {
  2411. int i, was_depleted;
  2412. for (i = 0; i < skspcl->req.n_sg; i++) {
  2413. struct page *page = sg_page(&skspcl->req.sg[i]);
  2414. __free_page(page);
  2415. }
  2416. was_depleted = (skdev->skspcl_free_list == NULL);
  2417. skspcl->req.state = SKD_REQ_STATE_IDLE;
  2418. skspcl->req.id += SKD_ID_INCR;
  2419. skspcl->req.next =
  2420. (struct skd_request_context *)skdev->skspcl_free_list;
  2421. skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
  2422. if (was_depleted) {
  2423. pr_debug("%s:%s:%d skspcl was depleted\n",
  2424. skdev->name, __func__, __LINE__);
  2425. /* Free list was depleted. Their might be waiters. */
  2426. wake_up_interruptible(&skdev->waitq);
  2427. }
  2428. }
  2429. static void skd_reset_skcomp(struct skd_device *skdev)
  2430. {
  2431. u32 nbytes;
  2432. struct fit_completion_entry_v1 *skcomp;
  2433. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  2434. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  2435. memset(skdev->skcomp_table, 0, nbytes);
  2436. skdev->skcomp_ix = 0;
  2437. skdev->skcomp_cycle = 1;
  2438. }
  2439. /*
  2440. *****************************************************************************
  2441. * INTERRUPTS
  2442. *****************************************************************************
  2443. */
  2444. static void skd_completion_worker(struct work_struct *work)
  2445. {
  2446. struct skd_device *skdev =
  2447. container_of(work, struct skd_device, completion_worker);
  2448. unsigned long flags;
  2449. int flush_enqueued = 0;
  2450. spin_lock_irqsave(&skdev->lock, flags);
  2451. /*
  2452. * pass in limit=0, which means no limit..
  2453. * process everything in compq
  2454. */
  2455. skd_isr_completion_posted(skdev, 0, &flush_enqueued);
  2456. skd_request_fn(skdev->queue);
  2457. spin_unlock_irqrestore(&skdev->lock, flags);
  2458. }
  2459. static void skd_isr_msg_from_dev(struct skd_device *skdev);
  2460. static irqreturn_t
  2461. skd_isr(int irq, void *ptr)
  2462. {
  2463. struct skd_device *skdev;
  2464. u32 intstat;
  2465. u32 ack;
  2466. int rc = 0;
  2467. int deferred = 0;
  2468. int flush_enqueued = 0;
  2469. skdev = (struct skd_device *)ptr;
  2470. spin_lock(&skdev->lock);
  2471. for (;; ) {
  2472. intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2473. ack = FIT_INT_DEF_MASK;
  2474. ack &= intstat;
  2475. pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
  2476. skdev->name, __func__, __LINE__, intstat, ack);
  2477. /* As long as there is an int pending on device, keep
  2478. * running loop. When none, get out, but if we've never
  2479. * done any processing, call completion handler?
  2480. */
  2481. if (ack == 0) {
  2482. /* No interrupts on device, but run the completion
  2483. * processor anyway?
  2484. */
  2485. if (rc == 0)
  2486. if (likely (skdev->state
  2487. == SKD_DRVR_STATE_ONLINE))
  2488. deferred = 1;
  2489. break;
  2490. }
  2491. rc = IRQ_HANDLED;
  2492. SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
  2493. if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
  2494. (skdev->state != SKD_DRVR_STATE_STOPPING))) {
  2495. if (intstat & FIT_ISH_COMPLETION_POSTED) {
  2496. /*
  2497. * If we have already deferred completion
  2498. * processing, don't bother running it again
  2499. */
  2500. if (deferred == 0)
  2501. deferred =
  2502. skd_isr_completion_posted(skdev,
  2503. skd_isr_comp_limit, &flush_enqueued);
  2504. }
  2505. if (intstat & FIT_ISH_FW_STATE_CHANGE) {
  2506. skd_isr_fwstate(skdev);
  2507. if (skdev->state == SKD_DRVR_STATE_FAULT ||
  2508. skdev->state ==
  2509. SKD_DRVR_STATE_DISAPPEARED) {
  2510. spin_unlock(&skdev->lock);
  2511. return rc;
  2512. }
  2513. }
  2514. if (intstat & FIT_ISH_MSG_FROM_DEV)
  2515. skd_isr_msg_from_dev(skdev);
  2516. }
  2517. }
  2518. if (unlikely(flush_enqueued))
  2519. skd_request_fn(skdev->queue);
  2520. if (deferred)
  2521. schedule_work(&skdev->completion_worker);
  2522. else if (!flush_enqueued)
  2523. skd_request_fn(skdev->queue);
  2524. spin_unlock(&skdev->lock);
  2525. return rc;
  2526. }
  2527. static void skd_drive_fault(struct skd_device *skdev)
  2528. {
  2529. skdev->state = SKD_DRVR_STATE_FAULT;
  2530. pr_err("(%s): Drive FAULT\n", skd_name(skdev));
  2531. }
  2532. static void skd_drive_disappeared(struct skd_device *skdev)
  2533. {
  2534. skdev->state = SKD_DRVR_STATE_DISAPPEARED;
  2535. pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
  2536. }
  2537. static void skd_isr_fwstate(struct skd_device *skdev)
  2538. {
  2539. u32 sense;
  2540. u32 state;
  2541. u32 mtd;
  2542. int prev_driver_state = skdev->state;
  2543. sense = SKD_READL(skdev, FIT_STATUS);
  2544. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2545. pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
  2546. skd_name(skdev),
  2547. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  2548. skd_drive_state_to_str(state), state);
  2549. skdev->drive_state = state;
  2550. switch (skdev->drive_state) {
  2551. case FIT_SR_DRIVE_INIT:
  2552. if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
  2553. skd_disable_interrupts(skdev);
  2554. break;
  2555. }
  2556. if (skdev->state == SKD_DRVR_STATE_RESTARTING)
  2557. skd_recover_requests(skdev, 0);
  2558. if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
  2559. skdev->timer_countdown = SKD_STARTING_TIMO;
  2560. skdev->state = SKD_DRVR_STATE_STARTING;
  2561. skd_soft_reset(skdev);
  2562. break;
  2563. }
  2564. mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
  2565. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2566. skdev->last_mtd = mtd;
  2567. break;
  2568. case FIT_SR_DRIVE_ONLINE:
  2569. skdev->cur_max_queue_depth = skd_max_queue_depth;
  2570. if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
  2571. skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
  2572. skdev->queue_low_water_mark =
  2573. skdev->cur_max_queue_depth * 2 / 3 + 1;
  2574. if (skdev->queue_low_water_mark < 1)
  2575. skdev->queue_low_water_mark = 1;
  2576. pr_info(
  2577. "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
  2578. skd_name(skdev),
  2579. skdev->cur_max_queue_depth,
  2580. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  2581. skd_refresh_device_data(skdev);
  2582. break;
  2583. case FIT_SR_DRIVE_BUSY:
  2584. skdev->state = SKD_DRVR_STATE_BUSY;
  2585. skdev->timer_countdown = SKD_BUSY_TIMO;
  2586. skd_quiesce_dev(skdev);
  2587. break;
  2588. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2589. /* set timer for 3 seconds, we'll abort any unfinished
  2590. * commands after that expires
  2591. */
  2592. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2593. skdev->timer_countdown = SKD_TIMER_SECONDS(3);
  2594. blk_start_queue(skdev->queue);
  2595. break;
  2596. case FIT_SR_DRIVE_BUSY_ERASE:
  2597. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  2598. skdev->timer_countdown = SKD_BUSY_TIMO;
  2599. break;
  2600. case FIT_SR_DRIVE_OFFLINE:
  2601. skdev->state = SKD_DRVR_STATE_IDLE;
  2602. break;
  2603. case FIT_SR_DRIVE_SOFT_RESET:
  2604. switch (skdev->state) {
  2605. case SKD_DRVR_STATE_STARTING:
  2606. case SKD_DRVR_STATE_RESTARTING:
  2607. /* Expected by a caller of skd_soft_reset() */
  2608. break;
  2609. default:
  2610. skdev->state = SKD_DRVR_STATE_RESTARTING;
  2611. break;
  2612. }
  2613. break;
  2614. case FIT_SR_DRIVE_FW_BOOTING:
  2615. pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
  2616. skdev->name, __func__, __LINE__, skdev->name);
  2617. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  2618. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  2619. break;
  2620. case FIT_SR_DRIVE_DEGRADED:
  2621. case FIT_SR_PCIE_LINK_DOWN:
  2622. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  2623. break;
  2624. case FIT_SR_DRIVE_FAULT:
  2625. skd_drive_fault(skdev);
  2626. skd_recover_requests(skdev, 0);
  2627. blk_start_queue(skdev->queue);
  2628. break;
  2629. /* PCIe bus returned all Fs? */
  2630. case 0xFF:
  2631. pr_info("(%s): state=0x%x sense=0x%x\n",
  2632. skd_name(skdev), state, sense);
  2633. skd_drive_disappeared(skdev);
  2634. skd_recover_requests(skdev, 0);
  2635. blk_start_queue(skdev->queue);
  2636. break;
  2637. default:
  2638. /*
  2639. * Uknown FW State. Wait for a state we recognize.
  2640. */
  2641. break;
  2642. }
  2643. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  2644. skd_name(skdev),
  2645. skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
  2646. skd_skdev_state_to_str(skdev->state), skdev->state);
  2647. }
  2648. static void skd_recover_requests(struct skd_device *skdev, int requeue)
  2649. {
  2650. int i;
  2651. for (i = 0; i < skdev->num_req_context; i++) {
  2652. struct skd_request_context *skreq = &skdev->skreq_table[i];
  2653. if (skreq->state == SKD_REQ_STATE_BUSY) {
  2654. skd_log_skreq(skdev, skreq, "recover");
  2655. SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
  2656. SKD_ASSERT(skreq->req != NULL);
  2657. /* Release DMA resources for the request. */
  2658. if (skreq->n_sg > 0)
  2659. skd_postop_sg_list(skdev, skreq);
  2660. if (requeue &&
  2661. (unsigned long) ++skreq->req->special <
  2662. SKD_MAX_RETRIES)
  2663. blk_requeue_request(skdev->queue, skreq->req);
  2664. else
  2665. skd_end_request(skdev, skreq, -EIO);
  2666. skreq->req = NULL;
  2667. skreq->state = SKD_REQ_STATE_IDLE;
  2668. skreq->id += SKD_ID_INCR;
  2669. }
  2670. if (i > 0)
  2671. skreq[-1].next = skreq;
  2672. skreq->next = NULL;
  2673. }
  2674. skdev->skreq_free_list = skdev->skreq_table;
  2675. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  2676. struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
  2677. if (skmsg->state == SKD_MSG_STATE_BUSY) {
  2678. skd_log_skmsg(skdev, skmsg, "salvaged");
  2679. SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
  2680. skmsg->state = SKD_MSG_STATE_IDLE;
  2681. skmsg->id += SKD_ID_INCR;
  2682. }
  2683. if (i > 0)
  2684. skmsg[-1].next = skmsg;
  2685. skmsg->next = NULL;
  2686. }
  2687. skdev->skmsg_free_list = skdev->skmsg_table;
  2688. for (i = 0; i < skdev->n_special; i++) {
  2689. struct skd_special_context *skspcl = &skdev->skspcl_table[i];
  2690. /* If orphaned, reclaim it because it has already been reported
  2691. * to the process as an error (it was just waiting for
  2692. * a completion that didn't come, and now it will never come)
  2693. * If busy, change to a state that will cause it to error
  2694. * out in the wait routine and let it do the normal
  2695. * reporting and reclaiming
  2696. */
  2697. if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2698. if (skspcl->orphaned) {
  2699. pr_debug("%s:%s:%d orphaned %p\n",
  2700. skdev->name, __func__, __LINE__,
  2701. skspcl);
  2702. skd_release_special(skdev, skspcl);
  2703. } else {
  2704. pr_debug("%s:%s:%d not orphaned %p\n",
  2705. skdev->name, __func__, __LINE__,
  2706. skspcl);
  2707. skspcl->req.state = SKD_REQ_STATE_ABORTED;
  2708. }
  2709. }
  2710. }
  2711. skdev->skspcl_free_list = skdev->skspcl_table;
  2712. for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
  2713. skdev->timeout_slot[i] = 0;
  2714. skdev->in_flight = 0;
  2715. }
  2716. static void skd_isr_msg_from_dev(struct skd_device *skdev)
  2717. {
  2718. u32 mfd;
  2719. u32 mtd;
  2720. u32 data;
  2721. mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  2722. pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
  2723. skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
  2724. /* ignore any mtd that is an ack for something we didn't send */
  2725. if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
  2726. return;
  2727. switch (FIT_MXD_TYPE(mfd)) {
  2728. case FIT_MTD_FITFW_INIT:
  2729. skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
  2730. if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
  2731. pr_err("(%s): protocol mismatch\n",
  2732. skdev->name);
  2733. pr_err("(%s): got=%d support=%d\n",
  2734. skdev->name, skdev->proto_ver,
  2735. FIT_PROTOCOL_VERSION_1);
  2736. pr_err("(%s): please upgrade driver\n",
  2737. skdev->name);
  2738. skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
  2739. skd_soft_reset(skdev);
  2740. break;
  2741. }
  2742. mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
  2743. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2744. skdev->last_mtd = mtd;
  2745. break;
  2746. case FIT_MTD_GET_CMDQ_DEPTH:
  2747. skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
  2748. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
  2749. SKD_N_COMPLETION_ENTRY);
  2750. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2751. skdev->last_mtd = mtd;
  2752. break;
  2753. case FIT_MTD_SET_COMPQ_DEPTH:
  2754. SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
  2755. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
  2756. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2757. skdev->last_mtd = mtd;
  2758. break;
  2759. case FIT_MTD_SET_COMPQ_ADDR:
  2760. skd_reset_skcomp(skdev);
  2761. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
  2762. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2763. skdev->last_mtd = mtd;
  2764. break;
  2765. case FIT_MTD_CMD_LOG_HOST_ID:
  2766. skdev->connect_time_stamp = get_seconds();
  2767. data = skdev->connect_time_stamp & 0xFFFF;
  2768. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
  2769. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2770. skdev->last_mtd = mtd;
  2771. break;
  2772. case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
  2773. skdev->drive_jiffies = FIT_MXD_DATA(mfd);
  2774. data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
  2775. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
  2776. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2777. skdev->last_mtd = mtd;
  2778. break;
  2779. case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
  2780. skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
  2781. mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
  2782. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2783. skdev->last_mtd = mtd;
  2784. pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
  2785. skd_name(skdev),
  2786. skdev->connect_time_stamp, skdev->drive_jiffies);
  2787. break;
  2788. case FIT_MTD_ARM_QUEUE:
  2789. skdev->last_mtd = 0;
  2790. /*
  2791. * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
  2792. */
  2793. break;
  2794. default:
  2795. break;
  2796. }
  2797. }
  2798. static void skd_disable_interrupts(struct skd_device *skdev)
  2799. {
  2800. u32 sense;
  2801. sense = SKD_READL(skdev, FIT_CONTROL);
  2802. sense &= ~FIT_CR_ENABLE_INTERRUPTS;
  2803. SKD_WRITEL(skdev, sense, FIT_CONTROL);
  2804. pr_debug("%s:%s:%d sense 0x%x\n",
  2805. skdev->name, __func__, __LINE__, sense);
  2806. /* Note that the 1s is written. A 1-bit means
  2807. * disable, a 0 means enable.
  2808. */
  2809. SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
  2810. }
  2811. static void skd_enable_interrupts(struct skd_device *skdev)
  2812. {
  2813. u32 val;
  2814. /* unmask interrupts first */
  2815. val = FIT_ISH_FW_STATE_CHANGE +
  2816. FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
  2817. /* Note that the compliment of mask is written. A 1-bit means
  2818. * disable, a 0 means enable. */
  2819. SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
  2820. pr_debug("%s:%s:%d interrupt mask=0x%x\n",
  2821. skdev->name, __func__, __LINE__, ~val);
  2822. val = SKD_READL(skdev, FIT_CONTROL);
  2823. val |= FIT_CR_ENABLE_INTERRUPTS;
  2824. pr_debug("%s:%s:%d control=0x%x\n",
  2825. skdev->name, __func__, __LINE__, val);
  2826. SKD_WRITEL(skdev, val, FIT_CONTROL);
  2827. }
  2828. /*
  2829. *****************************************************************************
  2830. * START, STOP, RESTART, QUIESCE, UNQUIESCE
  2831. *****************************************************************************
  2832. */
  2833. static void skd_soft_reset(struct skd_device *skdev)
  2834. {
  2835. u32 val;
  2836. val = SKD_READL(skdev, FIT_CONTROL);
  2837. val |= (FIT_CR_SOFT_RESET);
  2838. pr_debug("%s:%s:%d control=0x%x\n",
  2839. skdev->name, __func__, __LINE__, val);
  2840. SKD_WRITEL(skdev, val, FIT_CONTROL);
  2841. }
  2842. static void skd_start_device(struct skd_device *skdev)
  2843. {
  2844. unsigned long flags;
  2845. u32 sense;
  2846. u32 state;
  2847. spin_lock_irqsave(&skdev->lock, flags);
  2848. /* ack all ghost interrupts */
  2849. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  2850. sense = SKD_READL(skdev, FIT_STATUS);
  2851. pr_debug("%s:%s:%d initial status=0x%x\n",
  2852. skdev->name, __func__, __LINE__, sense);
  2853. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2854. skdev->drive_state = state;
  2855. skdev->last_mtd = 0;
  2856. skdev->state = SKD_DRVR_STATE_STARTING;
  2857. skdev->timer_countdown = SKD_STARTING_TIMO;
  2858. skd_enable_interrupts(skdev);
  2859. switch (skdev->drive_state) {
  2860. case FIT_SR_DRIVE_OFFLINE:
  2861. pr_err("(%s): Drive offline...\n", skd_name(skdev));
  2862. break;
  2863. case FIT_SR_DRIVE_FW_BOOTING:
  2864. pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
  2865. skdev->name, __func__, __LINE__, skdev->name);
  2866. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  2867. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  2868. break;
  2869. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2870. pr_info("(%s): Start: BUSY_SANITIZE\n",
  2871. skd_name(skdev));
  2872. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2873. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2874. break;
  2875. case FIT_SR_DRIVE_BUSY_ERASE:
  2876. pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
  2877. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  2878. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2879. break;
  2880. case FIT_SR_DRIVE_INIT:
  2881. case FIT_SR_DRIVE_ONLINE:
  2882. skd_soft_reset(skdev);
  2883. break;
  2884. case FIT_SR_DRIVE_BUSY:
  2885. pr_err("(%s): Drive Busy...\n", skd_name(skdev));
  2886. skdev->state = SKD_DRVR_STATE_BUSY;
  2887. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2888. break;
  2889. case FIT_SR_DRIVE_SOFT_RESET:
  2890. pr_err("(%s) drive soft reset in prog\n",
  2891. skd_name(skdev));
  2892. break;
  2893. case FIT_SR_DRIVE_FAULT:
  2894. /* Fault state is bad...soft reset won't do it...
  2895. * Hard reset, maybe, but does it work on device?
  2896. * For now, just fault so the system doesn't hang.
  2897. */
  2898. skd_drive_fault(skdev);
  2899. /*start the queue so we can respond with error to requests */
  2900. pr_debug("%s:%s:%d starting %s queue\n",
  2901. skdev->name, __func__, __LINE__, skdev->name);
  2902. blk_start_queue(skdev->queue);
  2903. skdev->gendisk_on = -1;
  2904. wake_up_interruptible(&skdev->waitq);
  2905. break;
  2906. case 0xFF:
  2907. /* Most likely the device isn't there or isn't responding
  2908. * to the BAR1 addresses. */
  2909. skd_drive_disappeared(skdev);
  2910. /*start the queue so we can respond with error to requests */
  2911. pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
  2912. skdev->name, __func__, __LINE__, skdev->name);
  2913. blk_start_queue(skdev->queue);
  2914. skdev->gendisk_on = -1;
  2915. wake_up_interruptible(&skdev->waitq);
  2916. break;
  2917. default:
  2918. pr_err("(%s) Start: unknown state %x\n",
  2919. skd_name(skdev), skdev->drive_state);
  2920. break;
  2921. }
  2922. state = SKD_READL(skdev, FIT_CONTROL);
  2923. pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
  2924. skdev->name, __func__, __LINE__, state);
  2925. state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2926. pr_debug("%s:%s:%d Intr Status=0x%x\n",
  2927. skdev->name, __func__, __LINE__, state);
  2928. state = SKD_READL(skdev, FIT_INT_MASK_HOST);
  2929. pr_debug("%s:%s:%d Intr Mask=0x%x\n",
  2930. skdev->name, __func__, __LINE__, state);
  2931. state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  2932. pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
  2933. skdev->name, __func__, __LINE__, state);
  2934. state = SKD_READL(skdev, FIT_HW_VERSION);
  2935. pr_debug("%s:%s:%d HW version=0x%x\n",
  2936. skdev->name, __func__, __LINE__, state);
  2937. spin_unlock_irqrestore(&skdev->lock, flags);
  2938. }
  2939. static void skd_stop_device(struct skd_device *skdev)
  2940. {
  2941. unsigned long flags;
  2942. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  2943. u32 dev_state;
  2944. int i;
  2945. spin_lock_irqsave(&skdev->lock, flags);
  2946. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  2947. pr_err("(%s): skd_stop_device not online no sync\n",
  2948. skd_name(skdev));
  2949. goto stop_out;
  2950. }
  2951. if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
  2952. pr_err("(%s): skd_stop_device no special\n",
  2953. skd_name(skdev));
  2954. goto stop_out;
  2955. }
  2956. skdev->state = SKD_DRVR_STATE_SYNCING;
  2957. skdev->sync_done = 0;
  2958. skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
  2959. spin_unlock_irqrestore(&skdev->lock, flags);
  2960. wait_event_interruptible_timeout(skdev->waitq,
  2961. (skdev->sync_done), (10 * HZ));
  2962. spin_lock_irqsave(&skdev->lock, flags);
  2963. switch (skdev->sync_done) {
  2964. case 0:
  2965. pr_err("(%s): skd_stop_device no sync\n",
  2966. skd_name(skdev));
  2967. break;
  2968. case 1:
  2969. pr_err("(%s): skd_stop_device sync done\n",
  2970. skd_name(skdev));
  2971. break;
  2972. default:
  2973. pr_err("(%s): skd_stop_device sync error\n",
  2974. skd_name(skdev));
  2975. }
  2976. stop_out:
  2977. skdev->state = SKD_DRVR_STATE_STOPPING;
  2978. spin_unlock_irqrestore(&skdev->lock, flags);
  2979. skd_kill_timer(skdev);
  2980. spin_lock_irqsave(&skdev->lock, flags);
  2981. skd_disable_interrupts(skdev);
  2982. /* ensure all ints on device are cleared */
  2983. /* soft reset the device to unload with a clean slate */
  2984. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  2985. SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
  2986. spin_unlock_irqrestore(&skdev->lock, flags);
  2987. /* poll every 100ms, 1 second timeout */
  2988. for (i = 0; i < 10; i++) {
  2989. dev_state =
  2990. SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
  2991. if (dev_state == FIT_SR_DRIVE_INIT)
  2992. break;
  2993. set_current_state(TASK_INTERRUPTIBLE);
  2994. schedule_timeout(msecs_to_jiffies(100));
  2995. }
  2996. if (dev_state != FIT_SR_DRIVE_INIT)
  2997. pr_err("(%s): skd_stop_device state error 0x%02x\n",
  2998. skd_name(skdev), dev_state);
  2999. }
  3000. /* assume spinlock is held */
  3001. static void skd_restart_device(struct skd_device *skdev)
  3002. {
  3003. u32 state;
  3004. /* ack all ghost interrupts */
  3005. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3006. state = SKD_READL(skdev, FIT_STATUS);
  3007. pr_debug("%s:%s:%d drive status=0x%x\n",
  3008. skdev->name, __func__, __LINE__, state);
  3009. state &= FIT_SR_DRIVE_STATE_MASK;
  3010. skdev->drive_state = state;
  3011. skdev->last_mtd = 0;
  3012. skdev->state = SKD_DRVR_STATE_RESTARTING;
  3013. skdev->timer_countdown = SKD_RESTARTING_TIMO;
  3014. skd_soft_reset(skdev);
  3015. }
  3016. /* assume spinlock is held */
  3017. static int skd_quiesce_dev(struct skd_device *skdev)
  3018. {
  3019. int rc = 0;
  3020. switch (skdev->state) {
  3021. case SKD_DRVR_STATE_BUSY:
  3022. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3023. pr_debug("%s:%s:%d stopping %s queue\n",
  3024. skdev->name, __func__, __LINE__, skdev->name);
  3025. blk_stop_queue(skdev->queue);
  3026. break;
  3027. case SKD_DRVR_STATE_ONLINE:
  3028. case SKD_DRVR_STATE_STOPPING:
  3029. case SKD_DRVR_STATE_SYNCING:
  3030. case SKD_DRVR_STATE_PAUSING:
  3031. case SKD_DRVR_STATE_PAUSED:
  3032. case SKD_DRVR_STATE_STARTING:
  3033. case SKD_DRVR_STATE_RESTARTING:
  3034. case SKD_DRVR_STATE_RESUMING:
  3035. default:
  3036. rc = -EINVAL;
  3037. pr_debug("%s:%s:%d state [%d] not implemented\n",
  3038. skdev->name, __func__, __LINE__, skdev->state);
  3039. }
  3040. return rc;
  3041. }
  3042. /* assume spinlock is held */
  3043. static int skd_unquiesce_dev(struct skd_device *skdev)
  3044. {
  3045. int prev_driver_state = skdev->state;
  3046. skd_log_skdev(skdev, "unquiesce");
  3047. if (skdev->state == SKD_DRVR_STATE_ONLINE) {
  3048. pr_debug("%s:%s:%d **** device already ONLINE\n",
  3049. skdev->name, __func__, __LINE__);
  3050. return 0;
  3051. }
  3052. if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
  3053. /*
  3054. * If there has been an state change to other than
  3055. * ONLINE, we will rely on controller state change
  3056. * to come back online and restart the queue.
  3057. * The BUSY state means that driver is ready to
  3058. * continue normal processing but waiting for controller
  3059. * to become available.
  3060. */
  3061. skdev->state = SKD_DRVR_STATE_BUSY;
  3062. pr_debug("%s:%s:%d drive BUSY state\n",
  3063. skdev->name, __func__, __LINE__);
  3064. return 0;
  3065. }
  3066. /*
  3067. * Drive has just come online, driver is either in startup,
  3068. * paused performing a task, or bust waiting for hardware.
  3069. */
  3070. switch (skdev->state) {
  3071. case SKD_DRVR_STATE_PAUSED:
  3072. case SKD_DRVR_STATE_BUSY:
  3073. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3074. case SKD_DRVR_STATE_BUSY_ERASE:
  3075. case SKD_DRVR_STATE_STARTING:
  3076. case SKD_DRVR_STATE_RESTARTING:
  3077. case SKD_DRVR_STATE_FAULT:
  3078. case SKD_DRVR_STATE_IDLE:
  3079. case SKD_DRVR_STATE_LOAD:
  3080. skdev->state = SKD_DRVR_STATE_ONLINE;
  3081. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  3082. skd_name(skdev),
  3083. skd_skdev_state_to_str(prev_driver_state),
  3084. prev_driver_state, skd_skdev_state_to_str(skdev->state),
  3085. skdev->state);
  3086. pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
  3087. skdev->name, __func__, __LINE__);
  3088. pr_debug("%s:%s:%d starting %s queue\n",
  3089. skdev->name, __func__, __LINE__, skdev->name);
  3090. pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
  3091. blk_start_queue(skdev->queue);
  3092. skdev->gendisk_on = 1;
  3093. wake_up_interruptible(&skdev->waitq);
  3094. break;
  3095. case SKD_DRVR_STATE_DISAPPEARED:
  3096. default:
  3097. pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
  3098. skdev->name, __func__, __LINE__,
  3099. skdev->state);
  3100. return -EBUSY;
  3101. }
  3102. return 0;
  3103. }
  3104. /*
  3105. *****************************************************************************
  3106. * PCIe MSI/MSI-X INTERRUPT HANDLERS
  3107. *****************************************************************************
  3108. */
  3109. static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
  3110. {
  3111. struct skd_device *skdev = skd_host_data;
  3112. unsigned long flags;
  3113. spin_lock_irqsave(&skdev->lock, flags);
  3114. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3115. skdev->name, __func__, __LINE__,
  3116. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3117. pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
  3118. irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3119. SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
  3120. spin_unlock_irqrestore(&skdev->lock, flags);
  3121. return IRQ_HANDLED;
  3122. }
  3123. static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
  3124. {
  3125. struct skd_device *skdev = skd_host_data;
  3126. unsigned long flags;
  3127. spin_lock_irqsave(&skdev->lock, flags);
  3128. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3129. skdev->name, __func__, __LINE__,
  3130. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3131. SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
  3132. skd_isr_fwstate(skdev);
  3133. spin_unlock_irqrestore(&skdev->lock, flags);
  3134. return IRQ_HANDLED;
  3135. }
  3136. static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
  3137. {
  3138. struct skd_device *skdev = skd_host_data;
  3139. unsigned long flags;
  3140. int flush_enqueued = 0;
  3141. int deferred;
  3142. spin_lock_irqsave(&skdev->lock, flags);
  3143. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3144. skdev->name, __func__, __LINE__,
  3145. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3146. SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
  3147. deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
  3148. &flush_enqueued);
  3149. if (flush_enqueued)
  3150. skd_request_fn(skdev->queue);
  3151. if (deferred)
  3152. schedule_work(&skdev->completion_worker);
  3153. else if (!flush_enqueued)
  3154. skd_request_fn(skdev->queue);
  3155. spin_unlock_irqrestore(&skdev->lock, flags);
  3156. return IRQ_HANDLED;
  3157. }
  3158. static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
  3159. {
  3160. struct skd_device *skdev = skd_host_data;
  3161. unsigned long flags;
  3162. spin_lock_irqsave(&skdev->lock, flags);
  3163. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3164. skdev->name, __func__, __LINE__,
  3165. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3166. SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
  3167. skd_isr_msg_from_dev(skdev);
  3168. spin_unlock_irqrestore(&skdev->lock, flags);
  3169. return IRQ_HANDLED;
  3170. }
  3171. static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
  3172. {
  3173. struct skd_device *skdev = skd_host_data;
  3174. unsigned long flags;
  3175. spin_lock_irqsave(&skdev->lock, flags);
  3176. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3177. skdev->name, __func__, __LINE__,
  3178. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3179. SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
  3180. spin_unlock_irqrestore(&skdev->lock, flags);
  3181. return IRQ_HANDLED;
  3182. }
  3183. /*
  3184. *****************************************************************************
  3185. * PCIe MSI/MSI-X SETUP
  3186. *****************************************************************************
  3187. */
  3188. struct skd_msix_entry {
  3189. char isr_name[30];
  3190. };
  3191. struct skd_init_msix_entry {
  3192. const char *name;
  3193. irq_handler_t handler;
  3194. };
  3195. #define SKD_MAX_MSIX_COUNT 13
  3196. #define SKD_MIN_MSIX_COUNT 7
  3197. #define SKD_BASE_MSIX_IRQ 4
  3198. static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
  3199. { "(DMA 0)", skd_reserved_isr },
  3200. { "(DMA 1)", skd_reserved_isr },
  3201. { "(DMA 2)", skd_reserved_isr },
  3202. { "(DMA 3)", skd_reserved_isr },
  3203. { "(State Change)", skd_statec_isr },
  3204. { "(COMPL_Q)", skd_comp_q },
  3205. { "(MSG)", skd_msg_isr },
  3206. { "(Reserved)", skd_reserved_isr },
  3207. { "(Reserved)", skd_reserved_isr },
  3208. { "(Queue Full 0)", skd_qfull_isr },
  3209. { "(Queue Full 1)", skd_qfull_isr },
  3210. { "(Queue Full 2)", skd_qfull_isr },
  3211. { "(Queue Full 3)", skd_qfull_isr },
  3212. };
  3213. static int skd_acquire_msix(struct skd_device *skdev)
  3214. {
  3215. int i, rc;
  3216. struct pci_dev *pdev = skdev->pdev;
  3217. rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
  3218. PCI_IRQ_MSIX);
  3219. if (rc < 0) {
  3220. pr_err("(%s): failed to enable MSI-X %d\n",
  3221. skd_name(skdev), rc);
  3222. goto out;
  3223. }
  3224. skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
  3225. sizeof(struct skd_msix_entry), GFP_KERNEL);
  3226. if (!skdev->msix_entries) {
  3227. rc = -ENOMEM;
  3228. pr_err("(%s): msix table allocation error\n",
  3229. skd_name(skdev));
  3230. goto out;
  3231. }
  3232. /* Enable MSI-X vectors for the base queue */
  3233. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  3234. struct skd_msix_entry *qentry = &skdev->msix_entries[i];
  3235. snprintf(qentry->isr_name, sizeof(qentry->isr_name),
  3236. "%s%d-msix %s", DRV_NAME, skdev->devno,
  3237. msix_entries[i].name);
  3238. rc = devm_request_irq(&skdev->pdev->dev,
  3239. pci_irq_vector(skdev->pdev, i),
  3240. msix_entries[i].handler, 0,
  3241. qentry->isr_name, skdev);
  3242. if (rc) {
  3243. pr_err("(%s): Unable to register(%d) MSI-X "
  3244. "handler %d: %s\n",
  3245. skd_name(skdev), rc, i, qentry->isr_name);
  3246. goto msix_out;
  3247. }
  3248. }
  3249. pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
  3250. skdev->name, __func__, __LINE__,
  3251. pci_name(pdev), skdev->name, SKD_MAX_MSIX_COUNT);
  3252. return 0;
  3253. msix_out:
  3254. while (--i >= 0)
  3255. devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
  3256. out:
  3257. kfree(skdev->msix_entries);
  3258. skdev->msix_entries = NULL;
  3259. return rc;
  3260. }
  3261. static int skd_acquire_irq(struct skd_device *skdev)
  3262. {
  3263. struct pci_dev *pdev = skdev->pdev;
  3264. unsigned int irq_flag = PCI_IRQ_LEGACY;
  3265. int rc;
  3266. if (skd_isr_type == SKD_IRQ_MSIX) {
  3267. rc = skd_acquire_msix(skdev);
  3268. if (!rc)
  3269. return 0;
  3270. pr_err("(%s): failed to enable MSI-X, re-trying with MSI %d\n",
  3271. skd_name(skdev), rc);
  3272. }
  3273. snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
  3274. skdev->devno);
  3275. if (skd_isr_type != SKD_IRQ_LEGACY)
  3276. irq_flag |= PCI_IRQ_MSI;
  3277. rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
  3278. if (rc < 0) {
  3279. pr_err("(%s): failed to allocate the MSI interrupt %d\n",
  3280. skd_name(skdev), rc);
  3281. return rc;
  3282. }
  3283. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
  3284. pdev->msi_enabled ? 0 : IRQF_SHARED,
  3285. skdev->isr_name, skdev);
  3286. if (rc) {
  3287. pci_free_irq_vectors(pdev);
  3288. pr_err("(%s): failed to allocate interrupt %d\n",
  3289. skd_name(skdev), rc);
  3290. return rc;
  3291. }
  3292. return 0;
  3293. }
  3294. static void skd_release_irq(struct skd_device *skdev)
  3295. {
  3296. struct pci_dev *pdev = skdev->pdev;
  3297. if (skdev->msix_entries) {
  3298. int i;
  3299. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  3300. devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
  3301. skdev);
  3302. }
  3303. kfree(skdev->msix_entries);
  3304. skdev->msix_entries = NULL;
  3305. } else {
  3306. devm_free_irq(&pdev->dev, pdev->irq, skdev);
  3307. }
  3308. pci_free_irq_vectors(pdev);
  3309. }
  3310. /*
  3311. *****************************************************************************
  3312. * CONSTRUCT
  3313. *****************************************************************************
  3314. */
  3315. static int skd_cons_skcomp(struct skd_device *skdev)
  3316. {
  3317. int rc = 0;
  3318. struct fit_completion_entry_v1 *skcomp;
  3319. u32 nbytes;
  3320. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  3321. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  3322. pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
  3323. skdev->name, __func__, __LINE__,
  3324. nbytes, SKD_N_COMPLETION_ENTRY);
  3325. skcomp = pci_zalloc_consistent(skdev->pdev, nbytes,
  3326. &skdev->cq_dma_address);
  3327. if (skcomp == NULL) {
  3328. rc = -ENOMEM;
  3329. goto err_out;
  3330. }
  3331. skdev->skcomp_table = skcomp;
  3332. skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
  3333. sizeof(*skcomp) *
  3334. SKD_N_COMPLETION_ENTRY);
  3335. err_out:
  3336. return rc;
  3337. }
  3338. static int skd_cons_skmsg(struct skd_device *skdev)
  3339. {
  3340. int rc = 0;
  3341. u32 i;
  3342. pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
  3343. skdev->name, __func__, __LINE__,
  3344. sizeof(struct skd_fitmsg_context),
  3345. skdev->num_fitmsg_context,
  3346. sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
  3347. skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
  3348. *skdev->num_fitmsg_context, GFP_KERNEL);
  3349. if (skdev->skmsg_table == NULL) {
  3350. rc = -ENOMEM;
  3351. goto err_out;
  3352. }
  3353. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3354. struct skd_fitmsg_context *skmsg;
  3355. skmsg = &skdev->skmsg_table[i];
  3356. skmsg->id = i + SKD_ID_FIT_MSG;
  3357. skmsg->state = SKD_MSG_STATE_IDLE;
  3358. skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
  3359. SKD_N_FITMSG_BYTES + 64,
  3360. &skmsg->mb_dma_address);
  3361. if (skmsg->msg_buf == NULL) {
  3362. rc = -ENOMEM;
  3363. goto err_out;
  3364. }
  3365. skmsg->offset = (u32)((u64)skmsg->msg_buf &
  3366. (~FIT_QCMD_BASE_ADDRESS_MASK));
  3367. skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3368. skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
  3369. FIT_QCMD_BASE_ADDRESS_MASK);
  3370. skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3371. skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
  3372. memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
  3373. skmsg->next = &skmsg[1];
  3374. }
  3375. /* Free list is in order starting with the 0th entry. */
  3376. skdev->skmsg_table[i - 1].next = NULL;
  3377. skdev->skmsg_free_list = skdev->skmsg_table;
  3378. err_out:
  3379. return rc;
  3380. }
  3381. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  3382. u32 n_sg,
  3383. dma_addr_t *ret_dma_addr)
  3384. {
  3385. struct fit_sg_descriptor *sg_list;
  3386. u32 nbytes;
  3387. nbytes = sizeof(*sg_list) * n_sg;
  3388. sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
  3389. if (sg_list != NULL) {
  3390. uint64_t dma_address = *ret_dma_addr;
  3391. u32 i;
  3392. memset(sg_list, 0, nbytes);
  3393. for (i = 0; i < n_sg - 1; i++) {
  3394. uint64_t ndp_off;
  3395. ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
  3396. sg_list[i].next_desc_ptr = dma_address + ndp_off;
  3397. }
  3398. sg_list[i].next_desc_ptr = 0LL;
  3399. }
  3400. return sg_list;
  3401. }
  3402. static int skd_cons_skreq(struct skd_device *skdev)
  3403. {
  3404. int rc = 0;
  3405. u32 i;
  3406. pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
  3407. skdev->name, __func__, __LINE__,
  3408. sizeof(struct skd_request_context),
  3409. skdev->num_req_context,
  3410. sizeof(struct skd_request_context) * skdev->num_req_context);
  3411. skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
  3412. * skdev->num_req_context, GFP_KERNEL);
  3413. if (skdev->skreq_table == NULL) {
  3414. rc = -ENOMEM;
  3415. goto err_out;
  3416. }
  3417. pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
  3418. skdev->name, __func__, __LINE__,
  3419. skdev->sgs_per_request, sizeof(struct scatterlist),
  3420. skdev->sgs_per_request * sizeof(struct scatterlist));
  3421. for (i = 0; i < skdev->num_req_context; i++) {
  3422. struct skd_request_context *skreq;
  3423. skreq = &skdev->skreq_table[i];
  3424. skreq->id = i + SKD_ID_RW_REQUEST;
  3425. skreq->state = SKD_REQ_STATE_IDLE;
  3426. skreq->sg = kzalloc(sizeof(struct scatterlist) *
  3427. skdev->sgs_per_request, GFP_KERNEL);
  3428. if (skreq->sg == NULL) {
  3429. rc = -ENOMEM;
  3430. goto err_out;
  3431. }
  3432. sg_init_table(skreq->sg, skdev->sgs_per_request);
  3433. skreq->sksg_list = skd_cons_sg_list(skdev,
  3434. skdev->sgs_per_request,
  3435. &skreq->sksg_dma_address);
  3436. if (skreq->sksg_list == NULL) {
  3437. rc = -ENOMEM;
  3438. goto err_out;
  3439. }
  3440. skreq->next = &skreq[1];
  3441. }
  3442. /* Free list is in order starting with the 0th entry. */
  3443. skdev->skreq_table[i - 1].next = NULL;
  3444. skdev->skreq_free_list = skdev->skreq_table;
  3445. err_out:
  3446. return rc;
  3447. }
  3448. static int skd_cons_skspcl(struct skd_device *skdev)
  3449. {
  3450. int rc = 0;
  3451. u32 i, nbytes;
  3452. pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
  3453. skdev->name, __func__, __LINE__,
  3454. sizeof(struct skd_special_context),
  3455. skdev->n_special,
  3456. sizeof(struct skd_special_context) * skdev->n_special);
  3457. skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
  3458. * skdev->n_special, GFP_KERNEL);
  3459. if (skdev->skspcl_table == NULL) {
  3460. rc = -ENOMEM;
  3461. goto err_out;
  3462. }
  3463. for (i = 0; i < skdev->n_special; i++) {
  3464. struct skd_special_context *skspcl;
  3465. skspcl = &skdev->skspcl_table[i];
  3466. skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
  3467. skspcl->req.state = SKD_REQ_STATE_IDLE;
  3468. skspcl->req.next = &skspcl[1].req;
  3469. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3470. skspcl->msg_buf =
  3471. pci_zalloc_consistent(skdev->pdev, nbytes,
  3472. &skspcl->mb_dma_address);
  3473. if (skspcl->msg_buf == NULL) {
  3474. rc = -ENOMEM;
  3475. goto err_out;
  3476. }
  3477. skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
  3478. SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
  3479. if (skspcl->req.sg == NULL) {
  3480. rc = -ENOMEM;
  3481. goto err_out;
  3482. }
  3483. skspcl->req.sksg_list = skd_cons_sg_list(skdev,
  3484. SKD_N_SG_PER_SPECIAL,
  3485. &skspcl->req.
  3486. sksg_dma_address);
  3487. if (skspcl->req.sksg_list == NULL) {
  3488. rc = -ENOMEM;
  3489. goto err_out;
  3490. }
  3491. }
  3492. /* Free list is in order starting with the 0th entry. */
  3493. skdev->skspcl_table[i - 1].req.next = NULL;
  3494. skdev->skspcl_free_list = skdev->skspcl_table;
  3495. return rc;
  3496. err_out:
  3497. return rc;
  3498. }
  3499. static int skd_cons_sksb(struct skd_device *skdev)
  3500. {
  3501. int rc = 0;
  3502. struct skd_special_context *skspcl;
  3503. u32 nbytes;
  3504. skspcl = &skdev->internal_skspcl;
  3505. skspcl->req.id = 0 + SKD_ID_INTERNAL;
  3506. skspcl->req.state = SKD_REQ_STATE_IDLE;
  3507. nbytes = SKD_N_INTERNAL_BYTES;
  3508. skspcl->data_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
  3509. &skspcl->db_dma_address);
  3510. if (skspcl->data_buf == NULL) {
  3511. rc = -ENOMEM;
  3512. goto err_out;
  3513. }
  3514. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3515. skspcl->msg_buf = pci_zalloc_consistent(skdev->pdev, nbytes,
  3516. &skspcl->mb_dma_address);
  3517. if (skspcl->msg_buf == NULL) {
  3518. rc = -ENOMEM;
  3519. goto err_out;
  3520. }
  3521. skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
  3522. &skspcl->req.sksg_dma_address);
  3523. if (skspcl->req.sksg_list == NULL) {
  3524. rc = -ENOMEM;
  3525. goto err_out;
  3526. }
  3527. if (!skd_format_internal_skspcl(skdev)) {
  3528. rc = -EINVAL;
  3529. goto err_out;
  3530. }
  3531. err_out:
  3532. return rc;
  3533. }
  3534. static int skd_cons_disk(struct skd_device *skdev)
  3535. {
  3536. int rc = 0;
  3537. struct gendisk *disk;
  3538. struct request_queue *q;
  3539. unsigned long flags;
  3540. disk = alloc_disk(SKD_MINORS_PER_DEVICE);
  3541. if (!disk) {
  3542. rc = -ENOMEM;
  3543. goto err_out;
  3544. }
  3545. skdev->disk = disk;
  3546. sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
  3547. disk->major = skdev->major;
  3548. disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
  3549. disk->fops = &skd_blockdev_ops;
  3550. disk->private_data = skdev;
  3551. q = blk_init_queue(skd_request_fn, &skdev->lock);
  3552. if (!q) {
  3553. rc = -ENOMEM;
  3554. goto err_out;
  3555. }
  3556. skdev->queue = q;
  3557. disk->queue = q;
  3558. q->queuedata = skdev;
  3559. blk_queue_write_cache(q, true, true);
  3560. blk_queue_max_segments(q, skdev->sgs_per_request);
  3561. blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
  3562. /* set sysfs ptimal_io_size to 8K */
  3563. blk_queue_io_opt(q, 8192);
  3564. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  3565. queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
  3566. spin_lock_irqsave(&skdev->lock, flags);
  3567. pr_debug("%s:%s:%d stopping %s queue\n",
  3568. skdev->name, __func__, __LINE__, skdev->name);
  3569. blk_stop_queue(skdev->queue);
  3570. spin_unlock_irqrestore(&skdev->lock, flags);
  3571. err_out:
  3572. return rc;
  3573. }
  3574. #define SKD_N_DEV_TABLE 16u
  3575. static u32 skd_next_devno;
  3576. static struct skd_device *skd_construct(struct pci_dev *pdev)
  3577. {
  3578. struct skd_device *skdev;
  3579. int blk_major = skd_major;
  3580. int rc;
  3581. skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
  3582. if (!skdev) {
  3583. pr_err(PFX "(%s): memory alloc failure\n",
  3584. pci_name(pdev));
  3585. return NULL;
  3586. }
  3587. skdev->state = SKD_DRVR_STATE_LOAD;
  3588. skdev->pdev = pdev;
  3589. skdev->devno = skd_next_devno++;
  3590. skdev->major = blk_major;
  3591. sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
  3592. skdev->dev_max_queue_depth = 0;
  3593. skdev->num_req_context = skd_max_queue_depth;
  3594. skdev->num_fitmsg_context = skd_max_queue_depth;
  3595. skdev->n_special = skd_max_pass_thru;
  3596. skdev->cur_max_queue_depth = 1;
  3597. skdev->queue_low_water_mark = 1;
  3598. skdev->proto_ver = 99;
  3599. skdev->sgs_per_request = skd_sgs_per_request;
  3600. skdev->dbg_level = skd_dbg_level;
  3601. atomic_set(&skdev->device_count, 0);
  3602. spin_lock_init(&skdev->lock);
  3603. INIT_WORK(&skdev->completion_worker, skd_completion_worker);
  3604. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3605. rc = skd_cons_skcomp(skdev);
  3606. if (rc < 0)
  3607. goto err_out;
  3608. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3609. rc = skd_cons_skmsg(skdev);
  3610. if (rc < 0)
  3611. goto err_out;
  3612. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3613. rc = skd_cons_skreq(skdev);
  3614. if (rc < 0)
  3615. goto err_out;
  3616. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3617. rc = skd_cons_skspcl(skdev);
  3618. if (rc < 0)
  3619. goto err_out;
  3620. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3621. rc = skd_cons_sksb(skdev);
  3622. if (rc < 0)
  3623. goto err_out;
  3624. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3625. rc = skd_cons_disk(skdev);
  3626. if (rc < 0)
  3627. goto err_out;
  3628. pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
  3629. return skdev;
  3630. err_out:
  3631. pr_debug("%s:%s:%d construct failed\n",
  3632. skdev->name, __func__, __LINE__);
  3633. skd_destruct(skdev);
  3634. return NULL;
  3635. }
  3636. /*
  3637. *****************************************************************************
  3638. * DESTRUCT (FREE)
  3639. *****************************************************************************
  3640. */
  3641. static void skd_free_skcomp(struct skd_device *skdev)
  3642. {
  3643. if (skdev->skcomp_table != NULL) {
  3644. u32 nbytes;
  3645. nbytes = sizeof(skdev->skcomp_table[0]) *
  3646. SKD_N_COMPLETION_ENTRY;
  3647. pci_free_consistent(skdev->pdev, nbytes,
  3648. skdev->skcomp_table, skdev->cq_dma_address);
  3649. }
  3650. skdev->skcomp_table = NULL;
  3651. skdev->cq_dma_address = 0;
  3652. }
  3653. static void skd_free_skmsg(struct skd_device *skdev)
  3654. {
  3655. u32 i;
  3656. if (skdev->skmsg_table == NULL)
  3657. return;
  3658. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3659. struct skd_fitmsg_context *skmsg;
  3660. skmsg = &skdev->skmsg_table[i];
  3661. if (skmsg->msg_buf != NULL) {
  3662. skmsg->msg_buf += skmsg->offset;
  3663. skmsg->mb_dma_address += skmsg->offset;
  3664. pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
  3665. skmsg->msg_buf,
  3666. skmsg->mb_dma_address);
  3667. }
  3668. skmsg->msg_buf = NULL;
  3669. skmsg->mb_dma_address = 0;
  3670. }
  3671. kfree(skdev->skmsg_table);
  3672. skdev->skmsg_table = NULL;
  3673. }
  3674. static void skd_free_sg_list(struct skd_device *skdev,
  3675. struct fit_sg_descriptor *sg_list,
  3676. u32 n_sg, dma_addr_t dma_addr)
  3677. {
  3678. if (sg_list != NULL) {
  3679. u32 nbytes;
  3680. nbytes = sizeof(*sg_list) * n_sg;
  3681. pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
  3682. }
  3683. }
  3684. static void skd_free_skreq(struct skd_device *skdev)
  3685. {
  3686. u32 i;
  3687. if (skdev->skreq_table == NULL)
  3688. return;
  3689. for (i = 0; i < skdev->num_req_context; i++) {
  3690. struct skd_request_context *skreq;
  3691. skreq = &skdev->skreq_table[i];
  3692. skd_free_sg_list(skdev, skreq->sksg_list,
  3693. skdev->sgs_per_request,
  3694. skreq->sksg_dma_address);
  3695. skreq->sksg_list = NULL;
  3696. skreq->sksg_dma_address = 0;
  3697. kfree(skreq->sg);
  3698. }
  3699. kfree(skdev->skreq_table);
  3700. skdev->skreq_table = NULL;
  3701. }
  3702. static void skd_free_skspcl(struct skd_device *skdev)
  3703. {
  3704. u32 i;
  3705. u32 nbytes;
  3706. if (skdev->skspcl_table == NULL)
  3707. return;
  3708. for (i = 0; i < skdev->n_special; i++) {
  3709. struct skd_special_context *skspcl;
  3710. skspcl = &skdev->skspcl_table[i];
  3711. if (skspcl->msg_buf != NULL) {
  3712. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3713. pci_free_consistent(skdev->pdev, nbytes,
  3714. skspcl->msg_buf,
  3715. skspcl->mb_dma_address);
  3716. }
  3717. skspcl->msg_buf = NULL;
  3718. skspcl->mb_dma_address = 0;
  3719. skd_free_sg_list(skdev, skspcl->req.sksg_list,
  3720. SKD_N_SG_PER_SPECIAL,
  3721. skspcl->req.sksg_dma_address);
  3722. skspcl->req.sksg_list = NULL;
  3723. skspcl->req.sksg_dma_address = 0;
  3724. kfree(skspcl->req.sg);
  3725. }
  3726. kfree(skdev->skspcl_table);
  3727. skdev->skspcl_table = NULL;
  3728. }
  3729. static void skd_free_sksb(struct skd_device *skdev)
  3730. {
  3731. struct skd_special_context *skspcl;
  3732. u32 nbytes;
  3733. skspcl = &skdev->internal_skspcl;
  3734. if (skspcl->data_buf != NULL) {
  3735. nbytes = SKD_N_INTERNAL_BYTES;
  3736. pci_free_consistent(skdev->pdev, nbytes,
  3737. skspcl->data_buf, skspcl->db_dma_address);
  3738. }
  3739. skspcl->data_buf = NULL;
  3740. skspcl->db_dma_address = 0;
  3741. if (skspcl->msg_buf != NULL) {
  3742. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3743. pci_free_consistent(skdev->pdev, nbytes,
  3744. skspcl->msg_buf, skspcl->mb_dma_address);
  3745. }
  3746. skspcl->msg_buf = NULL;
  3747. skspcl->mb_dma_address = 0;
  3748. skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
  3749. skspcl->req.sksg_dma_address);
  3750. skspcl->req.sksg_list = NULL;
  3751. skspcl->req.sksg_dma_address = 0;
  3752. }
  3753. static void skd_free_disk(struct skd_device *skdev)
  3754. {
  3755. struct gendisk *disk = skdev->disk;
  3756. if (disk != NULL) {
  3757. struct request_queue *q = disk->queue;
  3758. if (disk->flags & GENHD_FL_UP)
  3759. del_gendisk(disk);
  3760. if (q)
  3761. blk_cleanup_queue(q);
  3762. put_disk(disk);
  3763. }
  3764. skdev->disk = NULL;
  3765. }
  3766. static void skd_destruct(struct skd_device *skdev)
  3767. {
  3768. if (skdev == NULL)
  3769. return;
  3770. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3771. skd_free_disk(skdev);
  3772. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3773. skd_free_sksb(skdev);
  3774. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3775. skd_free_skspcl(skdev);
  3776. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3777. skd_free_skreq(skdev);
  3778. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3779. skd_free_skmsg(skdev);
  3780. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3781. skd_free_skcomp(skdev);
  3782. pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
  3783. kfree(skdev);
  3784. }
  3785. /*
  3786. *****************************************************************************
  3787. * BLOCK DEVICE (BDEV) GLUE
  3788. *****************************************************************************
  3789. */
  3790. static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3791. {
  3792. struct skd_device *skdev;
  3793. u64 capacity;
  3794. skdev = bdev->bd_disk->private_data;
  3795. pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
  3796. skdev->name, __func__, __LINE__,
  3797. bdev->bd_disk->disk_name, current->comm);
  3798. if (skdev->read_cap_is_valid) {
  3799. capacity = get_capacity(skdev->disk);
  3800. geo->heads = 64;
  3801. geo->sectors = 255;
  3802. geo->cylinders = (capacity) / (255 * 64);
  3803. return 0;
  3804. }
  3805. return -EIO;
  3806. }
  3807. static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
  3808. {
  3809. pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
  3810. device_add_disk(parent, skdev->disk);
  3811. return 0;
  3812. }
  3813. static const struct block_device_operations skd_blockdev_ops = {
  3814. .owner = THIS_MODULE,
  3815. .ioctl = skd_bdev_ioctl,
  3816. .getgeo = skd_bdev_getgeo,
  3817. };
  3818. /*
  3819. *****************************************************************************
  3820. * PCIe DRIVER GLUE
  3821. *****************************************************************************
  3822. */
  3823. static const struct pci_device_id skd_pci_tbl[] = {
  3824. { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
  3825. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  3826. { 0 } /* terminate list */
  3827. };
  3828. MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
  3829. static char *skd_pci_info(struct skd_device *skdev, char *str)
  3830. {
  3831. int pcie_reg;
  3832. strcpy(str, "PCIe (");
  3833. pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
  3834. if (pcie_reg) {
  3835. char lwstr[6];
  3836. uint16_t pcie_lstat, lspeed, lwidth;
  3837. pcie_reg += 0x12;
  3838. pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
  3839. lspeed = pcie_lstat & (0xF);
  3840. lwidth = (pcie_lstat & 0x3F0) >> 4;
  3841. if (lspeed == 1)
  3842. strcat(str, "2.5GT/s ");
  3843. else if (lspeed == 2)
  3844. strcat(str, "5.0GT/s ");
  3845. else
  3846. strcat(str, "<unknown> ");
  3847. snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
  3848. strcat(str, lwstr);
  3849. }
  3850. return str;
  3851. }
  3852. static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  3853. {
  3854. int i;
  3855. int rc = 0;
  3856. char pci_str[32];
  3857. struct skd_device *skdev;
  3858. pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
  3859. DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
  3860. pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
  3861. pci_name(pdev), pdev->vendor, pdev->device);
  3862. rc = pci_enable_device(pdev);
  3863. if (rc)
  3864. return rc;
  3865. rc = pci_request_regions(pdev, DRV_NAME);
  3866. if (rc)
  3867. goto err_out;
  3868. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  3869. if (!rc) {
  3870. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3871. pr_err("(%s): consistent DMA mask error %d\n",
  3872. pci_name(pdev), rc);
  3873. }
  3874. } else {
  3875. (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
  3876. if (rc) {
  3877. pr_err("(%s): DMA mask error %d\n",
  3878. pci_name(pdev), rc);
  3879. goto err_out_regions;
  3880. }
  3881. }
  3882. if (!skd_major) {
  3883. rc = register_blkdev(0, DRV_NAME);
  3884. if (rc < 0)
  3885. goto err_out_regions;
  3886. BUG_ON(!rc);
  3887. skd_major = rc;
  3888. }
  3889. skdev = skd_construct(pdev);
  3890. if (skdev == NULL) {
  3891. rc = -ENOMEM;
  3892. goto err_out_regions;
  3893. }
  3894. skd_pci_info(skdev, pci_str);
  3895. pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
  3896. pci_set_master(pdev);
  3897. rc = pci_enable_pcie_error_reporting(pdev);
  3898. if (rc) {
  3899. pr_err(
  3900. "(%s): bad enable of PCIe error reporting rc=%d\n",
  3901. skd_name(skdev), rc);
  3902. skdev->pcie_error_reporting_is_enabled = 0;
  3903. } else
  3904. skdev->pcie_error_reporting_is_enabled = 1;
  3905. pci_set_drvdata(pdev, skdev);
  3906. for (i = 0; i < SKD_MAX_BARS; i++) {
  3907. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  3908. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  3909. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  3910. skdev->mem_size[i]);
  3911. if (!skdev->mem_map[i]) {
  3912. pr_err("(%s): Unable to map adapter memory!\n",
  3913. skd_name(skdev));
  3914. rc = -ENODEV;
  3915. goto err_out_iounmap;
  3916. }
  3917. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  3918. skdev->name, __func__, __LINE__,
  3919. skdev->mem_map[i],
  3920. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  3921. }
  3922. rc = skd_acquire_irq(skdev);
  3923. if (rc) {
  3924. pr_err("(%s): interrupt resource error %d\n",
  3925. skd_name(skdev), rc);
  3926. goto err_out_iounmap;
  3927. }
  3928. rc = skd_start_timer(skdev);
  3929. if (rc)
  3930. goto err_out_timer;
  3931. init_waitqueue_head(&skdev->waitq);
  3932. skd_start_device(skdev);
  3933. rc = wait_event_interruptible_timeout(skdev->waitq,
  3934. (skdev->gendisk_on),
  3935. (SKD_START_WAIT_SECONDS * HZ));
  3936. if (skdev->gendisk_on > 0) {
  3937. /* device came on-line after reset */
  3938. skd_bdev_attach(&pdev->dev, skdev);
  3939. rc = 0;
  3940. } else {
  3941. /* we timed out, something is wrong with the device,
  3942. don't add the disk structure */
  3943. pr_err(
  3944. "(%s): error: waiting for s1120 timed out %d!\n",
  3945. skd_name(skdev), rc);
  3946. /* in case of no error; we timeout with ENXIO */
  3947. if (!rc)
  3948. rc = -ENXIO;
  3949. goto err_out_timer;
  3950. }
  3951. #ifdef SKD_VMK_POLL_HANDLER
  3952. if (skdev->irq_type == SKD_IRQ_MSIX) {
  3953. /* MSIX completion handler is being used for coredump */
  3954. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  3955. skdev->msix_entries[5].vector,
  3956. skd_comp_q, skdev);
  3957. } else {
  3958. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  3959. skdev->pdev->irq, skd_isr,
  3960. skdev);
  3961. }
  3962. #endif /* SKD_VMK_POLL_HANDLER */
  3963. return rc;
  3964. err_out_timer:
  3965. skd_stop_device(skdev);
  3966. skd_release_irq(skdev);
  3967. err_out_iounmap:
  3968. for (i = 0; i < SKD_MAX_BARS; i++)
  3969. if (skdev->mem_map[i])
  3970. iounmap(skdev->mem_map[i]);
  3971. if (skdev->pcie_error_reporting_is_enabled)
  3972. pci_disable_pcie_error_reporting(pdev);
  3973. skd_destruct(skdev);
  3974. err_out_regions:
  3975. pci_release_regions(pdev);
  3976. err_out:
  3977. pci_disable_device(pdev);
  3978. pci_set_drvdata(pdev, NULL);
  3979. return rc;
  3980. }
  3981. static void skd_pci_remove(struct pci_dev *pdev)
  3982. {
  3983. int i;
  3984. struct skd_device *skdev;
  3985. skdev = pci_get_drvdata(pdev);
  3986. if (!skdev) {
  3987. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  3988. return;
  3989. }
  3990. skd_stop_device(skdev);
  3991. skd_release_irq(skdev);
  3992. for (i = 0; i < SKD_MAX_BARS; i++)
  3993. if (skdev->mem_map[i])
  3994. iounmap((u32 *)skdev->mem_map[i]);
  3995. if (skdev->pcie_error_reporting_is_enabled)
  3996. pci_disable_pcie_error_reporting(pdev);
  3997. skd_destruct(skdev);
  3998. pci_release_regions(pdev);
  3999. pci_disable_device(pdev);
  4000. pci_set_drvdata(pdev, NULL);
  4001. return;
  4002. }
  4003. static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  4004. {
  4005. int i;
  4006. struct skd_device *skdev;
  4007. skdev = pci_get_drvdata(pdev);
  4008. if (!skdev) {
  4009. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4010. return -EIO;
  4011. }
  4012. skd_stop_device(skdev);
  4013. skd_release_irq(skdev);
  4014. for (i = 0; i < SKD_MAX_BARS; i++)
  4015. if (skdev->mem_map[i])
  4016. iounmap((u32 *)skdev->mem_map[i]);
  4017. if (skdev->pcie_error_reporting_is_enabled)
  4018. pci_disable_pcie_error_reporting(pdev);
  4019. pci_release_regions(pdev);
  4020. pci_save_state(pdev);
  4021. pci_disable_device(pdev);
  4022. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4023. return 0;
  4024. }
  4025. static int skd_pci_resume(struct pci_dev *pdev)
  4026. {
  4027. int i;
  4028. int rc = 0;
  4029. struct skd_device *skdev;
  4030. skdev = pci_get_drvdata(pdev);
  4031. if (!skdev) {
  4032. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4033. return -1;
  4034. }
  4035. pci_set_power_state(pdev, PCI_D0);
  4036. pci_enable_wake(pdev, PCI_D0, 0);
  4037. pci_restore_state(pdev);
  4038. rc = pci_enable_device(pdev);
  4039. if (rc)
  4040. return rc;
  4041. rc = pci_request_regions(pdev, DRV_NAME);
  4042. if (rc)
  4043. goto err_out;
  4044. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4045. if (!rc) {
  4046. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4047. pr_err("(%s): consistent DMA mask error %d\n",
  4048. pci_name(pdev), rc);
  4049. }
  4050. } else {
  4051. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4052. if (rc) {
  4053. pr_err("(%s): DMA mask error %d\n",
  4054. pci_name(pdev), rc);
  4055. goto err_out_regions;
  4056. }
  4057. }
  4058. pci_set_master(pdev);
  4059. rc = pci_enable_pcie_error_reporting(pdev);
  4060. if (rc) {
  4061. pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
  4062. skdev->name, rc);
  4063. skdev->pcie_error_reporting_is_enabled = 0;
  4064. } else
  4065. skdev->pcie_error_reporting_is_enabled = 1;
  4066. for (i = 0; i < SKD_MAX_BARS; i++) {
  4067. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4068. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4069. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4070. skdev->mem_size[i]);
  4071. if (!skdev->mem_map[i]) {
  4072. pr_err("(%s): Unable to map adapter memory!\n",
  4073. skd_name(skdev));
  4074. rc = -ENODEV;
  4075. goto err_out_iounmap;
  4076. }
  4077. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4078. skdev->name, __func__, __LINE__,
  4079. skdev->mem_map[i],
  4080. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4081. }
  4082. rc = skd_acquire_irq(skdev);
  4083. if (rc) {
  4084. pr_err("(%s): interrupt resource error %d\n",
  4085. pci_name(pdev), rc);
  4086. goto err_out_iounmap;
  4087. }
  4088. rc = skd_start_timer(skdev);
  4089. if (rc)
  4090. goto err_out_timer;
  4091. init_waitqueue_head(&skdev->waitq);
  4092. skd_start_device(skdev);
  4093. return rc;
  4094. err_out_timer:
  4095. skd_stop_device(skdev);
  4096. skd_release_irq(skdev);
  4097. err_out_iounmap:
  4098. for (i = 0; i < SKD_MAX_BARS; i++)
  4099. if (skdev->mem_map[i])
  4100. iounmap(skdev->mem_map[i]);
  4101. if (skdev->pcie_error_reporting_is_enabled)
  4102. pci_disable_pcie_error_reporting(pdev);
  4103. err_out_regions:
  4104. pci_release_regions(pdev);
  4105. err_out:
  4106. pci_disable_device(pdev);
  4107. return rc;
  4108. }
  4109. static void skd_pci_shutdown(struct pci_dev *pdev)
  4110. {
  4111. struct skd_device *skdev;
  4112. pr_err("skd_pci_shutdown called\n");
  4113. skdev = pci_get_drvdata(pdev);
  4114. if (!skdev) {
  4115. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4116. return;
  4117. }
  4118. pr_err("%s: calling stop\n", skd_name(skdev));
  4119. skd_stop_device(skdev);
  4120. }
  4121. static struct pci_driver skd_driver = {
  4122. .name = DRV_NAME,
  4123. .id_table = skd_pci_tbl,
  4124. .probe = skd_pci_probe,
  4125. .remove = skd_pci_remove,
  4126. .suspend = skd_pci_suspend,
  4127. .resume = skd_pci_resume,
  4128. .shutdown = skd_pci_shutdown,
  4129. };
  4130. /*
  4131. *****************************************************************************
  4132. * LOGGING SUPPORT
  4133. *****************************************************************************
  4134. */
  4135. static const char *skd_name(struct skd_device *skdev)
  4136. {
  4137. memset(skdev->id_str, 0, sizeof(skdev->id_str));
  4138. if (skdev->inquiry_is_valid)
  4139. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
  4140. skdev->name, skdev->inq_serial_num,
  4141. pci_name(skdev->pdev));
  4142. else
  4143. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
  4144. skdev->name, pci_name(skdev->pdev));
  4145. return skdev->id_str;
  4146. }
  4147. const char *skd_drive_state_to_str(int state)
  4148. {
  4149. switch (state) {
  4150. case FIT_SR_DRIVE_OFFLINE:
  4151. return "OFFLINE";
  4152. case FIT_SR_DRIVE_INIT:
  4153. return "INIT";
  4154. case FIT_SR_DRIVE_ONLINE:
  4155. return "ONLINE";
  4156. case FIT_SR_DRIVE_BUSY:
  4157. return "BUSY";
  4158. case FIT_SR_DRIVE_FAULT:
  4159. return "FAULT";
  4160. case FIT_SR_DRIVE_DEGRADED:
  4161. return "DEGRADED";
  4162. case FIT_SR_PCIE_LINK_DOWN:
  4163. return "INK_DOWN";
  4164. case FIT_SR_DRIVE_SOFT_RESET:
  4165. return "SOFT_RESET";
  4166. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  4167. return "NEED_FW";
  4168. case FIT_SR_DRIVE_INIT_FAULT:
  4169. return "INIT_FAULT";
  4170. case FIT_SR_DRIVE_BUSY_SANITIZE:
  4171. return "BUSY_SANITIZE";
  4172. case FIT_SR_DRIVE_BUSY_ERASE:
  4173. return "BUSY_ERASE";
  4174. case FIT_SR_DRIVE_FW_BOOTING:
  4175. return "FW_BOOTING";
  4176. default:
  4177. return "???";
  4178. }
  4179. }
  4180. const char *skd_skdev_state_to_str(enum skd_drvr_state state)
  4181. {
  4182. switch (state) {
  4183. case SKD_DRVR_STATE_LOAD:
  4184. return "LOAD";
  4185. case SKD_DRVR_STATE_IDLE:
  4186. return "IDLE";
  4187. case SKD_DRVR_STATE_BUSY:
  4188. return "BUSY";
  4189. case SKD_DRVR_STATE_STARTING:
  4190. return "STARTING";
  4191. case SKD_DRVR_STATE_ONLINE:
  4192. return "ONLINE";
  4193. case SKD_DRVR_STATE_PAUSING:
  4194. return "PAUSING";
  4195. case SKD_DRVR_STATE_PAUSED:
  4196. return "PAUSED";
  4197. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  4198. return "DRAINING_TIMEOUT";
  4199. case SKD_DRVR_STATE_RESTARTING:
  4200. return "RESTARTING";
  4201. case SKD_DRVR_STATE_RESUMING:
  4202. return "RESUMING";
  4203. case SKD_DRVR_STATE_STOPPING:
  4204. return "STOPPING";
  4205. case SKD_DRVR_STATE_SYNCING:
  4206. return "SYNCING";
  4207. case SKD_DRVR_STATE_FAULT:
  4208. return "FAULT";
  4209. case SKD_DRVR_STATE_DISAPPEARED:
  4210. return "DISAPPEARED";
  4211. case SKD_DRVR_STATE_BUSY_ERASE:
  4212. return "BUSY_ERASE";
  4213. case SKD_DRVR_STATE_BUSY_SANITIZE:
  4214. return "BUSY_SANITIZE";
  4215. case SKD_DRVR_STATE_BUSY_IMMINENT:
  4216. return "BUSY_IMMINENT";
  4217. case SKD_DRVR_STATE_WAIT_BOOT:
  4218. return "WAIT_BOOT";
  4219. default:
  4220. return "???";
  4221. }
  4222. }
  4223. static const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
  4224. {
  4225. switch (state) {
  4226. case SKD_MSG_STATE_IDLE:
  4227. return "IDLE";
  4228. case SKD_MSG_STATE_BUSY:
  4229. return "BUSY";
  4230. default:
  4231. return "???";
  4232. }
  4233. }
  4234. static const char *skd_skreq_state_to_str(enum skd_req_state state)
  4235. {
  4236. switch (state) {
  4237. case SKD_REQ_STATE_IDLE:
  4238. return "IDLE";
  4239. case SKD_REQ_STATE_SETUP:
  4240. return "SETUP";
  4241. case SKD_REQ_STATE_BUSY:
  4242. return "BUSY";
  4243. case SKD_REQ_STATE_COMPLETED:
  4244. return "COMPLETED";
  4245. case SKD_REQ_STATE_TIMEOUT:
  4246. return "TIMEOUT";
  4247. case SKD_REQ_STATE_ABORTED:
  4248. return "ABORTED";
  4249. default:
  4250. return "???";
  4251. }
  4252. }
  4253. static void skd_log_skdev(struct skd_device *skdev, const char *event)
  4254. {
  4255. pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
  4256. skdev->name, __func__, __LINE__, skdev->name, skdev, event);
  4257. pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
  4258. skdev->name, __func__, __LINE__,
  4259. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  4260. skd_skdev_state_to_str(skdev->state), skdev->state);
  4261. pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
  4262. skdev->name, __func__, __LINE__,
  4263. skdev->in_flight, skdev->cur_max_queue_depth,
  4264. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  4265. pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
  4266. skdev->name, __func__, __LINE__,
  4267. skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
  4268. }
  4269. static void skd_log_skmsg(struct skd_device *skdev,
  4270. struct skd_fitmsg_context *skmsg, const char *event)
  4271. {
  4272. pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
  4273. skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
  4274. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
  4275. skdev->name, __func__, __LINE__,
  4276. skd_skmsg_state_to_str(skmsg->state), skmsg->state,
  4277. skmsg->id, skmsg->length);
  4278. }
  4279. static void skd_log_skreq(struct skd_device *skdev,
  4280. struct skd_request_context *skreq, const char *event)
  4281. {
  4282. pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
  4283. skdev->name, __func__, __LINE__, skdev->name, skreq, event);
  4284. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
  4285. skdev->name, __func__, __LINE__,
  4286. skd_skreq_state_to_str(skreq->state), skreq->state,
  4287. skreq->id, skreq->fitmsg_id);
  4288. pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
  4289. skdev->name, __func__, __LINE__,
  4290. skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
  4291. if (skreq->req != NULL) {
  4292. struct request *req = skreq->req;
  4293. u32 lba = (u32)blk_rq_pos(req);
  4294. u32 count = blk_rq_sectors(req);
  4295. pr_debug("%s:%s:%d "
  4296. "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
  4297. skdev->name, __func__, __LINE__,
  4298. req, lba, lba, count, count,
  4299. (int)rq_data_dir(req));
  4300. } else
  4301. pr_debug("%s:%s:%d req=NULL\n",
  4302. skdev->name, __func__, __LINE__);
  4303. }
  4304. /*
  4305. *****************************************************************************
  4306. * MODULE GLUE
  4307. *****************************************************************************
  4308. */
  4309. static int __init skd_init(void)
  4310. {
  4311. pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
  4312. switch (skd_isr_type) {
  4313. case SKD_IRQ_LEGACY:
  4314. case SKD_IRQ_MSI:
  4315. case SKD_IRQ_MSIX:
  4316. break;
  4317. default:
  4318. pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
  4319. skd_isr_type, SKD_IRQ_DEFAULT);
  4320. skd_isr_type = SKD_IRQ_DEFAULT;
  4321. }
  4322. if (skd_max_queue_depth < 1 ||
  4323. skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
  4324. pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
  4325. skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
  4326. skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  4327. }
  4328. if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
  4329. pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
  4330. skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
  4331. skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  4332. }
  4333. if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
  4334. pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
  4335. skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
  4336. skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  4337. }
  4338. if (skd_dbg_level < 0 || skd_dbg_level > 2) {
  4339. pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
  4340. skd_dbg_level, 0);
  4341. skd_dbg_level = 0;
  4342. }
  4343. if (skd_isr_comp_limit < 0) {
  4344. pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
  4345. skd_isr_comp_limit, 0);
  4346. skd_isr_comp_limit = 0;
  4347. }
  4348. if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
  4349. pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
  4350. skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
  4351. skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  4352. }
  4353. return pci_register_driver(&skd_driver);
  4354. }
  4355. static void __exit skd_exit(void)
  4356. {
  4357. pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
  4358. pci_unregister_driver(&skd_driver);
  4359. if (skd_major)
  4360. unregister_blkdev(skd_major, DRV_NAME);
  4361. }
  4362. module_init(skd_init);
  4363. module_exit(skd_exit);