pci-dma.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. /*
  2. * DMA coherent memory allocation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * Copyright (C) 2002 - 2005 Tensilica Inc.
  10. * Copyright (C) 2015 Cadence Design Systems Inc.
  11. *
  12. * Based on version for i386.
  13. *
  14. * Chris Zankel <chris@zankel.net>
  15. * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
  16. */
  17. #include <linux/dma-contiguous.h>
  18. #include <linux/gfp.h>
  19. #include <linux/highmem.h>
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/pci.h>
  23. #include <linux/string.h>
  24. #include <linux/types.h>
  25. #include <asm/cacheflush.h>
  26. #include <asm/io.h>
  27. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  28. enum dma_data_direction dir)
  29. {
  30. switch (dir) {
  31. case DMA_BIDIRECTIONAL:
  32. __flush_invalidate_dcache_range((unsigned long)vaddr, size);
  33. break;
  34. case DMA_FROM_DEVICE:
  35. __invalidate_dcache_range((unsigned long)vaddr, size);
  36. break;
  37. case DMA_TO_DEVICE:
  38. __flush_dcache_range((unsigned long)vaddr, size);
  39. break;
  40. case DMA_NONE:
  41. BUG();
  42. break;
  43. }
  44. }
  45. EXPORT_SYMBOL(dma_cache_sync);
  46. static void do_cache_op(dma_addr_t dma_handle, size_t size,
  47. void (*fn)(unsigned long, unsigned long))
  48. {
  49. unsigned long off = dma_handle & (PAGE_SIZE - 1);
  50. unsigned long pfn = PFN_DOWN(dma_handle);
  51. struct page *page = pfn_to_page(pfn);
  52. if (!PageHighMem(page))
  53. fn((unsigned long)bus_to_virt(dma_handle), size);
  54. else
  55. while (size > 0) {
  56. size_t sz = min_t(size_t, size, PAGE_SIZE - off);
  57. void *vaddr = kmap_atomic(page);
  58. fn((unsigned long)vaddr + off, sz);
  59. kunmap_atomic(vaddr);
  60. off = 0;
  61. ++page;
  62. size -= sz;
  63. }
  64. }
  65. static void xtensa_sync_single_for_cpu(struct device *dev,
  66. dma_addr_t dma_handle, size_t size,
  67. enum dma_data_direction dir)
  68. {
  69. switch (dir) {
  70. case DMA_BIDIRECTIONAL:
  71. case DMA_FROM_DEVICE:
  72. do_cache_op(dma_handle, size, __invalidate_dcache_range);
  73. break;
  74. case DMA_NONE:
  75. BUG();
  76. break;
  77. default:
  78. break;
  79. }
  80. }
  81. static void xtensa_sync_single_for_device(struct device *dev,
  82. dma_addr_t dma_handle, size_t size,
  83. enum dma_data_direction dir)
  84. {
  85. switch (dir) {
  86. case DMA_BIDIRECTIONAL:
  87. case DMA_TO_DEVICE:
  88. if (XCHAL_DCACHE_IS_WRITEBACK)
  89. do_cache_op(dma_handle, size, __flush_dcache_range);
  90. break;
  91. case DMA_NONE:
  92. BUG();
  93. break;
  94. default:
  95. break;
  96. }
  97. }
  98. static void xtensa_sync_sg_for_cpu(struct device *dev,
  99. struct scatterlist *sg, int nents,
  100. enum dma_data_direction dir)
  101. {
  102. struct scatterlist *s;
  103. int i;
  104. for_each_sg(sg, s, nents, i) {
  105. xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
  106. sg_dma_len(s), dir);
  107. }
  108. }
  109. static void xtensa_sync_sg_for_device(struct device *dev,
  110. struct scatterlist *sg, int nents,
  111. enum dma_data_direction dir)
  112. {
  113. struct scatterlist *s;
  114. int i;
  115. for_each_sg(sg, s, nents, i) {
  116. xtensa_sync_single_for_device(dev, sg_dma_address(s),
  117. sg_dma_len(s), dir);
  118. }
  119. }
  120. /*
  121. * Note: We assume that the full memory space is always mapped to 'kseg'
  122. * Otherwise we have to use page attributes (not implemented).
  123. */
  124. static void *xtensa_dma_alloc(struct device *dev, size_t size,
  125. dma_addr_t *handle, gfp_t flag,
  126. unsigned long attrs)
  127. {
  128. unsigned long ret;
  129. unsigned long uncached = 0;
  130. unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  131. struct page *page = NULL;
  132. /* ignore region speicifiers */
  133. flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
  134. if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
  135. flag |= GFP_DMA;
  136. if (gfpflags_allow_blocking(flag))
  137. page = dma_alloc_from_contiguous(dev, count, get_order(size));
  138. if (!page)
  139. page = alloc_pages(flag, get_order(size));
  140. if (!page)
  141. return NULL;
  142. ret = (unsigned long)page_address(page);
  143. /* We currently don't support coherent memory outside KSEG */
  144. BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR ||
  145. ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
  146. uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
  147. *handle = virt_to_bus((void *)ret);
  148. __invalidate_dcache_range(ret, size);
  149. return (void *)uncached;
  150. }
  151. static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
  152. dma_addr_t dma_handle, unsigned long attrs)
  153. {
  154. unsigned long addr = (unsigned long)vaddr +
  155. XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
  156. struct page *page = virt_to_page(addr);
  157. unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  158. BUG_ON(addr < XCHAL_KSEG_CACHED_VADDR ||
  159. addr > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
  160. if (!dma_release_from_contiguous(dev, page, count))
  161. __free_pages(page, get_order(size));
  162. }
  163. static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
  164. unsigned long offset, size_t size,
  165. enum dma_data_direction dir,
  166. unsigned long attrs)
  167. {
  168. dma_addr_t dma_handle = page_to_phys(page) + offset;
  169. if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
  170. xtensa_sync_single_for_device(dev, dma_handle, size, dir);
  171. return dma_handle;
  172. }
  173. static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
  174. size_t size, enum dma_data_direction dir,
  175. unsigned long attrs)
  176. {
  177. if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
  178. xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
  179. }
  180. static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
  181. int nents, enum dma_data_direction dir,
  182. unsigned long attrs)
  183. {
  184. struct scatterlist *s;
  185. int i;
  186. for_each_sg(sg, s, nents, i) {
  187. s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
  188. s->length, dir, attrs);
  189. }
  190. return nents;
  191. }
  192. static void xtensa_unmap_sg(struct device *dev,
  193. struct scatterlist *sg, int nents,
  194. enum dma_data_direction dir,
  195. unsigned long attrs)
  196. {
  197. struct scatterlist *s;
  198. int i;
  199. for_each_sg(sg, s, nents, i) {
  200. xtensa_unmap_page(dev, sg_dma_address(s),
  201. sg_dma_len(s), dir, attrs);
  202. }
  203. }
  204. int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  205. {
  206. return 0;
  207. }
  208. struct dma_map_ops xtensa_dma_map_ops = {
  209. .alloc = xtensa_dma_alloc,
  210. .free = xtensa_dma_free,
  211. .map_page = xtensa_map_page,
  212. .unmap_page = xtensa_unmap_page,
  213. .map_sg = xtensa_map_sg,
  214. .unmap_sg = xtensa_unmap_sg,
  215. .sync_single_for_cpu = xtensa_sync_single_for_cpu,
  216. .sync_single_for_device = xtensa_sync_single_for_device,
  217. .sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
  218. .sync_sg_for_device = xtensa_sync_sg_for_device,
  219. .mapping_error = xtensa_dma_mapping_error,
  220. };
  221. EXPORT_SYMBOL(xtensa_dma_map_ops);
  222. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  223. static int __init xtensa_dma_init(void)
  224. {
  225. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  226. return 0;
  227. }
  228. fs_initcall(xtensa_dma_init);